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Abstract—Microblogging sites, like Twitter, have emerged as
ubiquitous sources of information. Two important tasks related
to the automatic extraction and analysis of information in
Microblogs are Entity Mention Detection (EMD) and Entity
Detection (ED). The state-of-the-art EMD systems aim to model
the non-literary nature of microblog text by training upon
offline static datasets. They extract a combination of surface-level
features – orthographic, lexical, and semantic – from individual
messages for noisy text modeling and entity extraction. But given
the constantly evolving nature of microblog streams, detecting
all entity mentions from such varying yet limited context of
short messages remains a difficult problem. To this end, we
propose a framework named EMD Globalizer, better suited for
the execution of EMD learners on microblog streams. It deviates
from the processing of isolated microblog messages by existing
EMD systems, where learned knowledge from the immediate
context of a message is used to suggest entities. Instead, it
recognizes that messages within a microblog stream are topically
related and often repeat entity mentions, thereby leaving the
scope for EMD systems to go beyond the localized processing
of individual messages. After an initial extraction of entity
candidates by an EMD system, the proposed framework leverages
occurrence mining to find additional candidate mentions that
are missed during this first detection. Aggregating the local
contextual representations of these mentions, a global embedding
is drawn from the collective context of an entity candidate
within a stream. The global embeddings are then utilized to
separate entities within the candidates from false positives. All
mentions of said entities from the stream are produced in the
framework’s final outputs. Our experiments show that EMD
Globalizer can enhance the effectiveness of all existing EMD
systems that we tested (on average by 25.61%) with a small
additional computational overhead.

I. INTRODUCTION

Entity Mention Detection (EMD) is the task of extracting
contiguous strings within text that represent entities of interest.
These strings (also known as surface forms) are referred to
as Entity Mentions (EMs). The benchmarking guidelines set
by WNUT [1] identifies EMD and Entity Detection (ED) as
two concomitant tasks in this context. ED aims to cover the
range of unique entities within text, while EMD compiles the
string variations of entities from the text. Together, they form
the broader problem of Named Entity Recogniton (NER) that
has received significant research attention. In this paper, we
focus on maximizing effectiveness of state-of-the-art EMD
techniques for the microblog streaming environment.

Example 1. Tweets in Figure 1 have entity mentions (in
many string variations) from six unique entities: ‘beshear’ in
T1 and T4, ‘italy’ in T2 and T6, ‘coronavirus’ in T2, T3 and
T5, ‘trump’ in T5, ‘US’ in T5 and ‘canada’ in T6.

Off-the-shelf EMD solutions typically range from statistical
Machine Learning models [2], [3], [4], [5], [6] to Deep Neural
Networks (DNNs) [7], [8], [9]. However, the commonality
among EMD systems focussing on Microblogs resides in their
design and offline training process on static datasets. These
datasets are curated from randomly sampled messages. As
such, they provide a good representation of the non-literary
language used in these platforms. Microblog EMD systems
primarily study the nuances of its noisy text. They rightfully
identify the lack of adherence to proper grammar, syntax or
spellings as a key challenge to be addressed for language tasks.
To extract contextual information from messages, they use a
combination of surface level information – word embeddings,
lexical, orthographic and/or semantic information (POS tags,
dependency trees), and sometimes even external gazetteers.

For EMD from Microblog streams, existing systems do
not take into account any of the streaming environment’s
defining traits and simply extend their processing approach
for offline datasets. More precisely, these systems run each
message in the stream through their EMD pipeline in isolation,
one at a time, in the order of its entry into the stream. But
given the underspecified context of a single, character-limited
message, added to the constantly evolving nature of entity
mentions within a microblog stream, detecting every mention
of an entity from the stream remains a difficult problem to
generalize. The varying textual context where EMs reside in
messages is often further complicated by the rarity of many
microblog-referenced entities in off-the-shelf lexical resources.
This makes it more difficult to consistently extract mentions of
novel entities for most EMD tools [3], [5], including even the
most effective Deep Learners [8]. To illustrate these problems,
we perform EMD on a message stream discussing the most
prevalent conversation topic of 2020 – the Coronavirus. We
used two existing deep EMD baselines for this task: Aguilar
et al. [8] and BERTweet [10] (finetuned for EMD).

A Case Study. The objective of this study is to explore
the performance of a state-of-the-art deep EMD tool on a
microblog stream and understand its limitations. We run both
baselines on a streaming dataset of 2K tweets (D2, see Table
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Fig. 1: EMD on a message stream discussing Coronavirus

1 in Section VI) generated from a Coronavirus tweet stream.
We apply their production versions directly in this setting.
BERTweet yields a modest performance on this stream subset
with an F1 score of 53%. Aguilar et al. fared better at 60%
with its reliance on updated Twitter-trained word embeddings
and gazetteers, to better cover some rare entities. Apart from
missing some entities altogether, both systems show incon-
sistency in extracting EMs of the same entity throughout the
stream, detected in some tweets but missed in others.

Takeaways. A closer look at the EMD results of both sys-
tems for tweets in the Coronavirus dataset in Figure 1 shows
that they often missed mentions of one of the most important
and frequent entities in this stream, i.e. ‘Coronavirus’. Other
EMs that frequently came up in the stream but were also
frequently missed include ‘Italy’ and ‘US’. For example, the
entity ‘Coronavirus’ has three mention variations in the tweets
in Figure 1 but only ‘Coronavirus’ was successfully detected
while ‘CORONAVIRUS’ and ‘coronavirus’ were not. Note
that the problem here is not merely the inability to identify
the same entity string across different syntactic formats. It is
rather the varying contexts (both syntactic and semantic) in
which entities are repeated within a stream that adds to the
challenge of generalizing an EMD algorithm that works well
across all possible message contexts.

The appearance of entities in their many mention variations
is an integral part of the microblog streaming ecosystem that
constantly generates messages on multiple contemporaneous
topics, i.e. conversation streams, evolving over time [11]. The
failure to consistently identify these entity mentions leads
to reduced EMD performance. This appears to be a critical
weakness of many state-of-the-art EMD techniques. The com-
mon solutions to cope with this problem are more training or
transfer learning (e.g., fine-tuning) on messages from newer
topic streams. But as content in microblog streams evolves
or spearheads into different topics, one needs to constantly
annotate datasets specific to these emerging topics. This is not
a scalable proposition. To this end, we design a framework
that boosts the ability of EMD systems to recognize EMs more
consistently across contexts.

Local vs Global Context. Majority of EMD systems encode
the tokens of an input message with a variety of surface-level
information to extract entity mentions. Pre-deep learning sys-

tems directly use this information to perform sequence labeling
for EMD and identify entity boundaries within text using
some variation of the BIO (beginning-inside-outside) encod-
ing. Deep Neural Networks performing EMD however, use it
to generate ‘contextual word embedding’ – a representation of
a token, in the context that it appears within a sentence. These
contextual embeddings are then used for the downstream task
of sequence labeling. Irrespective of architectural differences
or the resources used to gather contextual information, these
systems ultimately follow a traditional computation philosophy
of treating individual microblog messages as isolated points of
input that are individually processed to generate EMD outputs.
We call this the ‘Local EMD’ approach. This treats message
streams as any other offline dataset – an unchanging collection
of messages, not a medium of incremental and topically-
related message generation over an extended period of time.
Given the various noisy but limited contextual possibilities of
microblog messages, it can be untenable to individually ana-
lyze them and produce consistent labeling [12]. This provides
the motivation to move beyond the localized context of a mes-
sage and dynamically aggregate token-level local contextual
embeddings from the entire stream, which are then used to
derive a pooled ‘global’ context for every token encountered
within a dataset [13]. The global contextual embeddings are
then concatenated to the sentence-level local embeddings for
the eventual sequence labeling task. Expanding on this idea we
argue that, more so than offline datasets, microblog streams are
aptly positioned to collectively view embeddings. Messages
within a conversation stream not only repeat a finite set of
entities but also the context in which they appear, owing
to inter-message topical correlation. Hence global contextual
representations of tokens, or rather entity candidates, can be
effectively mined and used for EMD in this setting.

Approach Overview. Here we propose the EMD Globalizer
framework. It begins with a traditional EMD system that ex-
tracts local contextual information for each individual message
and uses them to extract entities from messages. We call this
step ‘Local EMD’, due to the contextual information and
inference drawn being locally confined. However, as evidenced
before, local EMD tends to be inconsistent in providing the
best message-level entity coverage. Hence its EM outputs are
not instantly trusted. In our approach, the EM outputs from
local EMD are used to generate a set of seed entity candidates.
Additionally, in case of deep EMD systems, the token-level
contextual word embeddings generated for every message are
also stored. We follow this up by an occurrence mining step
that finds additional mentions of seed candidates that are
initially missed at Local EMD. Whenever an instance of a seed
candidate is found, the local contextual information generated
from its mention is aggregated to incrementally construct a
global candidate embedding. For deep EMD systems, the
contextual embeddings generated during Local EMD for the
candidate’s tokens are passed through a ‘Phrase Embedder’
that converts token-level embeddings into an embedding for
the entire candidate string. Non-deep EMD systems, however,
do not provide token-level representations and here we resort

2



to extracting a syntactic embedding of the candidate mention
depending on its immediate context as shown in [14]. Note that
in either case, these candidate embeddings still capture only
local contexts until this point. For all mentions of a seed can-
didate, the local candidate embeddings are aggregated to form
a pooled global embedding. Global candidate embeddings are
then passed through an ‘Entity Classifier’ to separate entities in
the seed set from false positives that arose during Local EMD.
All mentions of such discovered entities are considered valid
entity mentions and produced as outputs. The steps following
Local EMD up to the identification of true positives by the
classifier together constitute what we call ‘Global EMD’.
By decoupling the local EMD step from the global one, we
arrive at a stream-aware EMD framework, that can plugin any
existing EMD algorithm without training modification/fine-
tuning and still enhance its EMD performance within a stream.

Our experiments show that EMD Globalizer effectively
performs EMD, especially on microblog streams. We test it
with four different EMD systems, including two state-of-the-
art deep EMD networks, for local EMD. In each case, the
effectiveness of an EMD system was significantly boosted (on
average by 25.61% across all datasets) when plugged into the
framework. The framework also surpasses the best EMD per-
formance on existing benchmarking datasets. The uniqueness
of the framework is that it can accommodate a variety of
(local) EMD systems with no algorithmic modification and
still achieve more consistent EM labeling across the stream.

This paper makes the following contributions:
• We propose a novel framework for EMD in microblog

streams. It consists of a Local EMD step, followed by a
Global EMD step that includes an Entity Classifier. Our
framework can accommodate both pre deep learning EMD
systems and deep EMD systems and effectively collectivize
EMD information in either case for Global EMD. It supports
continuous and incremental computation which is in tune
with the message generation process of streams.

• The local EMD step is decoupled from the rest of the
pipeline. This allows us to test the hypothesis of collec-
tivising local embeddings to generate better performance for
different (local) EMD systems. We demonstrate the frame-
work’s impact on several state-of-the-art instantiations of
the Local EMD step. The contribution of this framework is
therefore larger than catering to any single EMD technology.

• We conduct extensive experiments using multiple Twitter
datasets to test the proposed framework. We use both in-
house streaming datasets to simulate EMD from Twitter
streams and third party datasets curated from microblogs.
The complete implementation of EMD Globalizer and all

the experimental datasets are available at https://github.com/
satadisha/collective-EMD-framework.

II. RELATED WORK

The principal issues surrounding the EMD problem from
Microblogs are identified in [1] to be the lack of annotated data
from this domain, and congruently, the difficulty in identifying
emergent entity forms. The EMD literature features a wide

range of supervised systems with either handcrafted linguistic
features in a non-neural system or DNNs with minimal feature
engineering. The first category of systems like [3], [15], [16]
recreate an information extraction pipeline in the form of POS-
taggers or noun phrase chunker to extract and feed semantic
features to a CRF based entity boundary segmentation module.
In some systems [17], [18], [19], [20], [21], [22], [23], the
feature set is further enhanced with word embeddings and
gazetteers to better suit the limited yet diverse contextual
possibilities of microblogs and the rare tokens that inhabit the
medium. With advances made in Deep Learning, many deep
neural networks (DNNs) [24], [25], [26], [7], [27], [28], [29]
have been adopted for the sequence labeling task of NER.
The recent WNUT shared task reports [30], [1] delve into a
variety of neural architectures specifically designed for Entity
Extraction from Tweets. We have chosen Aguilar et al. [8]
– a BiLSTM-CNN-CRF architecture that performed best at
the WNUT17 task, and BERTweet [10] – a BERT model
trained on a large Twitter corpus that we finetune with the
WNUT17 training data for EMD, as two of our Local EMD
systems. [31], [32] examine the cross-domain transferability
of DNN features learned from the more abundantly labelled
well-formatted corpora to overcome the lack of annotated data.

Few other alternatives include TwiNER [33], an unsuper-
vised approach using collocation features prepared from the
Microsoft Web N-Gram corpus [34] or joint modeling of NER
[35], [36], [37] with another information extraction subtask.

The concept of globalizing EMD computation is encoun-
tered in traditional NER pipelines for documents. Unlike a
stream of tweets produced by multiple authors, documents
are structurally more cohesive and contain well-formatted
language. But both repeat entities and tokens through the col-
lective span of their contents. Document-level EMD systems
like HIRE-NER [38] utilize this tendency to distill non-local
information for each unique token, from the entire scope of
the document, using a memory-structure and append them to
sentence-level contextual embeddings before an EMD decoder
draws final output labels. DocL-NER [39] additionally in-
cludes a label refinement network to enforce label consistency
across documents and improve EMD results. We compare
EMD Globalizer with HIRE-NER [38] to test how effectively
global information for EMD is compiled in each system.

For microblogs, TwiCS [14] explores the feature of entity
mention repetition to efficiently perform EMD on streams.
Using a shallow syntactic heuristic it identifies entity candi-
dates and collectively generates syntactic support from their
mentions within the entire stream to distinguish legitimate
entities from false positives.

Our proposed EMD Globalizer further extends this idea
of looking beyond the modeling of singular sentences in a
stream. It combines the potential of collective processing of
microblogs from a stream with existing EMD techniques that,
despite offering robust EMD generalization, are constrained
to processing sentences individually. Unlike TwiCS and other
standalone EMD systems, what we propose in this paper is not
a standalone system but a general EMD framework that aims
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Fig. 2: EMD Globalizer System Architecture
to enhance the effectiveness of existing (local) EMD systems,
when applied to microblog streams.Furthermore, in this work,
we integrate a diverse set of Local EMD systems into our
framework, with a special design focus on Deep EMD learners.
TwiCS [14] is not featured as a Local EMD system in our
experiments since it does not process sentences individually.

III. SYSTEM ARCHITECTURE

Figure 2 illustrates the overall architecture of EMD Glob-
alizer. Note that, depending on the type of system employed
for Local EMD, the components of the rest of the framework
are adjusted accordingly. The EMD process in this framework
facilitates continuous execution of a tweet stream over multiple
iterations. Each iteration consists of a batch of incoming
tweets thereby discretizing the evolution of messages within
the stream. A single execution cycle through this framework
can be divided into the following steps:
(1) The Streaming module fetches a stream of tweets, on a
particular topic, using the Twitter streaming API.
(2) First we run a batch of tweets through an off-the-shelf
(deep or non-deep) EMD system, one sentence at a time, in
the Local EMD step. Phrases labelled as possible entities are
registered as entity candidates. Further, in case of a deep EMD
system, the output of the neural network’s final layer before
token-level classification are stored, for every tweet in the
batch, as ‘entity-aware embeddings’ of sentence tokens.
(3) Next we initiate Global EMD. This includes a few added
steps where individual framework components are adjusted
according to the type of local EMD system inserted into the
framework: (i) First, an additional scan of the tweet batch
extracts all mentions of the entity candidates that have been
discovered so far. This involves finding candidate mentions
that were missed by the local EMD system in the previous
step, along with the ones that were already found. (ii) For
every mention we find, a candidate embedding is constructed
based only on the immediate local information. With a regular
(i.e., non-deep) local EMD system, we construct a syntactic
embedding for the candidate mention from its immediate
context. With a deep local EMD system however, token-level
contextual embeddings are also available at the end of the
local EMD. Hence, in this case, the token-level embeddings

for the candidate mention phrase are passed through the
Phrase Embedder to obtain a unified contextual embedding
for the entire phrase. (iii) Local candidate embeddings of
every mention of an entity candidate found within a batch
of tweets are aggregated to generate the candidate’s pooled
global embedding. The global embedding can be incrementally
updated by adding local embeddings into the pool as and
when new mentions arrive. (iv) The final step is to pass
global candidate embeddings through the entity classifier to
separate the entities within the seed candidates from non-
entities. Mentions of candidates that get labelled as entities
are produced as valid entity mentions in the system’s final
EMD outputs for the tweet batch.

We elaborate on these steps in later sections. The frame-
work, when initialized with a deep neural network for local
EMD, consists of a few additional steps. We zoom into it
separately from the overall system architecture in Figure 3.

IV. LOCAL EMD

The Local EMD step can be any existing EMD algorithm
that processes every single tweet-sentence in a stream, or
in a tweet batch, individually and indicates likely entity
mentions. A variety of existing systems can be plugged into the
framework at the local phase. For majority of these systems,
the EMD process is designed as a sequence labeling task where
each token is tagged relative to its nearest entity boundary
by adopting a variation of the BIO encoding. To facilitate
a token’s labeling, local information relative to the token is
generated and used. In case of deep learners, this happens
to be a token-level contextual embedding obtained at the
penultimate layer of the deep neural network, prior to the
generation of output labels. For non-deep systems, this can
be rich token information like POS-tags or gazetteer features
that can aid the labeling process. Therefore, we interpret it as
an encoding of the local entity-aware information, extracted
from within the context of a single input.
Objectives: For a targeted stream of tweets, Local EMD aims
to: (1) identify substrings from individual sentences as men-
tions of potential entities, (2) encode local entity information
for every token in individual sentences, and (3) generate a set
of seed entity candidates from tagged mentions.

A. Instantiations

There are different ways to instantiate the Local EMD
step. For EMD Globalizer, most off-the-shelf EMD systems
that process sentences individually would qualify. We test
with four EMD systems, each of which supports a different
EMD extraction algorithm, including two state-of-the-art deep
learners. We now briefly describe each of these instantiations.
Note that Local EMD systems are inserted as blackbox within
the framework without any technical alteration during testing.
1. Chunker Based EMD – TweeboParser: This Local EMD
system is a dependency parser [40] trained on English Tweets
drawn from the POS-tagged tweet corpus of [41]. We use the
production version of TweeboParser to generate POS-tags and
dependency trees that capture the semantic structure of tweets.
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Fig. 3: EMD Globalizer with a Deep EMD System

We implement a procedure (NP Chunker) that extracts noun
phrases from the parser-generated dependency trees and pass
them as entity candidates to the rest of the framework.

2. CRF Based Tagging – TwitterNLP: TwitterNLP [3]
recreates the Information Extraction pipeline for tweets by
rebuilding classical NLP tools with microblog-specific con-
siderations. The system begins by building modules for 2
subtasks, that help draw shallow semantic features from the
tweet text – 1) Part-of-Speech tagging and 2) Noun Phrase
Chunking. These features are later re-used for the actual
NER task. The POS tagger (T-POS) and shallow parser
(T-CHUNK) are CRF-trained models with additional tweet-
sensitive features like @tags, hashtags, and URLs. In addition
to shallow parsing, TwitterNLP also constructs a capitalization
classifier (T-CAP) to deal with the unreliable capitalization
in tweets. The classifier is trained as an SVM and it studies
capitalization throughout the entire sentence to predict whether
or not it is informative. For EMD, TwitterNLP splits the
subtasks of segmenting and classifying Named Entities in two
separate modules. T-SEG, a CRF-trained discriminative model,
that adopts BIO encoded labels, for entity level segmentation
of tweets. The feature set for this task uses orthographic
features like capitalization, contextual features gathered from
T-POS and T-CHUNK, output of T-CAP as well as dictionary
features, including a set of type-lists gathered from Freebase
[42], an open-domain ontology, and Brown Clusters. T-SEG
uses a manually annotated training set for supervised learning
of model parameters. We work with the production version of
TwitterNLP available in Github for our experiments.

3. Multi-task Deep Neural Network – Aguilar et al.
[8]: The best-performing system for the WNUT 2017 NER
task [1] is an effective deep EMD system. It is primarily a
BiLSTM-CNN-CRF network that follows the philosophy of
multi-task learning. It is multi-task in the sense that it learns
higher-order feature representations along three different tasks,
each of which includes relevant information for the subsequent
token-level entity tag prediction:
a) Character-level representation: character encodings from
[43] and an orthographic encoder are fed to a Convolutional
Neural Network to learn character-level representations.

b) Token-level representation: here both word level represen-
tations and POS representations are concatenated in a unified
vector to denote token-level features. Word embeddings from
[44] are fed to a BiLSTM to learn word level representations,
while a POS encoder is trained using POS tags obtained by
parsing the text using TweeboParser [40].
c) Lexical representation: tokens appearing as entities in select
gazetteers [23] are encoded into a 6-dimensional vector – one
dimension for each gazetteer type. These lexical vectors are
fed into a fully-connected layer with ReLU activation function.

The concatenation of these feature vectors is then fed to
a common dense layer with a sigmoid activation function.
Finally a CRF layer learns dependencies between the neural
output nodes and conducts sequential labeling. The token level
encoding scheme used for sequence labeling is BIO. We use
the production version of the system available online.

4. BERTweet for EMD – Nguyen et al. [10]: Pre-
trained language models have become the go-to choice for
many NLP tasks and several recent systems have adopted a
pre-trained BERT language model that is fine-tuned for the
downstream sequence labeling task of EMD. For our Local
EMD instantiation we use BERTweet, the first large-scale
language model trained on English Tweets. This system has the
same architecture as BERTbase [45] but uses the RoBERTa [46]
pre-training procedure for more robust performance. The pre-
training dataset is a collection of 850M tweets, each consisting
of at least 10 and at most 64 tokens. fastBPE is applied to
segment all tweets into subword units, using a vocabulary
of 64K subword types. On average two subword tokens are
maintained per Tweet. To fine-tune the language model for
EMD, a feed forward neural network (FFNN) layer and a
softmax prediction layer are added on top of the output of
the last Transformer encoder. The fine-tuning is independent of
the underlying BERT model’s training. It is repeated five times
with randomly initialized seeds. The reported performance is
the average of five test runs. The BERTweet repository is
publicly available on GitHub. We use a pre-trained BERTweet
model available at the Hugging Face model hub that amasses
a large collection of pre-trained language models catering to
a variety of downstream NLP tasks.

Every Local EMD system suggests a set of seed entity
candidates derived from the EMs that are tagged and dis-
covered by it. These seed entity candidates are stored in a
CandidatePrefixTrie (CTrie for short). CTrie is a prefix Trie
forest for efficient indexing of candidates. It also facilitates
subsequent lookups for finding all mentions of discovered
entity candidates later during the Global EMD phase. CTrie
functions like a regular Trie forest with individual nodes
corresponding to a token in a candidate entity string. Entity
candidates with overlapping prefixes are part of the same sub-
tree in the forest. Another data structure produced at the end
of Local EMD is TweetBase. It maintains an individual record
for every tweet sentence indexed by a (tweet ID, sentence ID)
pair and a list of detected mentions that get updated as the
sentences pass through Global EMD.
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In addition, deep EMD systems provide token-level contex-
tual embeddings for each tweet-sentence in the input stream.
These are also recorded for the computation of local candidate-
level embeddings that are then used to generate global candi-
date embeddings. The token-level embeddings are collected
from the final, pre-classification layer of deep EMD. For
Aguilar et al. this would be the output of the last fully
connected layer, prior to the CRF layer. For BERTweet, this
would be the layer prior to the output softmax layer. In either
case, these embeddings encode information that demarcates
entity boundaries within the sentence tokens. Hence we call
them local ‘entity-aware’ embeddings.

V. GLOBAL EMD

At the end of Local EMD an initial entity extraction
is accomplished for every tweet-sentence in the TweetBase,
sometimes with the generation of token embeddings that are
aware of adjacent entity boundary information. The Local
EMD outputs suggest a set of seed entity candidates stored
in the CTrie. However Local EMD is prone to inconsistent
detection of the same entity across the breadth of a stream.
Mentions of entity candidates are missed in some sentences
while detected in others. Here we introduce the Global EMD
module to address some of these inherent limitations. More
specifically, the purpose of Global EMD is to shift the focus
of its EMD computation, beyond the confines of a single
sentence. It views mentions of a candidate collectively, across
the entire span of a stream, before determining if it is an entity.

Objectives: The Global EMD step addresses:
1. Removal of False Negatives: False Negatives happen

when Local EMD fails to tag true EMs. For example, in Figure
1, coronavirus in T4 is a false negative.

2. Removal of False Positives: False Positives happen when
Local EMD extracts non-entity phrases as entity candidates.

3. Correction of Partial Extraction: Partial extractions
happen usually due to mislabeling of multi-token entities,
where a part of an entity string is left outside of an entity
window under consideration. Correcting such partial extrac-
tions improves both recall and precision.

Execution: The execution with Global EMD is broken down
into three separate components. First, an additional scan of the
tweet-sentences alongside a lookup through the CTrie, reveals
all existing mentions of entity candidates, including ones that
were previously missed by Local EMD. For every candidate
mention encountered here, a local candidate embedding is
extracted and recorded to its entry in a data structure called
the ‘CandidateBase’. Depending on the local EMD system,
the process of collecting local embedding varies. Non-deep
systems do not generate token-level contextual embeddings
along with their EM suggestions for a sentence. In this case,
we generate a syntactic embedding for the candidate mention
found from its immediate local context in a sentence. For
deep EMD systems, token embeddings are collected from the
TweetBase entry of a sentence recorded at the end of Local
EMD. Next, a candidate’s token embeddings are together fed

to an Entity Phrase Embedder to generate a unified local
contextual embedding for the entire phrase, for this men-
tion of the candidate. Then, a pooling operation on mention
level contextual embeddings gives us the ‘global candidate
embedding’. Note that we update the global embedding of a
candidate incrementally as we find new mentions in the stream.
Finally, an Entity Classifier receives the ‘global candidate
embeddings’ to label every candidate as an ‘entity’ or a ‘non-
entity’. Candidates recognized as entity find their mentions
produced as valid EMs in the final output for the stream. We
now describe the components of Global EMD in more detail.

A. Candidate Mention Extraction

In theory the purpose of the Candidate Mention Extraction
step is to detect EM boundaries within text. Most EMD
systems [5], [16] treat this as a sequence labeling problem.
However, empowered by the seed candidates from Local EMD
registered in the CTrie, the problem of segmenting tweets
into candidate (EM) boundaries here is simplified to that of
a lookup in the CTrie. The module analyzes every token in a
tweet sentence, in conjunction with a CTrie traversal. With a
case-insensitive comparison of tokens with CTrie nodes, this
results in two possibilities:

(i) A token that matches a candidate node on the current
CTrie path, when cases are ignored.

(ii) A token matching no node in current path.
The problem is to check if a token forms a candidate

mention alone or together with up to k tokens following it.
The extraction process scans a tweet-sentence and identifies

the set of longest possible subsequences matching with candi-
dates in the CTrie, while case is ignored (e.g., “coronavirus” is
a match for “Coronavirus”). As a consequence, candidate men-
tions extracted during Local EMD are verified, and sometimes
corrected. For example, if the Local EMD system finds only
a partial excerpt ‘Andy’ of the EM ‘Andy Beshear’ in a tweet,
but nonetheless recognized the entire string in other tweets,
the candidate (‘andy beshear’) will be registered in the CTrie.
This partial extraction can now be rectified and corrected to the
complete mention. The resulting process is syntax agnostic. It
initiates a window that incrementally scans through a sequence
of consecutive tokens. In each step it checks:

a) whether the subsequence within the current scan window
corresponds to an existing path in the CTrie. If true, it implies
that the search can continue along the same path, by including
the token to the right within the window in the next iteration.

b) whether the node on this path, that corresponds to the
last token of the subsequence, refers to a valid candidate. If
true, it implies that the subsequence can be recorded as the
current longest match, before next iteration begins.

In case of a mismatch, i.e. scenario (ii), the module stores
the last matched subsequence within the current window, and
then skips ahead, by initializing a new window from the
position of the token, next to it. The search for a new matching
subsequence path is initiated from the root of the CTrie.
However, if the last search had failed to yield a match with
any of the existing candidates in CTrie, the new window is
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initialized from a position that is to the immediate right of the
first token in the previous window. The process is repeated
until all tokens are consumed. In the end we obtain a collection
of mention variations for each entity candidate.

B. Local Candidate Embedding Collection

The process of collecting candidate embeddings from the
local context of a candidate’s mention depends on the type
of Local EMD system. Here we broadly categorize them into
two groups: 1) pre-deep learning systems– systems that do
not use (deep) neural networks EMD systems and 2) deep
EMD systems– systems that use deep neural networks. For the
former, EMD execution is limited to generating BIO labels
of sentence tokens that suggest entities. Hence, for these
systems, we provide a workaround to study the immediate
context of mentions and generate a local candidate embedding.
Deep EMD systems, however, provide token-level contextual
embeddings that encode latent relations between tokens in a
sentence. Hence for deep learners we fully utilize them when
preparing candidate embeddings.

1) Syntactic Distribution for Non-deep Local EMD: For
non-deep systems we follow [14] and extract an embedding
that encodes the local syntactic context of a candidate mention
into an embedding of 6 dimensions. It enumerates all the
syntactic possibilities in which a candidate can be presented.
(1) Proper Capitalization: This corresponds to the first
character of every candidate token capitalized.
(2) Start-of-sentence capitalization: A unigram candidate
capitalized at the start of sentence.
(3) Substring capitalization: Only a proper substring of a
multi-gram candidate is capitalized.
(4) Full capitalization: Abbreviations like ‘UN’ or ‘UK’
where the entire string is capitalized.
(5) No capitalization: The entire string is in lower case.
(6) Non-discriminative: A sentence is entirely in upper or
lowercase, or has first character of every word capitalized, so
candidate mentions found are not syntactically informative.

In the end, the local syntactic embeddings are aggregated
and pooled to derive a global candidate embedding.

2) Entity Phrase Embedder for Deep Local EMD: The
‘entity aware embeddings’ generated by a Local Deep EMD
system are for individual tokens. However, the Entity Classifier
verifies candidates based on their global contextual represen-
tation generated by aggregating local contextual representa-
tions of their mentions. So we need semantically meaningful
representations of candidate mentions before they can be
aggregated. Given that entity candidates have variable number
of tokens, we need to combine the token-level embeddings
into a unified, fixed-size embedding of the candidate phrase.
This is the role of the Entity Phrase Embedder.

To generate phrase embeddings, we refer to the work on
sentence embedding for Semantic Textual Similarity (STS)
tasks. Since the contextual embeddings provided by language
models are token-level, the intuitive solution for a sentence
embedding sourced from multiple token embeddings is to
add an average (or max) pooling operation and arrive at an

Fig. 4: Entity Phrase Embedder in Modified Siamese Network

average embedding to represent the sentence. Alternatively,
one can add a CLS (classification) token at the end of
sentences and train them for a Natural Language Inference
task. The embedding for the CLS token would be considered
representative of the entire sentence. We however follow the
approach in Sentence-BERT or SBERT [47]. SBERT argues
that using the aforementioned approaches do not yield good
sentence embeddings, and can often be worse than averaging
Glove embeddings [48] of tokens.

SBERT uses a ‘siamese network structure’ and trains it
for different STS tasks, including sentence similarity. The
input set in this case consists of pairs of sentences whose
similarity is calculated such that sentences conveying similar
content have a higher score than those that do not exhibit any
content similarity. A siamese network consists of two identical
sub-networks that have the same architecture and parameters
to generate representations of pair-wise inputs that are then
compared to generate a similarity score which is the network’s
output. SBERT, in its implementation, uses the same BERT
model as sub-networks in its siamese structure. It also adds
an average pooling layer that generates a mean sentence-level
embedding from the token-level embeddings of the BERT.
Finally, the Cosine Similarity function is used to generate a
similarity score upon which the loss function is calculated.
Mean squared error loss is used as the regression objective
function to train SBERT for this task. The updation of weights
during back-propagation is mirrored across both sub-networks.

The Entity Phrase Embedder used in our framework is
shown in Figure 4. It follows a modified design of SBERT
and is also trained on the sentence similarity task. We use the
deep neural network used for Local EMD to generate token-
level embeddings as the principal component of the mirrored
subnetwork in our siamese structure. In addition we add an
average pooling layer to combine token-level representations
into an average embedding that is then passed on to a dense
layer. The Cosine similarity score between the dense layer
outputs of the two subnetworks gives the final output upon
which the regression loss function is calculated and backpropa-
gated. Unlike SBERT however the gradient computation is not
backpropagated all the way back to the deep neural network
(the BERT engine in case of SBERT). In other words, the
DNN’s weights remain frozen in our siamese network and
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Fig. 5: EMD Globalizer on a message stream on Coronavirus
only the weights of the layers following it are updated. This
is because the deep neural network’s role in our framework
is to produce (Local) EMD results for which it had already
been optimized. The rest of the subnetwork however work on
the ’entity-aware’ token embeddings to produce an optimal
sentence/phrase embedding that performs well on the semantic
similarity task. The dense layer is also useful to customize the
phrase embedding size, separate from the underlying token
embedding size generated by the DNN. For example, when
training the Entity Phrase Embedder with BERTweet, where
token embeddings are of 768 dimensions, we bring down the
candidate embeddings from the Entity Phrase Embedder to
300 dimensions. Further details on the training process of the
Entity Phrase Embedder is provided in Section VI.

A candidate’s local embedding (local emb ∈ Rd) from its
token-level embeddings can be computed using one of the
Entity Phrase Embedder sub-networks as

pooled emb =
1

|T |

|T |∑
j=1

token embTj
(1)

local emb = Wffpooled emb + bff (2)

where T denotes the set of tokens in the candidate phrase,
token embTj

∈ Rd is the contextual embedding of the j-th
token in T . The weight matrix Wff ∈ Rd×d and bias bff ∈ Rd

are trainable parameters from the mirrored sub-networks.

C. Entity Classifier

The information encoded in the local embeddings of indi-
vidual mentions of a candidate is limited to the context of the
sentence containing it. We add these local embeddings to the
candidate’s record in a data structure called the CandidateBase,
which maintains an entry for every entity candidate discovered
for a stream during Local EMD. It is incrementally updated
with the local embeddings of a candidate’s mentions. Next,
a pooling operation conducted over all the local contextual
embeddings of an entity candidate gives the ‘global candidate
embedding’. It is global in the sense that it aggregates all
contextual possibilities in which a candidate appears in the
stream, to generate a consensus representation.

The global candidate embeddings are then fed to a multi-
layer network of feed-forward layers with ReLU activation
function followed by a sigmoid output layer. We call this
module the Entity Classifier. It is trained to determine the

likelihood of a candidate being an entity. The sigmoid output
gives the probability of a candidate being a true entity and is
divided into three ranges, that we empirically determined from
variation in the Classifier’s entity detection performance over
different values. Each range corresponds to a class label:
(1) α: ≥0.55, candidate is confidently labelled as an entity.
(2) β: ≤0.4, candidate is confidently labelled as a non-entity.
(3) γ: ε(0.4, 0.55), deemed ambiguous; requires more evi-
dence downstream for confident labeling.

Note that a candidate’s global embedding over mention vari-
ations is more reliable when its frequency of occurrence is high
and is computed over more than just a few mentions (avoiding
randomness). Consequently, the classifier performs better in
distinguishing entities among more frequent candidates.

The classifier is supervised with the training performed
using labelled global embedding records of entity candidates
extracted from D5 (see Table 1). Further details on the
classifier training will be provided in Section VI.

Follow-up on case study on dataset D2 : In Figure 5, it
can be seen that all the entity mentions that were missed by
Aguilar et al. [8] and BERTweet [10] are discovered by the
end of the EMD Globalizer pipeline.

TABLE I: Twitter Datasets

Dataset Size #Topics #Hashtags #Entities

D1 1K 1 1 283
D2 2K 1 1 461
D3 3K 3 6 906
D4 6K 5 5 674
D5 38K 1 1 ≈7000

WNUT17 1287 - - -
BTC 9553 - -

VI. EXPERIMENTS

We conducted extensive experiments to test the effectiveness
of EMD Globalizer for entity mention detection in tweets.
We used four existing EMD systems, including two deep
EMD systems, for Local EMD. In each case, we evaluate
the performance gain, when plugged into the framework. We
implemented the framework in Python 3.8 and executed it on a
NVIDIA Tesla T4 GPU on Google Colaboratory. Our datasets
and code used for experiments are available at Github.

Datasets: We use a combination of third-party datasets, along
with the streaming datasets used in [14] that include crawled
message streams from Twitter, for the purpose of evaluating
the effectiveness of EMD Globalizer. The datasets are listed in
Table I. D1-D4 are streaming datasets that contain subsets of
Twitter streams. The topics covered here are Politics, Sports,
Entertainment, Science and Health, with (D2) curated from
a Covid-19 tweet stream. Having datasets directly covering a
variety of tweet streams helps preserve their naturally occur-
ring topic-specificity that often repeats a finite set of entities.
This is exploited in Global EMD for collectively processing
candidates, without making the analysis biased towards a
particular topic. In real-world deployment, a topic classifier
[49] could precede an EMD tool launched for streams.
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Other than the four streaming datasets D1-D4, two datasets
popular for EMD benchmarking, WNUT17 [1] and BTC [50],
are also included in our evaluation. These are non-streaming
datasets curated to accommodate a random sampling of
tweets. Although they do not characterize the application
setting for EMD Globalizer, we use them to gauge the frame-
work’s effectiveness against pre-established benchmarks.

Also like [14], we use dataset D5, a collection of 38K tweets
from a single tweet stream to generate entity candidates. The
candidates are labelled as ‘entity’/‘non-entity’ and used to train
the Entity classifier to learn optimal global embeddings and
generate correct candidate labels for Global EMD.

Performance Metrics: We use Precision (P ), Recall (R)
and F1-score to evaluate EMD effectiveness. EMD requires
detection of all occurrences of entities in their various string
forms within a dataset. It is captured in WNUT17 shared task
[1] as F1 (Surface). Here we simply call it F1. Our framework
does not involve entity typing. So the evaluation here only
includes EMD and not their type classification. We also record
execution times in seconds to check the run-time overhead for
executing Local EMD systems within the framework.

Local EMD Instantiations: We run our EMD framework
with four different Local EMD instantiations (see Section
IV-A): 1) NP Chunker – a Chunking based Tagger that uses
noun phrase chunking on Twitter dependency parser [40] to
project entity candidates; 2) Twitter NLP [3] – a CRF based
Machine Learning model; 3) Aguilar et al. [8] – a Deep
Learning architecture that won the WNUT 2017 [1] NER
challenge; and finally, 4) BERTweet [10] – a BERT language
model trained on a large twitter corpus that we fine-tune using
the WNUT2017 training data for the downstream EMD task.

Baseline for testing Global EMD: We use the production
version of the Document EMD system HIRE-NER [38] as a
baseline for testing Global EMD. We compare the performance
of this system with EMD Globalizer on our Twitter datasets.
HIRE-NER treats messages in a stream as composite content,
much like a document.

Training Entity Phrase Embedder: When using Deep
EMD systems for Local EMD, we employ an Entity Phrase
Embedder in the Global EMD step to combine the contextual
embeddings of a candidate’s tokens provided by the deep EMD
system into a unified local embedding for the entire candidate
phrase. As mentioned earlier, the Entity Phrase Embedder is
trained using the STS Benchmark (STS-b) data [51]. This
dataset contains 5749 sentence pairs in the training set and
1500 sentence pairs in the validation set. Every sentence pair
is given a score between 0-5, indicating the semantic similarity
between the sentences in the pair. To evaluate the Entity Phrase
Embedder, we divide the integer scores by 5 to normalize them
into a range of [0, 1], and then compare this with the Cosine
similarities between the embeddings of the sentence pairs
generated by the Entity Phrase Embedder. Here we use mean
squared loss as the regression objective function to optimize
training and estimate performance on the validation set.

We use Adam optimizer [52] with a fixed learning rate
of 0.001 and batch size of 32. We compute performance
on the validation set after each training epoch, and save
the best model checkpoint to execute test sets. Here, we
also enforce early stopping when validation performance does
not improve for 25 continuous epochs. Note that S-BERT
[47] tests the quality of sentence embeddings by employing
them in downstream tasks like Paraphrase Mining and Natural
Language Inference. Since we simply use the Entity Phrase
Embedder to generate embeddings for candidate phrases, such
detailed evaluation is not carried out here.

We separately train the Entity Phrase Embedder for the
two different variants of our framework with Aguilar et al.
[8] and BERTweet [10] as Local EMD systems. For Aguilar
et al. the size of the candidate embeddings generated by the
Entity Phrase Embedder is of 100 dimensions, the same as the
system’s output vectors. When trained with token embeddings
from Aguilar et al., the best validation loss obtained is 0.185.
For BERTweet, we tested EMD Globalizer with candidate
embeddings of size 768 – the size of the BERT encoder’s
output layer – and 300. In our experiments, we obtained
slightly better effectiveness with candidate embeddings of
size 300 and hence we present those results in our evaluation
in Table III. Nonetheless, these hyperparameters are easily
customizable. When trained with token embeddings from
BERTweet, the best validation loss is 0.167.

TABLE II: Validation Performance of Entity Classifier

Local EMD Local EMD
System Type

Entity
Embedding

Size

Validation
F1

NP Chunker CRF Chunker 6+1 0.936
TwitterNLP CRF EMD Tagger 6+1 0.936

Aguilar et al. BiLSTM-CNN-CRF 100+1 0.908
BERTweet BERT-FFNN 300+1 0.941

Training Entity Classifier: We train the Entity Classifier
everytime we initialize a variant of the framework with a
different Local EMD instantiation. The ‘+1’ in the column for
Entity Embedding Size (see Table II) indicates that we also
add length of the candidate string as an additional feature,
along with the global entity embedding. We use a 80-20
training to validation split and train over 1000 epochs. We
use Adam optimizer [52] with a fixed learning rate of 0.0015
and batch size of 128. We compute the task performance
after each training epoch on the validation set, and select
the best model checkpoint to compute the performance score
on the test set. Here, we also apply early stopping when
no improvement is observed on the validation loss after 20
continuous epochs. These validation performance obtained
when training the Entity Classifier for different variants of
our framework are compiled in Table II.

A. Evaluating EMD Globalizer

We first evaluate EMD Globalizer on its primary objective
of boosting EMD for the Local EMD systems. To this end,
we test EMD Globalizer with four different Local EMD
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TABLE III: Effectiveness and Execution Time (in seconds) with EMD Globalizer

Dataset Local EMD Global EMD F1 Gain Time
OverheadSystem

Name P R F1 Execution
Time P R F1 Execution

Time

D1

NP Chunker 0.3 0.58 0.4 100.4 0.81 0.63 0.71 101.6 77.5% 1.2
TwitterNLP 0.65 0.47 0.55 7.07 0.8 0.66 0.72 8.03 36.4% 0.96

Aguilar et al. 0.76 0.55 0.64 124.8 0.87 0.66 0.75 126.07 17.3% 1.27
BERTweet 0.66 0.49 0.56 33.16 0.84 0.66 0.74 34.32 32.1% 1.16

D2

NP Chunker 0.40 0.47 0.43 123.62 0.59 0.62 0.60 125.71 39.5% 2.09
TwitterNLP 0.33 0.52 0.41 18.91 0.71 0.55 0.62 20.57 51.2% 1.66

Aguilar et al. 0.63 0.57 0.60 296 0.69 0.67 0.68 297.7 13.3% 1.7
BERTweet 0.56 0.51 0.53 40.23 0.65 0.64 0.64 42.58 20.8% 2.35

D3

NP Chunker 0.59 0.54 0.56 175.3 0.71 0.66 0.68 177.9 21.4% 2.6
TwitterNLP 0.75 0.64 0.69 15.1 0.88 0.71 0.78 18 13.04% 2.9

Aguilar et al. 0.77 0.64 0.70 298.2 0.82 0.77 0.794 301.34 13.6% 3.14
BERTweet 0.77 0.63 0.69 58.6 0.83 0.82 0.83 62.18 20.3% 3.58

D4

NP Chunker 0.47 0.59 0.52 551.3 0.83 0.73 0.77 556.7 48.1% 5.4
TwitterNLP 0.67 0.41 0.52 35.24 0.89 0.64 0.74 41.06 42.3% 5.82

Aguilar et al. 0.82 0.61 0.69 588.24 0.88 0.75 0.81 594.22 17.4% 5.98
BERTweet 0.69 0.58 0.62 230.75 0.81 0.76 0.78 237.53 26.1% 6.78

WNUT17

NP Chunker 0.42 0.35 0.39 121.22 0.63 0.35 0.44 123.56 12.8% 2.34
TwitterNLP 0.35 0.42 0.39 14.25 0.65 0.52 0.58 16.72 48.7% 2.47

Aguilar et al. 0.68 0.47 0.56 229.32 0.72 0.5 0.59 231.04 5.4% 1.72
BERTweet 0.61 0.43 0.51 24.40 0.73 0.48 0.58 26.15 13.7% 1.75

BTC

NP Chunker 0.46 0.51 0.48 627.98 0.66 0.52 0.58 642.02 20.8% 14.04
TwitterNLP 0.69 0.43 0.53 77.15 0.74 0.45 0.56 87.8 5.7% 10.65

Aguilar et al. 0.75 0.56 0.64 685.36 0.77 0.59 0.67 695.56 4.7% 10.2
BERTweet 0.63 0.50 0.56 193.8 0.69 0.58 0.63 204.49 12.5% 10.69

TABLE IV: Effectiveness of Global EMD systems

Dataset Global EMD System P R F1

D1 EMD Globalizer 0.87 0.66 0.75
HIRE-NER 0.65 0.62 0.63

D2 EMD Globalizer 0.69 0.67 0.68
HIRE-NER 0.46 0.56 0.51

D3 EMD Globalizer 0.82 0.77 0.79
HIRE-NER 0.75 0.73 0.74

D4 EMD Globalizer 0.88 0.75 0.81
HIRE-NER 0.58 0.68 0.61

WNUT EMD Globalizer 0.72 0.5 0.59
HIRE-NER 0.5 0.49 0.5

BTC EMD Globalizer 0.77 0.59 0.67
HIRE-NER 0.6 0.49 0.54

instantiations. In each case we check the improvement that is
achieved from the Local EMD’s initial F1 score by executing
it with the rest of the framework. Table III summarizes these
results along with the execution time overhead brought in for
each Local EMD system post plugin. We also compare the
best performing EMD Globalizer variant to a state-of-the-art
Document EMD system to understand how effectively global
information is mined in each case and utilized for EMD.
Local EMD Performance: The columns under ‘Local EMD’
in Table III show the EMD performances of each of the four
Local EMD systems, along with their computation times.
Performance improvement with EMD Globalizer: The
columns in Table III under ‘Global EMD’ show the EMD
performance once the Global EMD components have been
run on top of a Local EMD system and the total run-time
at the end of its execution. Comparing the F1 of a Local
EMD system with that of its Global EMD counterpart gives
the improvement achieved by the framework. The difference
in execution times at the end of the two stages gives the
additional time required by Global EMD.

Global EMD is able to make considerable improvement in

performance with only minor execution time overhead across
all datasets. For each Local EMD system, we compute the
percentage gain in F1 score across all datasets. For time
overhead, we calculate the absolute increment in the execution
time of a system (in seconds) when passed through EMD
Globalizer. This provides better context. As is the case of
every Local EMD system, the absolute overhead incurred
by injecting it into the framework is only a few additional
seconds. For computationally expensive EMD systems that
already have higher execution times, the time overhead is
nominal, thereby making the performance gain obtained all
that more significant. In summary, the average performance
gain across all datasets and all local EMD systems is 25.61%.
The average individual performance gains for the four Local
EMD systems are: a) 36.69% for NP Chunker, b) 31.06%
for TwitterNLP, c) 11.91% for Aguilar et al., and, d) 20.66%
for BERTweet. Note that two types of datasets are used in
our evaluation, one is the streaming datasets – the application
setting for which EMD Globalizer was originally designed,
and the other is non-streaming datasets – popularly used
for EMD benchmarking. EMD Globalizer yields different
improvements over these dataset types as discussed below.
Improvement on Streaming Datasets: For datasets D1-D4

that retain the inherent properties of Twitter streams, EMD
Globalizer yields an average F1 gain of 30.29% across all
Local EMD systems. For individual Local EMD instantiations,
the average F1 gains are: a) 46.63% for NP Chunker, b)
34.36% for TwitterNLP, c) 15.36% for Aguilar et al., and,
d) 24.82% for BERTweet.
Improvement on Non-Streaming Datasets: For datasets
WNUT17 and BTC, there is no adherence to specific Twitter
streams but rather a random sampling off the Twittersphere,
avoiding the latter’s tendency to repeat entity mentions within
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streams. However, EMD Globalizer is still able to improve
effectiveness for its Local EMD instantiations, albeit to a less
significant degree than streaming datasets. In this case, the
average F1 gain across all Local EMD systems is 15.53%.
For individual Local EMD instantiations, the average F1 gains
are: a) 16.82% for NP Chunker, b) 24.47% for TwitterNLP, c)
5.04% for Aguilar et al., and, d) 12.22% for BERTweet.
Comparison with Document EMD method on Global
EMD: We compare the performance of Aguilar et al. instan-
tiated EMD Globalizer and HIRE-NER [38] (both BiLSTM
architectures) on all the annotated datasets in Table IV. Here
we test how effectively global information is captured in
each system when performing EMD. As evident from Table
IV, EMD Globalizer consistently outperforms HIRE-NER
across all datasets, especially attaining higher precision. HIRE-
NER simultaneously updates global features in the memory
structure and appends them with local embeddings to infer
final output labels of tokens in a sentence. Adding non-local
contextual information inevitably introduces noise which can
interfere with the decoder’s inference of output labels. Distinct
from this, we limit the curation of global contextual repre-
sentations only for entity candidates. First the local context
suggests the entity candidates situated within a sentence. The
local contextual embeddings of the various candidate mentions
are then aggregated in the memory structure to generate global
candidate embeddings. Using this the entity classifier is able
to better separate true entities from noisy candidates.

B. Ablation Study on Framework Components

While it is evident that the proposed EMD framework
is capable of enhancing performance for its various Local
EMD instantiations, we wanted to take a closer look at
how the individual framework components contribute towards
the EMD overall performance. To this end, we execute the
framework with Aguilar et al. [8] as the Local EMD system
in it as this instantiation is the best performer among the
local EMD systems used in this paper. Here, we use the
entire collection of annotated streaming datasets (D1-D4) as
the test set. Figure 6 shows the improvement in performance
as individual system components are added. From bottom
to top, the first curve (with only Local EMD) reports the
weakest performance proving the limitations of the standalone
system in capturing all the entity mention variations within
the stream. The middle curve is the EMD performance we get
just by following up the entity (candidate) extraction by Local
EMD with the mention extraction process that simply adds
missed mentions of candidates detected as likely entities by
the local EMD system. The topmost curve is the performance
yielded at the end of run of the entire framework with Aguilar
et al. [8]. Aguilar et al. [8] is a very competitive EMD
system – the best among the four (local) systems we evaluated
in this paper. Even for such a system, EMD Globalizer is
still able to significantly improve on its EMD effectiveness
over the streaming datasets. Following up its execution with
just the candidate mention extraction process gives a modest
improvement of 5.06%. This simply recovers missed mentions

of candidates identified as entities elsewhere in the stream.
The focus here is mainly on improving the recall by yielding
more consistent mention detection across tweets. With EMD
Globalizer however, the average overall improvement across
all streaming datasets is 15.36%. This is because with all
components of Global EMD in place, candidates suggested
by Aguilar et al. are further verified and false positives are
removed. Table III shows that both precision and recall are
improved with the induction of Global EMD.
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Fig. 6: Impact of Components on Performance
C. Error Analysis

Though EMD Globalizer improves over Local EMDs, it is
not perfect. We give here an analysis of its errors.

1) If Local EMD misses every mention of an entity, the
entity will not be added as a candidate to the CTrie and will
also go undetected in the global phase. As a result, all mentions
of the entity will not be detected by the proposed framework.
Of the 11412 mentions in our streaming datasets from 2306
unique entities, the BERTweet instantiated EMD Globalizer
failed to find 3008 (26.35%) mentions of 1018 entities that
are entirely missed by the BERTweet system.

2) If Global EMD mislabels a candidate that happens to
be an entity, then all of its mentions will be left out of
the final output. This would include the mentions that the
Local EMD did correctly find at first. But more importantly,
a false negative from Entity Classifier would hinder EMD
Globalizer’s objective of recovering mentions of the entity
that the Local EMD missed. However, in our experience, it
is rare that an entity found by Local EMD is missed at the
global step. Of the 11412 entity mentions in our streaming
datasets, BERTweet instantiated EMD Globalizer missed only
469 mentions (4.1%) due to the mislabeling of 81 entities as
false negatives by the Entity Classifier.

3) Handling of long-tailed entities: To better understand
the false negatives yielded by Global EMD, we take a look
at how the Entity Classifier’s performance changes as more
mentions of an entity are found in a stream. Figure 7 shows
that it is consistently able to detect high-frequency entities
from the streaming datasets. We group entities of different
mention frequency in bins of width 5 and track the classifier’s
recall in detecting them. For infrequent entities, the recall is
modest– around 56% for entities with 5 or less mentions. But
it increases quickly with mention frequency and most frequent
entities are correctly labelled. This ensures that their mentions
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Fig. 7: Impact of Frequency on Detecting Entities
are also included in the final EMD Globalizer output. This
confirms our initial intuition that as more mentions of an
entity are found, better global contextual embeddings can be
learned, leading to correct classification. Although long-tailed
entities are a common issue in EMD, EMD Globalizer can
still rectify the mislabeling of many such entities by collecting
more instances further downstream.

EMD Globalizer aims to correct the often irregular detection
of mentions of the same entity and we expect an improvement
in EMD Recall from the Local EMD step. As seen in Table
III, the EMD Globalizer is able to improve Aguilar et al.’s
recall on the streaming datasets by 20.2% and BERTweet’s
recall by 30.3% on average. Moreover, EMD Globalizer also
does a good job of filtering noise when aggregating non-local
information. As observed in the Global EMD baseline, this
issue can affect the EMD precision. EMD Globalizer not only
improves the precision yielded by Local EMD, it also yields
fewer false positives than HIRE-NER (in Table IV) on all
datasets. From Table III, EMD Globalizer is able to improve
Aguilar et al.’s precision by 10.1% on average and BERTweet’s
by 17.1% for the streaming datasets.

D. Discussions

We make some additional interesting observations from
Table III. Here we summarize their implications for EMD:
• Streaming vs Non-streaming Datasets: Even though EMD

Globalizer was conceptualized with the streaming setting in
mind, all Local EMD instantiations, including Aguilar et al.
– the erstwhile topper of WNUT17 NER challenge [1] – ex-
perience performance gain within the framework, on the two
widely-used non-streaming datasets. This further validates
the power of this framework in maximizing performance
across different dataset types. Nonetheless, the framework
is designed mainly to improve EMD performance on mes-
sage streams. The idea of generating global contextual
embeddings guided by a candidate mention extraction pro-
cess specifically relies on the recurrence of entities across
messages – a phenomenon more typical of social media
message streams. Hence for streaming datasets, higher EMD
performance is achieved with EMD Globalizer.

• Design Flexibility: We deliberately decouple the Local
EMD step – which can be any existing EMD tool – from the
rest of the EMD Globalizer framework. The advantage here
is that the Local EMD tool can be inserted as is without
any algorithmic modification. Also, depending on the type

of Local EMD tool, the individual components of Global
EMD are separately customizable.

• Improvement for low-performing EMD systems: Local
EMD variants like the NP Chunker that initially produced
sporadic and relatively lower effectiveness, also yield com-
petitive performance when aided by the framework.

• New state-of-the-art record on existing benchmarks:
Aguilar et al. outperformed its original performance of the
WNUT17 challenge when executed within the framework,
and, along with BERTweet and TwitterNLP, all record much
improved results on WNUT17. BERTweet also improves
upon its performance on WNUT17 as reported in [10] when
executed within the framework.

• Time Overhead: The time overhead brought by inserting a
Local EMD system into EMD Globalizer is a fraction of its
standalone execution time and depends on the input/stream
size. The absolute overhead is a few additional seconds.

VII. CONCLUSIONS

In this paper, we presented EMD Globalizer – a novel two-
phase EMD framework designed to address the limitations of
existing EMD systems when executed on microblog streams
and improve their effectiveness. Although EMD Globalizer
is itself not a standalone EMD system, it is capable of sig-
nificantly improving the EMD effectiveness of existing EMD
systems that perform EMD on microblogs individually. In this
paper, we tested EMD Globalizer with four existing EMD
systems of various types (two deep EMD systems and two
non-deep EMD systems) on both streaming and non-streaming
datasets. Remarkable improvement on effectiveness (based on
F1-measure) is achieved for each of these systems, averaging
over 25% across all the four EMD systems. The improvement
is even more remarkable for streaming datasets, averaging over
30% across the four systems. EMD Globalizer is specifically
designed for streaming datasets. These improvements were
achieved with only a small execution time overhead.

A big reason that EMD Globalizer can achieve these im-
provements is its ability to aggregate local candidate em-
beddings (contexts of local entity candidates) into a global
candidate embedding. It is global in the sense that it considers
all the contexts in which a candidate appears within a stream
and derives a consensus representation. The global candidate
embedding is then used to determine the likelihood of an
candidate being an entity. Candidates labelled as entities find
their mentions in the final output.

An encouraging result from our experiments was that EMD
Globalizer also achieved good improvement for standard non-
streaming datasets, averaging over 15%. Based on this, we
believe that EMD Globalizer is a powerful tool that could
be applied for different EMD application settings, not just
microblog streams. In future work, we aim to expand the idea
of collective processing for the entire NER pipeline.
Acknowledgements: This work was supported in part by U.S.
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