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1 Introduction

Inflation is the most compelling way to solve the drawbacks of the hot big bang model

and simultaneously generate the seed of the primordial perturbations to be used as initial

conditions for the latter stages of Universe’s evolution. The simplest class of models is single

clock inflation, where time diffeomorphisms are non-linearly realized, whose predictions are

largely independent on how the Universe is reheated. Indeed, according to the Weinberg

theorem on cosmological perturbations [1, 2], at large scales and under mild assumptions,

the curvature perturbations of the constant density hypersurfaces ζ, or equivalently the

comoving curvature R, are conserved and can be used to set the primordial initial conditions

for the scalar sector at the beginning of radiation domination. The situation is different

for models characterized by different symmetry breaking patterns, featuring more degrees

of freedom for which the Weinberg theorem does not hold. In this case, R and ζ are not

conserved and R 6= ζ at superhorizon scales; thus, the details of reheating have to be taken

into account [3–7]. That is exactly what happens when a fluid [8] or solid [9] drives inflation.

In this work, we present an effective field theory (EFT) description suitable to describe the

complete breaking of spacetime diffeomorphisms during inflation by using the minimal set

of four scalar fields {ϕA , A = 0, 1, 2, 3} sporting a suitable set of internal symmetries. As
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a matter of fact, ϕA can also be interpreted as the coordinates of a self-gravitating non-

dissipative medium [10–15] that in our case is a supersolid. A complete analysis of the linear

evolution of scalar and tensor modes, together with the computation of the corresponding

power spectra is given. In addition, we consider the secondary production of gravitational

waves (GWs) during inflation, exploiting the cubic vertex of the theory involving a tensor

and two scalars, saturating the experimental bound set by Planck without upsetting the

scalar 3-point function. The secondary production can give a blue tilt to the spectral index,

an important feature for the direct detection of the stochastic GWs background produced

during inflation. A detailed analysis of non-Gaussianity can be found in a companion

paper [16].

The outline of the paper is the following. In section 2 we briefly review the effective

field theory description of a supersolid at the leading order in derivates. In section 3, the

dynamics of the two independent scalar perturbations are careful analyzed both at classical

and quantum level, computing the relevant scalar power spectra and constraining the

parameter region by using Plank data. Section 4 is devoted to study, in the instantaneous

reheating approximation, how the seed of primordial perturbations are transmitted to the

radiation dominated phase in a ΛCDM universe. In section 6 primary and secondary

gravitational waves production during inflation is considered. Our conclusions are drawn

in section 7.

2 Supersolids and inflation

Several features of inflationary models can be traced back to the spontaneous symmetry

breaking pattern: in single field inflation, the non-trivial time-dependent configuration of

the inflaton breaks time reparametrization leaving unbroken the space diffeomorphisms

of the t =const. hypersurface. However, there are other possibilities. For instance, an

inflationary model where spatial diffeomorphisms are non-linearly realized was studied

in [9] by working with three scalar fields. In a similar fashion, one can consider a more

general case in which all diffeomorphisms are broken by the background configuration of

four scalar fields

ϕ0 = ϕ̄(t) , ϕi = xi (2.1)

which will be the background configuration for the inflationary phase. The existence of a

spatially homogeneous background is allowed by the presence of global symmetries of the

scalar field action. Consider a special multi-field model of inflation based on four scalar

fields ϕA, A = 0 , 1 , 2 , 3 with shift symmetry [11, 15]

ϕA → ϕA + cA , (2.2)

and SO(3) internal symmetry

ϕa → ϕ′a = Ra
b ϕa , a = 1, 2, 3 Rt R = 1 . (2.3)

The “vacuum” configuration (2.1) has a residual global “diagonal” ISO(3) symmetry. In-

deed, a global spatial rotation Ri
jxj can be absorbed by a corresponding inverse internal

– 2 –



J
H
E
P
0
1
(
2
0
2
1
)
1
8
5

transformation of ϕa and the same is true for a global translation xi → xi + ci thanks to

the shift symmetry (2.2). Among the spacetime scalars shift symmetric operators with a

single derivative of ϕA

CAB = gµν∂µϕA ∂νϕB A, B = 0, 1, 2, 3 , (2.4)

one can extract 10 operators invariant under internal SO(3) rotations (2.3)

b =
√

Det [B] , ς =
√

Det [W] , y = uµ ∂µϕ0 , χ =
√

−C00 ,

τX = Tr [B] , τY =
Tr
[

B2
]

τX
2

, τZ =
Tr
[

B3
]

τX
3

,

wX = Tr [W] , wY =
Tr
[

W2
]

wX
2

, wZ =
Tr
[

W3
]

wX
3

;

(2.5)

where

uµ = − ǫµναβ

6 b
√−g

ǫabc ∂µϕa ∂νϕb ∂βϕc , u2 = −1 , (2.6)

plays the role of the medium four-velocity such that uµ∂µϕa = 0 and

Bab = Cab , W ab = Bab − C0a C0b

C00
, a = 1, 2, 3 . (2.7)

By using the relation ς = χ−1 b y and the Cayley-Hamilton theorem, only 7 among those

operators are independent. Thus, we arrive at the action

S = M2
Pl

∫

dx4 √−g R + M2
Pl

∫

dx4 √−g U(b, y, χ, τY , τZ , wY , wZ) , (2.8)

that can be interpreted as the relativistic generalization of the low-energy effective La-

grangian describing homogeneous and isotropic supersolids at zero-temperature [17, 18].

Such an action is the most general at leading order in a derivative expansion compatible

with (2.2) and (2.3) and it is rather useful to study systematically the symmetry breaking

pattern of spacetime symmetry during inflation.

By inspection of the energy momentum tensor (EMT), the energy density and the

pressure are given by

ρ = M2
Pl

(

−U + y Uy +
y2

χ
Uχ

)

, (2.9)

p = M2
Pl

(

U − b Ub +
1

3 χ
(y2 − χ2)Uχ

)

. (2.10)

According to the Noether theorem, there are four conserved currents:

Jµ
A = 2 M2

Pl

∂U

∂CAB
∇µϕB ; (2.11)

three related to solid configurations that spontaneously break translation invariance and

one associated with the superfluid frictionless flow. In particular, the particle number
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density nsf of the superfluid component can be expressed in terms of the Noether current

J0
µ as

nsf = −uα J0
α ; (2.12)

while the density of lattice sites nℓ is identified as the projection of the off shell conserved

current1 Jα = b uα along the four-velocity uµ, namely [17]

nℓ = −uα Jα = b . (2.13)

This allows us to define the superfluid density per lattice site σ as

σ =
nsf

nℓ
=

M2
Pl

b

(

Uy +
y

χ
Uχ

)

. (2.14)

As we will see, at cosmological level, the perturbations δσ generate non-adiabatic contri-

butions (for this reason, we will regard δσ in the following as an isocurvature or entropic

perturbation). Similarly, for the rest of the paper we identify nℓ (2.13) with the usual

particle density n.

While uµ represents the 4-velocity of the normal component of the supersolid,

Vµ =
∂νϕ0

χ
(2.15)

is the 4-velocity (irrotational) of the superfluid component.

One of the key features is that two independent phonon-like excitations are present.

In general, the supersolid perturbation can be written around a flat space-time as

gµν = ηµν , ϕ0 = t + π0 , ϕi = xi + ∂iπL + πi
T , ∂iπ

i
T = 0 . (2.16)

At the quadratic level, we have [19]

S(2) =

∫

d4x

[
(M̂1 + ρ̄ + p̄)

2
∂tπL ∆ ∂tπL +

(

M̂3 − M̂2

)

πL ∆2 πL + M̂0 π′
0

2
+

(

2 M̂4 − M̂1

)

π′
0∆πl − M̂1

2
π0 ∆ π0 +

(M̂1 + ρ̄ + p̄)

2
∂tπ

i
T ∂tπ

i
T − M̂2

2
πi

T ∆ πi
T

]

;

where ρ̄ and p̄ are the background values of the energy density and pressure (constant

in space and time) while ∆ = δij∂i∂j ; finally, the derivative of a function f with respect

to conformal time is denoted by f ′. The parameters M̂a = M2
Pl Ma are proportional to

first and second derivatives of U and are given in appendix A. Notice that the space shift

symmetry is crucial to have a homogeneous EMT even if the scalar fields have non-trivial

background values.

The properties of the EMT are largely determined by the symmetries of U as discussed2

in [14, 15]. It is useful to summarize the main features associated with the presence or

absence of some of the operators (and the related mass parameters) in the Lagrangian

depending on a specific set of internal symmetries.

1The conservation of Jµ, ∇α Jα = 0, holds without the use of the equations of motion for ϕa.
2In [14, 15] the set chosen independent operators is different from our choice without changing the

physics.
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• Perfect Fluids:

– U(b) : only {ϕa, a = 1, 2, 3} are present; the Lagrangian is invariant under inter-

nal volume preserving diffeomorphisms VsDiff: ϕa → Ψa(ϕb) , det |∂Ψa/∂ϕb| =

1, a, b = 1, 2, 3.

– U(χ): it is the most general Lagrangian for a perfect irrotational fluid with ϕ0

only.

– U(b, y): the most general isentropic perfect fluid; the Lagrangian is invariant

under VsDiff and ϕ0 → ϕ0 + f(ϕa).

• Superfluids U(b, y, χ): invariant under volume preserving diffeomorphisms VsDiff.

• Solids U(b, τY , τZ):3 is the most general Lagrangian with only {ϕa , a = 1, 2, 3}
present.

• Zero-Temperature Supersolids U(b, y, χ, τY , τZ , wY , wZ).

As a remark, in the literature solids are typically associated with the presence of only

three scalar fields {ϕa , a = 1, 2, 3} and a Lagrangian of the form U(τX , τY , τZ), see for

instance [9]. However, introducing a fourth scalar ϕ0 and enforcing the following field

dependent shift symmetry

ϕ0 → ϕ0 + f(ϕa) , (2.17)

the allowed operators are b, τY , τZ and y and the resulting theory U(b, τY , τZ , y) describes

an adiabatic solid in the sense that the entropic perturbation δσ is a conserved quantity

as discussed in [15, 20]. The term supersolid is reserved to the case where, in addition to

the phonons of the solid, also the entropic perturbation δσ propagates.

A more detailed analysis of thermodynamical properties for general supersolids is

planned for a future work. Finally, stability of (2) imposes the following conditions [19]

M̂0 > 0 , −(p̄ + ρ̄) < M̂1 < 0 , M̂2 > 0 , M̂2 > M̂3 . (2.18)

As we will see, such conditions are necessary for the existence of the Bunch-Davies (BD)

vacuum in an inflating phase driven by a supersolid. During a quasi deSitter period, the

most convenient parametrization of the mass term is through some c2
i parameters such that

Mi ≡ M−2
Pl (1 + w) ρ c2

i i = 0, 1, 2, 3, 4 . (2.19)

(where w is defined in (3.5)) with the assumption that c2
i are slowly varying in time

(
c′

i
H ci

≪ 1).

3The operator τX can be written as a function of (b, τY , τZ), so only three operators are independent.

– 5 –



J
H
E
P
0
1
(
2
0
2
1
)
1
8
5

3 Slow-roll

Cosmological perturbations in the flat-slice gauge are described by

ϕ0 = ϕ̄(t) + π0 , ϕi = xi + ∂iπL + πi
T , ∂iπ

i
T = 0 ,

ds2 = a2
[

(2 Ψ − 1) dt2 + 2 dt dxi ∂iF + δij dxi dxj
]

.
(3.1)

Perturbations in a generic gauge are discussed in appendix B. The background EMT tensor

has the form of the one of a perfect fluid with energy density and pressure given by (2.9)

and (2.10) evaluated on FLRW; the conservation of the background EMT is equivalent to4

ϕ̄′′ = H (1 − 3 c2
b) ϕ̄′ , (3.2)

where

c2
b = −c2

4

c2
0

. (3.3)

For c2
b constant in time, we have

ϕ̄′ = ϕ̄′
0 a1−3 c2

b , ϕ̄′
0 = const (3.4)

Our benchmark values for c2
b will be c2

b = 0 which gives ϕ̄′ = a ϕ̄′
0, and c2

b = −1 leading to

ϕ̄′ = ϕ̄′
0 a−4. Inflation takes place when

w < −1

3
, w =

p̄

ρ̄
. (3.5)

We will be mainly interested in slow-roll (SR) inflation5 for which the following dynamical

parameters are small

ǫ = 1 − H′

H2
=

3

2
(1 + w) , η =

ǫ′

ǫ H ≪ 1 . (3.6)

Note that in a quasi dS phase, the adiabatic speed of sound is given by

c2
s =

p′

ρ′ =
2

3

(

3 c2
0 c4

b + c2
2 − 3 c2

3

)

= −1 +
2

3
ǫ − 1

3
η |SR ≃ −1. (3.7)

Both Ψ and F are non-dynamical fields and their linear equations of motion can be solved

in terms of π0 and πL, at the leading order in SR and working in Fourier space, one finds

Ψ =
c2

1 H ǫ

ϕ̄′ π0 − Hǫ
(

c2
1 + 1

)

π′
L ;

F = H (2 c2
0 c2

b − 1) πL ǫ − 3 c2
1 k−2 H2 π0

ϕ̄′ ǫ + 3 (1 + c2
1) H2 k−2 π′

L ǫ + 2 c2
0 k−2 H π′

0

ϕ̄′ ǫ ;

(3.8)

4In [21] it was set ϕ̄′ = a that leads to a conserved background EMT only if c2
b = 0. Such a value of c2

b

is rather peculiar, as we will see in what follows. Moreover, the correct implementation of the Stuckelberg

trick at the background level requires a non-trivial background for ϕ0 satisfying (3.2).
5As discussed in [20] ultra SR is also possible; actually when M2 = 0, as for fluids, this is the only viable

regime with small ǫ.
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The following action describes the linear dynamics at the leading order of a slow-roll ex-

pansion in ǫ:

S2 ≡
∫

dt d3k

(
1

2
π′t K π′ + π′t Dπ π − 1

2
πt Mπ π

)

, π =

(

πL

π0

)

; (3.9)

with

K = M2
Pl H2 a2 ǫ

(

4
(
1 + c2

1

)
k2 0

0 8 c2
0 ϕ̄′−2

)

, (3.10)

Dπ = −2 a2 k2 M2
Pl H2 ǫ

(
2 c2

0 c2
b + c2

1

)

ϕ̄′

(

0 1

−1 0

)

, (3.11)

Mπ = 4 M2
Pl a2 H2 k2 ǫ






k2
(

−1 + 4
3 c2

2 − 2 c2
0 c4

b

)

−3 H (c2
1−2 c2

0 c2
b) (1+ c2

b)
2 ϕ̄′

−3 H (c2
1−2 c2

0 c2
b) (1+ c2

b)
2 ϕ̄′ − c2

1
ϕ̄′2




 . (3.12)

Up to boundary terms, one can always take D antisymmetric. The peculiarity of (3.9)

is the mixing of the two propagating DoF (degrees of freedom) present at kinetic level

due to the matrix D and at mass level being the matrix M non-diagonal. Such mixing

is unavoidable unless the parameters cb and c2
2, c2

1 are unnaturally tuned, and it is a key

property of a superfluid component in the solid at the origin of cross-correlations in the

two and three points function of any scalar perturbation. As a result, the study of scalar

linear perturbations is a bit involved and to get rid of the mixing by a suitable field re-

definition few steps are needed. A similar system of coupled modes, described by (3.9),

was encountered when studying the non-thermal production of gravitinos [22], multi-field

inflation [23], chromo-natural inflation [24, 25] and in effective theories of inflation [21]. As

far as we know, our analysis is the first complete one that does not rely on special choices

of parameters.

The strategy to quantize the quadratic action will be the following. We start from the orig-

inal fields π0,L that describe physically two Nambu-Goldstone modes around a non-trivial

Lorentz breaking background solution. The quadratic action controlling the dynamics of

such modes (3.9) exhibits both kinetic (the presence of D) and mass mixing effects (non-

diagonal M). A similar kinetic mixing is also encountered in mechanical systems with

gyroscopic forces like the Coriolis force or in the presence of magnetic fields; it is worth to

stress that the D mixing can take place when at least two fields are present. The first step

is to make the fields canonical by a time-dependent field redefinition Π = K1/2 π (3.17).

At this level the corresponding Lagrangian L(Π, Π′) (3.18) is characterized by non trivial

D − mixing and a time-dependent non diagonal mass matrix. The classical equations of

motion correspond to a coupled system of second-order equations or, alternatively, to two

decoupled fourth-order differential equations.

The quantization of the system goes through the choice of the BD by studying the La-

grangian in the UV (k → ∞) regime (C.1) where k dominates over all other scales. In this

regime the mass term is diagonal and time independent. Thanks to this feature we can

write a decoupled system of quantum oscillators and quantize it with the usual canonical
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Figure 1. Schematic procedure for quantization.

rules in Hamiltonian formalism (L(Π, Π′) → L(UV )(Π, Π′) → H(UV )(Π, P )) (C.3). The

quantum oscillator dynamics is recovered by a canonical transformation at Hamiltonian

level (involving also the conjugate momenta) H(UV )(Π, P ) → H(UV )
diagonal(Π̃, P̃ ) (C.8). In-

troducing the Hamiltonian formalism allows us to decouple the two DoF with a canonical

transformation and to select the BD vacuum. The main steps are summarized in figure 1.

3.1 Quantization and power spectra

In order to define the Power Spectrum (PS) of a general quantum scalar field ξ(x), in

Fourier space we set

ξ(x) =
1

(2 π)3

∫

d3k ei k·x ξk , ξk =
2∑

i=1

ξ
(cl) (i)
k ak

(i) + ξ
(cl) (i) ∗
k a

† (i)
−k , (3.13)

where the (cl) subscript stands for classic solution, and the latin index i = 1, 2 indicates the

two indepedent scalar modes whose annihilation and creation operators obey the standard

canonical commutation relations
[

a
(i)
k , a†

p
(j)
]

= (2 π)3 δ(k − p) δi
j . (3.14)

Thus, the ξ 2-point function reads

〈ξk ξp〉 = (2 π)3 Pξ(k) δ(k + p) , (3.15)

and the ξ scale-invariant PS is defined by

Pξ =
k3

(2 π2)
Pξ ≡ k3

(2 π2)

(

|ξ(cl) (1)
k |2 + |ξ(cl) (2)

k |2
)

= Pξ
(1) + Pξ

(2) .

(3.16)

The first step to compute quantum correlators during inflation is to introduce the canonical

field Π defined by

Π ≡
(

ΠL

Π0

)

= K1/2

(

πL

π0

)

. (3.17)
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The conditions (2.18) guarantee that the matrix K is positive definite. Given that the

matrix elements of K are time-dependent, besides turning the kinetic term into a canon-

ical one, the transformation (3.17) also alters the form of D and M; thus, the quadratic

Lagrangian in (3.9), when written in function of the new canonical fields becomes

L2 =
1

2
Π′tΠ′ − Πt D Π′ − 1

2
Πt M Π ; (3.18)

where

D = k d

(

0 −1

1 0

)

, d =
c2

1 + 2 c2
0 c2

b

2
√

2 c2
0 (1 + c2

1)
; (3.19)

M =

(

k2 λL
2 − 6 H2 k H λ

k H λ k2 λ0
2 − (1 + 3 c2

b)(2 + 3 c2
b) H2

)

, (3.20)

λ2
L =

c2
L − 2c2

0 c4
b

1 + c2
1

, λ2
0 = − c2

1

2 c2
0

, λ =
21/2

[
c2

0 c2
b (1 + 3 c2

b) − c2
1

]

√

c2
0 (1 + c2

1)
, (3.21)

and we have defined

c2
L = −1 +

4

3
c2

2 . (3.22)

At the leading order in slow-roll, the equations of motion are the following

ΠL
′′ − 2 k dΠ′

0 + Π0 k H λ + ΠL

(

k2 λ2
L − 6 H2

)

= 0 ,

Π0
′′ + 2 k dΠ′

L + ΠL k H λ + Π0

(

k2 λ2
0 − (1 + 3 c2

b) (2 + 3 c2
b) H2

)

= 0 .
(3.23)

In order to quantize (3.18), we need to remove the kinetic mixing introduced by D. Our

strategy is the following: in the UV, at very large k, M becomes diagonal and time-

independent. Thus, at very large k, the original Lagrangian (3.18) is equivalent to L
(UV)
2 ,

in accordance with the equivalence principle. In that regime, by using a canonical transfor-

mation, one can reduce the Hamiltonian associated to L
(UV)
2 to a system of two canonical

free fields Π̃ = (Π̃L, Π̃0) linearly related to Π

L
(UV)
2 =

1

2
Π̃′tΠ̃′ − 1

2
Π̃t

(

k2 c2
s1 0

0 k2 c2
s2

)

Π̃ . (3.24)

Thus, the unique Fock space vacuum is the BD vacuum for the system. Details can be

found in appendix C. The existence of the BD vacuum requires the frequencies squared
{
ω2

1 = k2 c2
s1 , ω2

2 = k2 c2
s2

}
to be strictly positive or equivalently c2

si > 0 , i = 1, 2. In

addition we restrict ourselves to the case of subluminal “diagonal” sound speeds: 0 < c2
si <

1. The conditions (2.18) are sufficient to have c2
si > 0 and when expressed in terms of (2.19)

gives6

c2
0 > 0, −1 < c2

1 < 0 , c2
L > 2 c2

0 c4
b . (3.25)

6We assume the null energy condition 1 + w > 0.
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We have checked that there is a large region of parameters ci where the stability conditions

hold together with c2
s1 , c2

s2 < 1; moreover in such a region, the first two conditions when

rewritten in terms of cs1 and cs2, become

c2
s2 < c2

L < c2
s1 , (3.26)

where we choose the convention cs2 < cs1. The equations of motion (3.23) constitute a cou-

pled system of second order linear differential equations with time-dependent coefficients.

Finding explicit solution is not an easy task; of course, one could solve the equations nu-

merically. However, from a physical point of view, it is more transparent to quantize the

system focusing on the following values of cb: c2
b = −1 and c2

b = 0 for which an analytic

solution can be found. Neglecting SR corrections, the coupled system of second order

equations can be written as two indepedent fourth order equations for Π0,L.

Remarkably, the case c2
b = 0 and c2

b = −1 gives the following identical equations valid if

c2
1 6= 0

ΠL
(4) +

(

c2
s1 + c2

s2 − 12

x2

)

ΠL
′′ +

24

x3
ΠL

′ +

(

c2
s1 c2

s2 − 6

x2
(c2

s1 + c2
s2)

)

ΠL = 0 ,

Π0
(4) +

(

c2
s1 + c2

s2 − 4

x2

)

Π0
′′ +

8

x3
Π0

′ +

(

c2
s1 c2

s2 − 2

x2

(

c2
s1 + c2

s2

)

− 8

x4

)

Π0 = 0 ;

(3.27)

with x = −k t. Note the presence in (3.27) of the symmetry: c2
s1 ↔ c2

s2. Analytic solutions

are possible due to the absence of the terms Π
(3)
i in the evolution equations. The solutions

can be written as a linear combination of Bessel functions of order 5/2 and 3/2; the

integration constants are fixed by imposing that subhorizon, where x ≫ 1, the solution

that represents flat space modes matches the ones given in (C.13) and (C.14); such a choice

is equivalent to select the BD vacuum. Thus, ΠL and Π0 are quantum free (Gaussian) fields

given by

ΠL k = −i
2∑

j=1

a
(j)
k C

(j)
L

√
π

2
cs j

1
2

√
−k t H

(1)
5
2

(−cs j k t) + h.c. ,

Π0 k = −
2∑

j=1

a
(j)
k C

(j)
0

√
π

2
cs j

1
2

√
−k t H

(1)
3
2

(−cs j k t) + h.c. ;

(3.28)

the expression for
{

C
(j)
L , C

(j)
0 ; j = 1, 2

}

can be found in appendix C and a
(j)
k are the cre-

ation operators for the fields defined in eq. (C.11). In single field SR inflation, naturally

two gauge invariant scalar quantities can be considered when studying the dynamics of

superhorizon modes: the curvature ζ of the ρ = const. hypersurface and the curvature R
of hypersurface orthogonal to the scalar component of the fluid 3-velocity

ζ = Φ + Hδρ

ρ̄′ ;

R = Φ + H v.

(3.29)
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According to the Weinberg theorem [1], in standard single field inflation, both ζ and R
are conserved and coincides at superhorizon scales; as a result, the power spectrum of

primordial perturbations during inflation is given in terms of the Fourier transform of

the 2-point function of ζ or equivalently of R. In our case, the Weinberg theorem does

not hold and, besides the above curvature perturbations, additional gauge invariant scalar

perturbations can be considered. In particular the curvature ζn of constant particle number

n-hypersurface ( keep in mind that n = nℓ), (2.13)) and curvature of the ϕ0 =const.

hypersurface; namely

ζn = −Φ +
H
n̄′ δn , Rπ0 = −Φ +

H
ϕ̄′ π0 . (3.30)

The comoving curvature Rπ0 is related to the superfluid component (2.15). The expression

of the various curvature perturbations in terms πL and π0 in a generic gauge can be found

in appendix B. In the spatially-flat gauge (3.1) we have that

ζn =
k2

3
πL , Rπ0 =

H
ϕ̄′ π0 . (3.31)

The uniform curvature perturbation ζ can be obtained from eq. (B.15) at leading order

in SR

ζ =
(

1 − 2 c2
0 c2

b

)

ζn − 2

3
c2

0

π′
0

ϕ̄′ ; (3.32)

and similarly, from eq. (B.14), for the comoving curvature

R =
3 H (1 + c2

1)

k2
ζ ′

n − c2
1 Rπ0 . (3.33)

As anticipated, by using (3.28), being C(j)
L/0 ∝ k− 1

2 , the power spectra of ζn, Rπ0 , ζ and R
will be scale-free, up to SR corrections. Moreover, as shown in (B.14) and (B.15), ζ and

R are linear combinations of ζn and Rπ0 and their time derivatives, the same conclusion

applies to their spectral indices. Thus, in the region −1 ≤ c2
b ≤ 0, all the relevant curvature

perturbations have an almost scale-free PS. From (3.28), (B.14), (B.15) and (C.22), at

leading order SR expansion, we get for c2
b = −1 , 0

Pζn =
PSF

(
c2

b − c2
L

)2 (
c2

s1 − c2
s2

)

[(
c2

b − c2
s1

)2 (
c2

L − c2
s2

)

c5
s1

+

(
c2

b − c2
s2

)2 (
c2

s1 − c2
L

)

c5
s2

]

; (3.34)

PRπ0
=

PSF
(
c2

s1 − c2
s2

)

[ (
c2

b − c2
s2

)2

cs1
(
c2

L − c2
s2

) +

(
c2

b − c2
s1

)2

cs2
(
c2

s1 − c2
L

)

]

; (3.35)

where we have introduced the scalar PS PSF in canonical single field inflation

PSF ≡ H2
i

8 π2 M2
pl ǫ

. (3.36)

where Hi denotes the value of the Hubble parameter during dS. For the cross-correlation

we have

PζnRπ0
= PSF

(
c2

s1 − c2
b

) (
c2

s2 − c2
b

)

(
c2

L − c2
b

) (
c2

s1 − c2
s2

)

[

cs1
−3 − cs2

−3
]

. (3.37)
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(a) c2
b = −1.
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2=-1
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(b) c2
b = 0.

Figure 2. c2
L as a function of

(
cs1, cs2, P̄

)
. The contour plot for P̄ = 32 which maximizes the

allowed region. The green curve represents the area covered for smaller values of P̄ while the red

one shows higher value of P̄.

As we will discuss in section 4, for the simplest reheating scenario, the seed of primordial

perturbations is given by the power spectrum of ζn. Let us set

Pζn = PSF P̄ , (3.38)

where P̄ is a dimensionless form factor depending on c2
L, c2

s1, c2
s2 and c2

b that can be read out

from eq. (3.34). It is interesting to compare the above expressions with other existing mod-

els on the market. General single field models, in the effective field theory approach [26],

when the sound speed is different from one, give P̄ = c−1
s ; while in adiabatic solid inflation

model P̄ reduces to c−5
L (see (3.22)). Thus P̄ can be interpreted as a sort of effective sound

speed parameter in order to compare our predictions with different inflationary models. It

should be stressed that the singular behavior of the PSs when c2
s1 or c2

s2 is sent to zero or

coincide, signals the simple fact that there is no way to change the number of propagating

DoF in a controlled way. This, for instance, manifests trying to re-obtain the PS for an

adiabatic solid result from the supersolid one by imposing cs i → cL, leading to divergence

proportional to 1/(c2
s1 − c2

s2) as one can see from (3.34).

In the stability region, one can choose P̄ such that the amplitude of the ζn power spectrum

is of order 10−9 as required by observational constraints as shown in figure 2. We set P̄
to a constant, extracting c2

L as a function of
(
cs2, cs1, c2

b

)
. When one of the two diagonal

sound speeds tends to the longitudinal one, for instance cs1 → cL, then cL reduces to its

maximal value P̄− 1
5 . The maximal allowed area corresponds to a maximal longitudinal

speed cL = 1
2 and P̄ = 32. Thus, by taking 5 < P̄ < 100, there is a sufficient large region

in the parameters space spanned by cL and cs1, cs2 to get a good agreement with data.

It is useful to study the behavior of the various power spectra when one of the sound

speeds is much smaller than the other: cs2 ≪ cs1 with P̄ fixed. From our findings (3.34),
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we get

P̄ =
(c2

s1 − c2
L)

(c2
b − c2

L)2

(

c4
b

c2
s1

1

c5
s2

+
c2

b (c2
b − 2 c2

s1)

c4
s1

1

c3
s2

+
(c2

b − c2
s1)2

c6
s1

1

cs2

)

+ O(c0
s2) . (3.39)

This gives, for the different values of cb that we are using, the approximate relations

c2
L ≃ c2

s1 + (1 − P̄ c5
s1)

(1 + c2
s1)2

c3
s1

c5
s2 + O(c6

s2) for c2
b = −1 ; (3.40)

c2
L ≃ c2

s1 + (1 − P̄ c5
s1) cs1 cs2 + O(c2

s2) for c2
b = 0 . (3.41)

Self consistency requires c2
s1 ≥ c2

L that implies P̄ ≥ 1/c5
s1; thus if we take P̄ = 32, the two

speeds of sound are in the region: 0 ≤ cs2 ≪ 1/2 ≤ cs1 ≤ 1. It is precisely the constraint

on P̄ that introduces a dramatic asymmetry, boosting PRπ0
. For c2

b = −1, PRπ0
is naively

enhanced by a factor 1/cs2

PRπ0
= PSF

(1 + c2
s1)2

c2
s1 (c2

L − c2
s1) cs2

+ O(c0
s2) ; (3.42)

however taking into account (3.40), an extra enhancing factor 1/c6
s2 is introduced; namely

PRπ0
= PSF

cs1
(

cs1
5 P̄ − 1

)
1

cs2
6

+ O(c−5
s2 ) . (3.43)

Similarly, for c2
b = 0, an enhancement from 1/cs2 to 1/c2

s2 is obtained

PRπ0
= PSF

c2
s1

c2
s1 − c2

L

1

cs2
+ O(cs2) → PSF

cs1

P̄ c5
s1 − 1

1

c2
s2

+ O(c−1
s2 ) . (3.44)

So, the constraint imposed by the observed Pζn increases the sensitivity to small sound

speeds of PRπ0
.7 Thus, at fixed Pζn , the PRπ0

becomes dominant being proportional to

negative powers of cs2, see figure 3. Let us briefly recap the relevant used parameters.

The quadratic Lagrangian contains 5 mass parameters (2), (2.19) or equivalently c2
0,1,2,3,b ;

it is convenient to replace c2
4 by c2

b in (3.3). On a dS background c2
s = −1, thus (3.7) fixes

c2
3 to be

c2
3 =

1

2
+ c2

0 c4
b +

c2
2

3
.

In order to generate flat power spectra in a slow-roll regime requires that −1 ≤ c2
b ≤ 0.

Moreover, we were able to find an analytic solution for the modes at any time t only for

c2
b = −1 and c2

b = 0; such values will be considered in the rest of the paper.

It is convenient to trade the three independent parameters c2
0,1,2 to c2

L, c2
s1 and c2

s2.

7For the cross-correlation PζnRπ0
we find the following expansion

PζnRπ0
=

H2
i

8 π2 M2
pl ǫ







1
c2

L
cs2

+ O(c0
s2) c2

b = 0

1
cs1

2 cs2
3 + O(c−2

s2 ) c2
b = −1

(3.45)
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Figure 3. PRπ0
/Pζn

plot. Note the PRπ0
enhancement particularly pronounced in the c2

b = −1

case.

Constraints existence of dS Analytic modes & ns ∼ 1 PS amplitude

c2
3 = 1

2 + c2
0 c4

b +
c2

2

3 c2
b = −1, c2

b = 0 Pζn
(c2

s1, c2
s2, c2

L) = 10−9

Free parameters c2
0,1,2,b c2

0,1,2 c2
s1, c2

s2

c2
0,1,2,3,4

Table 1. Independent parameters and constraints for supersolids.

While c2
L = −1+ 4

3 c2
2 can be interpreted as the longitudinal speed typical of Solid Inflation,

the other two are the sound speeds corresponding to the two DoFs without any mixing

(basically harmonic oscillators) described by (3.24). Finally, by matching the amplitude of

the scalar power spectrum to the observed value of 10−9 one can fix c2
L as a function of the

remaining two free parameters c2
s1 and c2

s2. Let us note that our results, when comparable,

do not agree with the one in [21]. The reason is the missing parameter cb (see footnote 3)

and the treatment of the extra scalar degree of freedom in addition to the one present in

solid inflation [9].

Taking cs1 and cs2 as independent parameters, the behavior of c1 and c0 is important

in the study of the amount of isocurvature perturbations and the secondary gravitational

waves production. The complete expression is given in appendix C, we quote here the

leading contribution for small cs2

c2
1 =







(
1

cs1
− P̄ c4

s1

)

c5
s2 + O(c7

s2)

c3
s1

(1−P̄ c5
s1)

(1+c2
s1)2 cs2 + O(cs2)

c2
0 =







−1
2

(
1

cs1
− P̄ c4

s1

)

c3
s2 + O(c5

s2) c2
b = −1

1
2 c2

s1 + O(cs1) c2
b = 0

.

(3.46)

Note that we have used that Pζn = const. ∼ 10−9 as a fixed constant value. Thus, both c0

and c1 are suppressed for small cs 2 as shown in figures 4 and 5.
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Figure 4. c2
1 logarithmic contour plot for c2

b = −1 and c2
b = 0. The parameter P̄ is set to 32.
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Figure 5. c2
0 logarithmic contour plot for c2

b = −1 and c2
b = 0. The parameter P̄ is set to 32.

3.2 Slow-roll corrections at superhorizon scales

In this section, we give the slow-roll corrections of the primordial PS, focusing on the

two exact solutions obtained for c2
b = −1 and c2

b = 0. Being the superhorizon behavior

determined by the c2
b value even at the leading order, the analysis of the large scales ΠL

and Π0 fields in dS approximation is fundamental in order to get the parameter space

where powerspectra are scale-free. By manipulating the system of second order coupled

equations (3.27), in the large scale limit x ≪ 1 , we can get the following two independent
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c2
b < −5

3 −5
3 < c2

b < −1 −1 < c2
b < 0 0 < c2

b < 2
3 c2

b < 2
3

ΠL CL,3
x

3(1+c2
b

)
√

k
CL,1

x−2√
k

CL,4
x

−3 c2
b√

k

ζn CL,3
x

(5+3 c2
b

)

k3/2 CL,1
1

k3/2 Flat PS CL,4
x

(2−3 c2
b

)

k3/2

Π0 C0,1
x

(2+3 c2
b

)
√

k
C0,3

x−1√
k

C0,2
x

−(1+3 c2
b

)
√

k

Rπ0 C0,1
x

3(1+c2
b

)

k3/2 C0,3
1

k3/2 Flat PS C0,2
x

−3 c2
b

k3/2

Table 2. Leading t and k behaviour for x → 0 of ΠL,0 and ζn, Rπ0
for different values of c2

b .

c2
b = −1 −1 < c2

b < 0 c2
b = 0

ζn CL,1 k−3/2

Rπ0 (C0,1 + C0,3) k−3/2 C0,3 k−3/2 (C0,3 + C0,2) k−3/2

Table 3. Inside the region of flat PS (−1 ≤ c2
b ≤ 0) we give the late time structure of ζn and Rπ0

.

fourth-order equations:

Π
(IV )
L +

2

x
Π

′′′

L − 1

x2

[

8 + 9 c2
b (1 + c2

b)
]

Π
′′

L +
12

x3
Π

′

L +
54 c2

b (1 + c2
b)

x4
ΠL = 0 ,

(3.47)

Π
(IV )
0 +

2

x
Π

′′′

0 − 1

x2

[

8 + 9 c2
b (1 + c2

b)
]

Π
′′

0 +
[

2 + 9 c2
b (1 + c2

b)
] [ 2

x3
Π

′

0 +
4

x4
Π0

]

= 0 .

The solutions can be expressed in the following form

ΠL =
1√
k

(

CL,1 x−2 + CL,2 x3 + CL,3 x3 (1+c2
b) + CL,4 x−3 c2

b

)

(3.48)

Π0 =
1√
k

(

C0,1 x2+3 c2
b + C0,2 x−1−3 c2

b + C0,3 x−1 + C0,4 x4
)

(3.49)

where the C coefficients are unspecified constant at this stage. The CL/0,1/2 refer to homo-

geneous solutions while CL/0 3/4 to particular solutions of the original system (3.27). Thus,

we can understand the effect of c2
b on the superhorizon evolution by obtaining particular

solutions for ΠL, sourced by Π0 and vice versa.

The boundary values for c2
b = −5

3 , −1, 0, 2
3 are shown in table 3. The relation be-

tween ζn and Rπ0 to the canonical fields asymptotically implies the following k and time

dependence

πL ∝ t2

k
ΠL → ζn ∝ k2 πL ∝ k t2 ΠL

π0 ∝ t1+3 c2
b Π0 → Rπ0 ∝ t−3 c2

b π0 ∝ t Π0

(3.50)

Taking into account the various transformations, the almost scale-free PS of ζn and Rπ0

is obtained when the coefficient CL,1 and C0,3 dominate. Thus, at the leading order, one

realizes that ζn is also always almost scale-free in the region −5
3 ≤ c2

b ≤ 2
3 , while Rπ0 selects
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a smaller region −1 ≤ c2
b ≤ 0. We will focus on this last region. Recall that R and ζ are

simple functions of (ζn , Rπ0) and their time derivative, see (3.32), (3.33).

Finally, let us outline the form of the relevant scalar fields at super-horizon scales,

obtained by computing the next to leading slow-roll corrections of the canonical normalized

fields:

ζn = Aζn
(ad) (−Hi t)α(ad)

k
1
2

[

(n
(ad)
s −1)−3

]

Rπ0 , R, ζ = A(ad)
X (−Hi t)α(ad)

k
1
2

[

(n
(ad)
s −1)−3

]

+ A(en)
X (−Hi t)α(en)

k
1
2

[

(n
(en)
s −1)−3

]

;

(3.51)

the explicit form of the constants Aa are not relevant here.

Let us explain what superscripts (ad) and (en) mean. The (ad) part of a field stands for its

adiabatic part, in the sense that its adiabatic-tilt n
(ad)
s will not be affected by the presence

of the c2
b parameter. This parameter is strictly related to the presence of propagating

superfluid density per lattice site (i.e. non-barotropic) perturbations. On the contrary,

the superscript (en) stands for the entropic part of a field, and the related tilt n
(en)
s will

be c2
b dependent. A crucial feature is that the behavior of ζn on superhorizon scales is

determined by a single purely adiabatic power law given in terms of α(ad) and n
(ad)
s −1. As

we will show in the next section, in the case of an instantaneous reheating, it is precisely

ζn that determines the transition to the radiation era, setting the adiabatic part of the

initial conditions; moreover, the non-adiabatic part will be determined by the difference

ζ −ζn. If c2
b is far from the interval [−1, 0], the time dependence from α(en) will overwhelm

the homogeneous Rπ0 solutions, leaving only its particular adiabatic solution. In practice,

when we are far enough from the boundary values of c2
b , also the other fields will be single-

tilted; however in this region, the link between super and subhorizon amplitudes needs to

be computed numerically.

On the contrary, at the leading order in slow-roll, when c2
b = 0, −1, we get analytical

solutions in the form of almost scale-free power laws for all relevant scalars

Rπ0 , R, ζ →
(

A(ad)
X + A(en)

X

)

k− 3
2 . (3.52)

The above form was used in the previous section to compute the leading order amplitudes

of the primordial PS for Rπ0 . In practice, when c2
b = 0, −1 we cannot discriminate between

the adiabatic and entropic Rπ0 parts. Such a degeneracy is removed by next to leading

slow-roll corrections. In the case of an almost instantaneous reheating, the slow-roll leading

order computation of the ΓΛCDM, primordial Non-Gaussianities and GWs back-reaction will

be sufficient.

For completeness, we give the result of next to leading slow-roll corrections

n(ad)
s = 1 + 2 ǫi c2

L − η , α(ad) =
4

3
c2

T ǫ,






n
(en)
s = 7 + 6 c2

b (1 + ǫi) + η , α(en) = 3 + 3 c2
b (1 + ǫ) + ǫ + η , dominant if c2

b ≈ −1 ,

n
(en)
s = 1 − 6 c2

b (1 + ǫi) − η , α(en) = −6 c2
b (1 + ǫ) − η , dominant if c2

b ≈ 0 .

(3.53)
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The (ad) tilt is formally the same as the one found in [9], being obtained by solving the

same superhorizon equations of motion. However, starting from a supersolid, the solid

inflation limit does not exist: the extra degree of freedom cannot be smoothly switched off.

In principle, two (en) tilts are present in the other fields and exists only on the edges of

the region.

Let us sketch the main steps to get the above slow-roll corrections on superhorizon scales:

1. Trade the system of coupled equations for (ζn, Rπ0) for an equivalent but simpler to

analyze involving (R, δσ);

2. Find the canonical fields (Rc, δσc) and find the leading superhorizon behaviour at

the leading order in slow-roll as done for (ΠL, Π0). Define the (ad) part of R as its

“homogeneous” (e.g. cb independent) component (coherent with the fact that ζn is a

purely “adiabatic” field) and the (en) part of R as the δσ-sourced solutions.

3. Compute the R and δσ slow-roll corrections on superhorizon scales.

4. Degeneracy breaking:

• for c2
b = −1, δσ is a dominant decoupled (en) source on superhorizon scales,

which means that

δσ = δσ(ad) + δσ(en) ≡ δσ(en) ⇒ δσ(ad)(ζn, Rπ0) = 0 ; (3.54)

• When c2
b = 0, R is a dominant decoupled (ad) source on superhorizon scales,

which means that

R = R(ad) + R(en) ≡ R(ad) ⇒ R(en)(ζn, Rπ0) = 0 . (3.55)

Following the above steps, one arrives at eq. (3.51) and, in addition, the degeneracy is

resolved by

c2
b = −1 , ζ(ad)

n +
1

3

c2
0

c2
b

1

ϕ̄′

(
ϕ̄′

H R(ad)
π0

)′
= 0 .

c2
b = 0 , R(en)

π0
→ 0 .

(3.56)

A degeneracy in the amplitude persists for c2
b = −1 . In that case, by using eq. (3.56),

we get

R(ad)
π0

=
3 c2

b

c2
0 (2 − 3 c2

b)
ζn , R(en)

π0
= Rπ0 − R(ad)

π0
. (3.57)

Furthermore, being R(ad)
π0 ∼ c−2

0 ζn, for small cs 2 one has

R(ad)
π0

≪ R(en)
π0

≈ Rπ0 . (3.58)

As will be shown in the next section, ζn provides the seed for adiabatic perturbations at

the beginning of radiation domination; as a result CMB data [27] imply that its spectral

index n
(ad)
s has to be red tilted. Thus, when c2

b = 0, Rπ0 will be red-tilted too. However,
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when c2
b = −1, Rπ0 has two components with different spectral indices, one is still n

(ad)
s

and the second is n
(en)
s . For small deviation from c2

b = −1, one can set

c2
b = −1 + δb , (3.59)

and the deviation from n
(en)
s = 1 turns out to be

n(en)
s ≈ 1 + 6 (δb − ǫ) + η ; (3.60)

which can be blue-tilted. The consequences for the secondary production of gravitational

waves is rather interesting and studied in section 6.

4 Reheating

Once the seed of primordial perturbations is produced, it is important to study how the

Universe reheats and gets to the radiation domination era. In single clock inflation, the

hypothesis of the Weinberg theorem are satisfied [1] and the inflationary predictions are

largely independent of reheating, however this is not the case when more then one field is

present, as for solid and supersolid inflation, where neither R nor ζ are conserved on super

horizon scales and moreover R 6= ζ. As a consequence of the presence of ϕ0, the pressure

perturbation is not proportional to δρ

δp = c2
s δp + Γ , Γ =

φ′ (c2
b − c2

s

)

a4
δσ ; (4.1)

thus the Γ signals the presence of non-adiabatic perturbations. Dealing with more than one

component like in ΛCDM, non-adiabaticity can also be present when the relative energy

density perturbations of two components are different: δi 6= δj . The total non-adiabaticity

Γtot contains both the intrinsic contribution for each component of the form (4.1) and the

“relative” part Γrel that takes into account that δi is not simply caused by the “universal”

temperature perturbation. In the case of ΛCDM with a barotropic equation of state for all

the components only Γrel is present and then ΓΛCDM ≡ Γrel; at superhorizon scales one gets

ζ = R = ζ0 +

∫ a

ain

ΓΛCDM

(1 + w) ρ ã
dã ; (4.2)

where ζ0 is the adiabatic constant contribution. For a recent discussion see [7].

A pragmatic approach is to assume that reheating takes place instantaneously on a time-

like hypersurface given in terms of a 4-scalar q as q =constant, or expanding at the linear

order in perturbation theory

q̄ + δq = constant . (4.3)

A generic physical quantity F will be denoted by the subscript F− when evaluated at the

end of inflation, and with F+ when evaluated at the end of reheating. Thus, the change of

F across q will be simply written as

[F ]± = F+ − F− , (4.4)
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and the transition will be dictated by the Israel junction conditions [28]. By generalizing

the results in [29], in the general gauge (B.1), such conditions read at the linear level

[ζq]± ≡
[

−Φ + Hδq

q̄′

]

±
= 0 ; (4.5)

[(

1 − H′

H2

)

(R − ζq)

]

±
= 0 ; (4.6)

[Φgi]± ≡
[
Φ + H

(
F − B′)]

± = 0 . (4.7)

At the background level, the junction conditions imply that both a and H are continuous

on q. The quantity ζq represents the gauge invariant curvature perturbation of a constant q-

hypersurface, and thus it is continuous across q. From the transformation properties (B.4),

one can easily show that the junction conditions are gauge invariant.

As a reasonable assumption, we will take q to be the particle number density n. Intuitively,

in the approximation of an instantaneous reheating, the rate for any channel for the decay

of inflatons into a particle A becomes very large and the decay itself is democratic, in the

sense if nA is the number density of the particle A and n is the total number density, then

δnA

n̄A
→ rA δn

rA n̄
≡ δn

n̄
; (4.8)

from the above relation and the particle number conservation n̄′ + 3 H n̄ = 0 we have that

[
δn

n̄′

]

±
= 0 . (4.9)

In the flat gauge, where Φ = 0, such a condition is precisely (4.5) with q = n

[ζn]± = 0 , (4.10)

When the field ϕ0 is absent, namely M0 = M1 = 0 (solid inflation limit), one is back to

the standard case where reheating takes place at a constant energy density ρ hypersurface

like in [9, 20]. The continuity of ζn can also be shown following the same lines of [20] by a

generalization of the procedure given in [30]. By using the definition of ζn and δσ we have

that

ζ = ζn − δσ φ′

18 M2
Pl a2 (w + 1)H2

≡ ζn +
Γeff

3 ρ (1 + w) c2
s

. (4.11)

By integrating by parts the relation which gives R′ and by using the time-time component

of the Einstein equations, see [20], one gets

[R]± =

[

1

3

k2Φ

H2ǫ
+

Γeff

3 ρ (1 + w) c2
s

]

±
; (4.12)

where the effective intrinsic entropic perturbation Γeff before/after reheating is defined as

follows:

Inflation: Γeff = − ϕ̄′

a4
c2

s δσ , Radiation: Γeff = ΓΛCDM . (4.13)
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Then (4.12), is equivalent to

[

ζ − Γeff

3 ρ (1 + w) c2
s

]

±
= [ζn]± = 0 , (4.14)

demonstrating our intuition (4.10).

By using (3.6) and (4.10) the second junction condition (4.6) reads

R+ = ζn +
ǫ

ǫ+
(R− − ζn) , ǫ+ =

(

1 − H′

H2

)

|radiation
≈ 2 , (4.15)

Let us consider the most important case where, after the Universe reheats, a vanilla ΛCDM

radiation dominated era is reached, for which at superhorizon scales

R+ = ζ+ . (4.16)

From the above relation and by using (4.15), the jump of ζ across the reheating hypersur-

face is

[ζ]± = R+ − ζ− = (ζn − ζ−) +
ǫ

ǫ+
(R− − ζn) ; (4.17)

where, being ζn continuous, ζn+ = ζn− and has been denoted simply by ζn.

Finally, one can calculate the total amount of non-adiabaticity ΓΛCDM present at the

beginning of the radiation era. Indeed, by comparison with (4.14)

[
Γeff

3 ρ (1 + w) c2
s

]

±
=

ΓΛCDM

3 ρ (1 + w) c2
s |Rad

− Γeff

3 ρ (1 + w) c2
s |Infl

= [ζ]± (4.18)

The jump of ζ is given by (4.17), thus

ΓΛCDM =
4

3
ρRad

[

Γeff

3 ρ (1 + w) c2
s |Infl

+ (ζn − ζ−) +
ǫ

ǫ+
(R− − ζn)

]

=
2

3
ρRad ǫ (R− − ζn) ;

finally, taking into account that the above relation refers to superhorizon scales, from the

results of appendix B and C we arrive at

ΓΛCDM =
2

3
ρRad ǫ

[

H(1 + c2
1)π′

L − c2
1Rπ0 − ζn

]

≈ −2

3
ρRad ǫ

2∑

j=1

[

ζ(j)
n

(

1 + c2
s j(1 + c2

1)
)

+ c2
1 R(j)

π0

]

. (4.19)

Note that the contribution to the transmitted Γ stays small for small cs2. Indeed, from

eqs. (3.46), we get that

ǫ c2
1 R(2)

π0
∝







ǫ c2
s2 c2

b = −1

ǫ c
1
2
s2 c2

b = 0
. (4.20)

There is still a point to address. Take a generic field X that satisfies a second order evolution

equation with two independent solutions: one Xcg, growing or constant with scale factor

a, and a second one Xd decreasing with a. Clearly, the physically relevant solution is
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Xcg; however, even if the junction conditions prescribe that [X] = 0, the constant/growing

mode alone can be discontinuous. A classic example is given by the gauge invariant Bardeen

potential Φgi, which according to (4.7) is continuous in the transition at constant ρ with a

sudden change of equation of state in ΛCDM; however, from the continuity of ζ constant

mode, one gets

Φgi + |constant mode= Φgi − |constant mode
(1 + w+)

(1 + w−)

(5 + 3 w−)

(5 + 3 w+)
. (4.21)

Things are different in our non-adiabatic case. A clear understanding of the behavior of

Φgi constant mode is crucial to predict the correct back reaction of tensor modes during

radiation domination. Indeed, the validity of (4.21) crucially implies that the Φgi gains

a factor ǫ−1 entering radiation domination. For simplicity, in the rest of this section we

will work in Newtonian gauge, where Φgi coincides with Φ. For each classic scalar field,

it is convenient to distinguish among constant, decaying (absent during inflation) and

entropic (particular solution proportional to the non-adiabatic source term proportional

to Γ) modes. Once the decaying modes are under control, in principle, a reshuffling of

constant and entropic modes in the junction conditions is still possible. Focusing on the

entropic source ΓΛCDM relative to ΛCDM where dark energy is just a cosmological constant;

neglecting baryons during radiation domination, we have two fluids: dark matter and

photons as discussed in [7] and ΓΛCDM assumes the form

ΓΛCDM =
8 H2

0 M2
pl Ωm Ωr

a3 (4 Ωr + 3 a Ωm)
s0(k) ; (4.22)

with s0(k) a scale dependent constant that is determined by using (4.19) at t+ = −t−.8 At

superhorizon scales, the non-adiabatic contribution to ζ reads

ζ|en = s0(k)
a Ωm

3 a Ωm + 4 Ωr
, (4.23)

while the contribution to ζn is

ζn|en = ζ|en − ΓΛCDM

3 (ρ + p) c2
s

≡ 0 . (4.24)

Thus, during inflation ζn acts always as a source term for ζ, R and δσ when −1 ≤ c2
b ≤ 0.

The same exactly happens during the radiation domination where any entropic contribution

to ζn is compensated by an opposite contribution from ζ or R leading to

[ζn] |constant modes ≡ 0 . (4.25)

Following [30], expressing ζn in terms of the Bardeen potentials in the Newtonian gauge,

we get

ζn = −Φ − 2(Φ′ + H Ψ)

3 H (1 + w)
− 2 k2 Φ

9 (1 + w) H2
− Γeff

3 ρ (1 + w) c2
s

, (4.26)

8The equality t+ = −t− comes from the continuity of the Hubble conformal parameter [H] = 0.
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eq. (4.21) is non longer valid. Imposing that

ζn|en = 0 , (4.27)

we get

Φ|en +
2(Φ′ + H Φ)

3 H (1 + w)
|en +

ΓΛCDM

3 ρ (1 + w) c2
s

= 0 . (4.28)

Considering the early stages of radiation domination, where dark energy is negligible, we

have

Φrad → −s0(k)

5 a3

[

a3 − 2 a2 ae + 8 a a2
e + 16 a3

e

]

, (4.29)

where aeq = Ωr
Ωm

is the scale factor at the matter radiation equality and we normalized

the today’s scale factor as a0 = 1. The same results could have been obtained by directly

solving the Φ equation of motion or equivalently by expressing ζ in terms of Φ and Φ′ and

enforcing that ζn is not affected by non-adiabatic perturbations. Thus, eliminating Γeff

from (4.26), we can extract the constant Φ mode during the radiation phase

Φ|constant mode = −3 (1 + w)

5 + 3 w
ζn , w → 1

3
, (4.30)

which is similar to the standard result with ζ replaced by ζn. The result (4.30) is not

compatible with eq. (4.21) that would imply the transmission of the Rπ0 in the constant

mode of Φ. Thus, Φ gets an enhancement of order ǫ−1 when the Universe transits into the

radiation era, without a further enhancement due to the presence of Rπ0 during inflation.

Summarizing, in the case of an instantaneous reheating, ζn determines initial conditions at

superhorizon scales for the standard evolution for the ΛCDM scenario with small deviations

from a perfectly adiabatic spectrum of primordial perturbations.

5 Primordial non gaussianity: a preview

Primordial Non-Gaussianity (NG) is an essential tool to distinguish among different models

of inflation. Single field inflation with its characteristic symmetry breaking pattern gives

a small amount NG in the scalar and tensor sector, with the scalar part peaked in the

local shape. A complete analysis of NG in supersolid inflation will be given in a companion

paper [16], here we will outline some of the results needed to study the secondary production

of GWs. Given the presence of two scalars and tensor fields, the full cubic action for a

supersolid is quite complicated. Cubic terms can involve three scalars (SSS), one scalar

and two tensors (TTS), two scalars and one tensor (TSS) and three tensors (TTT); each

contribution to the cubic Lagrangian L(3) in Fourier representation has the following general

structure

L(3) ∼ ω M2
pl H2 am Dk k′ k′′ ξ1, k ξ2, k′ ξ3, k′′ , (5.1)

where ω is a constant that sets the overall size of the vertex and m determines its time

evolution in terms of the scale factor a; finally D is a dimensionless function of the momenta

and is determined by the structure of spatial derivatives acting on the fields entering the
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vertex denoted by ξi,k which can be any combination of ζn, H−1 ζ ′
n, Rπ0 , H−1 R′

π0
, and hs;

hs is the spin two tensor field (indices are omitted). In general, one can show that

fNL ∼ ω

ǫ
. (5.2)

The value of ω is determined by the relative size of the derivatives of the Lagrangian

density U of the scalar sector with respect to the rotational invariant independent operators.

In [9] it was assumed the presence of a partial cancellation among the derivatives of U

such that, even in slow-roll, ω ∼ 1. Such extreme choice maximizes the deviation from

single field inflation, pumping up local NG to fNL ∼ ǫ−1 which is in trouble with recent

Plank constraints [31]. Here we take a more conservative approach, considering that each

derivative of U is of order ǫ in slow-roll expansion, leading to

ω = α ǫ , (5.3)

with α an order one quantity. As a result, we get that fNL ∼ O(ǫ0) and, in addition, the

cutoff of the effective field theory describing a supersolid is higher. Compared with NG in

solid inflation, the presence of an additional scalar introduces non-adiabatic perturbations

controlled by the parameter c2
b . This parameter has an important effect on any 3-point

function involving Rπ0 and, as we have seen, on the PS of Rπ0 itself as discussed in

section 3.1.

In particular, when c2
b → 0, we can show that the local fNL tends to be unacceptably big

and strongly scale-dependent, unless some rather unnatural tuning is made. As a result,

when primordial NG is considered, the best choice is to take c2
b ≈ −1. As it will be shown

in the next section, in this case, supersolid inflation features a rather exciting boost of the

secondary gravitation waves production during inflation thanks to the cubic mixed TSS

that is promising for future experiments.

6 Gravitational waves

Given the current experimental upper bound on the tensor to scalar ratio r ≤ 0.5, it is

important to discriminate among different inflationary models by telling how close to the

limit the prediction for r can be. Indeed, in the next few years, we will be able to probe

the region ∈
(
10−1 ÷ 10−2

)
. Our analysis is similar to the one in [32], where secondary

gravitational waves generated by a spectator scalar field was studied. However, in that

specific case, taking into account the related secondary scalar PS, considerably reduces the

ratio r [33]. On the contrary, in our supersolid model of inflation, the dominant cubic scalar

vertex (SSS) is essentially unrelated to the dominant tensor-scalar-scalar (TSS) cubic one.

That gives us room to effectively enhance r to get close to its experimental upper limit

with only the secondary tensor production. That feature singles out supersolid from single

field inflationary models where the dominant GW production is not very sensitive to NG

and gravitational waves back-reaction is much smaller than the one generated during the

radiation phase as it was observed originally in [34–36] and later extended in [37, 38].

Spin two tensor perturbations are defined by

gij = a2 (δij + hij) , δijhij = ∂jhij = 0 ; (6.1)
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where hij is the transverse and traceless part of the metric tensor. During Inflation, the

corresponding quadratic/cubic Lagrangian can be written as

LT = M2
pl a2

[
1

2

(

hij
′ hij

′ − (M2 a2 − ∂2) hijhij

)

+ hij Sij

]

, (6.2)

where Sij is a transverse-traceless quadratic-source term. The evolution equation for GWs is

h′′
ij + 2 H h′

ij − ∆ hij = Sij . (6.3)

where we neglect the mass M2 being proportional to ǫ, see (2.19). The leading contri-

bution to Sij comes from the cubic interaction terms containing one spin two field hij

and two scalars. There is a “universal” contribution from cubic terms in the Einstein-

Hilbert Lagrangian and a graviton scalar interactions in the “matter” sector; namely

Sij = S(EH)
ij + S(Matter)

ij . The leading structure of the EH interactions comes from deriva-

tives of scalar perturbations and has the following structure

S(EH)
ij ∝ ∂iΦgi ∂jΦgi . (6.4)

The matter contribution S(Matter)
ij changes effectively during the universe evolution.9 In

our case, during the inflationary period (where Matter = Inflaton), among all the possible

TSS vertices, the dominant one is given by the following cubic lagrangian (see the structure

in (5.1))

L(3)
T SS = −ǫ α a2 M2

pl k′i k′′j hij(k) Rπ0(k′) Rπ0(k′′) → S(Infl)
ij = ǫ α a2 ∂iRπ0 ∂jRπ0 ,

(6.6)

with α a constant given by

α = 2
(

c2
2 w − c2

1

)

; (6.7)

where

c2
2 ≡ c2

2 τ +c2
2 w; c2

2 τ = − a2

9 H2 ǫ

(
Uτy + Uτz

)
; c2

2 w = − a2

9 H2 ǫ

(
Uwy + Uwz

)
; (6.8)

with c2
2 w the part of M2

10 proportional to the derivatives of U with respect to the operators

{wi}.

The analysis of the role of the operators wi is interesting. At the zero and first order

in the perturbation theory they are degenerate with the operators {τi}, so are sensitive

only to the solid structure of the medium. It is only at second order that the {wi} start

to discriminate a solid from a supersolid. From the structure of the {wi}, we see that

the ϕ0 scalar field, related to the superfluid part, is intrinsically coupled to the ϕa fields,

9During matter/radiation domination (Matter=Matter/Radiation Fluid), with DM/photons represented

as a perfect fluid, the source term becomes

S
(Rad)

∝
1

ρ̄ + p̄

(
∂Φ′

gi ∂Φ′

gi + H ∂Φgi ∂Φ′

gi + H
2 ∂Φgi ∂Φgi

)
. (6.5)

.
10See appendix A.
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describing the solid side. Thus, while the presence of the operators {wi} is immaterial at

the linear level, it plays an important role for non-Gaussianity. If the operators {wi} are

absent, automatically c2 w = 0 and α = −2 c2
1. However, from (3.46), in this case

α ∼ c5
s2 ≪ 1

and TSS vertex is negligible. The only constraint on c2
2 w comes from stability: c2

L > 2 c2
0 c4

b

and c2
s 2 < c2

L < c2
s1.

Given the presence of Rπ0 , the size of the source is very sensitive to the value of cs2

(typically ∝ c−3
s2 ). In our specific case, during inflation, we get that the Einstein Hilbert

term is always suppressed S(Infl) ≫ S(EH), while during the radiation phase nothing more

than what is described in [37, 38] happens; the only difference is that the Bardeen potential

is proportional to ζn instead of ζ, see (4.30). The tensor PS has two contributions: one

(primary PS) P(1)
h from the quantum fluctuations during the dS period and calculated with

the homogeneous quadratic action of hij , and another classical contribution (secondary PS)

P(2)
h coming from the interactions of hij with the other scalar fluctuations. This last term

can be calculated by finding the particular solution of (6.3) proportional to S(Matter). The

computation of the primary tensor PS is standard; denoting with Hi the Hubble parameter

during the dS phase, in the case c2
b = −1 we have

P(1)
h =

H2
i

8 M2
pl π2

(−Hi t)
8
3

c2
2 ǫ k2 c2

L ǫ ǫ
Pζn

P̄
. (6.9)

Remember that ζn fluctuations represent the primordial seed for scalar perturbations during

the radiation phase. The particular solution of (6.3) can be obtained by using the Green

function (gk(t, t′)) method

h(t, k) =

∫ t

−∞
gk(t, t′) Sk(t′) dt′ , S = ε

(s) ∗
ij Sij ,

∂2
t gk(t, t′) + 2 H ∂t gk(t, t′) + k2 gk(t, t′) = δ(t − t′) .

(6.10)

The above solution can be used to extract the PS P(2)
h for the secondary production of

GWs as

(2 π)3 P
(2)
h (k t) δ(k − p) ≡

∫ t

−∞

∫ t

−∞
dt′ dt′′ gk(t, t′) gp(t, t′′) 〈Sk(t′) Sp(t′′)〉 , (6.11)

where 〈Sk(t′) Sp(t′)〉 represents a Gaussian 4-point scalar correlator. During the inflationary

period, the above correlator is proportional to 〈R4
π0

〉; in the limit of a small cs2 one gets

the following estimate for the secondary scale-invariant PS

P(2)
h ≈ α2 ǫ2 2 π2

cs2
P2

Rπ0
= α2 ǫ2 γ2 2 π2

c13
s2 P̄2

P2
ζn

, (6.12)

where we have defined γ such that

PRπ0
= γ

Pζn

c6
s2 P̄

. (6.13)
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The final expression for the total tensor PS is given by

Ph = P(1)
h + P(2)

h = Pζn

ǫ

P̄

(

1 + α2 ǫ γ2 2 π2

c13
s2 P̄

Pζn

)

. (6.14)

The presence of the coupling constant (6.6) which controls the TSS vertex gives rise to

the question of whether the cubic scalar interactions can give sizeable contributions to the

scalar PS. The SSS dominant interaction Lagrangian for the scalar one loop corrections to

Pζn has the following structure (5.1)

L(3)
SSS = −ǫ a2 M2

pl

[

β2 k′i k′′i + β1
ki kj k′i k′′j

k2

]

ζn(k) Rπ0(k′) Rπ0(k′′), (6.15)

and when c2
b ≈ −1

β1 = 12 c2
2 w , β2 = −1

2

{

3
σ

M2
pl H2 ǫ

− 4

[

c2
2 w + 3

(

c2
0 c2

b +
Uby

8 H2 ǫ

)]}

. (6.16)

As usual, Uby and σ will be taken to be of order ǫ to get βi order one, as discussed in

the previous section. Furthermore, while β1 vanishes in the absence of w-operators, β2

is generically different from zero. For generic βi ∼ 1, the computation of the non-linear

correction to the scalar PS is complicated. A reasonable estimate is given by

P(2)
ζn

∝ ǫ2 β2
i

2 π2

cs2

P2
Rπ0

= ǫ2 β2
i γ2 2 π2

c13
s2

P̄2
P2

ζn
, (6.17)

with the total scalar PS given by Pζn + P(2)
ζn

. The possibility to have a regime where

the secondary tensor production is dominant while the secondary scalar contribution is

negligible, namely

P(2)
h

P(1)
h

≫ 1 ,
P(2)

ζn

Pζn

≪ 1 , (6.18)

gives

ǫ ≪ α2

β2
P̄,

2 π2 γ2 Pζn

P̄
β2 ǫ2

P̄
≪ c13

s2 ≪ 2 π2 γ2 Pζn

P̄
α2 ǫ . (6.19)

Taking γ ∼ 1, Pζn = 2.510−9 and P̄ = 32 we get

0.35
(

β2 ǫ2
)1/13

≪ cs2 ≪ 0.5
(

α2 ǫ
)1/13

. (6.20)

Relation (6.20) is valid whether or not the operator wi are present. However, when c2
2 w is

zero, the inequality

β2ǫ2 < α2 ǫ ∼ cs2
10 ǫ , (6.21)

is valid only if ǫ is very small, and then is much more tuned. The presence of the parameter

c2
2 w makes the gravitational waves secondary production dominant for a suitable region of

the parameters space, even if the Rπ0 is not efficiently transmitted in the scalar sector
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after inflation. Even the case where the secondary scalar and tensor production are both

relevant is interesting. A rough estimate gives

r =
P(2)

h

P(2)
ζn

=
β2

i

α2
, (6.22)

which is very sensitive to the detail of the non-linear structure of the theory.

Let us mention that, even if a cubic coupling between tensors and transverse vectors of the

schematic form hij(π′
iπ

′
j + ∂πi∂πj) exists, we do not expect an enhancement similar to the

one found due to the scalars. The transverse vector sector is very similar to solid inflation,

and in the limit of small cs 2

〈πi πi〉 ∼ O(cs 2
0) ,

with πi defined by the linear theory. Thus, the secondary production of GWs from the

vector sector is much smaller than the one from the scalar sector which is of order PRπ0

2.

All the above expressions are given at the leading order in a slow-roll expansion and the

PS are scale-free, modulo small slow-roll corrections.

Finally, let us estimate the tilt of secondary GWs production. The next to leading correc-

tions to the primordial tensor PS can be obtained by simply substituting PRπ0
in eq. (6.12)

with the complete expression k3 |Rπ0 |2/(2 π2). In the c2
b = −1 case, we have three contri-

butions with three different tilts (see eq. (3.51)): n
(ad)
s , n

(en)
s , and

n(ad−en)
s =

n
(ad)
s + n

(en)
s

2
. (6.23)

As we argued, there is the possibility to get a blue-tilted index for n
(en)
s tilt, and being

n
(ad)
s red-tilted, the (en) index term will be the dominant one for scales much smaller than

the CMB ones,11

PRπ0
→ P(en)

Rπ0
(−H t)6 δb−5 ǫ+η kn

(en)
s −1 . (6.24)

Thus, eq. (6.12) reduces to

P(2)
h ≈ α2 ǫ2

i

2 π2

cs2
P(en)

Rπ0

2 (−H t)12 δb−10 ǫ k2(n
(en)
s −1) , (6.25)

then

nT = 2 n(en)
s − 1 ≡ 1 + 12 (δb − ǫi) + 2 η , (6.26)

which is blue tilte when

δb > ǫi − η

6
. (6.27)

The presence of a blue nT parameter will be an interesting tool to test inflationary models

in future high sensitivity experiments of Gravitational waves detection [39]. Indeed, for

modes that re-enter the horizon during radiation domination, the GWs energy density

spectrum [40, 41] goes as

ΩGW ∝ knT −1 , (6.28)

11The standard CMB-like pivot scale is k∗ = 0.002 Mpc−1.
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P(1)
en ∼

(

P(1)
ad

c6
s2

)

≫ P(1)
ad/en ∼

(

P(1)
ad

c3
s2

)

︸ ︷︷ ︸

Dissipated during the reheating

≫ P(1)
ad ∼ 10−9 ≫ P(1)

h ∼ ǫ P(1)
ad

︸ ︷︷ ︸

transmitted during the reheating

Table 4. Relations among power spectra (leading order) and their fate in a instantaneous reheating,

in the limit cs2 ≪ 1.

ad = adiabatic (P(1)
ad = P(1)

ζn
) and en = entropic (P(1)

en = P(1)
Rπ0

).

if nT −1 > 0, it could grow up to the frequencies f = c k/2π in the milli-Hertz band, where

we expect the maximum of LISA sensitivity [42, 43].

7 Conclusion

An extreme synthesis of the production of the seeds for cosmological perturbations in su-

persolid inflation is given in table 4 where the magnitude and the fate of the leading order

power spectra of scalar and tensorial perturbations are shown. Adiabatic perturbations

are related to the solid part of the medium (ζn ∝ πL ∝ ϕi). The presence of large entropic

perturbations, related to its superfluid component (Rπ0 ∝ π0 ∝ ϕ0), potentially can en-

hance the PS of the other fields by next to leading corrections.

The secondary production is generically suppressed for inflaton-like fields,12 tensor per-

turbations play the role of spectator fields (with a PS proportional to H2
i /(M2

pl)) and the

interaction with entropic scalar perturbations enhances considerably their secondary PS.

Indeed, the following scenario is possible.13 We have systematically explored the physical

consequences of the breaking of the full set of diffeomorphism of general relativity down to

ISO(3). The breaking pattern is triggered by the background configuration of four scalar

fields and, in order to allow dS spacetime as a solution, we have considered an additional

set of internal symmetries comprising SO(3) internal rotations and four shift symmetries.

The four scalars ϕA can be interpreted as the coordinates of a supersolid embedded in

12Inflaton perturbations in a quasi-deSitter background has its modes proportional to H2
i /(ǫ M2

pl). In

the supersolid case we have two scalars (ζn and Rπ0
) and one transverse vector field πi

T . Transverse vectors

decay subhorizon, we also expect a suppressed contribution to the secondary PS and will not be discussed

in this paper.
13Actually, in section 6 we get an extra 1/cs2 enhancing factor from phase space integration.

P
(2)
ad ∼ ǫ2

(
P

(1)
en

)2
where

P
(2)
ad

P
(1)
ad

∼

(
ǫ2

c12
s2

)

P
(1)
ad ≪ 1 ; (7.1)

P
(2)
h ∼ ǫ2

(
P

(1)
en

)2
where

P
(2)
h

P
(1)
h

∼

(
ǫ

c12
s2

)

P
(1)
ad ≫ 1 ; (7.2)

P
(2)
ad and P

(2)
h refer to the next to leading contribution to the adiabatic scalar and tensor power spectra.

The above consideration are valid in the case of a small cs2. From the above results we can extract some

general conclusions related to the pattern of symmetry breaking during inflation.
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spacetime and the corresponding effective Lagrangian we have studied is the most general

one consistent with the given symmetries at the leading order in a derivative expansion. As

a comparison, in the effective description of single clock inflation [26] the residual symmetry

comprises three dimensional diffeomorphism with one scalar and two tensor propagating

modes, while in our supersolid inflation, we have two scalars, two transverse vectors and

two tensors. Interestingly, as a benefit of the supersolid interpretation, the scalar field

fluctuations can be interpreted as phonons modes and non-adiabatic perturbations. Given

the symmetry breaking pattern and the number of propagating modes, the difference with

single clock inflation are significant both at the linear and non-linear levels. At the linear

level, the symmetry breaking pattern gives rise to a peculiar kinetic mixing between the

two scalars that makes the quantization and the computation of the linear power spec-

tra non-trivial. A similar (but different) mixing is found in chromo-natural inflationary

models [23–25], non-thermal production of gravitinos [22], multi-field inflation [23] and in

effective theories of inflation [21]. Our analysis and results differ from the previous ones:

we do not use perturbations theory to resolve the kinetic mixing but rely on Hamilto-

nian analysis and a set of canonical transformations to reduced the dynamical system to

two uncoupled harmonic oscillators in the limit of large momentum k. As a consequence,

cross-correlations in the scalar power spectra are unavoidable. The presence of the scalar

ϕ0 associated with the superfluid component introduces the important parameter c2
b for

the superhorizon evolution of the scalars. The hypothesis of the Weinberg theorem are

explicitly violated. Indeed, we get both the presence of the anisotropic stress which is not

negligible in the k → 0 limit, and perturbations are non-adiabatic in general. Thus, neither

the comoving curvature perturbation R nor the curvature perturbation ζ are conserved,

moreover they differ on superhorizon scales, though their superhorizon evolution is only

due to small slow-roll corrections. In the range c2
b ∈ [−1, 0], all the relevant scalar power

spectra are scale-free, modulo small slow-roll corrections, in agreement with experimental

constraints. Because of the presence of two scalar propagating degrees of freedom, there

is no smooth limit that leads to solid inflation [9] and thus the predictions at the level of

linear power spectra are rather different. The system of coupled second order differential

equations for the linear evolution of the two independent scalar perturbations are compli-

cated enough due to the non-trivial kinetic mixing to elude an analytical solution for a

generic time t unless c2
b = 0, −1. Luckily enough, these boundary values for c2

b are such

that the relevant power spectra are almost scale-free. Among the various scalar perturba-

tions, we select the power spectra of the curvature perturbation ζn of the constant particle

number n hypersurface and curvature perturbation Rπ0 of the constant ϕ0 hypersurface

and the relative cross correlations, studying in detail their properties as a function of c2
b

and the speed of sounds of the two independent diagonal scalar modes. In the instanta-

neous reheating approximation, by extending the analysis in [29], we analyze how the seed

of primordial perturbations are transmitted to the standard hot radiation dominated era

of ΛCDM. Besides the standard adiabatic component, a small isocurvature part can be

written as a linear combination of ζn and Rπ0 evaluated at the end of inflation. Also the

prediction for primordial non-Gaussianity is rather interesting; we leave a detailed account

for a companion paper, focusing on the secondary production of gravitational waves during
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inflation. The structure of the tensor-scalar-scalar cubic vertex is such that it is possible

to enhance the secondary production, saturating the experimental bound, still keeping the

scalar bispectrum within the limits set by Planck. Finally, the spectral index of GWs PS

can be blue-tilted, enhancing the chance of a direct detection of the primordial stochastic

background.

In conclusion, supersolid inflation is an interesting alternative to single clock inflation to

explore different symmetry breaking patterns with a clear experimental signature.
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A Parameters MαMαMα

The parameters {Mα ; α = 0, 1, 3, 4} entering in the quadratic action (2) are defined by the

following derivatives of the Lagrangian density around the background

ḡµν = a(t)2 ηµν , ϕ̄0 = ϕ̄(t) , ϕ̄i = xi i = 1, 2, 3 . (A.1)

M0 =
ϕ̄′2 (Uχχ + 2 Uyχ + Uyy)

2a2
, M1 = − ϕ̄′ Uχ

a
, M2 = −4

9
(UwY + UwZ + UτY + UτZ ) ,

M3 =
M2

3
+

1

2
a−6 Ubb , M4 =

ϕ̄′ [Ubχ + Uby − a3 (Uχ + Uy)
]

2a4
; (A.2)

where all the derivatives are evaluated on the background values of the operators by which

U depends on. The Minkowski background corresponds to ϕ̄′ = a = 1.

B Gauge invariant operators and perturbations

Being the background SO(3) invariant, cosmological perturbations can be decomposed in a

scalar, vector, and tensor sector. In a generic gauge, scalar perturbations can be written as

ϕ0 = ϕ̄′ + π0 , ϕi = xi + ∂iπL + πi
T , (B.1)

g00 = −a2 (1 − 2 Ψ) , g0i = a2 ∂iF , gij = a2 [(1 + 2 Φ) δij + 2 ∂ijB] . (B.2)

Consider an infinitesimal coordinates transformation; in the scalar sector we have that

xµ → x̃µ = xµ + ǫµ , ǫµ = (ǫ0, ∂iβ) . (B.3)

The scalar parts of metric and the perturbation of ϕA transform according with14

∆gaugeΨ = ǫ0′ + H ǫ0 , ∆gaugeF = ǫ0 − β′ , ∆gaugeΦ = −H ǫ0 ,

∆gaugeB = −β , ∆gaugeπ0 = −ϕ̄′ ǫ0 , ∆gaugeπL = −β .
(B.4)

14The variation ∆gaugeA of a quantity A is defined as Ã(x) − A(x) evaluated at the linear order in

perturbation theory.

– 31 –



J
H
E
P
0
1
(
2
0
2
1
)
1
8
5

From the above transformation properties, one can construct the following gauge invariant

perturbations

πL, gi = πL − B , π0, gi = π0 − ϕ̄′

H Φ ; (B.5)

and the corresponding curvature perturbations

ζn =
k2

3
πL, gi = −Φ +

H
n̄′ δn , Rπ0 =

H
ϕ̄′ π0, gi = −Φ +

H
ϕ̄′ π0 . (B.6)

Together with

ζ = Φ + Hδρ

ρ̄′ ;

R = Φ + H v,

(B.7)

ζn and Rπ0 represent the fundamental gauge invariant scalars. While ζn represents the

curvature of constant number density hypersurfaces, Rπ0 can be identified as the curvature

perturbation orthogonal to the velocity of the superfluid component in the supersolid,

see (2.15); whose spatial part, at the linear level is given by

νi = − 1

ϕ̄′ ∂iπ0 . (B.8)

From (2.14), we have

δσ =
2 a4 M2

Pl M0

ϕ̄′

[

Ψ + 3 c2
b Φ +

π′
0

ϕ̄′ + c2
b k2πL, gi

]

, (B.9)

and it is gauge invariant; taking the time derivative we arrive at

δσ′ =
k2 a4 M2

Pl M1

ϕ̄′

[
π0

ϕ̄′ − πL, gi
′ + (F − B′)

]

. (B.10)

Adiabatic media, solids for instance, are characterized by uµ∂µσ = 0 at the non-perturbative

level. This is the case when the Lagrangian U does not depend on χ in [20]. In particular,

this implies that at the linearized level M1 = 0, in perfect agreement with (B.10) which for

such a class of media gives δσ′ = 0. The linearized EMT can be written as the perturbed

EMT for a perfect fluid plus an anisotropic stress contribution

T µ
ν = (p̄ + ρ̄ + δp + δρ) Ūµ

Ūν + (p̄ + ρ̄) (δUµ
Ūν + Ū

µ δUν) + (p̄ + δp) δµ
ν + Πµ

ν , (B.11)

where Ūµ = (−a,~0) is the background 4-velocity, δρ, δp are the perturbations of energy

density and pressure. The anisotropic stress is turned on by the presence of τY , τZ . wY

and wZ . In the scalar sector, the velocity δUµ and the anisotropic stress perturbations Πµ
ν

can be written in terms of two extra scalars v and Ξ,15 in addition to δρ

δUµ = (a Ψ, a ∂iv), Πµ
ν ≡ (3 ∂2 δµ

i δi
ν − δµ

i ∂i δj
ν∂j) Ξ ,

Ξ ≡ −2 a2 M2 πL gi = 2
[
Φ − Ψ + 2H (F − B′) + (F − B′)′] ,

(B.12)

15Note that the dimension of these two extra scalars is [v] = −1 and [Ξ] = 2.
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with

δρ = −ρ̄(1 + w)(3Φ + k2πL, gi) + a−4 ϕ̄′ δ σ ,

v = −π′
L, gi +

M1 a2

6 H2 (1 + w)

[
π0

ϕ̄′ − πL, gi
′ + (F − B′)

]

+ (F − B′) .
(B.13)

Using this parameterization, R, ζ and σ can be easily written in terms of πL, π0 and their

derivative w.r.t. conformal time. Namely, with the suffix gi understood, we have

R = ǫ (1 + c2
1)
(

1 − 2 c2
0 c2

b

)

H2 πL + c2
1 H

[

−1 + 3 ǫ (1 + c2
1)

H2

k2

]

π0

ϕ̄′

+ (1 + c2
1)

[

1 − 3 ǫ (1 + c2
1)

H2

k2

]

H π′
L − 2 ǫ (1 + c2

1)
H2

k2

π′
0

ϕ̄′ ,

(B.14)

ζ =
k2

3
(1 − 2 c2

0 c2
b) πL − 2

3
ǫ c2

0 c2
1 H π0

ϕ̄′ +
2

3
ǫ c2

0 H (1 + c2
1) π′

L − 2

3
c2

0

π′
0

ϕ̄′ , (B.15)

δσ = −2 a4 ρ̄ ϕ̄′−1 (ζ − ζn) ǫ . (B.16)

The above expressions are valid at the linear order in the slow-roll parameters.

C Canonical transformation

In the UV (large k) the Lagrangian (3.18) becomes

L
(UV)
2 =

1

2
Π′tΠ′ − Πt DUV Π′ − 1

2
Πt MUV Π (C.1)

with

D → DUV ≡ D , M → MUV =

(

k2 λL
2 0

0 k2 λ0
2

)

(C.2)

The first step is to find the Hamiltonian density corresponding to (3.18), which reads

H =
1

2
P t P − P t D Π +

1

2
Πt
(

M − DUV2
)

Π , (C.3)

where P is the conjugate momentum of Π

P = Π′ + DUV Π . (C.4)

The decoupled system can be obtained by applying a canonical transformation of the form:

Π = A Π̃ + B P̃ ,

P = J P̃ + C Π̃ .
(C.5)

Using (2.19), imposing that the transformation is canonical with the new Dc vanishing, the

four matrices A, B, J and C can be taken of the following form

A =

(

1 0

0 1

)

, J =
1

2

(

1 +
∆λ

∆

)(

1 0

0 1

)

, B = −2
d

k ∆

(

0 1

1 0

)

, C = −k
∆λ − ∆

4 d

(

0 1

1 0

)

,

(C.6)
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where ∆λ and ∆ are given by

∆λ = λ2
0−λ2

L , ∆ =

(
4 c4

0 c4
L + c4

1

[
1 + 8 c2

0(c2
L − c2

b)
]

+ 4 c2
0 c2

1

[
c2

L + 4 c2
0 c2

b (c2
L − c2

b)
]) 1

2

2 c2
0 (1 + c2

1)
.

(C.7)

The transformed Hamiltonian reads

Hnew =
1

2
P̃ t Knew P̃ +

1

2
Π̃t Mnew Π̃ , (C.8)

with

Knew = A + B (C + D) ≡
(

K1new 0

0 K2new

)

, Mnew = −B−1 (C − D) ≡
(

M1 0

0 M2

)

;

(C.9)

both Knew and Mnew are diagonal and thus, for fixed k, (C.8) describes two uncoupled

harmonic oscillators with frequencies k2 c2
s1 and k2 c2

s2, where

c2
s1 =

M1 K1new

k2
= d2+λ2

L+
∆λ

2
+

∆

2
, c2

s2 =
M2 K2new

k2
= 2 d2+λ2

L+
∆λ

2
− ∆

2
. (C.10)

Quantization of (C.8) is straightforward: the Bunch-Davies vacuum is the state |0〉 of the

Fock space corresponding to the following field operators

Π̃ =

(

Π̃1

Π̃2

)

=

(

A
(1)
k ak

(1) e−i k cs1 t + A
(1) ∗
k ak

(1) † ei k cs1 t

A
(2)
k ak

(2) e−i k cs2 t + A
(2) ∗
k ak

(2) † ei k cs2 t

)

, A
(n)
k = k− 1

2

(Kn

csn

) 1
2

(C.11)

with ak
(1/2) † and ak

(1/2) standard creation and annihilation operators. The fields satisfies

the following canonical commutation relations

[

Π̃m(t, x) , Π̃′
n(t, y)

]

= i Km δ(3) (x − y) δmn , m, n = 1, 2 . (C.12)

By using (C.5), one can express ΠL and Π0 in terms of the creation and annihilation

operators

ΠL =
2∑

j=1

C
(j)
L a

(j)
k e−i k cs j t + C

(j) ∗
L a

(j) †
k ei k cs j t, , (C.13)

Π0 =
2∑

j=1

C
(j)
0 a

(j)
k e−i k cs j t + C

(j) ∗
0 a

(j) †
k ei k cs j t , (C.14)

where C
(j)
L/0 read

C
(1)
L = k− 1

2

(K1new

cs1

) 1
2

, C
(2)
L = i k− 1

2
2 d

∆

(
cs2

K2new

) 1
2

, (C.15)

C
(1)
0 = i k− 1

2
2 d

∆

(
cs1

K1new

) 1
2

, C
(2)
0 = k− 1

2

(K2new

cs2

) 1
2

. (C.16)

By using (C.13)–(C.14), one can compute the free-field (Gaussian) average of any operator

expressed in terms of πL and π0. In order to simplify as much as possible the expression
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of power spectra, it is rather useful to rewrite all the parameters of interest in terms of the

two “diagonal” sound speeds cs1/2, cb and cL defined in (3.22). We get

c2
0 =

(
c2

L − c2
s1

) (
c2

L − c2
s2

)

2c4
b

(
c2

L − c2
s1

)
− 2c2

s2

(
−2c2

bc2
s1 + c4

b + c2
Lc2

s1

) ,

c2
1 =

(
c2

L − c2
s1

) (
c2

L − c2
s2

)

−2c2
bc2

L + c4
b + c2

L

(
c2

s1 + c2
s2

)
− c2

s1c2
s2

,

d2 =

(
c2

b − c2
s1

)
2
(
c2

b − c2
s2

)
2
(
c2

L − c2
s1

) (
c2

L − c2
s2

)

4
[
c4

b

(
c2

L − c2
s1

)
− c2

s2

(
−2c2

bc2
s1 + c4

b + c2
Lc2

s1

)] (
−2c2

bc2
L + c4

b + c2
L

(
c2

s1 + c2
s2

)
− c2

s1c2
s2

) ,

K1 =

(
c2

b − c2
s1

)
2
(
c2

L − c2
s2

)

(
c2

s1 − c2
s2

) (
−2 c2

bc2
L + c4

b + c2
L

(
c2

s1 + c2
s2

)
− c2

s1c2
s2

) ,

K2 =
c2

s2

(
c2

b − c2
s1

)
2
(
c2

s2 − c2
L

)

(
c2

s1 − c2
s2

) (
c4

b

(
c2

L − c2
s1

)
− c2

s2

(
−2c2

bc2
s1 + c4

b + c2
Lc2

s1

)) ,

∆ = c2
s2 − c2

s1 .

(C.17)

Finally

| C
(1)
L |2 k =

(
c2

b − c2
s1

)
2 | c2

L − c2
s2 |

cs1 | c2
s1 − c2

s2 || −2c2
bc2

L + c4
b + c2

L

(
c2

s1 + c2
s2

)
− c2

s1c2
s2 | (C.18)

| C
(2)
L |2 k =

(
c2

b − c2
s2

)
2 | c2

L − c2
s1 |

cs2 | c2
s1 − c2

s2 || −2c2
bc2

L + c4
b + c2

L

(
c2

s1 + c2
s2

)
− c2

s1c2
s2 | (C.19)

| C
(1)
0 |2 k =

cs1
(
c2

b − c2
s2

)
2 | c2

s1 − c2
L |

| c2
s1 − c2

s2 | | c4
b

(
c2

L − c2
s1

)
− c2

s2

(
−2c2

bc2
s1 + c4

b + c2
Lc2

s1

)
| (C.20)

| C
(2)
0 |2 k =

cs2
(
c2

b − c2
s1

)
2 | c2

s2 − c2
L |

| c2
s1 − c2

s2 || c4
b

(
c2

L − c2
s1

)
− c2

s2

(
−2c2

bc2
s1 + c4

b + c2
Lc2

s1

)
| (C.21)

Note that under the exchange of cs1 ↔ cs2 we have that C
(1)
L/0 ↔ C

(2)
L/0. As a consequence,

all the power spectra will have the same property. Such a symmetry simply reflects the

conventional choice cs2 < cs1 or cs1 < cs2.

Finally, note that in the two analytic cases cb = 0, −1, CL/0 sub-horizon coefficients are

easily transmitted on superhorizon scales, and eq. (3.34) can be obtained considering that

ζn and Rπ0 classical solutions reduce to

ζn
(j) → − C(j)

L H

2
√

1 + c2
1 c2

sj Mp ǫ
1
2

k−1 ,

Rπ0
(j) → i C(j)

0 H

2
√

2 c0 csj Mp ǫ
1
2

k−1 .

(C.22)
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