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Abstract
The Frank-Wolfe algorithm has become a popular
first-order optimization algorithm for it is simple
and projection-free, and it has been successfully
applied to a variety of real-world problems. Its
main drawback however lies in its convergence
rate, which can be excessively slow due to naive
descent directions. We propose to speed up the
Frank-Wolfe algorithm by better aligning the de-
scent direction with that of the negative gradient
via a subroutine. This subroutine chases the nega-
tive gradient direction in a matching pursuit-style
while still preserving the projection-free prop-
erty. Although the approach is reasonably nat-
ural, it produces very significant results. We de-
rive convergence rates O(1/t) to O(e−ωt) of our
method and we demonstrate its competitive ad-
vantage both per iteration and in CPU time over
the state-of-the-art in a series of computational
experiments.

1. Introduction
Let (H, 〈·, ·〉) be a Euclidean space. In this paper, we ad-
dress the constrained convex optimization problem

min
x∈C

f(x) (1)

where f : H → R is a smooth convex function and C ⊂ H
is a compact convex set. A natural approach to solving
Problem (1) is to apply any efficient method that works in
the unconstrained setting and add projections back onto C
when the iterates leave the feasible region. However, there
are situations where projections can be very expensive while
linear minimizations over C are much cheaper. For example,
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if C = {X ∈ Rm×n | ‖X‖nuc 6 τ} is a nuclear norm-ball,
a projection onto C requires computing an SVD, which has
complexity O(mnmin{m,n}), while a linear minimiza-
tion over C requires only computing the pair of top singular
vectors, which has complexity O(nnz) where nnz denotes
the number of nonzero entries. Other examples include the
flow polytope, the Birkhoff polytope, the matroid polytope,
or the set of rotations; see, e.g., Hazan & Kale (2012).

In these situations, the Frank-Wolfe algorithm (FW) (Frank
& Wolfe, 1956), a.k.a. conditional gradient algorithm (Lev-
itin & Polyak, 1966), becomes the method of choice, as
it is a simple projection-free algorithm relying on a lin-
ear minimization oracle over C. At each iteration, it calls
the oracle vt ← arg minv∈C〈∇f(xt), v〉 and moves in
the direction of this vertex, ensuring that the new iterate
xt+1 ← xt + γt(vt − xt) is feasible by convex combi-
nation, with a step-size γt ∈ [0, 1]. Hence, FW can be
seen as a projection-free variant of projected gradient de-
scent trading the gradient descent direction −∇f(xt) for
the vertex direction vt − xt minimizing the linear approx-
imation of f at xt over C. FW has been applied to traffic
assignment problems (LeBlanc et al., 1975), low-rank ma-
trix approximation (Shalev-Shwartz et al., 2011), structural
SVMs (Lacoste-Julien et al., 2013), video co-localization
(Joulin et al., 2014), infinite RBMs (Ping et al., 2016), and,
e.g., adversarial learning (Chen et al., 2020).

The main drawback of FW is that the modified descent di-
rection leads to a sublinear convergence rate O(1/t), which
cannot be improved upon in general as an asymptotic lower
bound Ω(1/t1+δ) holds for any δ > 0 (Canon & Cullum,
1968). More recently, Jaggi (2013) provided a simple illus-
tration of the phenomenon: if f : x ∈ Rn 7→ ‖x‖22 is the
squared `2-norm and C = ∆n is the standard simplex, then
the primal gap at iteration t ∈ J1, nK is lower bounded by
1/t−1/n; see also Lan (2013) for a lower bound Ω(LD2/t)
on an equivalent setup, exhibiting an explicit dependence
on the smoothness constant L of f and the diameter D of C.

Hence, a vast literature has been devoted to the analysis of
higher convergence rates of FW if additional assumptions
on the properties of f , the geometry of C, or the location of
arg minC f are met. Important contributions include:

(i) O(e−ωt) if C is strongly convex and infC ‖∇f‖ > 0
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(Levitin & Polyak, 1966),

(ii) O(e−ωt) if f is strongly convex and arg minC f ⊂
relint(C) (Guélat & Marcotte, 1986),

(iii) O(1/t2) if f is gradient dominated and C is strongly
convex (Garber & Hazan, 2015).

More recently, several variants to FW have been proposed,
achieving linear convergence rates without excessively in-
creasing the per-iteration complexity. These include the
following:

(i) O(e−ωt) when f is strongly convex and C is a polytope
(Garber & Hazan, 2016; Lacoste-Julien & Jaggi, 2015;
Braun et al., 2019),

(ii) O(e−ωt) with constants depending on the sparsity of
the solution when f is strongly convex and C is a poly-
tope, of the form {x ∈ Rn | Ax = b, x > 0} with
vertices in {0, 1}n (Garber & Meshi, 2016), or of arbi-
trary form (Bashiri & Zhang, 2017).

Contributions. We propose the Boosted Frank-Wolfe al-
gorithm (BoostFW), a new and intuitive method speeding
up the Frank-Wolfe algorithm by chasing the negative gradi-
ent direction −∇f(xt) via a matching pursuit-style subrou-
tine, and moving in this better aligned direction. BoostFW
thereby mimics gradient descent while remaining projection-
free. We derive convergence rates O(1/t) to O(e−ωt). Al-
though the linear minimization oracle may be called multi-
ple times per iteration, we demonstrate in a series of com-
putational experiments the competitive advantage both per
iteration and in CPU time of our method over the state-of-
the-art. Furthermore, BoostFW does not require line search
to achieve strong empirical performance, and it does not
need to maintain the decomposition of the iterates. Naturally,
our approach can also be used to boost the performance of
any Frank-Wolfe-style algorithm.

Outline. We start with notation and definitions and we
present some background material on the Frank-Wolfe al-
gorithm (Section 2). We then move on to the intuition be-
hind the design of the Boosted Frank-Wolfe algorithm and
present its convergence analysis (Section 3). We validate
the advantage of our approach in a series of computational
experiments (Section 4). Finally, a couple of remarks con-
clude the paper (Section 5). All proofs are available in
Appendix D. The Appendix further contains complementary
plots (Appendix A), an application of our approach to boost
the Decomposition-Invariant Pairwise Conditional Gradient
algorithm (DICG) (Garber & Meshi, 2016) (Appendix B),
and the convergence analysis of the line search-free Away-
Step Frank-Wolfe algorithm (Appendix C). We were later
informed that the latter analysis was already derived by
Pedregosa et al. (2020) in a more general setting.

2. Preliminaries
We work in a Euclidean space (H, 〈·, ·〉) equipped with the
induced norm ‖ · ‖. Let C ⊂ H be a nonempty compact
convex set. If C is a polytope, let V be its set of vertices.
Else, slightly abusing notation, we refer to any point in
V := ∂C as a vertex. We denote byD := maxx,y∈C ‖y−x‖
the diameter of C.

2.1. Notation and definitions

For any i, j ∈ N satisfying i 6 j, the brackets Ji, jK denote
the set of integers between (and including) i and j. The indi-
cator function for an event A is 1A := 1 if A is true else 0.
For any x ∈ Rn and i ∈ J1, nK, [x]i denotes the i-th en-
try of x. Given p > 1, the `p-norm in Rn is ‖ · ‖p : x ∈
Rn 7→ (

∑n
i=1 |[x]i|p)1/p and the closed `p-ball of radius

τ > 0 is Bp(τ) := {x ∈ Rn | ‖x‖p 6 τ}. The standard
simplex in Rn is ∆n := {x ∈ Rn | 1>x = 1, x > 0} =
conv(e1, . . . , en) where {e1, . . . , en} denotes the standard
basis, i.e., ei = (1{1=i}, . . . ,1{n=i})

>. The conical hull of
a nonempty set A ⊆ H is cone(A) := {

∑K
k=1 λkak | K ∈

N\{0}, λ1, . . . , λK > 0, a1, . . . , aK ∈ A}. The number of
its elements is denoted by |A|.

Let f : H → R be a differentiable function. We say that f
is:

(i) L-smooth if L > 0 and for all x, y ∈ H,

f(y)− f(x)− 〈∇f(x), y − x〉 6 L

2
‖y − x‖2,

(ii) S-strongly convex if S > 0 and for all x, y ∈ H,

f(y)− f(x)− 〈∇f(x), y − x〉 > S

2
‖y − x‖2,

(iii) µ-gradient dominated if µ > 0, arg minH f 6= ∅, and
for all x ∈ H,

f(x)−min
H

f 6
‖∇f(x)‖2

2µ
.

Note that although Definition (iii) is defined with respect to
the global optimal value minH f , the bound holds for the
primal gap of f on any compact set C ⊂ H:

f(x)−min
C
f 6 f(x)−min

H
f 6

‖∇f(x)‖2

2µ
.

Definition (iii) is also commonly referred to as the Polyak-
Łojasiewicz inequality or PL inequality (Polyak, 1963;
Łojasiewicz, 1963). It is a local condition, weaker than
that of strong convexity (Fact 2.1), but it can still pro-
vide linear convergence rates for non-strongly convex func-
tions (Karimi et al., 2016). For example, the least squares
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loss x ∈ Rn 7→ ‖Ax − b‖22 where A ∈ Rm×n and
rank(A) = m < n is not strongly convex, however
it is gradient dominated (Garber & Hazan, 2015). See
also the Kurdyka-Łojasiewicz inequality (Kurdyka, 1998;
Łojasiewicz, 1963) for a generalization to nonsmooth opti-
mization (Bolte et al., 2017).

Fact 2.1. Let f : H → R be S-strongly convex. Then f is
S-gradient dominated.

2.2. The Frank-Wolfe algorithm

The Frank-Wolfe algorithm (FW) (Frank & Wolfe, 1956),
a.k.a. conditional gradient algorithm (Levitin & Polyak,
1966), is presented in Algorithm 1. It is a simple first-order
projection-free algorithm relying on a linear minimization
oracle over C. At each iteration, it minimizes over C the
linear approximation of f at xt, i.e., `f (xt) : z ∈ C 7→
f(xt) + 〈∇f(xt), z − xt〉, by calling the oracle (Line 2)
and moves in that direction by convex combination (Line 3).
Hence, the new iterate xt+1 is guaranteed to be feasible
by convexity and there is no need to use projections back
onto C. In short, FW solves Problem (1) by minimizing a
sequence of linear approximations of f over C.

Algorithm 1 Frank-Wolfe (FW)
Input: Start point x0 ∈ C, step-size strategy γt ∈ [0, 1].
Output: Point xT ∈ C. yolo

1: for t = 0 to T − 1 do
2: vt ← arg min

v∈V
〈∇f(xt), v〉 . FW oracle

3: xt+1 ← xt + γt(vt − xt)
4: end for

Note that FW has access to the feasible region C only via
the linear minimization oracle, which receives any c ∈ H
as input and outputs a point v ∈ arg minz∈C〈c, z〉 =
arg minv∈V〈c, v〉. For example, if H = Rn and C = {x ∈
Rn | ‖x‖1 6 τ} is an `1-ball, then V = {±τe1, . . . ,±τen}
so the linear minimization oracle simply picks the coordi-
nate ei with the largest absolute magnitude |[c]i| and returns
− sign([c]i)τei. In this case, FW accesses C only by read-
ing coordinates. Some other examples are covered in the
experiments (Section 4).

The general convergence rate of FW isO(LD2/t), where L
is the smoothness constant of f and D is the diameter of C
(Levitin & Polyak, 1966; Jaggi, 2013). There are different
step-size strategies possible to achieve this rate. The default
strategy is γt ← 2/(t+ 2). It is very simple to implement
but it does not guarantee progress at each iteration. The next
strategy, sometimes referred to as the short step strategy
and which does make FW a descent algorithm, is γt ←
min{〈∇f(xt), xt−vt〉/(L‖xt−vt‖2), 1}. It minimizes the
quadratic smoothness upper bound on f . If εt := f(xt)−

minC f denotes the primal gap, then

εt+1 6

εt −
〈∇f(xt), xt − vt〉2

2L‖xt − vt‖2
if γt < 1

εt/2 if γt = 1.

As we can already see here, a quadratic improvement in
progress is obtained if the direction vt − xt in which FW
moves is better aligned with that of the negative gradient
−∇f(xt). The third step-size strategy is a line search γt ←
arg minγ∈[0,1] f(xt + γ(vt − xt)). It is the most expensive
strategy but it does not require (approximate) knowledge of
L and it often yields more progress per iteration in practice.

3. Boosting Frank-Wolfe
3.1. Motivation

Suppose that C is a polytope and that the set of global mini-
mizers arg minH f lies on a lower dimensional face. Then
FW can be very slow to converge as it is allowed only to
follow vertex directions. As a simple illustration, consider
the problem of minimizing f : x ∈ R2 7→ ‖x‖22/2 over the
convex hull of {(−1, 0)>, (1, 0)>, (0, 1)>}, starting from
x0 = (0, 1)>. The minimizer is x∗ = (0, 0)>. We com-
puted the first iterates of FW and we present their trajectory
in Figure 1. We can see that the iterates try to reach x∗ by
moving towards vertices but clearly these directions vt− xt
are inadequate as they become orthogonal to x∗ − xt.

x∗

x0

x1

x2x3 x4

Figure 1. FW yields an inefficient zig-zagging trajectory towards
the minimizer.

To remedy this phenomenon, Wolfe (1970) proposed the
Away-Step Frank-Wolfe algorithm (AFW), a variant of FW
that allows to move away from vertices. The issue in Fig-
ure 1 is that the iterates are held back by the weight of vertex
x0 in their convex decomposition. Figure 2 shows that AFW
is able to remove this weight and thereby to converge much
faster to x∗. In fact, Lacoste-Julien & Jaggi (2015) estab-
lished that AFW with line search converges at a linear rate
O
(
LD2 exp(−(S/(8L))(W/D)2t)

)
for S-strongly convex

functions over polytopes, where W is the pyramidal width
of the polytope.

However, these descent directions are still not as favor-
able as those of gradient descent, the pyramidal width is a
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x0

x1

x2x3

x4 x∗ = x5

Figure 2. AFW breaks the zig-zagging trajectory by performing
away steps. Here, x4 is obtained using an away step which enables
x5 = x∗, speeding up the algorithm considerably.

dimension-dependent quantity, and AFW further requires to
maintain the decomposition of the iterates onto V which can
become very expensive both in memory usage and computa-
tion time (Garber & Meshi, 2016). Thus, we aim at improv-
ing the FW descent direction by directly estimating the gra-
dient descent direction −∇f(xt) using V , in order to main-
tain the projection-free property. Suppose that −∇f(xt) ∈
cone(V −xt) and that we are able to compute its conical de-
composition, i.e., we have−∇f(xt) =

∑Kt−1
k=0 λk(vk−xt)

where λ0, . . . , λKt−1 > 0 and v0, . . . , vKt−1 ∈ V . Then
by normalizing by Λt :=

∑Kt−1
k=0 λk, we obtain a feasible

descent direction gt := (1/Λt)
∑Kt−1
k=0 λk(vk − xt) in the

sense that [xt, xt + gt] ⊆ C. Therefore, building xt+1 as a
convex combination of xt and xt+gt ensures that xt+1 ∈ C
and the projection-free property holds as in a typical FW
step, all the while moving in the direction of the negative
gradient −∇f(xt).

3.2. Boosting via gradient pursuit

In practice however, computing the exact conical decom-
position of −∇f(xt), even when this is feasible, is not
necessary and it may be overkill. Indeed, all we want is
to find a descent direction gt using V that is better aligned
with −∇f(xt) and we do not mind if ‖ − ∇f(xt)− gt‖ is
arbitrarily large. Thus, we propose to chase the direction of
−∇f(xt) by sequentially picking up vertices in a matching
pursuit-style (Mallat & Zhang, 1993). The procedure is
described in Algorithm 2 (Lines 3-19). In fact, it implic-
itly addresses the cone constrained quadratic optimization
subproblem

min
d∈cone(V−xt)

1

2
‖ − ∇f(xt)− d‖2 (2)

via the Non-Negative Matching Pursuit algorithm (NNMP)
(Locatello et al., 2017), without however the aim of solv-
ing it. At each round k, the procedure looks to reduce
the residual rk by subtracting its projection λkuk onto the
principal component uk. The comparison 〈rk, vk − xt〉
vs. 〈rk,−dk/‖dk‖〉 in Line 9 is less intuitive than the rest

of the procedure but it is necessary to ensure convergence;
see Locatello et al. (2017). The normalization in Line 21
ensures the feasibility of the new iterate xt+1.

Algorithm 2 Boosted Frank-Wolfe (BoostFW)
Input: Input point y ∈ C, maximum number of rounds
K ∈ N\{0}, alignment improvement tolerance δ ∈ ]0, 1[,
step-size strategy γt ∈ [0, 1].
Output: Point xT ∈ C. yolo

1: x0 ← arg min
v∈V

〈∇f(y), v〉

2: for t = 0 to T − 1 do
3: d0 ← 0
4: Λt ← 0
5: flag← false
6: for k = 0 to K − 1 do
7: rk ← −∇f(xt)− dk . k-th residual
8: vk ← arg max

v∈V
〈rk, v〉 . FW oracle

9: uk ← arg max
u∈{vk−xt,−dk/‖dk‖}

〈rk, u〉

10: λk ←
〈rk, uk〉
‖uk‖2

11: d′k ← dk + λkuk
12: if align(−∇f(xt), d

′
k) − align(−∇f(xt), dk) >

δ then
13: dk+1 ← d′k

14: Λt ←

{
Λt + λk if uk = vk − xt
Λt(1− λk/‖dk‖) if uk = −dk/‖dk‖

15: else
16: flag← true
17: break . exit k-loop
18: end if
19: end for
20: Kt ← k if flag = true else K
21: gt ← dKt/Λt . normalization
22: xt+1 ← xt + γtgt
23: end for

Since we are only interested in the direction of −∇f(xt),
the stopping criterion in the procedure (Line 12) is an align-
ment condition between−∇f(xt) and the current estimated
direction dk, which serves as descent direction for BoostFW.
The function align, defined in (3), measures the alignment
between a target direction d ∈ H\{0} and its estimate
d̂ ∈ H. It is invariant by scaling of d or d̂, and the higher
the value, the better the alignment:

align(d, d̂) :=


〈d, d̂〉
‖d‖‖d̂‖

if d̂ 6= 0

−1 if d̂ = 0.

(3)

In order to optimize the trade-off between progress and
complexity per iteration, we allow for (very) inexact align-
ments and we stop the procedure as soon as sufficient
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progress is not met (Lines 15-17). Furthermore, note
that it is not possible to obtain a perfect alignment when
−∇f(xt) /∈ cone(V − xt), but this is not an issue as we
only seek to better align the descent direction. The number
of pursuit rounds at iteration t is denoted by Kt (Line 20).
In the experiments (Section 4), we typically set δ ← 10−3

and K ← +∞; the role of K is only to cap the number of
pursuit rounds per iteration when the FW oracle is particu-
larly expensive (see Section 4.3). Note that if K = 1 then
BoostFW reduces to FW.

In the case of Figures 1-2, BoostFW exactly estimates the
direction of−∇f(x0) = −(x0−x∗) in only two rounds and
converges in 1 iteration. A more general illustration of the
procedure is presented in Figure 3. See also Appendix A.2
for an illustration of the improvements in alignment of dk
during the procedure. Lastly, note that BoostFW does not
need to maintain the decomposition of the iterates, which is
very favorable in practice (Garber & Meshi, 2016).

(a)

r1

λ0u0

v0

xt

−∇f(xt) = r0

(b)

λ0u0

r1

r2

λ1u1

v1

v0

xt

(c)

λ0u0

λ1u1

d2

v1

v0

xt

(d)

d2
gt

v0

xt

−∇f(xt)

Figure 3. The gradient pursuit procedure builds a descent direction
gt better aligned with the negative gradient direction −∇f(xt),
while the FW descent direction is that of v0 − xt. We have gt =
d2/(λ0 + λ1) where d2 = λ0u0 + λ1u1, u0 = v0 − xt, and
u1 = v1 − xt. Furthermore, note that [xt, xt + d2] 6⊆ C but
[xt, xt+gt] ⊆ C. Moving along the segment [xt, xt+gt] ensures
feasibility of the new iterate xt+1.

We present in Proposition 3.1 some properties satisfied
by BoostFW (Algorithm 2). Proofs are available in Ap-
pendix D.2.

Proposition 3.1. For all t ∈ J0, T − 1K,

(i) d1 is defined and Kt > 1,

(ii) λ0, . . . , λKt−1 > 0,

(iii) dk ∈ cone(V − xt) for all k ∈ J0,KtK,

(iv) xt + gt ∈ C and xt+1 ∈ C,

(v) align(−∇f(xt), gt) > align(−∇f(xt), vt − xt) +
(Kt − 1)δ where vt ∈ arg minv∈V〈∇f(xt), v〉 and
align(−∇f(xt), vt − xt) > 0.

3.3. Convergence analysis

We denote by ηt := align(−∇f(xt), gt). We provide in
Theorem 3.2 the general convergence rate of BoostFW.
All proofs are available in Appendix D.3. Note that
ηt‖∇f(xt)‖/(L‖gt‖) = 〈−∇f(xt), gt〉/(L‖gt‖2) corre-
sponds to the short step strategy.

Theorem 3.2 (Universal rate). Let f : H → R
be L-smooth, convex, and µ-gradient dominated, and
set γt ← min{ηt‖∇f(xt)‖/(L‖gt‖), 1} or γt ←
arg minγ∈[0,1] f(xt + γgt). Then for all t ∈ J0, T K,

f(xt)−min
C
f

6
LD2

2

t−1∏
s=0

(
1− η2

s

µ

L

)1{γs<1}
(

1− ‖gs‖
2‖vs − xs‖

)1{γs=1}

where vs ∈ arg minv∈V〈∇f(xs), v〉 for all s ∈ J0, T − 1K.

Strictly speaking, the rate in Theorem 3.2 is not explicit
although it still provides a quantitative estimation. Note
that γt = 1 is extremely rare in practice, and we observed
no more than 1 such iteration in each of the experiments
(Section 4). This is a similar phenomenon to that in the
Away-Step and Pairwise Frank-Wolfe algorithms (Lacoste-
Julien & Jaggi, 2015). Similarly, Kt > 1 simply means
that it is possible to increase the alignment by δ twice and
consecutively, where δ is typically set to a low value. In the
experiments, we set δ ← 10−3 and we observed Kt > 1 (or
even Kt > 5) almost everytime.

For completeness, we disregard these observations and ad-
dress in Theorem 3.3 the case where the number of iterations
with γt < 1 and Kt > 1 is not dominant, and we add a
minor adjustment to Algorithm 2: if γt = 1 then we choose
to do a simple FW step, i.e., to move in the direction of
vk=0− xt instead of the direction of gt, where vk=0 is com-
puted in the first round of the procedure (Line 8). Although
this usually provides less progress, we do it for the sole pur-
pose of presenting a fully explicit convergence rate; again,
there is no need for such tweaks in practice as typically
almost every iteration satisfies γt < 1 and Kt > 1. Theo-
rem 3.3 states the convergence rate for this scenario, which
is very loose as it accommodates for these FW steps.

Theorem 3.3 (Worst-case rate). Let f : H → R
be L-smooth, convex, and µ-gradient dominated, and
set γt ← min{ηt‖∇f(xt)‖/(L‖gt‖), 1} or γt ←
arg minγ∈[0,1] f(xt + γgt). Consider Algorithm 2 with the
minor adjustment xt+1 ← xt + γ′t(vt − xt) in Line 22
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when γt = 1, where vt ← vk=0 is computed in Line 8
and γ′t ← min{〈∇f(xt), xt − vt〉/(L‖xt − vt‖2), 1} or
γ′t ← arg minγ∈[0,1] f(xt + γ(vt − xt)). Then for all
t ∈ J0, T K,

f(xt)−min
C
f 6

4LD2

t+ 2
.

We now provide in Theorem 3.4 the more realistic conver-
gence rate of BoostFW, where Nt := |{s ∈ J0, t − 1K |
γs < 1,Ks > 1}| is nonnegligeable, i.e., Nt > ωtp for
some ω > 0 and p ∈ ]0, 1]. This is the rate observed in
practice, where Nt ≈ t− 1 so ω . 1 and p = 1 (Section 4).

Theorem 3.4 (Practical rate). Let f : H → R
be L-smooth, convex, and µ-gradient dominated, and
set γt ← min{ηt‖∇f(xt)‖/(L‖gt‖), 1} or γt ←
arg minγ∈[0,1] f(xt + γgt). Assume that |{s ∈ J0, t− 1K |
γs < 1,Ks > 1}| > ωtp for all t ∈ J0, T − 1K, for some
ω > 0 and p ∈ ]0, 1]. Then for all t ∈ J0, T K,

f(xt)−min
C
f 6

LD2

2
exp

(
−δ2 µ

L
ωtp
)
.

Remark 3.5. Note that when γt < 1 and Kt > 1, we have
(see proofs in Appendix D.3)(
f(xt)−min

C
f
)
−
(
f(xt+1)−min

C
f
)
> δ2 ‖∇f(xt)‖2

2L

so if NT := |{t ∈ J0, T − 1K | γt < 1,Kt > 1}|, then

f(x0)−min
C
f > δ2 infC ‖∇f‖2

2L
NT .

Thus, if infC ‖∇f‖ > 0 then

NT 6
2L(f(x0)−minC f)

δ2 infC ‖∇f‖2
6

(
LD

δ infC ‖∇f‖

)2

since f(x0) − minC f 6 LD2/2 (see proofs in Ap-
pendix D.3). However, the assumption in Theorem 3.4 can
still hold as convergence is usually achieved within T itera-
tions where

T = O

( 1

ω

(
LD

δ infC ‖∇f‖

)2
)1/p


for some ω > 0 and p ∈ ]0, 1]. In the experiments for
example (Section 4), convergence is always achieved within
O(103) iterations. Furthermore, early stopping to increase
the generalization error of a model also prevents T from
blowing up.

Lastly, we provide in Corollary 3.6 a bound on the num-
ber of FW oracle calls, i.e., the number of linear mini-
mizations over C, performed to achieve ε-convergence. In

comparison, FW and AFW respectively require O(LD2/ε)
and O

(
(L/S)(D/W )2 ln(1/ε)

)
oracle calls, where f is as-

sumed to be S-strongly convex and C is assumed to be a
polytope with pyramidal width W for AFW (Lacoste-Julien
& Jaggi, 2015). It is clear from its design that BoostFW per-
forms more oracle calls per iteration, however it uses them
more efficiently and the progress obtained overcomes the
cost. This is demonstrated in the experiments (Section 4).
Corollary 3.6. In order to achieve ε-convergence, the num-
ber of linear minimizations performed over C is
O
(
LD2 min{K, 1/δ}

ε

)
in the worst-case scenario

O

(
min

{
K,

1

δ

}(
1

ωδ2

L

µ
ln

(
1

ε

))1/p
)

in the practical scenario.

Note that the practical scenario assumes that we have set
K > 2 in BoostFW (K = 1 reduces BoostFW to FW).

4. Computational experiments
We compared the Boosted Frank-Wolfe algorithm
(BoostFW, Algorithm 2) to the Away-Step Frank-Wolfe al-
gorithm (AFW) (Wolfe, 1970), the Decomposition-Invariant
Pairwise Conditional Gradient algorithm (DICG) (Garber
& Meshi, 2016), and the Blended Conditional Gradients
algorithm (BCG) (Braun et al., 2019) in a series of com-
putational experiments. We ran two strategies for AFW,
one with the default line search (AFW-ls) and one using the
smoothness of f (AFW-L):

γt ←


min

{
〈∇f(xt), xt − vFW

t 〉
L‖xt − vFW

t ‖22
, 1

}
if FW step

min

{
〈∇f(xt), v

away
t − xt〉

L‖vaway
t − xt‖22

, γmax

}
if away step

where γmax is defined in the algorithm (see Algorithm 5 in
Appendix C). Contrary to common belief, both strategies
yield the same linear convergence rate; see Lacoste-Julien &
Jaggi (2015) for AFW-ls and Theorem C.3 in the Appendix
for AFW-L (Pedregosa et al., 2020). For BoostFW, we also
ran a line search strategy to demonstrate that the speed-up re-
ally comes from the boosting procedure and not from being
line search-free. Results further show that the line search-
free strategy γt ← min{ηt‖∇f(xt)‖/(L‖gt‖), 1} =
min{〈−∇f(xt), gt〉/(L‖gt‖2), 1} is very performant in
CPU time. The line search-free strategy of DICG was not
competitive in the experiments.

DICG is not applicable to optimization problems over the
`1-ball

min
x∈Rn

f(x) (4)

s.t. ‖x‖1 6 τ,
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however we can perform a change of variables xi = zi −
zn+i and use the following reformulation over the simplex:

min
z∈R2n

f([z]1:n − [z]n+1:2n) (5)

s.t. z ∈ τ∆2n

where [z]1:n and [z]n+1:2n denote the truncation to Rn of
the first n entries and the last n entries of z ∈ R2n re-
spectively. Fact 4.1 formally states the equivalence be-
tween problems (4) and (5). A proof can be found in Ap-
pendix D.4.

Fact 4.1. Consider Rn and let τ > 0. Then B1(τ) =
{[z]1:n − [z]n+1:2n | z ∈ τ∆2n}.

We implemented all the algorithms in Python using the
same code framework for fair comparisons. In the case
of synthetic data, we generated them from Gaussian distri-
butions. We ran the experiments on a laptop under Linux
Ubuntu 18.04 with Intel Core i7 3.5GHz CPU and 8GB
RAM. Code is available at https://github.com/
cyrillewcombettes/boostfw. In each experiment,
we estimated the smoothness constant L of the (convex)
objective function f : Rn → R, i.e., the Lipschitz constant
of the gradient function ∇f : Rn → Rn, by sampling a
few pairs of points (x, y) ∈ C × C and computing an upper
bound on ‖∇f(y)−∇f(x)‖2/‖y − x‖2. Unless specified
otherwise, we set δ ← 10−3 and K ← +∞ in BoostFW.
The role of K is only to cap the number of pursuit rounds
per iteration when the FW oracle is particularly expensive
(see Section 4.3).

4.1. Sparse signal recovery

Let x∗ ∈ Rn be a signal which we want to recover as
a sparse representation from observations y = Ax∗ + w,
where A ∈ Rm×n and w ∼ N (0, σ2Im) is the noise in the
measurements. The natural formulation of the problem is

min
x∈Rn

‖y −Ax‖22

s.t. ‖x‖0 6 ‖x∗‖0

but the `0-pseudo-norm ‖ · ‖0 : x ∈ Rn 7→ |{i ∈ J1, nK |
[x]i 6= 0}| is nonconvex and renders the problem intractable
in many situations (Natarajan, 1995). To remedy this, the
`1-norm is often used as a convex surrogate and leads to
the following lasso formulation (Tibshirani, 1996) of the
problem:

min
x∈Rn

‖y −Ax‖22

s.t. ‖x‖1 6 ‖x∗‖1.

In order to compare to DICG, which is not applicable to this
formulation, we ran all algorithms on the reformulation (5).
We set m = 200, n = 500, σ = 0.05, and τ = ‖x∗‖1.

Since the objective function is quadratic, we can derive a
closed-form solution to the line search and there is no need
for AFW-L or BoostFW-L. The results are presented in
Figure 4.

Figure 4. Sparse signal recovery.

4.2. Sparsity-constrained logistic regression

We consider the task of recognizing the handwritten dig-
its 4 and 9 from the Gisette dataset (Guyon et al., 2005),
available at https://archive.ics.uci.edu/ml/
datasets/Gisette. The dataset includes a high num-
ber of distractor features with no predictive power. Hence,
a sparsity-constrained logistic regression model is suited for
the task. The sparsity-inducing constraint is realized via the
`1-norm:

min
x∈Rn

1

m

m∑
i=1

ln(1 + exp(−yia>i x))

s.t. ‖x‖1 6 τ

where a1, . . . , am ∈ Rn and y ∈ {−1,+1}m. In order to
compare to DICG, which is not applicable to this formula-
tion, we ran all algorithms on the reformulation (5). We used
m = 2000 samples and the number of features is n = 5000.
We set τ = 10, L = 0.5, and δ ← 10−4 in BoostFW. The
results are presented in Figure 5. As expected, AFW-L and
BoostFW-L converge faster in CPU time as they do not rely
on line search, however they converge slower per iteration
as each iteration provides less progress.

Figure 5. Sparse logistic regression on the Gisette dataset.

https://github.com/cyrillewcombettes/boostfw
https://github.com/cyrillewcombettes/boostfw
https://archive.ics.uci.edu/ml/datasets/Gisette
https://archive.ics.uci.edu/ml/datasets/Gisette
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4.3. Traffic assignment

We consider the traffic assignment problem. The task is to
assign vehicles on a traffic network in order to minimize
congestion while satisfying travel demands. Let A,R, and
S be the sets of links, routes, and origin-destination pairs
respectively. For every pair (i, j) ∈ S, letRi,j and di,j be
the set of routes and the travel demand from i to j. Let xa
and ta be the flow and the travel time on link a ∈ A, and let
yr be the flow on route r ∈ R. The Beckmann formulation
of the problem (Beckmann et al., 1956), derived from the
Wardrop equilibrium conditions (Wardrop, 1952), is

min
x∈R|A|

∑
a∈A

∫ xa

0

ta(ξ) dξ (6)

s.t. xa =
∑
r∈R

1{a∈r}yr a ∈ A∑
r∈Ri,j

yr = di,j (i, j) ∈ S

yr > 0 r ∈ Ri,j , (i, j) ∈ S.

A commonly used expression for the travel time ta as a
function of the flow xa, developed by the Bureau of Public
Records, is ta : xa ∈ R+ 7→ τa(1 + 0.15(xa/ca)4) where
τa and ca are the free-flow travel time and the capacity of
the link. A linear minimization over the feasible region
in (6) amounts to computing the shortest routes between
all origin-destination pairs. Thus, the FW oracle is partic-
ularly expensive here so we capped the maximum number
of rounds in BoostFW to K ← 5; see Figure 12 in Ap-
pendix A.2. We implemented the oracle using the function
all pairs dijkstra path from the Python package
networkx (Hagberg et al., 2008). We created a directed
acyclic graph with 500 nodes split into 20 layers of 25 nodes
each, and randomly dropped links with probability 0.5 so
|A| ≈ 6000 and |S| ≈ 113000. We set di,j ∼ U([0, 1]) for
every (i, j) ∈ S. DICG is not applicable here and AFW-
L and BoostFW-L were not competitive. The results are
presented in Figure 6.

Figure 6. Traffic assignment.

4.4. Collaborative filtering

We consider the task of collaborative filtering on the
MovieLens 100k dataset (Harper & Konstan, 2015),
available at https://grouplens.org/datasets/
movielens/100k/. The low-rank assumption on the
solution and the approach of Mehta et al. (2007) lead to the
following problem formulation:

min
X∈Rm×n

1

|I|
∑

(i,j)∈I

hρ(Yi,j −Xi,j)

s.t. ‖X‖nuc 6 τ

where hρ is the Huber loss with parameter ρ > 0 (Huber,
1964):

hρ : t ∈ R 7→

{
t2/2 if |t| 6 ρ

ρ(|t| − ρ/2) if |t| > ρ,

Y ∈ Rm×n is the given matrix to complete, I ⊆ J1,mK×
J1, nK is the set of indices of observed entries in Y , and ‖ ·
‖nuc : X ∈ Rm×n 7→ tr(

√
X>X) =

∑min{m,n}
i=1 σi(X) is

the nuclear norm and equals the sum of the singular vectors.
It serves as a convex surrogate for the rank constraint (Fazel
et al., 2001). Since

{X ∈ Rm×n | ‖X‖nuc = 1}
= conv({uv> | u ∈ Rm, v ∈ Rn, ‖u‖2 = ‖v‖2 = 1}),

a linear minimization over the nuclear norm-ball of radius
τ amounts to computing the top left and right singular vec-
tors u and v of −∇f(Xt) and to return τuv>. To this
end, we used the function svds from the Python package
scipy.sparse.linalg (Virtanen et al., 2020). We
havem = 943, n = 1682, and |I| = 105, and we set ρ = 1,
τ = 5000, and L = 5 · 10−6. DICG is not applicable here.
The results are presented in Figure 7.

Figure 7. Collaborative filtering on the MovieLens 100k dataset.

The time limit here was set to 500 seconds but for AFW-L
we reduced it to 250 seconds, else it raises a memory error
on our machine shortly after. This is because AFW requires

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
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storing the decomposition of the iterate onto V . Note that
BoostFW-ls converges faster in CPU time than AFW-L,
although it relies on line search, and that BoostFW-L con-
verges faster per iteration than the other methods although
it does not rely on line search.

4.5. Video co-localization

We consider the task of video co-localization on the aero-
plane class of the YouTube-Objects dataset (Prest et al.,
2012), using the problem formulation of Joulin et al. (2014).
The goal is to localize (with bounding boxes) the aeroplane
object across the video frames. It consists in minimizing
f : x ∈ R660 7→ x>Ax/2 + b>x over a flow polytope,
where A ∈ R660×660, b ∈ R660, and the polytope each
encode a part of the temporal consistency in the video
frames. We obtained the data from https://github.
com/Simon-Lacoste-Julien/linearFW. A lin-
ear minimization over the flow polytope amounts to com-
puting a shortest path in the corresponding directed acyclic
graph. We implemented the boosting procedure for DICG,
which we labeled BoostDICG; see details in Appendix B.
Since the objective function is quadratic, we can derive a
closed-form solution to the line search and there is no need
for AFW-L or BoostFW-L. We set δ ← 10−7 in BoostFW
and δ ← 10−15 in BoostDICG. The results are presented in
Figure 8.

Figure 8. Video co-localization on the YouTube-Objects dataset.

All algorithms provide a similar level of performance
in function value. In Garber & Meshi (2016), the al-
gorithms are compared with respect to the duality gap
maxv∈V〈∇f(xt), xt − v〉 (Jaggi, 2013) on the same ex-
periment. For completeness, we report a similar study in
Figure 9. The boosting procedure applied to DICG produces
very promising empirical results.

Appendix A.3 presents comparisons in duality gap for the
other experiments. DICG converges faster than BoostFW in
duality gap here (after closing it to 10−6 though), but it is
not the case in the other experiments.

Figure 9. Video co-localization on the YouTube-Objects dataset.

5. Final remarks
We have proposed a new and intuitive method to speed up
the Frank-Wolfe algorithm by descending in directions bet-
ter aligned with those of the negative gradients −∇f(xt),
all the while remaining projection-free. Our method does
not need to maintain the decomposition of the iterates and
can naturally be used to boost the performance of any Frank-
Wolfe-style algorithm. Although the linear minimization or-
acle may be called multiple times per iteration, the progress
obtained greatly overcomes this cost and leads to strong
gains in performance. We demonstrated in a variety of ex-
periments the computational advantage of our method both
per iteration and in CPU time over the state-of-the-art. Fur-
thermore, it does not require line search to produce strong
performance in practice, which is particularly useful on
instances where these are excessively expensive.

Future work may replace the gradient pursuit procedure
with a faster conic optimization algorithm to potentially
reduce the number of oracle calls. It could also be inter-
esting to investigate how to make each oracle call cheaper
via, e.g., lazification (Braun et al., 2017) or subsampling
(Kerdreux et al., 2018). Lastly, we expect significant gains
in performance when applying our approach to chase the
gradient estimators in (non)convex stochastic Frank-Wolfe
algorithms as well (Hazan & Luo, 2016; Xie et al., 2020).
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