
Boosting Gossip for Live Streaming
Davide Frey‡, Rachid Guerraoui∗, Anne-Marie Kermarrec‡, Maxime Monod∗

∗Ecole Polytechnique Fédérale de Lausanne
‡INRIA Rennes-Bretagne Atlantique

Abstract—Gossip protocols are considered very effective to
disseminate information in a large scale dynamic distributed
system. Their inherent simplicity makes them easy to implement
and deploy. However, whereas their probabilistic guarantees
are often enough to disseminate data in the context of low-
bandwidth applications, they typically do not suffice for high-
bandwidth content dissemination: missing 1% is unacceptable
for live streaming.
In this paper, we show how the combination of two simple

mechanisms copes with this seemingly inherent deficiency of
gossip: (i) codec, an erasure coding scheme, and (ii) claim 2°,
a content-request scheme that leverages gossip duplication to
diversify the retransmission sources of missing information. We
show how these mechanisms can effectively complement each
other in a new gossip protocol, gossip++, which retains the
simplicity of deployment of plain gossip. In a realistic setting
with an average bandwidth capability (800 kbps) close to the
stream rate (680kbps) and 1% message loss, plain gossip can
provide at most 99% of the stream. Using gossip++, on the other
hand, all nodes can view a perfectly clear stream.

I. INTRODUCTION
Since it was first adopted as a technique for maintaining

replicated databases [1], the gossip paradigm has been rec-
ognized as efficient and practical in a variety of contexts.
These include publish-subscribe, application-level multicast,
and overlay construction and maintenance [1]–[7]. In all
these cases, gossip has shown to be simple, lightweight and
extremely resilient to churn.
These great properties of gossip are mainly the result of the

redundancy it natively offers in data dissemination. Specifi-
cally, in the infect-and-die model [8], each node forwards each
gossip message exactly once to fanout other nodes chosen
at random from the set of all n nodes. Clearly, the larger
the fanout value, the greater the redundancy offered by the
protocol as nodes can receive each message from multiple
sources. Theory suggests that the fanout value should be
chosen as f = ln(n) + c, where c is a constant, defining
the probability of the gossip protocol to result in a connected
random graph as exp(− exp(−c)). In other words, f can
be chosen such that all messages are gossiped to all nodes
with high probability (whp). Specifically, larger fanout values
allow for a trade-off between the probability of obtaining
atomic dissemination, and the cost of the protocol in terms
of consumed bandwidth.
However, these results have to be revised when gossip is

applied in the context of high-bandwidth content dissemina-
tion, such as file sharing [4] or video streaming [9], [10]. In
such a setting, gossip protocols normally adopt a three-phase
approach to maintain communication costs within reasonable

limits. Let us consider the case of video streaming. The source
splits the content to be disseminated into chunks. Then, each
node, including the source, advertises the new content it has by
gossiping the corresponding chunk identifiers to fanout other
nodes (first phase). A node receiving such an advertisement
message replies by requesting the chunks it needs among those
proposed (second phase). Finally, nodes receiving a request for
a given chunk reply by sending the actual payload, i.e., serving
the node (third phase).
This mode of operation brings significant changes in the

behavior of gossip protocols in the presence of message loss
or churn. First, the redundancy inherent in gossip is only
present in the first phase of the protocol. As a result, the
protocol is only resilient to the loss of messages advertising
available chunks, but not to the loss of the chunks themselves.
Second, the quality of the disseminated stream is constrained
by the average upload bandwidth of nodes, which is commonly
considered the bottleneck in such collaborative systems. As
a result, content-dissemination protocols should produce the
smallest possible overhead and be able to operate near the
limits of available bandwidth.
In the context of gossip, this means that the protocol

cannot arbitrarily increase its fanout even to guarantee atomic
dissemination during the first phase. Indeed, as shown in [11],
too large fanout values easily saturate the scarce bandwidth
resources of participating nodes and result in significant per-
formance losses.
On the other hand, the best performance is, in this case,

achieved with fanout values that are only slightly larger than
ln(n). Such small values allow the gossip protocol to operate
without saturating the bandwidth of nodes, but they also limit
the redundancy of data dissemination. This, coupled with
message losses during the second and third phases of the
protocol, makes it almost impossible for a naive three-phase
solution to deliver the entirety of the available content to all
participating nodes.
To exemplify this effect, we ran a set of experiments

disseminating a video stream of 680 kpbs to 200 nodes and
evaluated the behavior of the three phases of the described
gossip protocol with several fanout values. All nodes except
the source have a bandwidth cap of 800 kbps and the source’s
fanout is set to 5 and its bandwidth usage is therefore roughly
5 times the stream rate. On average, each chunk identifier
sent in the first phase of the protocol was received by an
average of 99% of the nodes, while the percentage of nodes
receiving all advertisements varied from 0% with a fanout of
7 to 60% with a fanout of 10. While this seems to match the

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 n

od
es

 (c
um

ul
at

iv
e

di
st

rib
ut

io
n)

Stream Lag (s)

Percentage of nodes receiving the stream (real conditions)

gossip++, f=8 - clear stream
f=8 - 98% stream
f=7 - 98% stream
f=9 - 98% stream

f=10 - 98% stream

Fig. 1. In a realistic scenario with constrained bandwidth (800 kbps
bandwidth cap) and additional message losses (1%), increasing the fanout
of standard gossip does not help. On the other hand, gossip++ can deliver a
clear stream to all nodes.

theoretical results about the reliability of gossip, the situation
changes dramatically if we analyze the number of actual
chunks received at the end of phase 3. In this case, the average
delivery ratio (i.e., the percentage of chunks received of the
original stream) drops to about 97% with no node being able to
receive all or even 99% of the stream, regardless of the fanout.
Moreover, as depicted in Figure 1, the best performance is
achieved with a fanout of 8, which provides 23.5% of the
nodes with between 98% and 99% of the stream with a stream
lag shorter than 3 seconds. The stream lag represents how live
the stream is played, i.e., the time elapsed between the sending
of the stream from the source and the actual playback on the
nodes. This level of performance may be sufficient for some
applications (e.g., news or query dissemination). However it
is unacceptable for an application like video streaming [12].
In this paper, we show how these issues can be addressed

through the proper combination of two simple mechanisms: (i)
Codec, an erasure coding scheme, and (ii) Claim 2°, a content-
request scheme that leverages gossip duplication to diversify
the retransmission sources of missing information. Codec
operates by adding redundant coded chunks to the stream so
that it can be reconstructed after the loss of a random subset
of its chunks. Claim 2°, on the other hand, allows nodes to re-
request missing content by recontacting the nodes from which
they received advertisements for the corresponding chunks,
leveraging the duplicates created by gossip. Our experiments
show that neither mechanism alone can guarantee reliable
dissemination of all the streaming data to all nodes. On the
other hand, their combination is particularly effective and is
able to provide all nodes with a clear stream even in tight
bandwidth scenarios, in the presence of crashes, or up to 20%
of freeriding nodes.
Intuitively this can be explained by observing that each of

the two proposed mechanisms addresses a different problem
of gossip dissemination. Codec manages to reconstruct the
chunks that could not be delivered by gossip due to its
probabilistic guarantees. On the other hand, Claim 2° is able
to recover from message loss occurring at any point during
the last two phases of the dissemination process, that is the
request and the serve.

II. BACKGROUND & RELATED WORK

In its original form, the gossip paradigm is an implemen-
tation of a broadcast primitive that provides a message from
the source to all nodes in the system with high probability.
A source node randomly chooses a set of communication
partners, i.e., fanout nodes and sends them a message. Upon
receipt of a message, nodes forward it once to fanout other
nodes, also chosen at random. Since each node forwards the
message only once, we say the algorithm follows an infect-
and-die model.

A. Gossip for high-bandwidth content dissemination
Among its various applications, gossip has also been used

for bandwidth-intensive applications such as file-sharing or
video streaming. In this case, the source splits the data to share
into chunks that constitute the messages to be transmitted.
Then it begins dissemination using a gossip-based protocol.
The problem is that nodes generally cannot afford gossiping
these chunks directly due to their large sizes. Gossip creates
many duplicates and nodes usually have limited bandwidth:
sending two copies of the same chunk to the same node would
thus waste too many resources.
As a way to address this problem, the work in [13] proposes

a gossip algorithm for file sharing using fountain codes.
The source splits the file to share into k chunks that are
gossip-pushed to n/2 nodes (using an experimental TTL). It
additionally and continuously codes the file and sends new
coded chunks with the same TTL. Once a node has received
enough chunks to decode the file (i.e., k random chunks)
it codes it and starts to gossip newly coded chunks itself,
preferring nodes that are close to having k chunks, in order
to increase the number of coding sources in the system. The
gossips stop once every node has received at least k chunks.
The use of fountain codes makes it possible to exploit the first
exponential-growth phase of gossip, which has been shown to
be more efficient, due to the presence of fewer duplicates,
than the second shrinking phase. However, even in the first
phase, a node may still receive the same chunk multiple times,
leading to inefficient bandwidth utilization. Moreover, the
protocol requires the nodes that have completed the first phase
to contribute much more than the others, possibly fostering
freeriding vocations.

B. Three-phase gossip
To address the problem of bandwidth utilization more

effectively, an appealing solution is to use a three-phase gossip
protocol [4], [9], [11] as depicted in Figure 2. Its characteristic
is the ability to exploit gossip’s redundancy on small propose
messages, while receiving the actual payload only once. This
makes the model very appealing in high-bandwidth content-
dissemination applications such as streaming.
The three phases are as follows.
• Propose phase. Periodically, i.e., every gossip period,
each node picks a new set of f (fanout) other nodes
uniformly at random. This is usually achieved using a
random peer sampling protocol [5], [14], [15]. It then

Fig. 2. Three-phase gossip protocol with an infect-and-die behavior.

proposes, to each of them, the identifiers of the chunks it
received since its last propose phase. This is illustrated in
Figure 2, where node p proposes chunks 12, 15, 18 and
22 during the first displayed gossip period, and chunks
16, 22, 23, 27, 30 and 32 in the subsequent one.

• Request phase. Upon receipt of a proposal for a set of
chunk identifiers, a node determines the subset of chunks
it needs, and requests them from the sender. Clearly,
the needed chunks are those that the node has not yet
received. In Figure 2, node p requests chunks 12 and 15
from q.

• Serving phase.When a proposing node receives a request
message, it replies with the corresponding chunks, that
is by sending their actual payloads. Nodes only serve
chunks that they previously proposed. In Figure 2, node
q serves p with chunks c12 and c15.

Such a scheme has been successfully used in several ap-
plications. The work in [4] was the first, to the best of our
knowledge, to propose the use of such a protocol for file
sharing. More recently, the same scheme has been used in
systems [9], [10] designed to tolerate Byzantine nodes based
on symmetric exchanges à la Tit-for-Tat [16]. In particular,
the work in [9] also recognizes the need for forward error
correction (FEC). However, different from the approach we
present, it uses a very low gossip fanout with chunks being
proposed for multiple rounds and requires as much as 100% of
coding, i.e., 50% of the data sent represents the original stream
and 50% the added coded data. Its use of large gossip periods
enables the use of TCP connections between peers, thereby
preventing the need for explicit retransmission. However, the
approach focuses on being tolerant to byzantine attacks and
not on performance. Specifically, the authors do not provide
any results in constrained environments, and more recent work
has recognized scalability issues [17].

C. Alternative approaches to dissemination
Clearly, gossip is not the only viable mechanism for high-

bandwidth content dissemination and video streaming. Initial
work on streaming adopted tree-based approaches [18]–[21].

However, most work has focused on more redundant mesh
structures [22]–[25]. Some mesh-based systems split the initial
stream into multiple substreams and disseminate them by
creating multiple trees over the mesh [26]. Others use the mesh
structure directly without superimposing specific dissemina-
tion paths [27]. In mesh-based systems, an important challenge
is to devise the optimal scheduling algorithm [28], i.e., picking
which chunks to send to whom in a node’s neighborhood,
in order to both ensure a high quality stream for individual
reception and fast and efficient spreading of the stream in the
whole system. In gossip, the scheduling problem is clearly
reduced by design. A node has no incentive to wait until it
receives multiple proposals for a chunk in order to decide
which node to request from, because it is impossible for a
node to maintain statistics of how nodes behaved in the past in
order to request from the optimal node, since the set of partners
change dynamically. In addition, a node has no guarantee that
it will receive multiple proposals for the same chunk (if any)
and in what order it will receive the chunks themselves. On
the other hand, recent work [11] has showed that gossip, in its
most dynamic form, provides an effective, simple and implicit
means to split the stream into multiple random dissemination
paths without having to explicitly split the stream among
multiple paths. This makes gossip particularly appealing in
the presence of message loss and failures.

III. GOSSIP++
We consider a system in which a source broadcasts a stream

with the aid of a three-phase gossip protocol. The source
has enough bandwidth to serve at most s nodes (s = 5 in
our experiments), while all other nodes have their upload
bandwidth limited to b, with b only slightly larger than the
stream rate. The rationale is that dissemination protocols must
impose the smallest overhead on top of the original stream so
that for a given bandwidth capacity, the system provides the
nodes with the best stream possible [23]. Nodes communicate
over lossy links (e.g., UDP). Every node can receive incoming
data from any other node in the system (i.e., the nodes are not
guarded/firewalled, or there exists means to circumvent such
protections [29], [30]). Nodes can fail by crashing, or exhibit
freeriding behavior, that is, decrease their contributions while
still benefiting from the system. Other types of attacks such
as those in which nodes inject junk content (e.g., pollution
attacks [10], [31]) are outside the scope of this paper.
In order to provide reliable dissemination of streaming

content, we augment the three-phase gossip protocol with two
components: Codec and Claim 2° as described in the following.

A. Codec
Codec is a forward error correction (FEC) mechanism which

feeds information back into the gossip protocol to decrease
the overhead added by the FEC. This mechanism increases
the efficiency of the dissemination achieved by three-phase
gossip in three major ways. First, since each chunk is proposed
to all nodes with high probability, some nodes do not receive
proposals for all chunks, even when there is no message loss.

FEC allows nodes to recover these missing chunks even if
they cannot actually be requested from other nodes. Second,
FEC helps in recovering from message losses occurring in all
three phases. Finally, decoding a group of chunks to recover
the missing ones often takes a shorter time (i.e., in the order of
40ms) than actually requesting or re-requesting and receiving
the missing ones (i.e., at least a network round-trip time).

p

i i+k-1 i+k-1

i+k+c-1

serve(c
i+4

) G contains k chunks

Group G (size k+c)

decode(G)

ii) no need for more chunks in G

recode(G)

iii) inject reconstructed chunks

propose(..., i+6, i+k+c-1, ...)

i) forward to player

Fig. 3. Codec: a node p receiving k chunks in G decodes the group to
reconstruct the k source chunks and sends them to the player (step (i)).
Node p then signals the protocol not to request any more chunks in G
(step (ii)). Optionally (step (iii)), p reencodes the k source events and injects
reconstructed chunks into the protocol.

Erasure coding (FEC): The source of the stream uses
a block-based FEC implementation [32] to create, for each
group of k source chunks, c additional coded ones. A node
receiving at least k random chunks from the k + c possible
ones is thus able to decode the k source chunks and forward
them to the video player (step (i) in Figure 3). If the node
received less than k chunks, the group is considered jittered.
Nevertheless, using systematic coding (i.e., the source chunks
are not altered), a node receiving j < k chunks can still
deliver the i ≤ j source chunks that it received. In other
words, assuming the k source chunks represent a duration t
of audiovisual stream, the jittered group does not inevitably
represent a blank screen without sound for t time. If i is close
to k, the decreased performance can be, in the best case, almost
unnoticeable to the user (e.g., losing a B-frame).

The cost of FEC: The cost of using FEC mainly consists
of network cost. The CPU cost of coding and decoding was a
concern 15 years ago but is negligible nowadays with the type
of FEC we are using. On the other hand, the source needs
to send k + c chunks for each group of k. This constitutes
an overhead of c

k+c in terms of outgoing bandwidth. The
remaining nodes, however, can cut down this overhead as
described in the following.

Codec operation: The key property of Codec is the
observation that a node can stop requesting chunks for a given
group of k + c as soon as it is able to decode the group,
i.e., as soon as it has received k0 ≥ k of the k + c chunks
(step (ii) in Figure 3). The decoding process then provides the
node with the k source chunks needed to play the videostream.
This means that it does not need to request more chunks in
this group from other nodes. This allows the node to save

incoming bandwidth and most importantly it allows other
nodes to save their outgoing bandwidth that they can thus use
to serve useful chunks to nodes in need. Optionally (step (iii)
in Figure 3), in order not to stop abruptly the dissemination
of the reconstructed chunks (source or coded chunks: chunks
i+6 and i+k+c−1 in that case), nodes can reinject decoded
chunks into the protocol.1 The performance improvement of
this step is evaluated and discussed in Section IV-G.

B. Claim 2°

While Codec can reconstruct missing chunks, it still needs at
least k chunks from each group. Claim 2° uses retransmission
to make it possible to recover these k chunks even when
message loss affects more than c chunks per group. In doing
this, it takes full advantage of the redundancy of gossip
by leveraging the duplicate proposals received for a chunk.
Instead of stubbornly requesting the same sender (a-la TCP),
the requesting node rerequests nodes in the set of proposing
nodes in a round-robin manner, as presented in Figure 4.

Fig. 4. Claim 2°: Node v has proposed chunk i to node p which requested
it. Either the request or the serve was lost and p, instead of reasking v now
requests u, that also proposed chunk i. If u fails to serve ci, p requests chunk
i again from another node that proposed i. Node q finally serves p with ci.

Nodes can emit up to a number r of re-requests for each
chunk. The first re-request for a given chunk is scheduled to be
sent after a timeout μ+3.29σ where μ and σ are respectively
the average and standard deviation of the roundtrip times
experienced by the node (representing the 99.9th percentile
in a normal distribution).2 Further re-requests, if needed, are
scheduled to be sent each time after half of the previous
timeout until a minimum fixed timeout is reached.

IV. EVALUATION

We evaluated gossip++ on 200 nodes, deployed over 40
Grid’5000 machines. The use of a cluster platform like

1This is possible because FEC coding is deterministic, meaning that the k
source chunks produce the exact same c coded chunks independently of the
encoding node and thus the injection of reconstructed source or coded chunks
will be identical as the ones produced by the source.
2Note that trying to keep track of roundtrip times from past communication

partners individually does not scale, since partners are taken at random from
the set of all nodes.

Grid’5000 allows us to have a controlled and reproducible
setting, while at the same time simulating realistic network
conditions. To achieve this, we implemented a communication
layer that provides bandwidth limitation, delays and message
loss. We give the source enough bandwidth to serve 5 nodes
in parallel, and we limit the upload bandwidth of each other
node to 800 kbps, unless otherwise specified, using a token-
bucket mechanism with a bucket size of 200KB. This means
that all burst of cumulated size over 200KB are automatically
dropped. On top of this, we introduce a 1% message loss rate,
unless otherwise indicated. Finally, we add a random delay
between 0 and 200ms to all sent messages.
All nodes except the source gossip with a fanout of 8, unless

otherwise specified. This proved to be the value providing
the best performance with a 800 kbps bandwidth limit. The
source, on the other hand, uses a fanout of 5 to gossip a stream
fed by VLC at 679.79 kbps on average. Before gossiping, the
source encodes groups of k = 100 chunks of 1316 bytes,
and creates c = 5 additional coded chunks except when
otherwise specified. The average stream sent by the source
is thus 713.75 kbps, adding 5% overhead to the stream. The
gossip period is 200ms and all messages are sent over UDP.

A. Metrics
We evaluated the performance of the considered protocols

according to two metrics: stream lag, and stream quality. We
define the stream lag as the difference between the time at
which the stream was sent by the source and the time at
which a node could actually view it. Intuitively it measures
how live the stream is. We, then, define the stream quality
as the percentage of nodes that receive a completely clear
stream, that is one in which 100% of the chunks can be played
correctly. The rationale behind this choice is that a stream
where more than 1% of the chunks are missing can be shown
to be already very disturbing [12]. Video formats differ in the
way they compress the stream and losing data representing
B-frames, for instance, can be less disturbing than other types
of frames. In practice, however, it is very difficult to prioritize
data in the stream as very few applications, if any, provide
this kind of information at the stream-packet level [33].
When using plain gossip without Codec, playing 100% of

the chunks requires receiving every single chunk disseminated
by the source. When using Codec, on the other hand, a node
can play all chunks if it receives at least k random chunks per
group of k+c chunks. When such a 100% quality is impossible
to reach, we define a jitter percentage of the stream as 100%
minus the percentage of correctly received packets [23].

B. Overview
In the following, we present the results of our evaluation.

We first show in Section IV-C that plain gossip is insufficient
in video streaming applications, thereby motivating the use of
Codec. Second, we observe that when bandwidth is limited,
Codec alone is not sufficient and that it can provide satisfactory
performance only in combination with a retransmission mech-
anism like Claim 2°. We then evaluate Claim 2° alone as well

as in combination with Codec. Again, Claim 2° alone proves
to be insufficient, but its combination with Codec provides
all nodes with a clear stream even in highly constrained
settings. In Section IV-E we evaluate the impact of different
FEC percentages in combination with Claim 2°. This allows
us to identify 5% FEC as the best trade-off. Finally, we push
the analysis further and examine performance (i) when the
bandwidth gets more and more constrained (Section IV-F), (ii)
in the presence of nodes that cannot or do not provide their
fair share of work, i.e., freeriders (Section IV-G), and (iii) in
the presence of catastrophic crash failures (Section IV-H).

C. Need for Codec
We start our analysis by motivating the need for Codec as

part of our improved gossip-based solution for live streaming.
According to [11], we know that in constrained bandwidth
scenarios, it is not possible to increase the fanout of nodes
arbitrarily. Too large values end up saturating the available
bandwidth causing drops in performance. As discussed in
Section I, in a network of 200 nodes, and an 800 kbps limit on
the upload bandwidth, the fanout offering the best performance
is 8. Even with this fanout, however, no node is able to obtain
a perfectly clear stream and only 23.5% of the nodes are able
to experience a 1% jittered stream.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 n

od
es

 (c
um

ul
at

iv
e

di
st

rib
ut

io
n)

Stream Lag (s)

Percentage of nodes receiving a clear stream (ideal conditions)

gossip with codec, fanout 8
plain gossip, fanout 8

plain gossip, fanout 8 (99% delivery)

Fig. 5. In an ideal scenario where bandwidth is unconstrained and without
message loss, plain gossip delivers a clear stream to only 8.5% of nodes since
all nodes do not receive a proposal for each chunk. Adding FEC on the other
hand, 100% of the nodes can view the original stream.

To get a better understanding of this poor performance, we
ran an experiment with a fanout of 8 in an unconstrained
bandwidth scenario without message loss. Results are depicted
in Figure 5: without bandwidth constraints, all nodes can
view 99% of the stream but only 8.5% can receive a clear
one. This is because a fanout of 8 is too low to guarantee
reliable dissemination of chunk advertisements. On the other
hand, larger values prove to be too high when bandwidth is
constrained to 800 kbps.
The natural solution to these problems is therefore the

introduction of Codec. With its use, the situation radically
changes and all nodes are able to view a completely clear
stream in this ideal network scenario with a stream lag lower
than 3.3 s.
Still, we recognize that in this very favored environment

(i.e., no message loss nor bandwidth cap), plain gossip is still

quite efficient since all the nodes suffer at most 1% missing
chunks in their stream (dashed line in Figure 5), confirming
the theoretical results that each chunk proposal (followed by
its actual payload) reaches all nodes with high probability.

D. Realistic conditions: Need for Claim 2°

When moving to realistic conditions, however, it becomes
clear that Codec is not sufficient to provide reasonable stream-
ing performance. With a constraint on the upload bandwidth
of 800 kbps and a message-loss rate of 1%, no node is able to
receive a clear stream even when Codec is used. Nonetheless,
Codec allows 64.5% of the nodes to view 99% of the original
stream against a flat 0% provided by plain gossip.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 n

od
es

 (c
um

ul
at

iv
e

di
st

rib
ut

io
n)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the original stream

gossip with codec
plain gossip

Fig. 6. Without FEC, no node can even receive 99% of the original stream
with constrained bandwidth and message losses. Using Codec, there is a large
improvement since 64.5% of the nodes receive at least 99% of the original
stream with a stream lag shorter than 3.3 s.

These results show that, while Codec is able to address
the inability of gossip to reach all nodes with a fanout of 8,
it is not sufficient to recover from message losses resulting
from the communication layer and the associated bandwidth
constraints.The situation, instead, improves dramatically if we
add Claim 2° to the picture. Figure 7 shows that Claim 2°

combined with Codec is able to provide each node with a
clear stream with a stream lag shorter than 3.5 s.
Increasing the percentage of FEC should intuitively recover

from more missing chunks, be them not proposed or lost. We
thus also show, in Figure 7, results for 50% coding (resp. 100%
coding), i.e., where 2/3 (resp. 1/2) of the received chunks are
enough to decode a clear stream. We only show results for
optimal fanouts, 4 and 3 respectively. The presented results are
optimal in the sense that a lower fanout prevents gossip from
disseminating proposals (and thus possibly chunks) to a large
number of nodes and that larger fanouts create bursts such
that more and more messages are dropped by the bandwidth
limiter. Still, Codec alone can provide a clear stream to only
21.5% with 50% coding (resp. 3.5% for 100% coding).
The figure also shows that, interestingly enough, Claim 2°

alone is also unable to provide a significant improvement over
plain gossip, with only 4.10% of the nodes receiving a clear
stream. The reason is that Claim 2° guarantees that a node
that received proposals for a chunk will eventually receive the
chunk when reclaiming it from one of the proposing nodes.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 n

od
es

 (c
um

ul
at

iv
e

di
st

rib
ut

io
n)

Stream Lag (s)

Percentage of nodes receiving a clear stream (realistic conditions)

codec 5% + claim2

codec 50%, fanout 4
codec 100%, fanout 3
plain gossip + claim2

codec 5%

Fig. 7. While Codec (5% coding) can provide a 1% jittered stream to 64.5%
of nodes (Figure 6) it cannot, alone, provide a clear stream to any node.
Claim 2° improves plain gossip only a very little but significantly boosts the
performance of Codec. When applied together the two techniques provide a
clear stream to all nodes. Finally, increasing the percentage of FEC without
retransmission does not help in recovering missing chunks.

However, with Claim 2° a node will never be able to retrieve
chunks for which it never got a proposal.

E. Impact of Message Loss

The main contribution of Codec is the ability to recover
chunks for which no proposal was received. The importance
of this feature depends mainly on two factors: the fanout, and
the message-loss rate of the network.
To better understand the trade-offs associated with the

configuration of Codec, we consider the performance of the
combination of Codec and Claim 2° in several scenarios with
a bandwidth cap of 800 kbps, and message loss rates ranging
from no message loss to 5% message loss. In each of these
scenarios we configured Codec with different levels of coding:
2%, 5%, 10%, 30% and 50%.
The results, depicted in Figure 8, show that Codec with 2%

coding is not able to compensate the missing proposals for
all nodes even in the absence of message loss. Higher coding
percentages, on the other hand, provide very similar and good
results up to 4% message loss. With 5% message loss, 50%
coding performs slightly worse than the other percentages,
providing only 94.9% of nodes with a clear stream compared
to at least 98.7% for the others.

 80

 85

 90

 95

 100

 0 1 2 3 4 5

P
er

ce
nt

ag
e

of
 n

od
es

Percentage of message losses

Percentage of nodes viewing a clear stream (10s stream lag, bw cap 800kbps)

codec 2% + claim2

codec 5% + claim2

codec 10% + claim2

codec 30% + claim2

codec 50% + claim2

Fig. 8. Codec with 2% and 50% coding provide a clear stream to a lower
number of nodes than other FEC percentages as message loss percentage
increases.

These figures can be better understood by analyzing the
data in Figure 9. The plot shows the cumulative distribution
of stream lag for the various FEC percentages in the presence
of 5% message loss. Codec with 50% coding is indeed able to
provide all nodes with a clear stream, but with a much longer
stream lag. The reason is that adding a large percentage of
coding represents a large overhead in terms of bandwidth:
nodes try to send more data than they are allowed to by
their bandwidth limiters. This leads to dropped messages and
retransmissions ultimately explaining the poor results with
respect to stream lag of Codec 30% and Codec 50%.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 n

od
es

 (c
um

ul
at

iv
e

di
st

rib
ut

io
n)

Stream Lag (s)

Percentage of nodes receiving a clear stream (5% message losses)

codec 2% + claim2

codec 5% + claim2

codec 10% + claim2

codec 30% + claim2

codec 50% + claim2

Fig. 9. With 5% message loss, Codec with 2% coding provides a clear stream
to a maximum of 83% of nodes. Other percentages reach at least 98.7% but
with different stream lags. The bandwidth used by Codec with 30% and 50%
coding is larger than with lower coding percentages (Figure 10). The traffic
excess is limited by the token bucket, which results in needing Claim 2° to
recover missing chunks, which in turns, explains the larger stream lag.

These observations are confirmed by Figure 10, showing
the bandwidth usage of the source and the average requested
bandwidth usage of nodes, before the bandwidth limit is
applied. The picture shows that only 2% and 5% coding do not
attempt to send more data than allowed to by the bandwidth
limit. This means that they are the only two versions of the
protocols that will not experience message loss as a result of
the token bucket. This is confirmed by the fact that 2% coding
and 5% coding exhibit the shortest stream lag in Figure 9.

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

2.5Mbps

3Mbps

3.5Mbps

4Mbps

4.5Mbps

5Mbps

5.5Mbps

6Mbps

2% 5% 10% 30% 50%

Bandwidth usage of nodes

3.
6

M
bp

s

76
6

kb
ps

3.
7

M
bp

s

78
8

kb
ps

3.
9

M
bp

s

82
5

kb
ps

4.
6

M
bp

s

12
24

 k
bp

s

5.
3

M
bp

s

13
60

 k
bp

s

source
nodes

Fig. 10. Bandwidth usage of both source and tentative bandwidth usage
of nodes for different percentages of coding. The source bandwidth usage
increases according to the FEC overhead and the tentative bandwidth usage
of nodes quickly exceed the bandwidth cap of 800 kbps, explaining the bad
performances in Figure 8 for 30% and 50% coding.

In practical terms, the choice of the FEC percentage should

therefore fall on the largest percentage that remains within
the bandwidth constraints. This allows Codec and Claim 2° to
combine fast dissemination with the ability to recover from
missing proposals.
A final observation, on this set of experiments can be made

by looking at Figure 11. The plot shows the percentage of
chunks that Codec was able to reconstruct with each of the five
coding percentages. The depicted percentage includes both the
chunks for which no proposal was received and the requests/re-
requests that were saved, i.e., the missing chunks that were
reconstructed before a request/re-request was sent.
It is interesting to see that the recovery percentages grow

linearly with message loss and correspond to around half of
the percentages of FEC coding being considered. This means
that the overhead added by Codec is partly recovered and is
ultimately around half of the expected overhead value. The
reason is that the more the message loss, the more the missing
proposals and the need for retransmission for chunks that
were proposed. Since each retransmission is associated with
a timeout, the more the message loss and the longer the time
available to Codec to reconstruct chunks in incomplete groups
before actually sending a re-request.

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

P
er

ce
nt

ag
e

of
 e

ve
nt

s
re

co
ns

tru
ct

ed

Percentage of message losses

Percentage of chunks reconstructed with FEC

codec 50% + claim2

codec 30% + claim2

codec 10% + claim2

codec 5% + claim2

codec 2% + claim2

Fig. 11. The percentage of chunks recovered with erasure coding increases
with the message-loss percentage at a rate that is largely independent of the
specific FEC value.

F. On Bandwidth Constraints
Next, we evaluate the performance of gossip++ with vari-

able amounts of available upload bandwidth. In doing this, we
also consider a variant of Codec, decode to player, in which
nodes continue requesting the proposed chunks that they have
not yet received, even if they have been successfully decoded
by the FEC (step (i) of Codec only, i.e., without signaling
to the protocol that the group has been successfully decoded).
The plot in Figure 12 shows that such a variant is significantly
less robust than Codec when the available bandwidth is
limited. The continual requests for already decoded chunks
cause its performance to drop when the available bandwidth is
below 780 kbps. Codec, on the other hand, is almost unaffected
by the bandwidth constraint up to approximately 760 kbps.
The plot also shows the percentage of chunks reconstructed

by Codec in the same conditions. Decreasing values of avail-
able bandwidth causes an increase in the number of messages

 0

 20

 40

 60

 80

 100

 760 780 800 820 840 860 880 900
0

2

5

10

P
er

ce
nt

ag
e

of
 n

od
es

P
er

ce
nt

ag
e

of
 c

hu
nk

s
re

co
ns

tru
ct

ed

Bandwidth availability

Percentage of nodes viewing a clear stream with 10s stream lag

codec + claim2

decode to player + claim2

recovery - codec + claim2

Fig. 12. By decreasing the available bandwidth of nodes, nodes tend to lose
more messages due to bursts and therefore need both Codec and Claim 2°
to deliver a clear stream. Once the available bandwidth gets below 770 kbps
not all nodes can view a clear stream with gossip++ anymore. Interestingly,
Codec is more and more effective in avoiding requests and re-requests until
the system collapses.

dropped by the bandwidth limiter, which in turn causes a larger
proportion of chunks to be recovered by the Codecmechanism.

G. Freeriders
Freeriders are nodes that want to benefit from the system

without contributing their share of work or resources. In the
context of gossip-based streaming we can distinguish two
classes of freeriders: (i) passive freeriders that do not propose
chunks; and (ii) active freeriders that actively discard requests.
Passive freeriders will never serve any node since they

never get requested any chunk. They can also be seen as
nodes that simply cannot have outgoing communication, either
deliberately or because of network constraints (e.g., firewall,
closed ports). Passive freeriders benefit from the system as
they receive propose messages and thus request data from
other nodes while not contributing. This causes the average
fanout of the system to be lowered since all passive freeriders
act as if they had a fanout of 0.
Active freeriders, instead, follow the protocol until they

are expected to contribute. Once they are requested to serve
chunks, they decide not to serve what was requested. This
implies that a fraction of the many duplicates of propose
messages will not lead to subsequent serves. In other words,
nodes requesting chunks from active freeriders will not be
served, just as if they requested a chunk from a node that
crashed.
In the following we evaluate the ability of gossip++ to

tolerate both types of freeriders while providing all nodes with
a clear stream. Clearly, this is only possible if non-freeriding
nodes are allowed some extra bandwidth to compensate for
the bandwidth that the freeriding nodes are not contributing.
For this reason we ran the following experiments with a larger
upload bandwidth of 1000 kbps.
1) Passive Freeriders: Figure 13 shows the performance

obtained by gossip++ with variable percentages of passive
freeriders. In this set of experiments we also consider a second
variant of Codec, called Codec 2°. Specifically, as soon as a
node is able to reconstruct a group, Codec 2° reinjects the

reconstructed source chunks it did not receive regularly, and
reencodes the k source chunks into c coded chunks that it also
reinjects in the dissemination process (step (iii) in Figure 3).
The plot in Figure 13 shows that both Codec and its

variant Codec 2° are effective in managing up to 20% of
freeriding nodes. However, Codec 2° is slightly more effective
with passive freerider percentages above 20%. The reason for
this performance difference is that the injection mechanism of
Codec 2° is able to compensate for the decrease in effective
fanout resulting from the freeriding behavior. In other words,
nodes injecting a reconstructed chunk into the protocol cre-
ate duplicate advertisements that would not have otherwise
existed.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30
 0

512 kbps

1Mbps

1.5Mbps

2Mbps

P
er

ce
nt

ag
e

of
 n

od
es

B
an

dw
id

th
 u

sa
ge

 o
f n

on
-fr

ee
rid

in
g

no
de

s

Percentage of freeriders

Percentage of nodes viewing a clear stream with 10s stream lag

codec2 + claim2

decode but no propose + claim2

bandwidth usage

Fig. 13. Increasing the percentage of freeriders results in decreasing the
average fanout. Codec 2° performs slightly better than Codec.

The third line in Figure 13 complements these results by
showing the average amount of data that non-freeriding nodes
attempt to send. It is interesting to observe that the slope of
the line increases dramatically as soon as the line crosses
the value of 1000 kbps. At this point, the bandwidth limiter
starts dropping messages, causing Claim 2° to issue more and
more rerequests, which in turn get more and more likely to be
dropped. The data that nodes attempt to send increases without
a corresponding increase in the data that is actually sent. This
causes the dramatic performance decrease occurring when the
bandwidth line crosses the 1000 kbps threshold.
It is also worth observing that approximately 20% freeriding

nodes can be tolerated with approximately 20% of slack in the
upload bandwidth, i.e., 1000 kbps instead of 800 kbps. This
highlights the scalability in terms of bandwidth consumption
of the combination Codec 2° + Claim 2°.
2) Active Freeriders: Figure 14 shows instead the per-

formance obtained by gossip++ in the presence of variable
percentages of active freeriders. Interestingly enough, in this
case the performances of Codec and Codec 2° exhibited no
differences. However, the plot shows a distinction between
Claim 2° and a standard retransmission mechanism such as
ARQ [34], labeled as “retransmission” in the plot. Specifically,
while Claim 2°’s retransmission mechanism chooses to contact
any of the nodes that offered a propose message for the desired
chunk, the standard approach repeatedly requests a single node
for each missing chunk. This means that, if the proposing node
is a freerider, the standard mechanism will be unable to obtain

the chunk which will instead be quickly obtained by Claim 2°.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30
 0

512 kbps

1Mbps

1.5Mbps
P

er
ce

nt
ag

e
of

 n
od

es
 (c

um
ul

at
iv

e
di

st
rib

ut
io

n)

B
an

dw
id

th
 u

sa
ge

 o
f n

on
-fr

ee
rid

in
g

no
de

s

Percentage of freeriders

Percentage of nodes viewing a clear stream with 10s stream lag

codec + claim2

bandwidth usage (claim2)
codec + retransmission

bandwidth usage (retransmission)

Fig. 14. When the percentage of freeriders increases, Claim 2° is able to
shift the contribution that freeriders should provide to non-freeriding nodes,
providing good performance as long as their bandwidth usage remains under
the bandwidth cap. A standard retransmission mechanism, on the other hand, is
not able to shift the load to non-freeriding nodes. Its bandwidth usage therefore
remains constant and significantly lower than the allowed bandwidth.

The results confirm this reasoning. The standard retrans-
mission mechanism is unable to tolerate any amount of active
freeriders despite the slack in available bandwidth. On the
other hand, it keeps using the baseline bandwidth of approx-
imately 800 kbps regardless of the percentage of freeriders.
This causes its performance to drop to 0 with as low as 4%
of active freeriding nodes.
Claim 2° on the other hand is very effective in having non-

freeriding nodes compensate for up to 25% freeriding nodes.
The plot shows that the desired bandwidth increases quasi
linearly until it reaches the threshold of 1000 kbps, i.e., the
bandwidth cap. After the threshold is hit, there is first a short
plateau during which performance decreases only slightly and
then a sudden increase in required bandwidth which causes an
equally sudden decrease in performance because the desired
bandwidth is above the available limit.

H. Crashes
Finally, we consider the behavior of gossip++ in a

catastrophic-failure scenario. Figure 15 reports a zoomed-in
view of the percentage of nodes delivering each chunk around
the moment at which 20% or 50% of the nodes crash.
The two vertical lines in the plot show respectively the

minimum and the maximum chunk ids received by the nodes
in the system at the moment of the crash. The distance between
the two lines lines shows that the nodes fail across an interval
of 54 chunks, corresponding to 0.7 s.
The performance lines, instead, start to drop at around chunk

3570. This is because some of the nodes that were supposed
to serve that chunk and the following were among the crashed
nodes. Overall, the picture shows that the crash only results in
a minor performance glitch that lasts less than 1 s, before the
remaining nodes can continue to view the stream undisturbed.

V. LIMITATIONS AND FUTURE WORK
In this paper we presented gossip++, an integration to

gossip consisting of Codec, a FEC encoding mechanism,

 0

 20

 40

 60

 80

 100

 3540 3560 3580 3600 3620 3640 3660 3680

P
er

ce
nt

ag
e

of
 n

od
es

Stream chunk id

Percentage of nodes receiving a clear stream

gossip++ with 20% crashes
gossip++ with 50% crashes

Fig. 15. While 20% (resp. 50%) of the nodes crash between chunks 3583
and 3637 (700ms duration in a video of about 15 minutes), the percentage of
nodes that receive each chunk drops from chunk 3570 on and lasts less than
1 s.

and Claim 2°, a retransmission approach leveraging gossip
duplication. Gossip++ significantly improves the performance
of plain gossip, making gossip-based video streaming possible
in realistic scenarios.
Our experiments showed that plain gossip is not efficient in

delivering large content in large-scale systems, especially in
scenarios where bandwidth is constrained and in presence of
message loss. Gossip++ on the other hand is able to provide
nodes with a clear stream in the presence of up to 5% message
loss, and up to 20% of freeriding nodes. In spite of these
good performance figures, there are still a number of directions
along which gossip++ can be improved.

A. Coding
Codec is based on FEC with systematic coding so that even

if there are missing chunks in a group, some content can
be delivered to the player resulting only in a jittered group
instead of a whole undecoded group. Nevertheless, it would
be interesting to see how network coding could be used in a
gossip context, since recent work [25] has shown its efficiency
for live streaming in meshes.

B. Hostile Nodes
The first major direction to consider is that of hostile nodes:

such as byzantine and freeriding ones.
1) Byzantine Attacks: Byzantine nodes can attack gossip in

a number of different ways. For example, they can attack the
underlying random peer sampling [35] or they can pollute the
protocol thereby decreasing the performance of dissemination
and increasing the load on all nodes [10]. For example, this
can translate to injecting junk data, i.e., pollution attacks [31]
or imposing an arbitrary load on nodes until they fail, possibly
leading to denial of service.
2) Freeriders: Freeriding nodes can essentially be of two

types. First, there are nodes that cannot contribute to the pro-
tocol because of firewalls or because they do not have enough
available bandwidth. Then, there are nodes that actively choose
not to collaborate while attempting to benefit from the system.
In both cases, we have shown that gossip++ can distribute

the load of non participating nodes to other nodes as long

as they have enough bandwidth to do so. However, gossip++
cannot do anything in the case of scarce bandwidth, i.e., when
the stream rate is very close to the outgoing bandwidth capa-
bility. We therefore recognize the need for detecting freeriders
as in [17], [36], [37] and plan to complement gossip++ with
a lightweight mechanism to detect and expel freeriders.

C. Bandwidth Heterogeneity
The variety of devices available today leads to the creation

of systems composed of highly heterogeneous nodes. One
aspect of this heterogeneity is the upload bandwidth avail-
able to nodes. Nodes on corporate networks generally have
much wider bandwidths than nodes using cheaper home-based
ADSL connections. It would therefore be interesting to see
how techniques such as Codec and Claim 2° could improve
protocols such as [38].

VI. CONCLUSION
The work we presented in this paper aims to bring clarity in

the design of reliable gossip-based streaming systems for real-
world environments. By means of thorough experiments we
demonstrated that gossip alone is unable to offer satisfactory
performance in the context of video streaming applications.
Moreover, we showed that applying FEC or retransmission
separately is far from being an effective solution to the stream-
ing problem. Rather, the two mechanisms must be carefully
combined in order to provide a scalable streaming solution.
We also introduced a novel retransmission mechanism

called Claim 2°, which is explicitly designed to leverage the
redundancy that is inherent in gossip dissemination. We
showed that, when combined with Codec, Claim 2° is effective
in building a scalable streaming system in which correctly
operating nodes are able to compensate for the presence of a
significant percentage of freeriders.

ACKNOWLEDGEMENTS
Experiments presented in this paper were carried out using

the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see http://www.grid5000.fr).
Maxime Monod has been partially funded by the Swiss

National Science Foundation with grant 200021-113825.

REFERENCES
[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,

H. Sturgis, D. Swinehart, and D. Terry, “Epidemic Algorithms for
Replicated Database Maintenance,” in PODC, 1987.

[2] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky,
“Bimodal Multicast,” TOCS, vol. 17, no. 2, pp. 41–88, 1999.

[3] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Middleware, 1998.

[4] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian,
and S. Mehrotra, “CREW: A Gossip-based Flash-Dissemination Sys-
tem,” in ICDCS, 2006.

[5] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based Peer Sampling,” TOCS, vol. 25, no. 3, pp. 1–36,
2007.

[6] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and
A.-M. Kermarrec, “Lightweight Probabilistic Broadcast,” TOCS, vol. 21,
no. 4, pp. 341–374, 2003.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” TIT, vol. 52, no. 6, pp. 2508–2530, June 2006.

[8] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh, “Probabilistic Reli-
able Dissemination in Large-Scale Systems,” TPDS, vol. 14, no. 3, pp.
248–258, 2003.

[9] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robinson, L. Alvisi,
and M. Dahlin, “FlightPath: Obedience v.s. Choice in Cooperative
Services,” in OSDI, 2008.

[10] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin,
“BAR Gossip,” in OSDI, 2006.

[11] D. Frey, R. Guerraoui, A.-M. Kermarrec, M. Monod, and V. Quéma,
“Stretching Gossip with Live Streaming,” in DSN, 2009.

[12] F. Boulos, B. Parrein, P. Le Callet, and D. Hands, “Perceptual Effects
of Packet Loss on H.264/AVC Encoded Videos,” in VPQM, 2009.

[13] M.-L. Champel, A.-M. Kermarrec, and N. Le Scouarnec, “FoG: Fighting
the Achilles’ Heel of Gossip Protocols with Fountain Codes,” in SSS,
2009.

[14] V. King and J. Saia, “Choosing a Random Peer,” in PODC, 2004.
[15] C. Gkantsidis, M. Mihail, and A. Saberi, “RandomWalks in Peer-to-peer

Networks,” in INFOCOM, 2004.
[16] B. Cohen, “Incentives Build Robustness in BitTorrent,” in P2P Econ,

2003.
[17] M. Haridasan, I. Jansch-Porto, and R. van Renesse, “Enforcing Fairness

in a Live-Streaming System,” in MMCN, 2008.
[18] Y.-H. Chu, S. Rao, and H. Zhang, “A Case for End System Multicast,”

JSAC, vol. 20, no. 8, pp. 1456–1471, 2000.
[19] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Dis-

tributing streaming media content using cooperative networking,” in
NOSSDAV, 2002.

[20] M. Bawa, H. Deshpande, and H. Garcia-Molina, “Transience of peers
and streaming media,” in HotNets-I, 2002.

[21] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast.” in SIGCOMM, 2002.

[22] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang, “Inside
the New Coolstreaming: Principles, Measurements and Performance
Implications,” in Proc. of INFOCOM, 2008.

[23] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the Power
of Pull-Based Streaming Protocol: Can We Do Better?” JSAC, vol. 25,
no. 9, pp. 1678–1694, 2007.

[24] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-Driven
Mesh-Based Streaming,” TON, vol. 17, no. 4, pp. 1052–1065, 2009.

[25] M. Wang and B. Li, “R2: Random Push with Random Network Coding
in Live Peer-to-Peer Streaming,” JSAC, vol. 25, no. 9, pp. 1655–1666,
2007.

[26] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-bandwidth Multicast in Cooperative
Environments,” in SOSP, 2003.

[27] F. Picconi and L. Massoulié, “Is There a Future for Mesh-based Live
Video Streaming?” in P2P, 2008.

[28] C. Liang, Y. Guo, and Y. Liu, “Is random scheduling sufficient in p2p
video streaming?” in ICDCS, 2008.

[29] A.-M. Kermarrec, A. Pace, V. Quéma, and V. Schiavoni, “NAT-resilient
Gossip Peer Sampling,” in ICDCS, 2009.

[30] W. Wang, C. Jin, and S. Jamin, “Network Overlay Construction Under
Limited End-to-End Reachability,” in INFOCOM, 2005, pp. 2124–2134.

[31] P. Dhungel, X. Hei, K. W. Ross, and N. Saxena, “The pollution attack
in p2p live video streaming: measurement results and defenses,” in P2P-
TV, 2007.

[32] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communica-
tion Protocols,” CCR, vol. 27, no. 2, pp. 24–36, 1997.

[33] J. Li, Y. Cui, and B. Chang, “Peerstreaming: design and implementa-
tion of an on-demand distributed streaming system with digital rights
management capabilities,” MultiSys, vol. 13, no. 3, pp. 173–190, 2007.

[34] G. Fairhurst and L. Wood, “Advice to link designers on link Automatic
Repeat reQuest (ARQ),” Network Working Group, RFC 3366, 2002.

[35] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine Resilient Random Membership Sampling,” in PODC, 2008.

[36] R. Guerraoui, K. Huguenin, A.-M. Kermarrec, and M. Monod, “On
Tracking Freeriders in Gossip Protocols,” in P2P, 2009.

[37] J. J. D. Mol, J. A. Pouwelse, M. Meulpolder, D. H. J. Epema, and
H. J. Sips, “Give-to-Get: Free-riding resilient Video-on-Demand in P2P
Systems,” in MMCN, 2008.

[38] D. Frey, R. Guerraoui, A.-M. Kermarrec, B. Koldehofe, M. Mogensen,
M. Monod, and V. Quéma, “Heterogeneous Gossip,” in Middleware,
2009.

