
13-th IEEE International Conference on Peer-to-Peer Computing

Boosting Content Delivery with BitTorrent in
Online Cloud Storage Services

Rahma Chaabouni∗, Pedro Garcı́a-López∗, Marc Sánchez-Artigas∗, Sandra Ferrer-Celma∗ and Carlos Cebrian§
∗Universitat Rovira i Virgili, Tarragona (Spain), §TISSAT (Spain)

{rahma.chaabouni|pedro.garcia|marc.sanchez|sandra.ferrer}@urv.cat, ccbrian@tissat.es

I. INTRODUCTION

In classic storage services, the transfer protocol used is
usually HTTP. This means that all download requests are
handled by a central server which sends the requested files in
a single stream. But, such transfer is limited by the narrowest
network condition along the way, or by the server being
overloaded by requests from many clients.

In this context, a number of studies have tried to combine
BitTorrent content distribution technologies with Cloud en-
vironments. In fact, the efficiency of the BitTorrent protocol
makes it especially suitable for massive content distribution
while reducing bandwidth costs in the Cloud. Many previous
works have focused on reducing download times for large
contents using BitTorrent in Cloud settings. Either for bulk
synchronous content distribution [1] or for reducing transfer
times for cloud virtual images [2], [3], [4], BitTorrent proved
to be a very efficient technology that outperforms classical
centralized transfer solutions.

As we will explain in the next section, our approach is
novel because it provides transparent and adaptive mechanisms
to switch between traditional HTTP and BitTorrent technolo-
gies in Cloud Storage environments. None of the previous
approaches targets this transparency or adaptivity.

In order to validate this new approach, we have modified
an implementation of a personal Cloud system based on
OpenStack Swift to accommodate BitTorrent. We developed
also a message exchange system that captures the messages
sent from the system and forwards them to a monitoring
tool that gives real time information about the status of the
transfers. Finally, we will show, during the demonstration
and using our monitoring tool, how our adaptive policies can
efficiently reduce transfer costs inside the Cloud.

II. ARCHITECTURE

A. System Overview

Our storage service extends the classic model with enhanced
techniques for content sharing. We use an implementation of
an open source Personal Cloud system called StackSync which
provides storage, syncing and sharing capabilities on top of
OpenStack Swift. All the StackSync clients are connected to
an OpenStack server in which their files are stored after being
divided into small entities (called pieces or chunks).

As detailed in Fig. 1, to download a file, the StackSync client
(1) sends an HTTP GET request to the Cloud Server. The latter

verifies the existence of the file in the storage services and its
“popularity”. If there are few users requesting the file (the total
number of requesters is inferior to a pre-defined threshold), the
Cloud Server proceeds with the file transfer using the HTTP
protocol. Otherwise, if the file is popular, the Cloud Server

Fig. 1. Download scenario and the switch to BitTorrent

will decide to switch to the BitTorrent protocol. To do so,
it transparently (2) commands the Torrent Server to create a
torrent meta-data file and (3) run a corresponding seed. After
doing so, the Torrent Server (4) sends to the Cloud the .torrent
file created that will be (5) transmitted later to the client. The
client, unaware of all these interactions, will then (6) start
downloading the file using the BitTorrent protocol (from the
Cloud Seed and/or from the other clients).

Evidently, the “older” clients who arrived before the switch
to BitTorrent will also benefit from the switch if they did not
finish the download. In fact, when a client requests a new
chunk to be downloaded, he will realise that the downloading
protocol has changed and will automatically adapt to the new
one. Thus, each HTTP client will join the swarm with the
pieces he already has, which means that he will be probably
contributing to the swarm as soon as he switches to BitTorrent
in a very transparent way.

B. Monitoring Tool

In order to validate the above-described architecture, we
developed a special tool that can monitor the traffic between
the components of the system and give real time information

978-1-4799-0521-8/13/$31.00 c©2013 IEEE

13-th IEEE International Conference on Peer-to-Peer Computing

about the status of the transfers. Our tool offers the following
features:
• Real-time measurements of different events and physical

parameters of the system;
• Message queueing service between the different parts of

the system and the graphic components;
• Dynamic charts to visualize the download progress.

These features are further detailed as follows:
1) Real-time measurements: To assess the performance of

our model, we provide mechanisms for real-time measurement
of the parameters of our system. These parameters can be
physical (available bandwidth, consumed bandwidth. . .) or
they can be in the form of execution events (a peer joining or
leaving the swarm, a peer sending a piece to another peer. . .).

2) Message queueing system: To capture the previously
stated parameters, we set up different sensors for each compo-
nent of the system (see Fig. 2). These sensors are set to detect

Fig. 2. Architecture with the sensors and the monitor

the “important” events. Depending on these events, the system
sends the corresponding messages to the message queueing
system. The messages are stored in a queue and consumed
by the monitor which is responsible for updating the related
graphical components.

3) Dynamic charts: Different statistical charts are included
in our monitor in order to give us a real time projection of
all the execution states. These charts are used to measure the
evolution of different parameters both on the Cloud’s and the
peer’s sides.

a) Cloud-Related Charts: In order to measure the con-
tribution of our model in offloading the Cloud’s serving, we
include a line chart representing the evolution of the cumu-
lative number of clients and the number of chunk-requests
addressed to the Cloud over time. This chart is used to show
that with increasing number of clients, the number of chunks
requested from the Cloud is decreasing as the clients will
be exchanging chunks among one-another. We measure also
the contribution of an eventual local cache system integrated
within the BitTorrent server. The cache’s role is to save the
chunks already requested from OpenStack Swift’s storage
nodes in a local memory to avoid repeated requests of the same
chunk. We measure the percentage of the requests addressed to
the cache in comparison with those from the the OpenStack

Swift’s storage nodes and we plot it in a dynamic pie-like
chart.

b) The Network’s Topology Graph: To be able to track
the evolution of the transfers in the system, our monitor offers
a real-time view of all the peers in the network in the form of a
directed graph whose vertices are the nodes of the system and
whose edges represent transfers in the form of arrows directed
from the uploader to the downloader.

c) Global Charts: In order to measure the contribution
of each component in the download process, we represent also
the evolution of the all the chunks’ requests sent through the
system depending on their nature: HTTP or BitTorrent, and in
the BitTorrent’s case whether they are addressed to the Cloud
seed or are the result of peers exchange.

III. DEMONSTRATION

We will deploy our Cloud in a rack at the university and
during the demonstration, we will launch several StackSync
clients. In fact, our monitor allows us to instrument these
clients remotely and determine their entrance pattern. We will
conduct our demo by making these clients request the same
file at the same time in a flash-crowd scenario.
Using our monitoring tool, we will be able to follow the
download evolution in real time and understand what is
happening in the different components of the architecture so
that we can change and adapt them to our goals. We will
capture the shift between the download protocols when the
threshold is reached, measure the contribution of the peers and
calculate the improvements comparing to the classic download
scenario. Moreover, this tool will help us determine precisely
the best and most efficient threshold for different entrance
patterns.

ACKNOWLEDGEMENTS

This work has been partially funded by the EU in the
context of the project CloudSpaces: Open Service Platform
for the Next Generation of Personal clouds (FP7-317555) and
by the Spanish Ministry of Science and Innovation through
the RealCloud project (IPT-2011-1232-430000).

REFERENCES

[1] S. Priyanka, R. Kalpana, and M. Hemalatha, “Reducing upload and
Download Time on Cloud using Content Distribution Algorithm,” In-
ternational Journal on Recent and Innovation Trends in Computing and
Communication, vol. 1, pp. 101–105, 2013.

[2] R. Wartel, T. Cass, B. Moreira, E. Roche, M. Guijarro, S. Goasguen, and
U. Schwickerath, “Image distribution mechanisms in large scale cloud
providers,” in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, 2010, pp. 112–117.

[3] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben, “Efficient
distribution of virtual machines for cloud computing,” in Parallel, Dis-
tributed and Network-Based Processing (PDP), 2010 18th Euromicro
International Conference on, 2010, pp. 567–574.

[4] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh, and
D. Rubenstein, “VMtorrent: virtual appliances on-demand,” in SIG-
COMM, 2010, pp. 453–454.

978-1-4799-0521-8/13/$31.00 c©2013 IEEE 2

