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Abstract. A very challenging problem in the genetics domain is to in-
fer haplotypes from genotypes. This process is expected to identify genes
affecting health, disease and response to drugs. One of the approaches
to haplotype inference aims to minimise the number of different hap-
lotypes used, and is known as haplotype inference by pure parsimony
(HIPP). The HIPP problem is computationally difficult, being NP-hard.
Recently, a SAT-based method (SHIPs) has been proposed to solve the
HIPP problem. This method iteratively considers an increasing number
of haplotypes, starting from an initial lower bound. Hence, one impor-
tant aspect of SHIPs is the lower bounding procedure, which reduces the
number of iterations of the basic algorithm, and also indirectly simplifies
the resulting SAT model. This paper describes the use of local search
to improve existing lower bounding procedures. The new lower bound-
ing procedure is guaranteed to be as tight as the existing procedures.
In practice the new procedure is in most cases considerably tighter, al-
lowing significant improvement of performance on challenging problem
instances.

1 Introduction

A recent and challenging problem in Bioinformatics is the process of inferring
haplotype data from genotype data. Among a number of potential applications,
haplotype inference can serve to identify genes affecting health, disease and re-
sponse to drugs. Several approaches have been proposed for the haplotype in-
ference problem in recent years. One of these approaches aims to minimise the
number of different haplotypes used, and is known as Haplotype Inference by
Pure Parsimony (HIPP). The HIPP problem is computationally difficult, being
NP-hard, and several methods have been proposed to solve it.

The first exact solutions to the HIPP problem were based on Integer Linear
Programming. More recently, Boolean Satisfiability (SAT) has been proposed for
solving the HIPP problem. The SAT-based approach, SHIPs, has been shown
to be very effective at solving hard HIPP problem instances. The organisation
of SHIPs consists in iteratively considering an increasing number of haplotypes,
starting from an initial lower bound. Hence, one important aspect of SHIPs is



the lower bounding procedure, which reduces the number of iterations of the
basic algorithm, and also indirectly simplifies the resulting SAT model.

SHIPs has been shown to be the most effective approach for solving the
HIPP problem, but there are challenging instances that it cannot yet solve in
a reasonable time. An important technique for improving performance is the
computation of lower bounds for the problem, and several powerful and efficient
techniques have already been proposed. This paper describes the use of local
search to improve existing lower bounding procedures. The new lower bounding
procedure is guaranteed to be as tight as existing procedures, but in practice
the new procedure is in most cases considerably tighter, allowing significant
performance improvements on challenging problem instances.

The paper is organised as follows. Section 2 introduces haplotype inference.
Section 3 summarises previous work on the SHIPs approach. Section 4 surveys
existing lower bounding techniques. Section 5 describes the new SAT-based local
search method for improving lower bounds. Section 6 evaluates the new method
empirically. Section 7 concludes the paper.

2 Haplotype Inference

A haplotype is the genetic constitution of an individual chromosome. The genetic
constitution of a chromosome is described by a DNA sequence. A DNA sequence
is specified by four nucleotides, which can be distinguished by the bases they
contain: A (adenine), C (cytosine), T (thymine), and G (guanine). The DNA
double helix consists of two molecules held together by weak bonds between
base pairs of nucleotides. Given that base pairs are formed only between A and
T and between G and C, the base sequence of each single strand can be deduced
from that of the other strand in the DNA.

The underlying data that forms a haplotype can be the full DNA sequence
in the region, or more commonly the Single Nucleotide Polymorphism (SNPs)
in that region. An SNP is a genetic mutation that can occur within a DNA se-
quence. SNPs are the most common type of genetic mutation. An SNP variation
occurs when a single nucleotide replaces one of the other three nucleotides. An
example of an SNP is the alteration of the DNA sequence TTACCGT to TCAC-
CGT, where the second T is replaced with a C. Although many SNPs do not
produce physical changes, it is believed that other SNPs may predispose people
to disease and even influence their response to drugs. The HapMap project [33,
34] (http://www.hapmap.org) represents an effort to identify such SNPs.

Figure 1 illustrates DNA sequences from five different individuals. Given
these DNA samples, three SNPs are identified. SNPs correspond to the sites
for which there are two different nucleotides amongst the different individuals.
SNPa may contain base A or base G whereas SNPb may contain bases T/C and
SNPc¢ may contain bases T/A. The haplotypes are obtained from the SNPs in
the DNA sequences.

The genetic code of different people is extraordinarily similar. Only about
0.1% of an individual DNA differs from that of any other individual. According



SNPa SNPb SNPc

DNA 1 GG|TTACAT.....
DNA 2 GG TTACAT....
DNA 3 G GIAITACAT.....
DNA 4 GGITTACAT.....
DNA 5 GGI)TACAT.....

Haplotype 1
Haplotype 2
Haplotype 3
Haplotype 4
Haplotype 5

Fig. 1. Identifying SNPs in DNA sequences

to the information available from the HapMap project, the DNA sequences in
the chromosomes of two individuals can be identical for hundreds of bases. But
approximately once in every 1,200 bases, the sequences will exhibit an SNP.
Overall, there are ten million estimated SNPs to occur in the human genome.

Diploid organisms pair homologous chromosomes, and thus contain two hap-
lotypes, one inherited from each parent. The genotype describes the conflated
data of the two haplotypes. In other words, an explanation for a genotype is a
pair of haplotypes. Conversely, this pair of haplotypes explains the genotype.
If for a given site both copies of the haplotype have the same value, then the
genotype is said to be homozygous at that site; otherwise it is said to be het-
erozygous. The haplotype inference problem consists in inferring haplotypes from
genotypes.

The identification of haplotypes may be useful for identifying specific dis-
eases, as well as to predict patients response to drugs. Although some heritable
disorders may depend on the variation of one single location in one single gene,
common diseases usually depend on more than one variation. The study of the
effects of particular variations is simplified by the fact that, in many cases, there
exists a strong correlation between the allele present in a particular SNP and
other nearby sites. Hence, identifying common haplotypes in the population rep-
resents a key first step towards the understanding of the pathogenesis of disease.
However, current genotyping methods do not provide haplotype information,
which is essential for detailed analysis of the mechanisms of disease. The same
genotype may be related with different pairs of haplotypes, where some of the
pairs may cause a specific disease, whereas the other pairs may not.

Definition 1 (Haplotype Inference). Given a set G of n genotypes, each of
length m, the haplotype inference problem consists in finding a set H of 2-n
haplotypes, not necessarily different, such that for each genotype g; € G there



is at least one pair of haplotypes (h;, hy) with h; and hy € H, such that the
pair (hj, hi) explains g;. The variable n denotes the number of individuals in the
sample, m denotes the number of SNP sites, and g; denotes a specific genotype
where 1 < i < n. (Furthermore g;; denotes a specific site j in genotype g; where
1<j<m.)

Without loss of generality, we may assume that the values of the two possible
values of each SNP are always 0 or 1. Value 0 represents the wild type and value
1 represents the mutant. A haplotype is then a string over the alphabet {0,1}.
Moreover, genotypes may be represented by extending the alphabet used to
represent haplotypes to {0,1,2}. Homozygous sites are represented by values 0
or 1, depending on whether both haplotypes have value 0 or 1 at that site,
respectively. Heterozygous sites are represented by value 2.

Ezxample 1. The genotype 1201 must be explained by the pair of haplotypes
1001/1101. The genotype 2120 may be explained either by the pair 1110/0100
or by the pair 1100/0110.

2.1 Haplotype Inference by Pure Parsimony

The problem of haplotype inference is an active area of research. The most
widespread approaches are based on statistical methods [32,26]. An alternative
is haplotype inference by pure parsimony [12].

Definition 2 (Haplotype Inference by Pure Parsimony (HIPP)). Given
a set of genotypes, the HIPP approach finds a solution to the haplotype inference
problem such that the total number of distinct haplotypes used is minimum.

The HIPP problem is NP-hard (see [11, 19] for proofs and historical perspec-
tive). Hence, this problem is also interesting from a computational point of view.
Moreover, experimental results provide support for this method [35]: the num-
ber of haplotypes in a large population is typically very small, though genotypes
exhibit a great diversity [27].

Ezample 2. Consider the set of genotypes: 2120, 2102, and 1221. There are
solutions for this example that use six distinct haplotypes, but the solution
0100/1110, 0100/1101, 1011/1101 uses only four distinct haplotypes.

A number of solutions exist for the HIPP problem, the majority of which are
based on Integer Linear Programming (ILP) [11, 13,1, 2] and which are reviewed
below. A more recent approach proposes a SAT-based model [20,21] and is de-
scribed in the next section. Other approaches include branch-and-bound [35],
heuristic approximation algorithms [17] and relaxations of a semidefinite pro-
gramming model [18]. Moreover, there has been work on solving restricted cases
of haplotype inference [14, 6] some of which are based on 2SAT [14].

The original ILP model, TIP, has linear space complexity on the number
of possible haplotypes [11,12], and so it is exponential on the number of given



Algorithm 1 Top-level SHIPs algorithm

SHIPSs(G, Ib)

1 G « APPLYSIMPLIFICATIONS(G)
2 r«1Ib
3 while (true)
do Generate ¢" given G and r
if SAT(¢") = true
then return r
else r«—1r+1

N O O

genotypes. A Boolean variable y; ,, is associated with each pair u of haplotypes
that can explain a given genotype g;, and denotes whether this pair of haplotypes
is used for explaining g;. Each candidate haplotype is associated with a dedicated
variable x,, such that x, = 1 if the haplotype is used. The cost function is the
number of haplotypes used: minimise ), x,.

The RTIP model [11,12] introduces one essential simplification. If the pair
of haplotypes for a variable y; ,, are such that they are not part of any other pair
of haplotypes, then the y;, variable and related z, variables can be removed
from the formulation.

A more recent ILP model, PolyIP, is polynomial in the number of sites m and
population size n [13, 1], with a number of constraints and variables, respectively,
in O(n?m) and O(n? + nm). The PolyIP model represents the 2n candidate
haplotypes as sequences of Boolean variables, and then establishes conditions
for the haplotypes to explain the corresponding genotypes, such that the total
number of distinct haplotypes is minimised. More recently, Brown and Harrower
introduced a new polynomial-size formulation, HybridIP, representing a hybrid
of the RTIP and PolyIP formulations [2].

3 SAT-based Haplotype Inference by Pure Parsimony

SHIPs is a SAT-based algorithm to solve the haplotype inference by pure par-
simony problem [20,21]. This section presents an overview of SHIPs; a more
complete description of SHIPs can be found in the original publications.

3.1 SHIPs basic algorithm

Algorithm 1 summarises the top-level operation of SHIPs. The algorithm accepts
a set of genotypes G and a lower bound on the number of haplotypes Ib necessary
to explain the set of genotypes. A trivial value for (b is 1. The algorithm searches
for the least value r such that there exists a set H of haplotypes with r = |H]|,
which explain all genotypes in G. Observe that the value of r is guaranteed to
satisfy [b < r < 2n. Clearly, a solution with 2n haplotypes is guaranteed to



exist. For each value of r considered, a CNF formula ¢" is created, and a SAT
solver is invoked (identified by the function call SAT(¢")) 4.

In what follows we assume n genotypes each with m sites. The same indexes
will be used throughout: ¢ ranges over the genotypes and j over the sites, with
1 <i<nand1l<j <m. In addition, » candidate haplotypes are considered,
each with m sites, and with 1 < r» < 2n. An additional index k is associated
with haplotypes, such that 1 < k < r. As a result, hy; € {0,1} denotes the j*
site of haplotype k.

For a given value of r, the model considers r haplotypes and seeks to associate
two haplotypes (possibly corresponding to the same haplotype) with each geno-
type g;, where 1 <14 < n. For each genotype g; the model uses selector variables
for selecting which haplotypes are used for explaining g;. Since the genotype is
to be explained by two haplotypes, the model uses two sets, a and b, of r selec-
tor variables, respectively sf, and szi with £ = 1,...,r. Hence, genotype g; is
explained by haplotypes hy, and hg, if sf ; =1 and szzi = 1. Clearly, g; is also
explained by the same haplotypes if si ; = 1 and szl ;= L

We can now derive the conditions for the SHIPs model:

— If a site g;; is 0 then the model requires (=s¢, V —hy;) A (—sh, V —hy;) for
k = 1,...,r. Hence, if haplotype k is selected for explaining genotype i,
either by the a or the b representative, then the value of haplotype k at site
7 must be 0.

— If a site g;; is 1, then the model requires (—=s%, V hg;) A (—sh, V hyj) for
k = 1,...,r. Hence, if haplotype k is selected for explaining genotype i,
either by the a or the b representatives, then the value of haplotype k at site
7 must be 1.

— Otherwise, one requires that the haplotypes explaining the genotype g; have
opposing values at site . This is done by creating a variable ¢;; € {0,1}
such that site j of the haplotype selected by the a representative selector
assumes the same value as ¢;;, and site j of the haplotype selected by the b
representative selector assumes the complementary value of ¢;;. As a result
the model requires (hy; V —ti; V =8%) A (=hyj Vi V=88 ) A (R Vi Vs ) A
(mhgj V —ti; V —st) for k= 1,... 7. Observe that hy; equals t;; if s¢, =1,
and hy; equals —t;; if szi =1.

Clearly, for each i, and for a or b, it is necessary that exactly one haplotype
is used, and so exactly one selector variable can be assigned value 1. This can
be captured with the following cardinality constraints:

4 SHIPs implementation uses the MiniSat SAT solver (version 1.14) [7]. MiniSat is a
complete solver implementing backtrack search enhanced with clause learning, lazy
data structures and dynamic heuristics. It has been chosen among other complete
solvers for being one of the most competitive solvers.



Since the proposed model is purely SAT-based, a simple alternative solution
is used, which consists of the CNF representation of a simplified adder circuit
and requiring the output of the adder to be equal to 1. The CNF representation
of an adder circuit requires the utilization of additional variables v}, and v,l;i.
We consider the case for the a variables; for the b variables the model is exactly
the same. The v}, variables are defined as follows:

vy < 5%

(—wp; Vv osty)
Vig1i = (sf; V viy)
vy =1

3.2 SHIPs improved algorithm

The core SHIPs model described above is not effective in practice. As a result,
several key improvements have been developed, which are essential for obtain-
ing significant performance gains over existing approaches. These improvements
range from the computation of lower bounds (described in the next section) to
symmetry breaking techniques.

Breaking symmetries allows to further prune the search space. We may ob-
serve the existence of symmetries in the problem formulation on the i and on the
s variables. For example, given a genotype 2101, it may either be explained by
haplotypes 1101 and 0101 or by haplotypes 0101 and 1101. Also, each genotype
may be explained by different arrangements of the s variables.

These symmetries are broken by ensuring ordering relations among the h and
the s variables, similarly to what is done for matrix models [9]. Observe that the
SHIPs model can be described by the matrix formulation G = S%- H & S® - H,
where G is a n X m matrix describing the genotypes, H is a r X m matrix of
haplotype variables, S and S® are n x r matrices of selector variables, and @ is
the explanation operation [22]. If matrix H is interpreted as a vector of strings of
sizem, H = [h1hy ... h,]T, then we can impose the condition hy < hy < ... < hy,
i.e. the haplotypes are lexicographically sorted. In addition, if S = [s¢...s%]T
and S® = [s8...s%]T, then we can impose the condition s¢ < s, 1 < i < n,
i.e. for each genotype i, the strings representing the selector variables a and the
selector variables b are lexicographically ordered.

4 Computing Lower Bounds

This section presents three approaches for computing lower bounds. The first one
was proposed by Kalpakis and Namjoshi [18] and further studied by Brown and
Harrower [3]. The two other approaches have been developed within SHIPs. One
of the SHIPs lower bound approaches was used in earlier results on SHIPs [20,
21], and the other one improves on the original SHIPs lower bound approach [23].



4.1 Rank-based lower bound

The rank-based lower bound procedure considers a modified matrix representa-
tion of the set of genotypes. The rank of the modified matrix of genotypes is
a lower bound on the number of haplotypes necessary for explaining the set of
genotypes [18]. Instead of the problem formulation described earlier, the rank-
based lower bound computation requires a different formulation for the values
at each site. A homozygous site with value 0 remains unchanged. A homozygous
site with value 1 in our formulation is now represented with value 2. Finally, het-
erozygous sites are represented with 1 instead of 2. This modification is required
for the matrix rank to represent a lower bound on the number of haplotypes [18].
In the modified formulation, A denotes the matrix of genotypes, and we have
the following result [3,18]:

Proposition 1. The rank of the genotype matriz is a lower bound on the number
of haplotypes required to explain the set of genotypes A.

The rank-based lower bound provides a numerical value, which can be used
for reducing the number of iterations of the top-level SHIPs algorithms. As we
show next, the lower bound procedures associated with SHIPs also allow the
inference of additional information that can be used to simplify the resulting
SAT instances.

4.2 SHIPs lower bound
The basic SHIPs lower bound is based on the notion of incompatible genotypes.

Definition 3 (Incompatible Genotypes). Two genotypes, g; and g;, are in-
compatible if and only if there exists a site for which the value of one genotype
is 0 and the other is 1.

For example g1 = 012 is incompatible with go = 112, whereas the geno-
types g1 and g3 = 210 are not incompatible. Incompatible genotypes cannot be
explained by common haplotypes.

The SHIPs lower bound identifies a maximal clique of incompatible geno-
types. Clearly, for two incompatible genotypes g; and ¢;, the haplotypes that
explain g; must be distinct from the haplotypes that explain g;. Given the in-
compatibility relation we can create an incompatibility graph I, where each vertex
is a genotype, and two vertices have an edge if they are incompatible. Suppose I
has a clique of size k. Then the number of required haplotypes is at least 2-k— o,
where ¢ is the number of genotypes in the clique which do not have heterozygous
sites.

Example 3. For example consider the following set of genotypes:

0102
1021
2210
1101



These genotypes are mutually incompatible so, in the incompatibility graph,
they form a clique with 4 vertices. The obtained lower bound is 2-4 —1 =7,
because the last genotype is homozygous so it can be explained with a single
haplotype. Hence, a lower bound on the number of haplotypes for this example
is 7.

In order to maximise the computed lower bound, the objective is to identify
the maximum clique in I. Since this problem is NP-hard [10], we use a simple
greedy heuristic for estimating a maximal clique in the incompatibility graph.
The genotype with the highest number of incompatible genotypes is first selected.
At each step, the genotype selected is one that is still incompatible with all the
already selected genotypes, and preference is given to the haplotype with the
(statically computed) highest number of incompatible genotypes.

Moreover, it is possible to increase the lower bound that was obtained with
a maximal clique. Suppose a genotype g; is heterozygous at site j, and further
assume that all other genotypes assume the same homozygous value (either 0
or 1) at site j. Then it is straightforward to conclude that explaining genotype
g; requires one haplotype which cannot be used to explain any of the other
genotypes. Hence, g; can be used to increase the lower bound by 1.

4.3 Improved SHIPs lower bound

This section describes an alternative approach for computing lower bounds for
SHIPs [23]. Similarly to the procedure outlined in the previous section, a maximal
clique is computed. In addition, analysis of the structure of the genotypes allows
the lower bound to be further increased. The objective of the new procedure is to
identify heterozygous sites which require at least one additional haplotype given
a set of previously chosen genotypes. The procedure starts from the clique-based
lower bound (see previous section) and increases the lower bound by searching
for heterozygous sites among genotypes not yet considered for lower bounding
purposes. Since the algorithm starts from the clique-based lower bound, it is
guaranteed never to be less than the bound obtained from the computed clique.

Algorithm 2 summarises the alternative lower bound procedure. The proce-
dure MERGEGENOTYPES (shown in Algorithm 3) creates a new genotype from
a set of genotypes such that the new genotype is heterozygous for any site where
one of the genotypes is heterozygous or there exist different genotypes with dif-
ferent values. If all genotypes have the same homozygous site then the merged
site retains the same value. For each genotype g not in the clique, if the genotype
has a heterozygous site and all compatible genotypes have the same value at that
site (either 0 or 1), then g is guaranteed to require one additional haplotype to be
explained. Hence the lower bound can be increased by 1. Several procedures can
be devised for selecting a genotype at each step. The best results were obtained
by selecting genotypes by increasing number of heterozygous sites, as shown in
Algorithm 2.

The proposed lower bound procedure runs in polynomial time. A straightfor-
ward analysis yields a run time complexity in O(n?m), by observing that each



Algorithm 2 Improved the clique-based LB

IMPROVELB(G, G¢, Ib)
1 > G is the set of genotypes

2 D Gc is a clique of mutually incompatible genotypes
3 > lbis the lower bound obtained from G¢
4 Sort Gnc by increasing number of heterozygous sites > Optional step
5 Gnec «— G—Ge > Gne: set of non-clique genotypes
6 Gs«— Gc > Working set of genotypes starts with G¢
7 for each g € Gnc > Analyze genotypes in (sorted) order
8 do S «— {cg € Gs : COMPATIBLE(g,cg)}
9 if (31<j<m HETEROZYGOUS(g[j]) A Fuego,13 Vses slj] = v)

10 then

11 b—1Ib+1

12 > Set sites with differing values to 2 and update Gg

13 ng < MERGEGENOTYPES(S, g)

14 Gs — (Gs — S)U{ng}

15 return b

Algorithm 3 Merging genotypes

MERGEGENOTYPES(S, g)
1 ng—g

2 for each s € S

3 dofor j=1tom

4 do if (s[j] # ng[j])

5 then ng[j] < 2
6 return ng

call to the MERGEGENOTYPES function can involve at most O(n) genotypes
and each pairwise merge runs in time O(m). Finally, observe that the asymp-
totic time complexity of the alternative lower bound procedure is the same as
the asymptotic time complexity for generating the SHIPs model. In practice, the
computational overhead of computing the lower bound is negligible.

4.4 Integrating lower bounds

Lower bounds play a dual and key role in SHIPs. First, by using lower bounds
the number of iterations of the SHIPs algorithm is reduced. Second, and more
importantly, tighter lower bounds allow simplification of the generated SAT in-
stances. As shown earlier, the SHIPs lower bound procedures described in this
section associate one or two haplotypes with specific genotypes. As a result, the
resulting SAT model is simplified; genotypes with associated haplotypes need



not select from a set of candidate haplotypes. Moreover, when identifying the
candidate haplotypes for a given genotype g having no associated haplotype, it
is only necessary to consider haplotypes not associated with a specific genotype
or haplotypes associated with genotypes that are compatible with g. The sim-
plification of the SAT model given lower bound information is in practice very
beneficial for the efficiency of the SHIPs algorithm.

Moreover, observe that the rank-based lower bound [18,3] provides only a
numeric lower bound, and so it is not clear whether it can be also used for
simplifying the SAT model. In addition, our experiments indicate that the lower
bounds proposed in this section are competitive, and most often of better quality,
than the rank-based lower bound. Also, observe that the rank R of the genotype
matrix is at most R,,, the minimum between the number of genotypes and the
number of sites, and for most matrices have a rank below R,,. In contrast, the
lower bounds described in this section are larger than R, for a large number of
examples considered in Section 6.

Ezxample 4. The different lower bounds are illustrated with the following exam-
ple. Consider the set of genotypes:

G =1{91,92,93,94. 95, 96, 97}

where,
g1 = 0102
g2 = 1021
gs = 2210
gs = 1101
gs = 1202
ge = 2021
g7 = 2102

For this example, the rank lower bound is 4. As described in Example 3, the orig-
inal SHIPs lower bound [20, 21] is 7, due to the clique composed of {g1, g2, g3, g4 }-
The contribution of each of the genotypes g1, g2 and g3 is 2, because these geno-
types have heterozygous sites, and the contribution of g4 is 1, since this genotype
has no heterozygous sites. Starting from the clique lower bound, Algorithm 2
increases the lower bound to 9, by considering g5 and gg, and increasing the
lower bound by 1 due to each genotype. Let {h1, ha, hs, ha, hs, he, b7, hs, hg} be
the haplotypes identified with the improved lower bound. Due to the way the
SHIPs lower bound is constructed, it is possible to associate haplotypes with
specific genotypes. As a result, let {h1, h2} be associated with g1, {hs3, ha} with
92, {hs, he} with g3, {h7} with g4, {hs} with g5, and {hg} with gs. As a result,
the haplotypes associated with g1, g2 and g3 are known, and so it is unnecessary
to use clauses to select from the set of candidate haplotypes. The same holds
true for g4 with respect to hy, because g4 has no heterozygous sites. Finally,
for g5 and gg, one of the haplotypes is known, respectively hg and hg, and it
is only necessary to select the remaining haplotype from the set of candidate
haplotypes. The only haplotype not used for the lower bound, g7, requires con-
sidering as candidate haplotypes all haplotypes not associated with genotypes



Table 1. Relations between genotypes and haplotypes in example

Genotype Compatible Genotypes Sets of Candidate Haplotypes
91 {g7} {ha}, {ha}

92 {9596} {hs}, {ha}

93 0 {hs}, {he}

94 {95, 97} {h7}

gs {92,914, 96, 97} {hs}, {hs, ha,h7, ho}

g6 {92,95} {ho}, {hs, ha, hs}

g7 191,94, 95} {h1, ho, hr, hs}, {ha, ho, he, hs}

incompatible with g7. Since the lower bound is 9, the first iteration of the SHIPs
algorithm considers 9 haplotypes. As explained above, for g1, g2, g3 and g4 it is
unnecessary to select haplotypes, since the associated haplotypes are known. For
gs and gg only one of the explaining haplotypes needs to be selected from the set
of candidate (and potentially compatible) haplotypes, since the other explaining
haplotype is known to be hg and hg, respectively. Finally, for g7, both haplo-
types explaining g7 must be selected from the set of candidate haplotypes that
are potentially compatible. These conditions are summarized in Table 1. Without
simplifications from the lower bond information, each of the 7 genotypes would
have to select two haplotypes from a set of 9 possible haplotypes. Besides the
significant reduction in the number of clauses, the number of auxiliary variables
is also reduced.

5 Improving Lower Bounds with Local Search

The clique-based method for computing lower bounds is not guaranteed to find
the best lower bound. Firstly, the maximal clique is computed using a greedy
algorithm, which may of course find a clique of less than maximum size. Secondly,
even a maximum clique would not be guaranteed to lead to the best result, as a
smaller clique might lead to a greater lower bound when adding genotypes in the
extended method described above. Thirdly, the lower bound may be sensitive to
the order in which genotypes are added during the extended method.

To find the best possible lower bound using the above forms of reasoning,
we should in principle test all cliques in the first method and all orderings in
the second method. This is clearly impractical and probably more expensive
than using an inferior lower bound. But we can perform a limited search for a
clique and genotype ordering that gives the best lower bound. This is an NP-
hard problem: any maximal clique problem (which is itself NP-hard) can be
expressed as the search for a clique plus an empty ordering, by constructing a
set of genotypes that are heterozygous in all sites, and mutually incompatible if
their corresponding graph vertices are adjacent.



5.1 The Problem of Finding an Optimal Lower Bound

The specific problem we aim to solve is as follows. Construct a sequence of
genotypes such that each genotype has one of two possible justifications for
being in the sequence: if it has an I-justification then it is incompatible with
all earlier genotypes; if it has an H-justification it has a heterozygous site at
which all earlier compatible genotypes have the same homozygous value. Define
the score of a sequence as the sum of the scores of its members; the score of a
genotype in the sequence is 2 if it is I-justified and has at least one heterozygous
site, otherwise 1. The score s of a sequence establishes a lower bound of s for the
population. This optimisation problem can be reduced to a series of feasibility
problems: find a sequence with score 1, then 2, then 3, and so on until the score
cannot be increased. Any known lower bound (b can be exploited by starting
from score b+ 1.

We shall solve each feasibility problem by modelling it and applying a local
search algorithm. The scores can be handled by using a linear pseudo-Boolean
model, but as each score can only be either 1 or 2 it is easy to SAT-encode the
problem instead. Local search is more well developed for SAT than for pseudo-
Boolean models, and a wider range of local search algorithms are available.
Instead of assigning a score to each genotype, we allow genotypes that would
have a score of 2 to appear twice in the sequence. We must then modify the
problem so that an I-justified genotype is incompatible with all earlier genotypes
except for any copy of itself.

5.2 A SAT Model

Define SAT variables Six, I;, H;, Hijp, Xik, Yier where 1 <i < i’ <n,1<j<m,
1<k<I be{0,1}, n is the number of genotypes, m the number of sites in
each genotype, [ the sequence length, and H;, X;, Y are auxiliary variables
introduced to reduce the space complexity of the model. The meanings of these
variables are as follows: S;r; = T means that sequence element k is genotype
i, I, = T that genotype i is I-justified, H;;, that genotype ¢ is H-justified (the
genotype must be heterozygous in site j and all earlier compatible genotypes
have b in site j, and each H;j;, is defined only if genotype 4 is heterozygous in
site j), H; = T that genotype i is H-justified for some j, b, X;; = T that genotype
i does not occur in sequence position &’ for any k' < k, and Y;;; = T means that
genotype i’ cannot precede genotype i in the sequence (7,4’ are compatible). The
clauses are as follows. Define the X in terms of the S;:

Xk V Sipr
where k' < k. Define the Y;; in terms of the S;;, and Xj:
Yie VSik V Xirg
Define the H; in terms of the H;j:

Fi\/\/\/Hijb
g b



Each sequence position takes exactly one genotype:
\/ Sik
i

Sk V Sirk
Any non-totally homogeneous genotype in the sequence must be justified:

Sk VI,V H;

Any totally homogeneous genotype in the sequence must be I-justified:

Sik V I;
Any H-justified genotype appears at most once in the sequence:
Fi V gik V Xk

Any totally homozygous I-justified genotype appears at most once in the se-
quence:
I,V SV X

Any I-justified genotype with at least one heterozygous site appears at most
twice in the sequence:

iV S VS V X
where k' < k. Any I-justified genotype is incompatible with all earlier genotypes

in the sequence: 3
Ii V }/ii’

where ¢ # i’ are compatible. Any H-justified genotype constrains earlier geno-
types in the sequence:

Hijp VY

where i’ # ¢ are compatible, genotype 7 is heterozygous in site j, and genotype ¢’
has anything but b in site j. This SAT model has O(nm +nl +n?) variables and
O(nl? + n2l + n?m) literals. Without the use of auxiliary variables H;, X;x, Yiir
the complexity would be higher, which was the motivation for defining them.

5.3 Alternative models

There are several additional clauses that may be added to this model. The defi-
nition of the H; can be made if-and-only-if:

Fijb \Y Hl
We could insist that no genotype in the sequence can be both I- and H-justified:

H;VvI;



Any sequence can be transformed into one with all the I-justified genotypes
at the start. We can shift any I-justified genotype G one place earlier in the
sequence because it is incompatible with the genotype G’ that preceded it. If G
was I-justified then it still is. On the other hand, if G’ was H-justified then the
swap has no effect: G’ in its new position need not be H-justified with respect
to G because they are incompatible. We can do this by adding:

Fi \Y Ti/ VY

The sequence then corresponds to the method of the previous section in which
a clique is first constructed, then further genotypes are added. In experiments
all these additional clauses either made little difference or slowed down local
search. This is consistent with the known result that adding symmetry breaking
and other clauses can harm local search performance [28]. It is often (though
not always) best to omit clauses that are unnecessary for correctness.

Lower bounds might be further improved by devising additional justifications
for adding a genotype to the sequence, using higher-order reasoning on multiple
sites. Here is an example that works on triples of sites, which we call a T-
Justification.

Ezxample 5. Suppose that genotype ¢ is heterozygous in sites j < j' < j”, and
all earlier genotypes in the sequence are homozygous and take one of the four
patterns bbb, bbb, bbb, bbb in those sites, where b € {0,1} and b = 1 — b. Then we
may add genotype 7 to the sequence because no pair of haplotypes explains the
three heterozygous sites.

To use T-justifications we modify the SAT model by defining variables T/ s
for each genotype ¢ that is heterozygous in sites j,j’,j”, if at least one other
genotype follows one of the four allowed patterns in those sites. We also define
auxiliary variables T} by:

T;V \/ \/ \/ \/ Tijjim
i g " b

Now any genotype in the sequence has a larger choice of justifications:

S VL VH VT
Any genotype with a T-justification appears at most once in the sequence:
TiV Sik V Xik
Any genotype with a T-justification constrains earlier genotypes in the sequence:

Tijjrjro V Yiir

where genotypes i’ # i are compatible, genotype 7 is heterozygous in sites 7, 7/, 5",
and genotype i’ is homozygous and does not follow one of the four allowed



Algorithm 4 The new local search variant VW3

LOCAL-SEARCH(p, q, S)

1 Initialise all variables to randomly selected truth values
2 Initialise all variable weights to 0

3 repeat
4 Randomly select a violated clause C
5 if C contains freebie variables
6 then Randomly flip one of them
7 else
8 rp = random()
9 ifrp<p
10 then
11 rq = random()
12 if rq < g
13 then Flip a variable in C chosen randomly
14 else Flip a variable in C with least weight
15 else Flip a variable in C with fewest breaks,
16 break ties by least weight
17 Update flipped variable weight using s
18 until no clause is violated

patterns in those sites. A drawback with T-justifications is that they increase
the complexity of the model to O(nm? + nl + n?) variables and O(nl? + n?l +
n?m3) literals. We were therefore only able to perform experiments on small
instances, on which no lower bound improvements were found. We do not use
T-justifications in the experiments below but hope to develop them in future

work, possibly by lifting the SAT model via quantification.

5.4 The Local Search Algorithm

As mentioned above, it would be impractical to explore all solutions to this SAT
problem, and in preliminary experiments complete solvers took much longer
than local search algorithms to find solutions. We experimented with several
well-known algorithms and obtained our best results with a new variant of the
VW algorithm [29], which we now describe.

VW is based on the SKC variant of the well-known WalkSAT algorithm
[25,31]. Tt dynamically adjusts weights associated with variables, instead of the
clause weights used in several other algorithms (see [15] for a survey on these
dynamic local search algorithms). Most SAT local search algorithms randomly
select a violated clause, then use a heuristic to select a variable in that clause
to flip (invert its truth current value). The heuristic used by WalkSAT /SKC is
to choose the variable v with smallest break count b,, defined as the number of
satisfied clauses that would be violated by the flip. VW adjusts this heuristic by
adding a term c(w, — M) to b, where ¢ is a constant, w, is the current weight of
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Fig. 2. Run length distributions for five HIPP instances

v, and M is the mean current weight over all variables. In common with SKC,
VW also uses freebie moves: while checking the break counts of variables in a
violated clause, if it detects one with zero break count then it is immediately
selected. Also in common with SKC, if no freebie occurred then with probability
p select a random variable from the clause, where p is a noise parameter. After
selecting and flipping v its weight is adjusted according to the formula

wy — (L =8)(wy +1)+sxt

where s is a smoothing actor.

VW has three parameters that must be chosen by the user at runtime: ¢, s, p.
This makes it quite difficult to tune. In particular, parameter ¢ is a positive
number with no upper bound, and best results may be obtained with a very
small number such as 1076 or a value greater than 1. To make tuning easier we
now define a new VW variant in which parameter c is replaced by a probability
q. The effect of nonzero ¢ is to allow variables to be occasionally chosen purely
on the basis of their weights, ignoring their break counts. This has a similar
effect to the ¢ parameter, which allows sufficiently large weights to override the
effects of break counts. In experiments we found that setting p = ¢ usually gives
reasonable results, so we can often eliminate parameter q. The new variant is
much easier to tune, and in all the experiments below we use parameter settings
p=¢q=s=0.1. [29] defined two earlier variants VW1 and VW2 so we call the
new variant VW3. It is summarised in Algorithm 4.

VW3 with these parameter settings was tested for search stagnation, which
might occur if (for example) the noise parameter was set to a very low value.



We generated run-length distributions (as suggested in [16]) for five problems,
using SAT instances corresponding to the highest lower bounds that we could
establish, performing 10,000 runs in each case. The plot in Figure 2 shows that
stagnation does not occur. Each of the five problem instance was solved 1,000
times and there is no flattening of the curves that would indicate stagnation.

6 Experimental Results

In this section we provide empirical evidence that the use of local search is
able to tighten lower bounds for solving the HIPP problem. In addition, the
identification of a tighter lower bound by local search significantly decreases the
CPU time required by SHIPs to solve a given problem instance.

6.1 Experimental Setup

We have evaluated a set of 419 problem instances that can be divided in two
categories:

— 90 problem instances were created based on the ibd problem described in [4]
for which the corresponding haplotypes are available from http://htsnp.
stanford.edu/PCA/IBD.html. Our 90 problem instances correspond to sets
of genotypes that were obtained by pairing randomly chosen haplotypes. We
should note that these instances have been selected for being the hardest for
SHIPs to solve from those considered in [21]. (The remaining instances are
trivially solved and are therefore irrelevant for our purposes.) The ibd prob-
lem described in [4] corresponds to a 500-kb region on human chromosome
5q31 that is implicated as containing a genetic risk factor for Crohn disease.
After high-density SNP discovery, were selected 103 common SNPs (i.e. with
>5% minor allele frequency) genotyped in 129 trios from a European-derived
population. Half of the instances correspond to chromosomes transmitted
to 258 individuals with Crohn disease and the remaining ones to 258 un-
transmitted chromosomes. An EM-type algorithm [5, 8] was used to include
the minority of chromosomes that had one or more markers with ambiguous
phase (that is, where both parents and offspring were heterozygous) or where
one marker was missing genotype data.

— 329 problem instances correspond to the SU1, SU2, SU3 and SU-100kb in-
stances available from http://www.stats.ox.ac.uk/~marchini/phaseoff.
html and described in [30]. These simulated datasets have been used to eval-
uate phasing methods in the paper [24]. SU1 instances correspond to 100
data sets of 90 unrelated individuals simulated with constant recombination
rate across the region, constant population size, and random mating. Each of
the 100 data sets consisted of 1 Mb of sequence. SU2 instances are the same
as SU1, but with the addition of a variable recombination rate across the re-
gion. SU3 instances are the same as SU2, except that a model of demography
consistent with white Americans was used. SU-100kb instances are identical
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to the SU3 set, except that the sequences are only 100 kb in length. Each
of these 100-kb data sets was created by subsampling a set of 1,180 simu-
lated haplotypes. The remaining 1,000 haplotypes were used to estimate the
true population haplotype frequencies. This allowed a comparison of phasing
algorithms ability to predict the haplotype frequencies in a small region of
interest. These instances are in general harder for SHIPs than the ones used
in [21].

6.2 SHIPs performance

A comparison of the performance of alternative approaches to the HIPP problem
is summarized in Figure 3. A universe of 419 problem instances described above
was used. All problem instances were simplified in a preprocessing step, according
to what has been suggested in [2]: duplicated genotypes and sites were removed,
as well as complemented sites.

The HIPP solvers RTTP [11], PolyIP [1], HybridIP [2], Hapar [35] and SHIPs [21]
were considered®. In addition, we give results for two versions of SHIPs: the one
described in [20] (SHIPs.v1) and the one introduced in this paper (SHIPs.v2).
The run times for each solver were sorted and plotted, the cutoff point being
1000 seconds. The results shown were obtained on a 1.9 GHz AMD Athlon XP
with 1GB of RAM. For the ILP-based HIPP solvers, the ILP package used was
CPLEX version 7.5.

5 All results were obtained with the tools provided by the authors.
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As can be concluded, SHIPs.v2 is the HIPP tool capable of solving the
largest number of problem instances. SHIPs.v2 aborts 87 problem instances out
of 419 instances, whereas SHIPs.v1 aborts 263 instances, HybridIP aborts 315
instances, PolyIP aborts 325 instances, RTIP aborts 382 instances and Hapar
aborts 401 instances. We should also note that most of the problem instances
aborted by RTIP were aborted due to memory exhaustion. These results pro-
vide additional support that better lower bounds can contribute decisively for
improving SHIPs performance.

6.3 SHIPs performance with local search

We first compare the SHIPs lower bound described in [20,21] with the SHIPs
improved lower bound described earlier in this paper. Next we will evaluate the
impact of the use of local search on SHIPs performance. These experiments were
run on an Intel Xeon 5160 (3.0GHz with 4GB of RAM) with a timeout of 1000
seconds.

Our evaluation of the new lower bound considers two different aspects: the
required CPU time and the quality of the new bound. In terms of CPU time
the difference is negligible: for the 419 instances the new lower bound requires
7.93 seconds more than the old one (94.78 versus 86.85). The quality of the
new lower bound can be analyzed from Figure 4. Overall, the new lower bound
can represent as much as an increment of 40 haplotypes with respect to the
previous bound. On average we observe an increment of 19 haplotypes. (From
now on, whenever we refer to SHIPs we mean the SHIPs procedure that uses
this improved lower bound.)



Next we evaluate the impact of the use of local search on SHIPs performance.
We start by observing that although the selected classes of instances are among
the hardest for SHIPs, some specific problem instances from different classes are
easily solved in a few seconds. Moreover, the use of local search for improving
the lower bound requires additional time, and therefore we decided to run SHIPs
for a few seconds before using local search. Only for the unsolved instances is
the use of local search justified.

After running SHIPs for 100 seconds we found that only 100 instances re-
mained to be solved. SHIPs was able to solve 207 instances in less than 1 second,
299 instances in less than 10 seconds, 315 instances in less than 50 seconds and
319 instances in less than 100 seconds. Given the reduced number of instances
solved between 50 and 100 seconds, it seems clear that running SHIPs for longer
is not cost-effective. (Actually, we have run SHIPs for longer and observed that
the improvements were negligible.)

The next step is to use local search to improve the lower bound. The local
search procedure requires a lower bound value as input. Starting at this value,
it tries to find a solution with the given size. In the next iteration this size is
increased. We can now consider three different possibilities with respect to the
lower bound value to be given as input:

1. The rank lower bound;
2. The lower bound computed by SHIPs;
3. The last problem proved unsatisfiable by SHIPs.

Also, we must decide for how long the local search procedure should run.
We have already lost 100 seconds running SHIPs without finding a solution, but
we can retry it after improving the lower bound. Regardless of the value to be
passed as input to the local search procedure, we chose a run-time of 200 seconds
as a good trade-off: if we run it for a shorter period of time then we are not able
to find a new bound for many problem instances, or the improvement is not
significant, and therefore the use of local search is not beneficial; if we run it for
longer then we are not able to further increase the lower bound for most problem
instances, and again most of the time is wasted for many problem instances.

With respect to the different possibilities to be given as input, we observed
that the lower bound computed by SHIPs is the most effective one, despite the
facts that the rank lower bound has in some cases a higher value and that the
value given by the last problem proved to be unsatisfiable by SHIPs is almost
always higher than the SHIPs lower bound. Both approaches for finding a lower
bound - SHIPs and local search - are based on identifying a clique and therefore,
not surprisingly, they seem to be complementary.

The lower bounds obtained from the matrix rank or from SHIPs last itera-
tion are based on different concepts. Consequently, local search can hardly find
a new lower bound or even prove that the input lower bound is indeed a lower
bound. Given the SHIPs lower bound, local search is able to find a new bound
for 99 out of 100 problem instances within 200 seconds. On the other hand, local
search is able to find a new lower bound for 26/100 instances when given the
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rank based lower bound and for 5/100 instances when given the value corre-
sponding to SHIPs last unsatisfiable iteration. From the 26 instances for which
the local search procedure succeeds when given the rank lower bound, only for
6 instances the lower bound is better than the one computed when given the
SHIPs lower bound. Clearly, for the lower bounds different from the one com-
puted by SHIPs the use of local search is hardly an advantage and may even
be seen as a disadvantage if we have to take into account for the time spent on
local search.

At this point we have already defined the experimental procedure, that can
be summarised as follows:

1. Run SHIPs for 100 seconds (and terminate if solution is found);

2. Use local search for 200 seconds to improve the lower bound computed by
SHIPs;

3. Run SHIPs again for 700 seconds.

The main goal is to get better results following this procedure when compared
with running SHIPs for 1000 seconds. We will first evaluate how does local search
improve the lower bound and afterwards we will evaluate the impact of the new
lower bound on solving the HIPP problem instances.

Figure 5 illustrates the difference between the new lower bound provided by
the local search procedure and the (improved) SHIPs lower bound. The lower
bound improvements range from 0 to 9 haplotypes, and local search does not
improve the lower bound for only one instance. On average, the lower bound is
incremented in 7 haplotypes.

Observe however that even a small increment in the lower bound may sig-
nificantly reduce the size of the generated CNF formula, which is also expected
to significantly reduce the required CPU time. Figure 6 compares the formulas
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generated by SHIPs when not using the local search procedure with the formulas
generated by SHIPs enhanced with the local search procedure. The comparison
is made in terms of the number of literals in the formula. Given a lower bound
lb generated by local search, we have compared the formula produced by the
standard SHIPs procedure, given the value [b, with the formula produced by
SHIPs when given not only the value Ib but also the output produced by the lo-
cal search procedure. This output contains information relating the lower bound
value with specific genotypes. Overall, the reduction is significant, specially for
larger formulas.

Figure 7 evaluates the impact of the local search procedure in SHIPs. Each
point corresponds to a problem instance, where the x-axis corresponds to the
CPU time required by SHIPs when enhanced with the local search procedure,
and the y-axis corresponds to the CPU time required by the standard SHIPs
procedure for solving the instance. We should note that the standard SHIPs
procedure utilizes the improved lower bound procedure. Hence, these results
evaluate exclusively the impact of the use of local search for improving SHIPs
performance.

The most relevant result that can be inferred from Figure 7 is that SHIPs
aborts 80 problem instances, whereas SHIPs enhanced with local search only
aborts 43 problem instances. Considering that each unsolved problem instance
counts for 1000 seconds (the CPU time limit), then SHIPs has used 87,030
seconds, whereas SHIPs enhanced with local search only uses 65,155 seconds. The
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time difference is not more significant because when using local search the first
step consists in running SHIPs for 100 seconds. Consequently, for all instances
solved in less than 100 seconds the time required for both approaches is the
same. In addition, for the instances not solved in less than 100 seconds we have
to account for at least 300 seconds (100 seconds for SHIPs 4+ 200 seconds for
local search). This explains why a significant subset of instances is solved in
slightly over 300 seconds.

The speedup resulting from the use of local search is significant on instances
previously aborted by SHIPs. 25 of the 37 problem instances that are only solved
by SHIPs with local search are solved in less than 400 seconds. In practice, this
means that SHIPs, when given the lower bound computed by local search, is
now able to solve in less than 100 seconds a problem instance that could not be
solved in less than 1000 seconds. (We should however take into account that we
have spent at least 100 seconds and at most 300 seconds before running the new
version of SHIPs.)

7 Conclusions

The SAT-based SHIPs approach was previously shown to be the most effective
approach to the HIPP problem on a range of problem instances. This paper
significantly improves its performance on challenging instances by using a SAT



local search procedure to improve lower bounds, before using the complete SAT
solver to find and prove an optimal result. The new procedure allows SHIPs to
solve challenging instances that were previously unsolvable. It does so in two
distinct ways. Firstly, it reduces the number of iterations that SHIPs needs to
make to find an optimal solution (SHIPs increases the lower bound until the first
solution is found). Secondly, it allows the SAT model to be considerably reduced
in size, thus increasing efficiency.

It is often noted that the backtrack search and local search paradigms have
complementary strengths and weaknesses, and an active research area is the
design of hybrid approaches that exploit the strengths of both. In particular,
local search can be used to improve upper bounds in a minimisation problem
(or equivalently lower bounds in a maximisation problem) by quickly finding
near-optimal solutions; backtrack search is then used to find an optimal solution
and to prove it optimal. A novel aspect of our work is that local search is used to
improve lower bounds for a minimisation problem, which is then used to improve
backtrack search.

In future work we hope to improve lower bounds further, by investigating the
extended reasoning outlined in Section 5. To handle the resulting greater space
complexity of the SAT models, we may use quantification to generate clauses
as needed during search. Alternatively, a Constraint Programming model might
be more compact, if a large family of clauses can be represented by a global
constraint.
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