
Boosting Locality in Multi-version Partial Data Replication

João A. Silva, João M. Lourenço and Hervé Paulino
NOVA LINCS/Departamento de Informática, Faculdade de Ciências e Tecnologia

Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
jaa.silva@campus.fct.unl.pt {joao.lourenco,herve.paulino}@fct.unl.pt

ABSTRACT
Partial data replication protocols for transactional distri-
buted systems present a high scalability potential, but suffer
from a shortcoming of the utmost importance: data access
locality. In a partial data replication setting, performance
can be boosted by serving transactional read operations lo-
cally and preventing the expensive overhead of inter-node
communication. In this paper we address this concern by
proposing a generic caching mechanism directed towards
multi-version partial data replication protocols and illustrate
its application in a specific protocol, namely SCORe. Exper-
imental results corroborate the effectiveness of the proposed
caching mechanism in read-dominated workloads, where it
clearly improves the system’s overall throughput.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems; D.1.3 [Programming Techniques]: Con-
current Programming—Distributed Programming

General Terms
Algorithms, Design, Experimentation

Keywords
Cache; Multi-version; Partial Data Replication; Concurrency
Control; Distributed Systems

1. INTRODUCTION
A popular approach for addressing the requirements of

high availability and scalability in transactional systems is
the employment of data distribution and replication [3, 6,
8, 17]. When using full data replication [3, 6, 11, 12] each
node replicates the entire system’s data. This replication
strategy allows all data accesses to be served locally, but
in large scale systems it induces undesirable overheads by
requiring the coordination of all the system’s nodes when
propagating updates.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SAC’15 April 13–17, 2015, Salamanca, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3196-8/15/04 ...$15.00
http://dx.doi.org/10.1145/2695664.2695851

An alternative approach to full replication is partial repli-
cation [17,18], whereby each node replicates only a subset of
the system’s data. Partial replication provides some (config-
urable) fault tolerance while achieving high scalability due
to its genuineness property. In genuine partially replicated
systems, committing a transaction involves only the nodes
replicating data items that were accessed by the committing
transaction [17].

The high scalability potential of partial replication proto-
cols is bounded by the average latency of read operations.
As each node in the system only replicates a subset of the
entire system’s data, some read operations are served lo-
cally and have low latency, while others must entail inter-
node communication to access remote data and have high
latency. Moreover, when the number of nodes in the system
increases the number of remote read operations increases as
well, which will eventually hamper the system’s performance
if no techniques are employed to improve the locality of data
access.

Data access locality can be improved by using caching
techniques, which create and manage local copies of fre-
quently accessed remote data items, and are known to be
effective in read-dominated workloads. However, integrating
a caching mechanism in a system that makes use of partial
replication while keeping strong consistency guarantees is a
challenging task. It requires a lightweight consistency al-
gorithm able to maintain the original protocol’s correctness
properties, while serving read operations based on cached
data. Leveraging on the caching mechanism to improve the
replicated system’s performance raises two main problems,
namely: (i) it shall not affect the correctness of the algori-
thm, i.e., shall not affect the originally provided consistency
guaranties; and (ii) it shall not have a negative impact in
the freshness of the data observed by the transactions.

This paper addresses the challenges of designing an ef-
ficient caching mechanism supporting multi-version partial
replication protocols, and have the following contributions:
(1) the design of a caching mechanism (discussed in §3)
targeting replication protocols providing strong consistency
guarantees—which generalizes previous work by Pimentel et
al. [15]—and is malleable to the point of being used with
multi-version partial replication protocols that use scalar
logical timestamps; (2) a concrete implementation of the
proposed caching mechanism (discussed in §4) developed on
top of the ReDstm [19] distributed transactional memory
(DTM) framework and applied to SCORe [13]; and (3) the
characterization of which transactional workloads may ben-
efit from the proposed caching system (discussed in §5).

2. SYSTEM MODEL
We consider a classical asynchronous distributed system

comprised by Π = {n1, . . . , nk} nodes. We assume nodes
communicate only through message passing, thus having no
access to any kind of shared memory or global clock. Mes-
sages can experience arbitrarily long (but finite) delays and
we assume no bound on the nodes’ computational speed nor
on their clocks skews. We consider the classical crash-stop
failure model, whereby nodes can fail by crashing but do not
behave maliciously.

In partial replication scenarios, each node ni ∈ Π repli-
cates only a subset of the system’s data and we assume each
data item is tagged with an unique identifier. As in classi-
cal multi-version concurrency control (MVCC) [1], each data
item d is represented by a sequence of versions 〈k, val, ver〉,
where k is the unique identifier of d, val is its value and ver
is a monotonically increasing scalar logical timestamp that
identifies (and totally orders) the versions of d.

We abstract over the data placement strategy by assum-
ing that the data is divided across p data partitions, and
that each partition is replicated across r nodes, i.e., r repre-
sents the replication factor of each data item. We represent
by gj the group of nodes that replicate partition j, and we
also say that gj is the owner of partition j. Nodes may be
shared by different groups. We assume that for each par-
tition there exists a single node called master, represented
by master(gj). Each group is comprised by exactly r nodes
(to guarantee the target replication factor), and we assume
that not all of them crash simultaneously.

We model transactions as a sequence of read and write
operations on data items, encased in an atomic block. Each
transaction originates on a node ni ∈ Π, and can read
and/or write data items in any replicated partition. We
also assume that transactions are dynamic, i.e., we have no
prior knowledge on the set of data items accessed (read and
written) by transactions. Given a data item d, we repre-
sent as replicas(d) the set of nodes that replicate d, i.e., the
nodes of group gj that replicate the data partition contain-
ing d. Given a transaction T , we define participants(T) as
the set of nodes which took part in a transaction, namely⋃

d∈F replicas(d), where F = readSet(T) ∪ writeSet(T)
(i.e., F is the set of data items read or written by T). We
also assume that every transaction T has two scalar times-
tamps: a start timestamp, called T.tsS , which represents
the transaction’s snapshot, and a commit timestamp, called
T.tsC , which represents T ’s serialization point.

Finally, we assume that, in each node, the replication pro-
tocol (or the MVCC algorithm) keeps a scalar timestamp,
mostRecentTSi, that represents the timestamp of the most
recent committed update transaction in node ni.

3. CACHING IN MULTI-VERSION PARTIAL
DATA REPLICATION

In this section, we address the two challenges identified
in §1 and propose a generic caching mechanism targeting
multi-version partial replication environments. Our solu-
tion is two-fold: (i) a cache consistency algorithm, which
allows to determine if a transaction can safely read cached
data items while still preserving the replication protocol’s
correctness properties; and (ii) an asynchronous validity ex-
tension mechanism, aimed at maximizing the freshness of
the data items maintained in cache.

Algorithm 1 Read operation on the local node.

1: function readCache(Key k, Timestamp ts)
2: Version v ← getVisible(k, ts)
3: if v 6= null then
4: if ts < v.validity then return v

5: return null

6: function getVisible(Key k, Timestamp ts)
7: Versions vers ← cache.getVersions(k)
8: if vers 6= null then
9: Version v ← vers.mostRecentV ersion
10: while v 6= null do
11: if v.version ≤ ts then return v
12: else v ← v.prev . v.prev is v’s previous version

13: return null

3.1 Ensuring Data Consistency
To ease implementation, both cached and non-cached data

items are maintained in multi-version data containers. How-
ever, unlike the versions of non-cached data, the versions of
cached data items are augmented with additional informa-
tion enabling the operation of the consistency algorithm.
A version of a cached data item d is a sequence of tuples
〈k, val, ver, validity〉, where k is a unique identifier for d;
val is a value for d; ver is the timestamp of this value for d;
and validity is the timestamp up to when this value is valid,
i.e., the timestamp that represents the most recent snapshot
in which this version represented the freshest value for d.

In a read operation, the local node is the one that requests
the data item and which originates a remote read operation
if the data item is not replicated locally. In turn, the remote
node is the one that receives the remote read request and
replies with the requested data item.
Read operation in the remote node. When a remote
node nj receives a remote read request for a data item d, it
responds with the value of d, the data item version v, and
the respective version’s validity timestamp v.validity. If v
is the most recent version of d, its validity is the timestamp
of the last update transaction to have committed on node
nj , i.e., mostRecentTSj . Otherwise, v.validity is set to the
timestamp of the last transaction to have committed on node
nj before the transaction that overwrote v, i.e., v.validity is
set to the most recent committed snapshot on nj in which
v was still the most up to date version of d.
Read operation in the local node. Algorithm 1 de-
scribes the behaviour of a read operation in the local node
ni. When a transaction T needs to read a data item d, it first
looks up for the data locally. If the data item d is replicated
in the local node (i.e., ni ∈ replicas(d)), the read operation
can be satisfied locally. Otherwise, d is considered to be
remote. In the latter case, with the addition of the cache
consistency algorithm, now T first inquires the cache data
container about d and only then, if d is not found, it issues
a remote read request for d. A cache value for d can only be
used if there is some version v of d that was created before
T began. This validity check works by checking v.version
and T.tsS : it selects the most recent version having version
less than or equal to T.tsS (Lines 10–12).

When v is found (Line 3), an additional check is still re-
quired to ensure that it is safe for T to read v: T.tsS is
compared against v.validity (Line 4), and if the check fails,
v is considered obsolete because there may exist a newer
version on the remote node that is still unknown in the lo-
cal node, i.e., a fresher version may have been committed
by some transaction that should be serialized before T , and

Algorithm 2 Extension operation on the sender node ni.

1: function getModifiedSet(NodeId j)
2: Timestamp mostRecent ← mostRecentTSi

3: Timestamp lastSent ← lastSentV alue[j]
4: Set mSet ← ∅
5: if mostRecent > lastSent then
6: for all txn ∈ committedTransactions do
7: if txn.tsC > lastSent then
8: for all item ∈ txn.writeSet do
9: if isPrimaryOwner(item) then mSet← mSet∪{item}
10: return [mSet,mostRecent]
11: lastSentV alue[j] ← mostRecent

12: return null

whose updates T should observe. Otherwise, T can safely
read v. If any of the checks fail, a cache miss is forced (by
returning a null value) and a remote read request for d is
issued.

3.2 Maximizing Cache Effectiveness
According to Algorithm 1, a transaction T can safely read

a cached version v only if v.validity ensures that it is suf-
ficiently fresh given T.tsS . On the other hand, as usual
in MVCC, at the beginning of a transaction (in node ni)
its timestamp tsS is set to mostRecentTSi, i.e., the times-
tamp of the last update transaction to have committed in
ni. This ensures that any freshly started transaction T will
necessarily observe the updates produced by any committed
transaction involving T ’s originating node.

The timestamps of transactions tsS increase monotoni-
cally to reflect the data modifications in the system. Hence,
the validity timestamp of a cached version needs to be re-
freshed (extended) to maximize the chance of success when
serving read requests from cached data. This is achieved by
the validity extension mechanism described in Algorithms 2
and 3.
Extension operation in the sender node. The validity
extension mechanism consists in strategically broadcasting
extension messages, and appropriately updating the validi-
ties of the data items referenced by the extension message.

The getModifiedSet function (in Algorithm 2) describes
the operations performed by a node ni to build a modifica-
tions set (mSet) intended for another node nj . A mSet
is a set that contains the identifiers of all the data items
of which the sender node ni is the primary owner (i.e.,
∪d∈partitionjni = master(gj)) and that were modified since
the last time a mSet was built for nj . To allow this, each
node ni keeps track of all the transactions in which it partici-
pates (denoted as committedTransations), i.e., ∪txn∈T ni ∈
participants(txn) (where T is the set of all transactions).
For each other node nj it also maintains the timestamp tsC

of the last committed transaction when ni sent an extension
message to nj (denoted as lastSentV alue[j]).

Logically, a mSet is built by iterating through all the com-
mitted transactions in node ni starting from the most re-
cent transaction to the transaction with commit timestamp
tsC = lastSentV alue[j] + 1, and merging the write-sets of
all the corresponding transactions.
Extension operation in the receiver node. Exten-
sion messages can be disseminated asynchronously across
the system using various propagation strategies (provided
that the dissemination is done with FIFO ordering). We de-
fined three basic dissemination strategies: Eager, an exten-
sion message is broadcast whenever a transaction commits

Algorithm 3 Extension operation on the receiver node.

1: Validity[] mostRecentV alidities ← Validity[Π]

2: function extVals(Set mSet, Timestamp mostRecent, NodeId i)
3: for modifiedItem ∈ mSet do
4: Versions vers ← cache.getVersions(modifiedItem)
5: if vers 6= null then
6: Version v ← vers.mostRecentV ersion
7: if v.validity.isShared() then
8: v.validity ← [v.validity.validity, false]

9: Validity mrv ← mostRecentV alidities[i]
10: if mrv = null then
11: mostRecentV alidities[i] ← [mostRecent, true]

12: else mrv.validity ← mostRecent

at some node; Batch, each node broadcasts an extension
message with a fixed (configurable) frequency; and Lazy, an
extension message is only disseminated when a node receives
a remote read request, by piggybacking it in the remote read
response.

Finally, Algorithm 3 presents the extension process ex-
ecuted when a node receives an extension message (from
node ni). An extension message is comprised by a mSet, and
the timestamp of the most recent committed update transac-
tion at the time the mSet was built (denoted mostRecent).

Function extVals is triggered when an extension mes-
sage is received. The most recent version of each cached
data item owned by ni that is not included in the mSet
(i.e., it was not updated meanwhile) may have its validity ex-
tended to mostRecent timestamp. The process of extending
the validities could be achieved by iterating all the cached
versions to identify and update the validity of the appro-
priate cached items. To do this more efficiently, the exten-
sion process associates a single shared validity (denoted as
mostRecentV alidities[i]), to all the data items of node ni

whose cached versions are known to be up to date at the time
the mSet was built. Hence, each shared validity is comprised
by the validity value itself (denoted v.validity.validity), and
a boolean value representing if the validity is in fact shared
or not (accessible through the isShared function).

By executing function extVals, two operations are per-
formed: all data items contained in the mSet are detached
from the shared validity (Lines 3–8), by cloning its value into
a private validity; and the value of the shared validity for
node ni (mostRecentV alidities[i]) is updated to mostRecent
(Lines 9–12), instantly extending the validities of the most
recent cached versions.

4. IMPLEMENTATION
We applied the caching mechanism described in §3 to a

specific partial replication protocol, namely SCORe [13].
SCORe is a multi-version partial replication protocol pro-
viding 1-copy-serializability (1CS). As usual in MVCC, in
SCORe each node maintains a list of versions for each repli-
cated data item. The versions that are visible to a transac-
tion T are determined via T.tsS , which is established upon
its first read operation. We omit a description of SCORe’s
commit phase, which is not required for the understanding
of the operation of the cache mechanism.

Read operations require the definition of which of the
existing versions should be visible to a transaction. This
is achieved using the following three rules: R1 Snapshot
lower bound, in every read operation on a node ni, SCORe
verifies that ni is sufficiently up to date to serve transaction

Algorithm 4 Adaptation of Algorithm 1 for SCORe.

1: function readCache(Key k, Timestamp ts, boolean firstRead)
2: Version v ← getVisible(k, ts, firstRead)
3: . . .

4: function getVisible(Key k, Timestamp ts, boolean firstRead)
5: Versions vers ← cache.getVersions(k)
6: if vers 6= null then
7: Version v ← vers.mostRecentV ersion
8: if firstRead then return v
9: . . .
10: return null

Algorithm 5 Adaptation of Algorithm 2 for SCORe.

1: function getModifiedSet(PartitionId j)
2: Timestamp mostRecent ← mostRecentTSi

3: Timestamp lastSent ← lastSentV alue[j]
4: Set mSet ← ∅
5: if mostRecent > lastSent then
6: for all item ∈ committedItems do
7: if isLocal(item) then mSet← mSet ∪ {item}
8: return [mSet,mostRecent, j]
9: lastSentV alue[j] ← mostRecent

10: return null

T , i.e., whether it has already committed all the transactions
that have been serialized before T according to T.tsS (this is
achieved by blocking T until T.tsS is greater or equal than
mostRecentTSi); R2 Snapshot upper bound, in order
to maximize data freshness, on the first read operation of
transaction T , T.tsS is set to the timestamp of the most re-
cent version of the data item being read; and R3 Version
selection, as usual in MVCC, whenever there are multiple
versions for some data item, the selected version is the most
recent one that has a timestamp less than or equal to T.tsS .

We applied our cache mechanism to SCORe, on top of the
ReDstm framework. ReDstm allows the implementation
of multiple replication protocols, and it follows the system
model described in §2, except that each group of nodes is
comprised by exactly r nodes, groups are disjoint, and each
data partition is replicated by only one group.
Cache Consistency Algorithm. The cache consistency
algorithm presented in §3.1 was kept almost untouched when
applied to SCORe. The only change was an (optional) op-
timization in the getVisible function (see Algorithm 4).
SCORe’s reading rule R2 determines that in the first read
operation of every transaction T , T.tsS is advanced in order
to maximize data freshness. So, when reading cached data,
we can apply the same rule and return the most recent ver-
sion of a data item when a transaction is doing its first read
operation (Line 8). Thus, allowing SCORe to advance the
transaction’s tsS .
Validity Extension Mechanism. The extension mecha-
nism suffered some mild changes, but these were optimiza-
tions as well. In ReDstm, each group of nodes replicates
only one data partition and each data partition is replicated
by exactly one group of nodes. Since each group replicates
the same data items, all the nodes in a group will be aware
of the modifications performed to the data items they repli-
cate, thus all of them will build equal mSets. Therefore,
we adapted the extension mechanism and only one node per
group, i.e., the group master, builds and broadcasts exten-
sion messages to the other nodes (for the Eager and Batch
strategies).

Algorithm 5 shows the modifications. Here, each node
keeps track of which data items (that are replicated locally)

were updated since the last mSet was sent. The part of the
extension mechanism presented in Algorithm 3 was slightly
modified. Instead of keeping the most recent validities per
node it keeps them in a per partition basis.

5. EXPERIMENTAL EVALUATION
In this evaluation we address two questions: (i) what is

the impact of the cache mechanism in the system’s overall
throughput? and (ii) what is the impact of the cache mech-
anism in the amount of remote read operations?
Experimental setup. All experiments were conducted on
a cluster with 8 nodes: 5 comprising two quad-core AMD
Opteron 2376 2.3 GHz and 16 GB of RAM, plus 3 com-
prising two dual-core Intel Xeon X3450 2.66 GHz (hyper-
threaded) and 8 GB of RAM. The operating system is De-
bian 5.0.10 with Linux kernel 2.6.26-2-amd64, and the nodes
are interconnected via a private Gigabit Ethernet. The in-
stalled Java platform is OpenJDK 6. The replication factor
of each data item was set to two. The Batch strategy was
configured with a period of 50 milliseconds.
Benchmarks. The Red-Black Tree (RBT) benchmark [7] is
composed by three transactions: insertion, which add an el-
ement to the tree (if not yet present); deletion, which remove
an element from the tree (if present); and searching, which
looks up for a specific element. Insertions and deletions are
update transactions. This benchmark is characterized by
very short and fast transactions. Elements are chosen and
partitioned at random, keeping contention at very low levels.

The Vacation benchmark is part of the STAMP suite [9].
It emulates a travel reservation system implemented as a set
of binary trees tracking customers and their reservations for
various travel items. It has 3 write transactions: reserva-
tions, cancellations, and updates. We modified Vacation to
add a read-only transaction that consults reservations.

5.1 Results
The best scenario for a caching technique is a read-domina-

ted workload, with few update transactions. In this case,
the cache can serve more read operations from the cached
values. Fig. 1 shows measurements from running the RBT
benchmark with and without cache (NoCache in the plots).
Fig. 1a displays the throughput of the system for 3 work-
loads, respectively from left to right, 0%, 10% and 50% up-
dates. Then, Fig. 1b exhibits the percentage of remote read
operations requested by the system in the same 3 workloads
(regarding the total percentage of read operations).

With 0% updates—the most favorable scenario—we can
see that the system with cache, for all 3 dissemination strate-
gies, performs much better than the system without cache
and scales with the number of nodes. In fact, since data
is not updated, the extension mechanism is only executed
once in the first read of each needed data item, and from
there on all the read operations of that data item are served
locally. From this behavior follows that all 3 dissemination
strategies perform exactly in the same way. Accordingly, in
Fig. 1b we can see that all 3 dissemination strategies greatly
reduce the amount of remote read operations, while in the
system without cache it follows the growth of the system.

When we increase the amount of updates, we start to see
the cache mechanism being less effective. With 10% updates
the Lazy dissemination strategy has the best performance.
This is mainly due to the fact that from all the dissemina-
tion strategies, the Lazy variant produces the least amount

2 4 6 8

1

1.5

2

Number of Nodes

S
e
c
o
n
d
s

NoCache

Batch

Eager

Lazy

Figure 2: Execution time for the Vacation (low) benchmark
with 10% updates.

of network communications. The overhead produced by the
other strategies in exchanging a great amount of extension
messages has a high impact in performance, which is ag-
gravated by the fact that this benchmark has very short
transactions, and in the workload the elements are chosen
at random inducing very low contention.

With a workload of 50% updates, the performance of the
system with and without cache is very similar due to the
overhead generated by the amount of extension messages
exchanged by the Batch and Eager strategies. In turn, the
Lazy variant begins to be affected by the costs of building
and transmitting the extension messages along the critical
path of transaction execution. In this update intensive work-
load, caching techniques are expected to be less profitable
because the intense flow of update transactions makes this
workload intrinsically hard to be cached.

The Vacation benchmark has longer transactions than the
RBT benchmark, hence we expect to see improvements in
the performance of the Batch and Eager variants. In fact,
this is exactly what we observe in Fig. 2. Since transac-
tions are longer and have larger write-sets, the fact that the
Lazy strategy introduces added costs along the critical path
of transaction execution makes it perform worst than the
other two variants. In turn, the Eager strategy presents the
best performance out of the 3, accompanied by a substantial
decrease in the amount of remote read operations.

In sum, the Lazy dissemination strategy is the one that
produces the least amount of extension messages, being at-
tractive mainly for communication intensive workloads and
for workloads that have short transactions. But, since it
introduces the assemble and transmission of extension mes-
sages along the critical path of transaction execution, it
can cause non-negligible overheads in workloads that gen-
erate large extension messages. In turn, the Eager variant is
more effective in workloads with long read-only transactions
and/or big update transactions. The Batch variant is in-
between the other two, since it presents a trade off between
producing a reduced number of extension messages and the
delays in batching them.

6. RELATED WORK
In replicated transactional systems, replication strategies

may range from full replication, where all nodes replicate all
the system’s data, to data distribution, where each data item
resides in a single node. In the middle, fit solutions exploring
partial replication, where each node replicates only a subset
of the system’s data, which we are targeting.

Most proposals of replicated transactional systems aim
for full replication [3, 11, 12], having the advantage of being
able to serve every data access locally, hence reducing inter-
node communication. However, these systems require every

node to participate in the commit phase, no mater which
data was modified by a transaction, hence requiring more
synchronization and hampering scalability. The data distri-
bution approach has also been explored [8,16], ranging from
master/slave to control/data-flow techniques.

When considering the partial replication approach, solu-
tions can be grouped according to which nodes are involved
in the commitment of transactions, and to which consis-
tency guarantees are provided. Non-genuine protocols were
introduced in [18], whereby all the nodes in the system are
necessarily involved in the commit process. Against this
approach, genuine protocols (i.e., where the commit of a
transaction involves only the nodes replicating data items
modified by that transaction) have shown to achieve bet-
ter scalability [13,14,17]. Regarding the offered consistency
guarantees, the strongest level of consistency is 1CS, which
ensures that a system with multiple replicas behaves like a
non-replicated system. However, either for performance or
by the implications of the CAP theorem [2], it is common
for transactional systems resort to weaker consistency levels,
such as snapshot isolation [18] or eventual consistency [4].

In the context of databases, Serrano et al. [18] argue that
1CS imposes strong scalability limitations and propose a
non-genuine protocol with an alternative consistency level
called 1-copy-snapshot-isolation (1SI), which explores snap-
shot isolation for managing consistency between replicas. In
turn, Schiper et al. propose P-Store [17], an efficient solu-
tion ensuring 1CS for databases, proposing the first genuine
protocol. However, it requires read-only transactions to un-
dergo a distributed validation phase. GMU [14] was the first
proposal of a genuine protocol ensuring read-only transac-
tions never abort nor are forced to undergo distributed val-
idation. SCORe [13] is very similar to GMU and may be
seen as an evolution of the latter offering 1CS (instead of
extended update serializability (EUS) offered by GMU).

Caching frequently accessed remote data is an orthogo-
nal technique to all these systems, and it can be adopted
to improve the efficiency of data accesses. Here, the main
challenge is how to preserve the consistency model when
read operations are served from (asynchronously replicated)
cached data. Pimentel et al. [15] present a cache mechanism
for the GMU protocol [14]. GMU offers EUS as consistency
guarantee and its distributed multi-version concurrency con-
trol algorithm relies on a vector clock-based synchronization
mechanism. We build on that work and generalize it by
removing protocol-specific implementation details and opti-
mizations, and make it malleable to be used by different
multi-version partial replication protocols that use scalar
logical timestamps (instead of GMU’s vector clocks).

Finally, other orthogonal techniques exist that are related
to caching, such as Tashkent [5] or AutoPlacer [10], which
attempt to dynamically tune the mapping of data to nodes,
in order to minimize the frequency of remote data accesses.

7. CONCLUSIONS
Partial replication systems present a high scalability po-

tential due to their genuineness property, but they can be
severely affected by the inefficient placement of data, which
becomes more notorious as the system grows. A possible so-
lution to tackle this problem is the use of caching techniques.
These techniques create local replicas of remote data that is
frequently accessed, in order to serve transactional read op-
erations locally. Since caching is an orthogonal technique

2 4 6 8

0.5

1

1.5
·105

Number of Nodes

T
ra

n
sa

c
ti

o
n
s/

se
c
o
n
d

0% updates

2 4 6 8

0.8

1

1.2

1.4

1.6
·104

Number of Nodes

10% updates

2 4 6 8

2

3

4

·103

Number of Nodes

50% updates

(a) Throughput in the RBT benchmark.

2 4 6 8
0

2

4

Number of Nodes

P
e
rc

e
n
ta

g
e

0% updates

2 4 6 8
0

2

4

Number of Nodes

10% updates

2 4 6 8
0

1

2

3

Number of Nodes

50% updates

(b) Percentage of remote read operations in the RBT benchmark.

NoCache Batch Eager Lazy

Figure 1: The impact of the caching mechanism in the RBT benchmark.

to transactional systems themselves, it can be used together
with other mechanisms to improve data access locality.

In this paper, we propose a generic cache mechanism adapt-
able to multi-version partial replication protocols, and apply
it to a specific partial replication protocol, namely SCORe,
as a proof of concept. The evaluation of our implementa-
tion showcases encouraging, though modest, improvements.
Further fine-tuning of implementation-specific details is still
required for our implementation of the cache mechanism to
display its full potential.

As future directions, we highlight the development of a
garbage collection mechanism for old cached versions, and an
extensive experimental evaluation using various benchmarks
with different workloads and data access patterns.

Acknowledgments
This work was partially funded by FCT-MEC, in the context
of the research project PTDC/EIA-EIA/113613/2009 and
the strategic project PEst-OE/EEI/UI0527/2014.

8. REFERENCES
[1] P. A. Bernstein et al. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

[2] E. A. Brewer. Towards robust distributed systems. In
PODC, 2000.

[3] M. Couceiro et al. D2STM: Dependable distributed
software transactional memory. In PRDC, 2009.

[4] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. SIGOPS, 2007.

[5] S. Elnikety et al. Tashkent: Uniting durability with
transaction ordering for high-performance scalable
database replication. In EuroSys, 2006.

[6] B. Kemme et al. A suite of database replication
protocols based on group communication primitives.

In ICDCS, 1998.

[7] G. Korland et al. Deuce: Noninvasive software
transactional memory in Java. Transactions on
HiPEAC, 2010.

[8] C. Kotselidis et al. DiSTM: A software transactional
memory framework for clusters. In ICPP, 2008.

[9] C. C. Minh et al. Stamp: Stanford transactional
applications for multiprocessing. In IISWC, 2008.

[10] J. Paiva et al. Autoplacer: Scalable self-tuning data
placement in distributed key-value stores. In ICAC,
2013.

[11] R. Palmieri et al. Aggro: Boosting STM replication
via aggressively optimistic transaction processing. In
NCA, 2010.

[12] F. Pedone et al. The database state machine approach.
Distributed and Parallel Databases, 14, 2003.

[13] S. Peluso et al. Score: A scalable one-copy serializable
partial replication protocol. In Middleware. 2012.

[14] S. Peluso et al. When scalability meets consistency:
Genuine multiversion update-serializable partial data
replication. In ICDCS, 2012.

[15] H. Pimentel et al. Enhancing locality via caching in
the GMU protocol. In CCGRID, 2014.

[16] M. M. Saad et al. Hyflow: A high performance
distributed software transactional memory framework.
In HPDC, 2011.

[17] N. Schiper et al. P-store: Genuine partial replication
in wide area networks. In SRDS, 2010.

[18] D. Serrano et al. Boosting database replication
scalability through partial replication and
1-copy-snapshot-isolation. In PRDC, 2007.

[19] J. A. Silva et al. Supporting multiple data replication
models in distributed transactional memory. In
ICDCN, 2015.

	Introduction
	System Model
	Caching in Multi-version Partial Data Replication
	Ensuring Data Consistency
	Maximizing Cache Effectiveness

	Implementation
	Experimental Evaluation
	Results

	Related Work
	Conclusions
	References

