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Abstract

With the emergence of telematics car driving data, insurance companies have started to 
boost classical actuarial regression models for claim frequency prediction with telem-
atics car driving information. In this paper, we propose two data-driven neural network 
approaches that process telematics car driving data to complement classical actuarial pric-
ing with a driving behavior risk factor from telematics data. Our neural networks simul-
taneously accommodate feature engineering and regression modeling which allows us to 
integrate telematics car driving data in a one-step approach into the claim frequency regres-
sion models. We conclude from our numerical analysis that both classical actuarial risk 
factors and telematics car driving data are necessary to receive the best predictive models. 
This emphasizes that these two sources of information interact and complement each other.

Keywords Densely connected feed-forward neural network · Convolutional neural 
network · Combined actuarial neural network · Claims frequency modeling · Telematics 
car driving data · Poisson regression · Generalized linear model · Regression tree · 
Telematics heatmap

1 Introduction

Product development and car insurance pricing is an important task of actuarial modeling. 
Generalized linear models (GLMs) are state-of-the-art for car insurance pricing. To over-
come some of the shortcomings of GLMs other regression models are also used, e.g., gen-
eralized additive models (GAMs) and regression trees are promoted in Henckaerts et  al. 
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(2018), boosting models are used in Henckaerts et al. (2019), Lee (2021) and Yang et al. 
(2018), or neural networks are proposed in Ferrario et al. (2018). Many pricing approaches 
have in common that they are solely based on classical policyholder information such as 
age of driver, type of car, age of car, vehicle power, etc. This classical policyholder infor-
mation is called a priori information because it is available at the conclusion of contract, 
see Verschuren (2021). Increasingly, posterior information about individual policyholder 
behavior and insurance claims is collected, and this a posteriori information is incorporated 
in insurance policy renewals. In car insurance, a posteriori information is often encoded 
in a bonus-malus system (BMS) which scores past claims history and directly affects the 
insurance prices of policy renewals by a multiplicative factor. One stream of literature on 
BMS studies optimal design, efficiency and economic questions related to BMS, see Loi-
maranta (1972), De Pril (1978), Lemaire (1995), Denuit et al. (2007), Brouhns et al. (2003) 
and Ágoston and Gyetvai (2020). A second stream of literature rather addresses the ques-
tion of how an existing BMS can be used to improve the predictive power for forecast-
ing future claims since a BMS reveals past policyholder behavior, see e.g.,   Boucher and 
Inoussa (2014), Boucher and Pigeon (2018) and Verschuren (2021).

With the emergence of telematics car driving data one can even go one step further, 
namely, one does not only have a discrete claim indicator variable (which runs into the 
BMS), but insurers receive continuously personalized car driving information about their 
policyholders. This continuous telematics data may reveal that a specific young driver has a 
cautious driving style, while a matured driver may still have a wild and aggressive driving 
behavior. Telematics car driving data will encode such differences. Our goal is to explore 
first steps on how such information can be extracted from telematics car driving data. This 
is far from being trivial because telematics car driving data comes with all its challenges 
such as big data (we typically have TBs of data that needs to be processed), data error, etc.

Our telematics data records speed and acceleration in all directions second by second 
from the start of the engine to the switch off of the engine. Current literature proposes 
three different ways to perform feature engineering on such type of data: (a) Weidner 
et al. (2016, 2017) extract covariates from time series of telematics data using discrete Fou-
rier transforms; (b) Huang and Meng (2019), Paefgen et al. (2014), Sun et al. (2020) and 
Verbelen et  al. (2018) do not directly consider telematics car driving data in time series 
structure, but rather calculate scores such as average speed, 90%-quantile of acceleration 
rates, or proportions of driving distances on different types of roads; (c) Gao et al. (2019), 
Gao and Wüthrich (2019) extract covariates from speed-acceleration heatmaps using prin-
cipal components analysis (PCA) and neural network architectures. These papers have in 
common that they first extract several potential risk factors from telematics data, and then 
select the useful ones in a second step using a regression model for claim frequency mod-
eling. This procedure has limitations because it assumes that the extracted feature informa-
tion is the relevant one, i.e.,  it involves judgment in a first step similar to manual feature 
engineering, which may not be optimal for subsequent steps.

We mention other literature on telematics data which extracts specific information. 
Ayuso et al. (2016a, b, 2019), Boucher et al. (2017) and Lemaire et al. (2016) study risk 
exposures such as driving distances or time exposures. Such information is interesting for 
two reasons. Firstly, an appropriate exposure acts as an offset in regression modeling and, 
henceforth, does not need explicit modeling. Secondly, new insurance products are devel-
oped where prices are calculated on a pay-as-you-drive (PAYD) basis. Such products may 
also be interesting from an environmental point of view because driving less makes insur-
ance less costly. Denuit et al. (2019) propose a credibility model to incorporate posterior 
information of driving behavior, this is in the spirit of BMS. Richman (2020a, b) discusses 
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possible ways to analyze telematics data. Ho et al. (2014), Hung et al. (2007) and Kamble 
et al. (2009) study telematics data and driving cycles to understand vehicular emissions, 
energy consumption and impacts on traffic in different cities of the world. The techniques 
used for these studies rely on similar tools as proposed in Gao et al. (2019).

In this paper, we use the speed-acceleration heatmap construction proposed in Gao et al. 
(2019) as a representation of driving behavior. However, in contrast to this former paper, 
we do not use a two-step approach by first scoring heatmaps and then using these scores in 
a regression analysis. In this paper, we conduct both feature engineering of the speed-accel-
eration heatmap and claim frequency regression simultaneously, using a densely connected 
feed-forward neural network and a convolutional neural network, respectively. That is, the 
networks learn a feature representation of the speed-acceleration heatmap that is directly 
used in a Poisson regression model. We start from a densely connected feed-forward neural 
network because this is the most basic neural network. Secondly, we challenge the previ-
ous approach with a convolutional neural network. Our data has a spatial structure, and it is 
known that convolutional neural networks can deal very successfully with spatial objects; 
we refer to Goodfellow et  al. (2016) for a general discussion of neural networks and to 
Chollet and Allaire (2018) for an introduction to the neural network package Keras used 
in this paper. The fundamental difference between the two types of neural networks is that 
dense layers learn global patterns on the input space, while convolution layers learn local 
patterns. Compared to dense layers, convolution layers have relatively fewer parameters 
since they apply the same convolutional operation to different local regions of the input 
space. Their main property is translation invariance which allows convolution layers to 
find similar patterns at different locations of the input space, see Wiatowski and Bölcskei 
(2018), Zhang et  al. (1988) and Zhang et  al. (1990). It is often said that deep learning 
models are black boxes, but this is not necessarily true for convolutional neural networks. 
Convolutional neural network can be interpreted and we discover patterns in the speed-
acceleration heatmaps which explain the most relevant drivers of higher claim frequencies.

In this paper, we are going to compete three different set-ups: (1) Poisson GLM based 
on classical actuarial risk factors (covariates); (2) Poisson neural network regression model 
based on telematics data, and (3) a combination of (1) and (2) in the spirit of Wüthrich 
and Merz (2019). From our numerical analysis we conclude that (3) is the most powerful 
approach. Firstly, not surprisingly, Poisson GLMs based on classical risk factors can be 
enhanced by telematics information, and secondly, telematics information is not sufficient 
because classical actuarial risk factors may reveal under which circumstances the telemat-
ics data has been generated. Thus, both sources of information interact which makes them 
a more powerful predictive tool.

1.1  Organization

Section 2 introduces our GLM approach for claim frequency modeling using classical risk 
factors. Section 3 describes our telematics car driving data and it establishes two neural 
networks for claim frequency modeling using speed-acceleration heatmaps. Section 4 con-
siders a combined actuarial neural network for claim frequency modeling using both the 
classical risk factors and the speed-acceleration heatmaps. Moreover, the convolutional 
neural network solution is interpreted to explain how a driving behavior risk factor is con-
structed from speed-acceleration heatmaps. Section 5 concludes with our main findings.
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2  Claims frequency modeling using classical risk factors

Our data considers compulsory motor third-party liability (MTPL) insurance of n = 973 
cars in China. Each insurance policy has the same maximal coverage of CNY 122, 000. 
These MTPL insurance policies have been active within the time period from 01/01/2014 
to 31/05/2017, and we have full reporting information up to 29/06/2017. A preliminary 
analysis indicates that more than 99% of all claims are reported within one month after 
the accident date. For this reason (and because information is missing), we neglect late 
reported claims after 29/06/2017; we expect that such late reported claims only marginally 
influence our analysis. For insurance policies i = 1,… , n , we denote the response variable 
of claim counts by Y

i
∈ ℕ

0
 , the exposure of the effective policy duration by e

i
> 0 (also 

called years-at-risk), and the set of classical risk factors by x
i
 . We assume that the claim 

counts can be described by the following regression model

where � ∶ X → ℝ
+
 is a regression function mapping the covariates x

i
∈ X  to expected fre-

quencies �(x
i
) ∈ ℝ+ . The general aim is to choose regression functions �(⋅) such that they 

describe the systematic effects in the claim counts as accurately as possible. This choice 
involves pre-processing of covariates x

i
∈ X  (and choices of appropriate covariate spaces 

X  ), which is part of regression modeling.
Before giving a descriptive analysis of our data, we give the main summary statistics. 

The total exposure over the entire portfolio is 
∑n

i=1
e

i
= 2, 177 years-at-risk, i.e.,   several 

policies run over multiple years, the average exposure being 
∑n

i=1
e

i
∕n = 2.24 years-at-risk. 

Figure 1 (top-left) shows a histogram of the aggregate exposures with policies partitioned 
w.r.t.   the exposure lengths e

i
 . The overall (homogeneous) claim frequency estimate is 

�̄ =
∑n

i=1
Y

i
∕
∑n

i=1
e

i
= 0.24 ; this average is consistent with the market benchmark in China 

but it is much higher than typically in Europe and North America. In China, MTPL poli-
cies cover both physical injuries and property damages of third party regardless whether 
the policyholders is at fault or not, only the corresponding maximal coverage differs. This 
explains why the frequency is comparably higher than in other regions of the world. Fig-
ure 1 (top-right) shows the claim counts Y

i
 on each policy. Most policies do not suffer any 

claims, and very few policies have more than 3 claims.

2.1  Feature engineering

Our first modeling attempt for regression problem (2.1) is to choose a Poisson general-
ized linear model (GLM) with log-link function (being the canonical link for the Poisson 
GLM). This choice implies that covariates x

i
 impact the regression function linearly on the 

canonical scale, which, in turn, requires covariate pre-processing so that we receive rea-
sonable regression models. We start by describing the available covariate information. We 
consider five covariate components: Chinese region ( ������

i
 ), driver’s gender ( ������

i
 ), 

driver’s age ( ������_���
i
 ), car’s age ( ���_���

i
 ) and average driving hours in (0,  80]

km/h per week ( ���_�����
i
 ), for all insurance policies i = 1,… , n . Our preliminary data 

cleaning ensures that the main driver of a car does not change over the entire observation 
period and we concatenate policy renewals of the same driver over this observation period. 
Thus, we can follow the same driver for at most 3 years and 5 months from 01/01/2014 to 
31/05/2017; the resulting exposures e

i
 are shown in Fig. 1 (top-left). We remark that we 

(2.1)Y
i

ind.
∼ Poisson

(

e
i
�(x

i
)
)

, for i = 1,… , n,
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exclude several other covariates such as number of seats, car brand or price of car since a 
preliminary analysis indicates that those covariates are less significant for claims frequency 
prediction, at least for our small insurance portfolio, otherwise we may run into issues of 
over-fitting.

We are going to provide empirical statistics for these five covariates in Fig. 1 (middle 
and bottom rows). The distribution of the exposures is shown on the left axis (in black and 
gray bars), and the empirical frequencies are shown on the right axis (in blue color) with 
dotted blue lines giving estimated 2 standard deviation confidence bounds. We take the 
logarithm of the empirical claim frequencies because for small exposures they are volatile; 
moreover, the y-scales are identical on each row.

Fig. 1  Histogram of the distribution of exposures (left axis) and the corresponding logarithm of the empiri-
cal claim frequencies (right axis and in blue color, where appropriate): policies partitioned w.r.t.  exposures 
e

i
 (top-left), claim counts Y

i
 (top-right), regions (middle-left), gender (middle-right), driver’s age (bottom-

left), car’s age (bottom-middle), and average driving time (bottom-right); each row has identical y-scale
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2.1.1  Categorical variables: Chinese regions and driver’s gender

In a preliminary step, we have merged 11 Chinese regions containing only very small expo-
sures, resulting in four different regions {�����, ������, ��������, ��������} . From 
Fig.  1 (middle-left) we observe that Hebei province has a substantially lower empiri-
cal frequency than the other 3 Chinese regions. Concerning gender, male drivers have a 
slightly lower empirical frequency, see Fig. 1 (middle-right), however, the difference not 
being significant on a 95% confidence level.

2.1.2  Driver’s age

Typically, a suitable regression function for car claim frequency modeling is non-mono-
tone in the driver’s age variable. Therefore, the driver’s age covariate needs pre-processing. 
There are two different ways to do so, either we use categorical coding by building age 
groups or we use a different functional form for driver’s age, for instance, a natural cubic 
spline leading to a GAM. For the moment, we consider categorical coding of the driver’s 
age variable. We explore a marginal Poisson regression tree using covariate ������_���

i
 

as explanatory variable and exposure e
i
 as offset for building age groups of homogeneous 

claims frequency. This Poisson regression tree suggests to build 5 age groups to receive 
sufficient homogeneity within each age group (still keeping sufficient exposures in all age 
groups), see Fig. 2. We observe that the smallest group contains 13% of all policies and the 
biggest group 29% of all policies. The resulting age groups are given in Table 1.

We note that we will further merge age groups in Sect.  2.2. We have also explored 
incorporating the driver’s age variable as a continuous covariate in a GAM. The predictive 
performance of the latter has been similar to the GLM with categorical coding but using a 

AGE >= 32

AGE < 45

AGE >= 40

AGE < 28

0.24

512 / 973

100%

0.22

315 / 625

64%

0.21

193 / 412

42%

0.17

52 / 131

13%

0.23

141 / 281

29%

0.24

122 / 213

22%

0.26

197 / 348

36%

0.23

84 / 167

17%

0.29

113 / 181

19%

yes no

Fig. 2  Marginal Poisson regression tree for claim frequencies w.r.t.  driver’s age
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more complex regression function, therefore, we work with the simpler age grouping ver-
sion given in Table 1.

2.1.3  Car’s age

For cars aged less than 3 years, the claim frequencies are similar. For cars aged more than 
3 years, the logarithm of claim frequency has a linearly increasing shape, see Fig. 1 (bot-
tom-middle). Therefore, we pre-process the car’s age to create a new explanatory variables, 
���_��� ↦ ��� = max(0, ���_��� − 3).

2.1.4  Average driving time per week

As emphasized in Ayuso et al. (2016a, b, 2019), the total driving time is important covari-
ate information. At this stage, it is debatable whether total driving time is a classical or 
a telematics covariate because this information is only available if suitable devices are 
installed in the cars. We remark that we follow insurance policies over multiple years, but 
only for the most recent periods there is telematics data available. For this reason, we typi-
cally have a longer observation period of claims history on insurance policies than of cor-
responding telematics data. As a compromise we calculate average driving time per week 
from the time periods where telematics data is available. An implicit assumption is that 
the calculated average driving time per week using the more recent periods of telematics 
data is a good approximation for the entire observation period of insurance exposure. Thus, 
we create a variable ‘average driving time per week’ (in hours), we cap this variable at 21 
hours per week (to avoid outliers) and we only account for the time in speeds (0, 80]km/h, 
since this corresponds to the telematics heatmaps discussed below. From Fig. 1 (bottom-
right), we observe a linear relationship between the logarithm of claim frequency and the 
average driving hours per week. Note that one can also use the average driving distance per 
week instead, both variables are measures of driving intensity.

2.2  A generalized linear model for claims frequency

The five classical risk factors have been pre-processed as described above to provide 
covariate

The variable gender is binary. The age of car variable car and the average driving time 
per week ave_hours are continuous. The variable region and the age group variable 
age_group are incorporated by using dummy coding. Henceforth, we have 10-dimen-
sional covariate space X ⊂ ℝ

10 that can be directly used in a Poisson GLM with canonical 
log-link.

x
i
=

(

������
i
, ������

i
, ���_�����

i
, ���

i
, ���_�����

i

)

∈ X.

Table 1  Chosen age groups

������_��� 20-27 28-31 32-39 40-44 45+

���_����� �����_� �����_� ������_� ������_� �������

number of policies 17% 19% 29% 13% 22%
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We split our entire portfolio into a learning data set and a test data set in a stratified 
way w.r.t.  empirical claim frequencies. The learning data set contains 780 cars with a total 
exposure of 1, 756 years-at-risk, and the test data set contains 193 cars with a total expo-
sure of 421 years-at-risk. We calibrate our models on the learning data set and evaluate its 
out-of-sample predictive performance on the test set. In later sections on neural network 
regression models, we will further split the learning data set into training data set D

1
 and 

validation data set D
2
 . The validation data set is used to determine hyper-parameters while 

training the models with the training data set. Denote the index sets of training, validation 
and test data sets by D1, D2, D3 , respectively. We summarize the partition used throughout 
this document in Table 2.

2.2.1  Poisson generalized linear model

We start with the Poisson GLM. The basic assumption is that the underlying expected 
claims frequency of � has a multiplicative structure in the covariate components x

i
 provid-

ing regression function on the canonical scale (under log-link)

We choose ���� driver, ������_1 age group and �������� region as reference levels for 
dummy coding. The coefficients are estimated by minimizing the Poisson deviance loss on 
the learning set D

1
∪ D

2
:

where � = (�0, (�
r
)
r
, �

������
, (�

ag
)
ag

, �1, �2)
� ∈ ℝ

11 collects all GLM regression parameters. 
The results show that several region coefficients and age group coefficients are not sig-
nificant. Including these regions and age groups may lead to over-fitting. We perform the 
step-wise variable selection on the full model (2.2) in the backward direction given by the 
Akaike’s Information Criterion (AIC). It turns out that we should merge the regions of 
�������� and ������ with the reference region of �������� , i.e.,  only Hebei region is 
significantly different. Moreover, we merge age groups �����_� , �����_� and ������� 
with the reference age group of ������_� . The final Poisson GLM is as follows, under 
modified covariate space X ⊂ ℝ

5,

(2.2)
x

i
↦ log �(x

i
) = �0 + �������

i

+ �������
i

+ ����_�����
i

+ �1���i
+ �2���_�����

i
.

(2.3)

� ↦ L(�;D1 ∪ D2) =
2

|D1 ∪ D2|
∑

i∈D1∪D2

e
i
�(x

i
) − Y

i
− Y

i
log

(
e

i
�(x

i
)
)
+ Y

i
log Y

i
,

(2.4)

x
i
↦ log �(x

i
) = log �(x

i
;�) = �0 + ������������(������i

) + ��������������(������i
)+

�������_��������_�(���_�����
i
) + �1���i

+ �2���_����
i
,

Table 2  Stratified partition w.r.t.  
empirical claim frequencies

Data Number of 
drivers

Exposure Number 
of claims

Frequency

Training data D
1

584 1, 318 297 0.23

Validation data D
2

196 438 109 0.25

Test data D
3

193 421 106 0.25

Total 973 2, 177 512 0.24
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with regression parameter � = (�0, �
�����

, �
������

, �
������_�, �1, �2)

� ∈ ℝ
6 . Its maximum 

likelihood estimator (MLE) �̂D
1
∪D

2 on the learning data D
1
∪ D

2
 and the associated p-val-

ues are shown in Table 3.
The car drivers in Hebei region have a significantly lower claim frequency than those 

in Zhejiang, Shanghai and other regions. Female drivers have a slight higher claims fre-
quency than male drivers, but the difference is not statistically significant on a 5% level. 
Drivers at ages [40, 44] have a lower claims frequency than those at other ages. For cars 
older than 3 years a log-linear functional form is supported, and the claim frequency is 
increasing log-linearly with the average driving hours per week.

2.2.2  Out-of-sample test error

The predictive performance of the estimated claim frequency model (2.4) is evaluated by 
the out-of-sample Poisson deviance loss on the test data D

3
 (called test error):

where �̂D
1
∪D

2 denotes the MLE based on learning set D
1
∪ D

2
 . Preference is given to the 

model with the smaller test error. The test error of model (2.4) is 1.1230 and the in-sample 
learning error received through (2.3) is 1.0205. For comparison, we establish the homoge-
neous model

The test error of the homogeneous model (without any covariates and systematic effects) is 
1.1703 and the learning error is 1.0717, thus, clearly bigger than in model (2.4). The latter 
model is our benchmark for all subsequent derivations.

3  Claims frequency modeling using telematics data

We establish a first predictive model that is based on telematics car driving data, only. 
The portfolio used is identical to the one of Sect.2, we also refer to Table 2. Each driver 
i = 1,… , n is described by a so-called speed-acceleration (v-a) heatmap Z

i
 , and its explicit 

(2.5)

L(�̂D1∪D2 ;D3) =
2

|D3|
∑

i∈D3

e
i
�(x

i
;�̂D1∪D2 ) − Y

i
− Y

i
log

(
e

i
�(x

i
;�̂D1∪D2 )

)
+ Y

i
log Y

i
,

(2.6)�(⋅) ≡ �̄
D

1
∪D

2 =

∑

i∈D
1
∪D

2

Y
i

∑

i∈D
1
∪D

2

e
i

.

Table 3  MLE�̂D
1
∪D

2 for � ∈ ℝ
6 

of model (2.4)
Parameters Estimate Standard error z value p-value

�
0

−1.7828 0.1243 −14.339 < 2 × 10
−16

�
�����

−0.3096 0.1102 −2.810 0.0050

�
������

0.1585 0.1107 1.431 0.1524

�
������_�

−0.4269 0.1674 −2.550 0.0108

�
1

0.1076 0.0301 3.576 0.0003

�
2

0.0470 0.0133 3.548 0.0004
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construction from telematics car driving data is described in detail in Sect.3.2. The general 
Poisson regression setting is given as follows

where e
i
> 0 is the exposure of car driver i, �̃

i
> 0 is a given prior estimate of claim fre-

quency for car driver i, and Z
i
↦ �(Z

i
) > 0 is a telematics driving behavior risk factor. 

In Sect.  3.2, we construct the v-a heatmap Z
i
 ; in Section  3.3, we apply a densely con-

nected feed-forward neural network to estimate the driving behavior risk factor �(Z
i
) ; and 

in Sect. 3.4, we challenge the densely connected feed-forward neural network by a convolu-
tional neural network.

3.1  Telematics car driving data

We discuss our telematics data in this section. Our telematics data is collected from three 
independent sensors: GPS signal, instrumental panel and three-axis accelerometer. The 
GPS location is transmitted second by second, and from these GPS locations we can cal-
culate average speed and acceleration every second. The instrumental panel provides the 
speed of the car every second as shown to the driver, and from this we can also calcu-
late the average acceleration every second. Finally, the accelerometer records acceleration 
in all three directions. Unfortunately, the precision of these measurements may be poor 
because these devices need to be recalibrated regularly, and from similar telematics pro-
jects it is known that this recalibration might cause some difficulties, for instance, it might 
be influenced by the fact whether a car is parked at a steep road or in a flat plane during 
recalibration. We also observe difficulties in our data with the accelerometer device, i.e.,   
the GPS signal and the instrumental panel being in line, but the accelerometer showing 
different measurements. For this analysis we have decided to rely on the information from 
the instrumental panel because it sometimes happens that the GPS signal gets lost (or is 
imprecise) when, for instance, driving through a tunnel.

3.2  Speed‑acceleration heatmaps

We compress individual telematics car driving information into a so-called speed-acceler-
ation (v-a) heatmap for each driver i. These v-a heatmaps describe how drivers accelerate 
and brake at different speeds. As highlighted in Gao and Wüthrich (2019), telematics car 
driving data easily results in big data of several TBs. This makes it necessary to compress 
this data appropriately to make it useful for statistical modeling. This data compression is 
performed as in Gao et al. (2019), basically, telematics data is aggregated in a suitable way. 
In Gao et al. (2019) we have studied the speed of convergence of such aggregations and we 
have seen that it takes roughly three months of data until the aggregation has converged. 
For this reason, all subsequent analysis will be based on the three months of driving expe-
rience from 01/05/2016 to 31/07/2016. This is the time period when we have a maximal 
number of cars with telematics data. Remark that we did not find seasonality in the heat-
map constructions, and even if there was, we judge all drivers on common ground because 
we choose the identical time period.

Denote the v-a rectangle by R = (0, 80]km/h×[−2, 2]m/s2 . Speed is truncated within 
(0, 80]km/h since we want to remove the idle phase and there are not sufficiently many 
observations above 80km/h to receive stable heatmaps. Acceleration is capped within 

(3.1)Y
i

ind.
∼ Poisson(e

i
�̃

i
�(Z

i
)), for i = 1,… , n,
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[−2, 2]m/s2 since there are not sufficiently many observation outside of this interval. Note 
that these accelerations and decelerations are moderate, Weidner et al. (2016, 2017) and 
Sun et al. (2020) work with bigger values.

The acceleration interval [−2, 2]m/s2 is divided into 6 equally spaced sub-intervals 
j = 1,… , 6 , and the speed interval (0, 80]km/h is divided into 16 equally spaced sub-inter-
vals k = 1,… , 16 ; see Fig. 3. For each speed sub-interval k = 1,… , 16 , the acceleration 

pattern of driver i is defined as the (probability) distribution of accelerations in that speed 
sub-interval:

where ti,j,k is the total time spent in acceleration sub-interval j for given speed sub-interval k 
of driver i. We have normalization 

∑6

j=1
zi,j,k = 1 , thus, for every k we receive probabilities 

of a categorical distribution.
The driving behavior of every car driver i is represented by a 6 × 16 matrix, called v-a 

heatmap,

We plot the v-a heatmaps of the two selected drivers 44 and 191 (belonging to the test data 
D

3
 ) in Fig. 4. It shows that driver 191 accelerates and brakes much more intensely than 

driver 44. In Sect. 4, we show that driver 191 has the largest driving behavior risk factor 
and driver 44 has the smallest one in our test data D

3
 , i.e., these are the two extreme cases 

in D
3
.

It is standard in image recognition that inputs to convolutional neural networks are three-
dimensional arrays consisting of height×width×channels. Therefore, we transform (by a 
slight abuse of notation) the v-a heatmap to a three-dimensional array Z

i
∈ [0, 1]6×16×1.

(3.2)zi,j,k =

ti,j,k
∑6

j=1
ti,j,k

≥ 0,

(3.3)Zi = (zi,j,k)j=1∶6,k=1∶16 ∈ [0, 1]6×16
.
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Fig. 3  Partition of R = (0, 80]km/h×[−2, 2]m/s2 in equally spaced sub-rectangles
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3.3  A densely connected neural network for claim frequency prediction

The heatmap Z
i
 has dimension of 6 × 16 × 1 , and usually we need feature engineering of Z

i
 

before using it in a claim frequency model, this is the approach taken in Gao et al. (2019). 
Instead of manually feature engineering in a two-step modeling approach, we apply a 
densely connected neural network to do both feature engineering and regression modeling 
simultaneously.

3.3.1  Densely connected feed-forward neural network architecture

We design a densely connected feed-forward neural network with two hidden layers. The 
Keras code is provided in “Appendix A”, and the architecture is shown in Listing 1. We 
choose the number of neurons in each of the two hidden layers as m

1
= 30 and m

2
= 10 . 

Each row of Listing 1 shows the layer name, the type of layer (in the bracket), the dimen-
sion of the layer, the number of parameters and the preceding layer name(s) it is connected 
to.

Fig. 4  v-a heatmaps of drivers 44 and 191 belonging to the test data D
3
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We have two input layers, one flatten layer, three dense layers, two dropout layers and 
one multiply layer. More specifically, the following layers are connected sequentially to 
form the densely connected feed-forward neural network denoted by dnn.

The flatten layer Each element of Z
i
 is on unit scale [0,  1], therefore, we input 

Z
i
 directly to the neural network without any pre-processing. We flatten the array 

Z
i
 to a m

0
= 6 ⋅ 16 = 96 dimensional vector z

1

i
= (z1

i,j
)j=1∶m0

 through the flatten layer 
heatmap_flat:

This layer discards the spatial structure. There is no parameter in this layer involved.
The first dense layer The m

0
-dimensional vector z

1

i
 is projected to a m

1
-dimensional 

space through the first dense hidden layer heatmap_dense1:

where

We use the hyperbolic tangent activation; other activation functions lead to similar results. 
There are (m

0
+ 1)m

1
 parameters �2

l,j
∈ ℝ in this layer.

The first dropout layer A dropout layer heatmap_drop1 with dropout rate d
1
 is 

inserted between the first dense layer and the second dense layer. The dropout layer does 

�1 ∶ [0, 1]6×16×1
→ [0, 1]m0 , Zi ↦ �1(Zi) = z

1

i
= (z1

i,1
,… , z

1

i,m0

)�.

(3.4)�2 ∶ [0, 1]m0 → (−1, 1)m1 , z
1

i
↦ �2(z1

i
) = z

2

i
= (z2

i,1
,… , z

2

i,m1

)�,

z2

i,j
= tanh

(

�
2

0,j
+

m0
∑

l=1

�
2

l,j
z1

i,l

)

, for j = 1,… , m1.
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not affect the neural network architecture, and it does not involve any model parameters. 
The dropout layer only affects the calibration, in particular, it prevents from over-fitting 
because in each gradient descent step neurons are removed independently and randomly 
with the given dropout rate d

1
 . We tune the dropout rate d

1
= 0.1 according to the valida-

tion error; see model calibration in Sect. 3.3.2.
The second dense layer The m

1
-dimensional vector z2

i
 is projected to a m

2
-dimensional 

space through the second dense layer heatmap_dense2:

where

There are (m
1
+ 1)m

2
 parameters �3

l,j
∈ ℝ in this layer. We tune the number of neurons 

m
2
= 10.
The second dropout layer A dropout layer heatmap_drop2 with dropping rate d

2
 is 

inserted between the second dense layer and the third dense layer. The explanation is simi-
lar to the first dropout layer. We tune the dropout rate d

2
= 0.1.

The third dense layer The m
2
-dimensional vector z

3

i
 is projected to a 1-dimensional 

space through the third dense layer heatmap_factor:

We call z4

i
 the driving behavior risk factor of driver i. We use the exponential activation 

function since the driving behavior risk factor must be positive, see (3.1), and because the 
log-link is the canonical link in the Poisson GLM. There are m

2
+ 1 parameters �4

j
∈ ℝ in 

this layer. Altogether, the above 6 layers define a mapping (composition) from the heatmap 
to the driving behavior risk factor in (3.1):

The multiply layer Finally, we multiply z4

i
 with exposure e

i
> 0 and prior claim frequency 

estimate �̃
i
 to get the output of the neural network (layer response) ei�̃iz

4

i
= ei�̃i�

dnn(Zi). 
Note that the term e

i
�̃

i
 goes into the neural network through the input layer vol, and it acts 

as an offset in the regression model.

3.3.2  Densely connected feed-forward neural network model calibration

We choose the average claim frequency from the homogeneous model (2.6) as prior esti-
mates, i.e., �̃

i
= �̄D

1
∪D

2 . Denote the vector of all neural network parameters by � . We apply 
the adam version of the gradient decent method to iteratively find a good parameter esti-
mate for � . As objective function we choose the Poisson deviance loss having in-sample 
training error on D

1
:

(3.5)�3 ∶ (−1, 1)m1 → (−1, 1)m2 , z
2

i
↦ �3(z2

i
) = z

3

i
= (z3

i,1
,… , z

3

i,m2

)�

z3

i,j
= tanh

(

�
3

0,j
+

m1
∑

l=1

�
3

l,j
z2

i,l

)

, for j = 1,… , m2.

(3.6)�4 ∶ (−1, 1)m2 → ℝ+, z
3
i
↦ �4(z3

i
) = z4

i
= exp

(

�4
0
+

m2
∑

j=1

�4
j
z3

i,j

)

.

(3.7)�dnn ∶ [0, 1]6×16×1
→ ℝ+, Zi ↦ �dnn(Zi) =

(

�4
◦�3

◦�2
◦�1

)

(Zi) = z
4

i
.

(3.8)L(�;D1) =
2

|D1|
∑

i∈D1

e
i
�̃

i
�dnn(Z

i
;�) − Y

i
− Y

i
log

(
e

i
�̃

i
�dnn(Z

i
;�)

)
+ Y

i
log Y

i
.
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We emphasize that our training data set D
1
 is small. Therefore, we perform steepest gradi-

ent descent on D
1
 , and not any stochastic gradient descent method.

Figure  5 shows the steepest gradient descent performance � ↦ L(�;D1) on the train-
ing data D

1
 (red color) and the corresponding out-of-sample validation losses � ↦ L(�;D2) 

on the validation data D
2
 .1 The model starts to over-fit after roughly 80 iterations (note 

that the training error is not monotone decreasing due to the presence of dropouts). Using 
the callback_early_stopping option we retrieve the parameters with the lowest validation 
loss after not improving in a sequence of 5 iterations. It takes 4 seconds to complete cali-
bration on a 1.3 GHz dual Intel Core i5 computer. Note that the initial values of the param-
eters in the third dense layer heatmap_factor are set to 0; see Keras code in “Appendix 
A”. Hence, gradient descent calibration of the neural network starts from the homogene-
ous model e

i
�̄

D
1
∪D

2 . The hyper-parameters m1, m2, d1, d2 are selected as 30, 10, 0.1, 0.1 by 
monitoring the validation error.

Table 4 provides the results in column ‘dnn’. The densely connected feed-forward neural 
network with driving behavior risk factor �dnn(Z

i
) outperforms the GLM out-of-sample and 

we observe a test error decrease from 1.1230 to 1.1035. Thus, for this data partition the v-a 
heatmap Z

i
 has better predictive power than the 5 classical risk factors x

i
 (in our GLM).

Fig. 5  Steepest gradient descent calibration of the densely connected neural network (dnn)

Table 4  Learning error and test error of the models studied

Error Homogeneous GLM dnn cnn dnn + glm cnn + glm

(2.6) (2.4) Listing 1 Listing 2 (4.1) (4.2)

Learning error 1.0717 1.0205 1.0376 1.0415 0.9982 0.9992

Test error 1.1703 1.1230 1.1035 1.1075 1.0655 1.0690

Reduction in test error 0.0473 0.0668 0.0628 0.1048 0.1013

1 Note that internally Keras drops all (constant) terms that are not relevant for the gradient descent algo-
rithm. For this reason, the y-axis of Fig.  5 does not match Poisson deviance losses because the constant 
terms 

∑
i∈D1

�
Y

i
log Y

i
− Y

i

�
∕�D1� and correspondingly for D

2
 are missing, and the scaling factor of 2 is not 

considered.
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3.4  Convolutional neural network for claim frequency prediction

It is natural to replace the densely connected feed-forward neural network to process the 
v-a heatmap Z

i
 by a convolutional neural network. In the former approach we apply a flat-

ten layer �1 in the first step, this implies that we lose the topological structure of the v-a 
heatmap. On the other hand, convolutional neural networks are designed to handle spatial 
patterns.

3.4.1  The architecture

We design a convolutional neural network with two convolution layers. The first convolu-
tion layer has a 6 × 1 convolution window with q filters and stride 1. The second convolu-
tion layer has a 1 × 2 convolution window with 1 filter and stride 2. These two convolution 
layers are motivated by fact that they allow for interpretation of our results, see the follow-
ing description of these two convolution layers and their interpretation in Sect. 4.2. The 
Keras code is provided in “Appendix A”; the architecture is shown in Listing 2, where we 
choose q = 2.

An obvious difference between Listings 1 and 2 is the number of parameters. The con-
volutional neural network has 28 parameters while the densely connected feed-forward 
neural network has 3, 231 parameters. This is because the convolution windows are small 
and their parameters are shared in different locations of the heatmap. For this reason, we do 
not use dropout layers here. We have two input layers, two convolution layers, one flatten 
layer, one dense layer and one multiply layer. More specifically, the following layers are 
connected sequentially to form the convolutional neural network.

The first convolution layer We let a 6 × 1 convolution window moving along the speed 
direction of the v-a heatmap with stride 1 to extract q acceleration patterns in each speed 
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sub-interval (5(k − 1), 5k] km/h for k = 1,… , 16 ; see Fig. 3. The layer heatmap_conv1 
defines the following mapping:

where

We call z1

i,j,k,l
 as the l-th acceleration pattern in the speed sub-interval (5(k − 1), 5k] km/h 

for driver i, extracted by the first convolution layer. There are 7q parameters �1

t,l
∈ ℝ in 

this layer. Note that we use the same symbols for activations z and parameters � as in the 
densely connected feed-forward neural network. When necessary, we will clarify to avoid 
confusion.

The second convolution layer A 1 × 2 convolution window is moving along the hori-
zontal direction of the v-a heatmap with stride 2 to extract one acceleration pattern in the 
speed sub-interval (10(k − 1), 10k] km/h for k = 1,… , 8 ; see Fig. 3. The layer heatmap_

conv2 defines the following mapping:

where

We call z2

i,j,k,l
 as the acceleration pattern in the speed sub-interval (10(k − 1), 10k] km/h for 

driver i, extracted by the second convolution layer. There are 2(q + 1) parameters �2

s,t
∈ ℝ 

in this layer. One may increase the filter numbers of this layer and add more convolution 
layers behind this layer, but they always provide a similar predictive performance.

The flatten layer We flatten the array Z2 into a 8-dimensional vector through the layer 
heatmap_flat:

where

There is no parameter in the flatten layer. The purpose of this layer is to transform the array 
into a vector so it can be used as the input of the dense layer followed.

The dense layer The 8-dimensional vector z
3 is projected to a 1-dimensional space 

through the dense layer heatmap_factor:

(3.9)

�
1 ∶ [0, 1]6×16×1

→ (−1, 1)1×16×q
, Zi ↦ �

1(Zi) = Z
1

i
= (z1

i,j,k,l
)j=1,k=1∶16,l=1∶q,

(3.10)

z1

i,j,k,l
= tanh

(

�
1

0,l
+

6
∑

t=1

�
1

t,l
zi,t,k,1

)

, for j = 1, k = 1,… , 16, l = 1,… , q.

(3.11)

�
2 ∶ (−1, 1)1×16×q

→ (−1, 1)1×8×1
, Z

1

i
↦ �

2(Z
1

i
) = Z

2

i
= (z2

i,j,k,l
)j=1,k=1∶8,l=1,

(3.12)

z2

i,j,k,l
= tanh

(

�
2

0
+

q
∑

s=1

�
2

s,1
z1

i,j,2k−1,s
+ �

2

s,2
z1

i,j,2k,s

)

, for j = 1, k = 1,… , 8, l = 1.

(3.13)�
3 ∶ (−1, 1)1×8×1

→ (−1, 1)8, Z
2

i
↦ �

3(Z
2

i
) = z

3

i
= (z3

i,1
,… , z

3

i,8
)�,

z3

i,k
= z2

i,j,k,l
= z2

i,1,k,1
, for k = 1,… , 8.

(3.14)�4 ∶ (−1, 1)8 → ℝ+, z
3
i
↦ �4(z3

i
) = z

4
i
= exp

(

�4
0
+

8
∑

k=1

�4
k
z

3
i,k

)

.



260 Machine Learning (2022) 111:243–272

1 3

We call z4

i
 the driving behavior risk factor of driver i. There are 9 parameters �4

k
 in this 

layer. For the same reasons as above, we use the exponential activation function. Alto-
gether, the above 4 layers define the mapping from the heatmaps to the driving behavior 
risk factor in (3.1):

The multiply layer Finally we multiply z4

i
 with the exposure e

i
> 0 and the prior 

claims frequency estimate �̃
i
 to get the output of the neural network (layer response) 

ei�̃iz
4

i
= ei�̃i�

cnn(Zi).

3.4.2  Convolutional neural network model calibration

The calibration of the convolutional neural network is similar to the calibration of the 
densely connected feed-forward neural network in Sect. 3.3.2. Again, we choose the aver-
age claims frequency of the homogeneous model (2.6) as the prior estimates. The initial 
values of the parameters in the dense layer are set to 0; see keras code in “Appendix A”. 
So we start calibrating from the homogeneous model e

i
�̄

D
1
∪D

2 . The algorithm converges 
fast as shown in Fig. 6, it only takes 12 seconds. The hyper-parameter q is selected as 2 by 
monitoring the validation error.

The results are given in Table 4. Using the convolutional neural network with driving 
behavior risk factors, we improve the test error of the GLM (1.1075 versus 1.1230), but the 
out-of-sample performance is slightly worse compared to the densely connected network. 
However, we have a slight preference for the convolutional network approach because it 
keeps the number of parameters involved on a small scale.

4  Boosting classical risk factors with telematics data

Equation (3.1) introduces a way of incorporating classical risk factors into neural networks. 
We choose the estimated claims frequency from GLM (2.4) as prior claim frequency 
estimates, i.e., �̃

i
= �(x

i
;�̂) = �̂(x

i
) . This is in the spirit of the combined actuarial neural 

network (CANN) approach proposed in Wüthrich and Merz (2019), which in our context 
boosts the GLM frequencies �̂(x

i
) with telematics driving risk factors �(Z

i
).

(3.15)�
cnn ∶ [0, 1]6×16×1

→ ℝ+, Zi ↦ �
cnn(Zi) =

(

�
4
◦�

3
◦�

2
◦�

1
)

(Zi) = z
4

i

Fig. 6  Steepest gradient descent calibration of the convolutional neural network (cnn)
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4.1  Telematics neural network boosted Poisson generalized linear model

CANN boosts the Poisson GLM (2.4) with either the densely connected neural network of 
Listing 1 (dnn) or the convolutional neural network of Listing 2 (cnn): For i = 1,… , n we 
assume

where e
i
�̂(x

i
) is the GLM estimated expected number of claims of driver i with classical 

risk factors x
i
 , see (2.4). The architectures of the networks in (4.1) and (4.2) are chosen 

identical to the ones in Sects.3.3.2 and 3.4.2. Also the network calibration goes along the 
same lines as above, the gradient descent results are shown in Figs. 7 and 8.

Note that both gradient descent calibrations start from the Poisson GLM (2.4) by the 
way we initialize the algorithm: the starting points in Figs.  7 and 8 are below those in 
Figs. 5 and 6 because we already start from a reasonably good GLM, and the convergence 
rates in Figs. 7 and 8 are very fast. Note that we keep the GLM parameters �̂ of the classi-
cal covariates during the neural network calibration for two reasons: firstly, this keeps the 

(4.1)Y
i

ind.
∼ Poisson(e

i
�̂(x

i
)�dnn(Z

i
)),

(4.2)Y
i

ind.
∼ Poisson(e

i
�̂(x

i
)�cnn(Z

i
)),

Fig. 7  Calibration of densely connected neural network boosted Poisson GLM (dnn + glm)

Fig. 8  Calibration of convolutional neural network boosted Poisson GLM (cnn + glm)
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interpretation of the GLM prediction and gives a stable neural network calibration; sec-
ondly, the interpretation of � is intuitively obtained as a modification of the GLM predic-
tion �̂ . In this sense, we boost the GLM by integrating the GLM prediction as an offset into 
the networks. If more data would be available one could think of also further training �̂ , 
this would allow for more general interactions between the classical covariates and telem-
atics information.

4.1.1  Comparison of driving behavior risk factors

We start by comparing the driving behavior risk factors �dnn(Z
i
) and �cnn(Z

i
) on the test 

data i ∈ D
3
 in Fig. 9.

From the graphs in Fig. 9 we conclude that both networks provide almost identical driv-
ing risk factors �dnn(Z

i
) ≈ �

cnn(Z
i
) in (0.4,  1.6). In fact, the more complex densely con-

nected feed-forward neural network can be replaced by a simpler convolutional neural net-
work having only 28 parameters. In Fig. 4, we show the v-a heatmaps with the minimal 
and maximal driving behavior risk factors, i.e., high acceleration and braking obviously 
triggers a higher frequency in our example.

4.1.2  Comparison of different models

Table 4 and Fig. 10 (left) compare the different models. The v-a heatmap boosted Poisson 
GLMs (dnn + glm and cnn + glm) have the best out-of-sample predictive performance. 
Thus, we conclude that v-a heatmaps Z

i
 contain information beyond classical actuarial 

covariates x
i
 , and on the other hand these v-a heatmaps Z

i
 do not fully replace classical 

actuarial covariates x
i
 . The former statement is clear because we believe that v-a heatmaps 

Z
i
 best describe driving styles. However, also the latter makes sense because v-a heatmaps 

Z
i
 will interact with road conditions, car type, etc., which may be reflected in region, 

Fig. 9  Comparison of driving 
behavior risk factors �dnn(Z

i
) and 

�
cnn(Z

i
) on test data i ∈ D

3
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car and other classical actuarial covariates. That is, classical actuarial covariates may 
indicate under which circumstances the telematics data has been collected.

4.2  Interpretation of the convolutional neural network results

We explain how the acceleration pattern z3

i,k
= z2

i,1,k,1
 in the speed sub-interval 

(10(k − 1), 10k] km/h is constructed. In “Appendix B”, we approximate z3

i,k
 by a linear com-

bination of z0

i,j,2k−1,1
 and z0

i,j,2k,1
 , namely,

where �j = �
2

1,1
�

1

j,1
+ �

2

2,1
�

1

j,2
+ �

2

1,2
�

1

j,1
+ �

2

2,2
�

1

j,2
 is interpreted as the weight of each accel-

eration sub-interval (2 − 2j∕3, 2 − 2(j − 1)∕3]m/s
2 , j = 1,… , 6 . We plot these weights �j 

in Fig. 10 (middle).
The signs of the weights �j for hard accelerating and hard braking are opposite to 

those for smooth driving. We interpret z3

i,k
 as the relative frequency of smooth driving in 

the speed sub-interval (10(k − 1), 10k] km/h for k = 1,… , 8 . The absolute values of the 
weights for hard braking are larger than those for hard accelerating. It seems that hard 
braking plays a more important role than hard accelerating in the acceleration pattern z3

i,k
.

We draw the pair plots of z3

i,k
 on the test data i ∈ D

3
 in Fig. 11. It shows that accelera-

tion patterns z3

i,k
 in neighboring speed intervals are quite similar, with high correlations of 

around 0.9. Acceleration patterns z3

i,k
 in (10, 40] km/h tend be smaller than those at other 

speeds, indicating that drivers tend to hard accelerate and brake in (10,  40] km/h more 
often than in other speed intervals (which, of course, makes perfect sense).

Acceleration patterns z3

i,k
 in different speed intervals are combined to obtain the driving 

behavior risk factor through the (last) dense layer, see (3.14). We interpret the parameters 
(�4

k
)
k=1∶8

 in this last dense layer as the weights for each speed sub-interval (10(k − 1), 10k] 
km/h for k = 1,… , 8 . We plot (�4

k
)
k=1∶8

 in Fig.  10 (right). The absolute values of �4

k
 are 

decreasing with speeds. It seems that the acceleration pattern z3

i,k
 in low speeds plays a 

more important role in constructing the (overall) driving behavior risk factor than at high 
speeds. Of course, also this makes sense because frequent claim counts often happen at low 
speeds, say, in urban area.

(4.3)z3

i,k
≈ �0 +

6
∑

j=1

�j

zi,j,2k−1,1 + zi,j,2k,1

2
, for k = 1,… , 8,

Fig. 10  (left) Reduction in test error of all models studied (compared to the homogeneous model); (middle) 
weights �j for each acceleration sub-interval; (right) weights �4

k
 for each speed sub-interval
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4.3  Sensitivity test

We have a comparably small portfolio of n = 973 car drivers. It is necessary to conduct a 
sensitivity test to see whether the above conclusions are still valid for different training-
validation-test partitions. We further partition the training set D

1
 into 3 disjoint data sets 

of approximately the same size D1,1, D1,2, D1,3 , and design four training-validation-test 
partitions as shown in Table 5. Note that partition 0 is the data split used in the previous 
sections.

For each training-validation-test partition, we fit all six models of Table  4. For each 
model, we calculate the reduction in test error compared to the homogeneous model. For 
the convolutional neural network boosted GLM (4.2), we calculate the weights for each 
acceleration sub-interval and for each speed sub-interval. All the results are shown in 
Fig. 12, and they should be compared to Fig. 10.

Similar reduction in test errors over all partitions of Table 5 for both neural networks 
reconfirm that both architectures have similar predictive power. Moreover, in general, it is 
beneficial to combine telematics information with classical risk factors because potential 
interaction may lead to better predictive models. However, the previous statement that v-a 
heatmaps have better predictive power than the 5 classical risk factors (in a GLM) is not 
confirmed by partitions 2 and 4. For partitions 1 and 4 both the signs of � and �4 switch, 
leaving the sign of the driving behavior risk factor z4

i
 unchanged. The patterns in the mid-

dle column of Fig. 12 are similar to those in Fig. 10, indicating that the hard braking plays 
a more important role than the hard acceleration. The previous statement of the importance 
of low speeds are supported by partitions 1 and 2, while partitions 3 and 4 do not violate 
this statement.

Finally, we perform another data split with a different seed leading to another five train-
ing-validation-test partitions. The results for the five partitions are presented in Fig. 13. We 
conclude with the same findings as those from Fig. 12.

5  Conclusions

We propose two neural networks, a densely connected feed-forward neural network and 
a convolutional neural network, for extracting driver risk information from telematics car 
driving data represented by v-a heatmaps. The neural networks simultaneously perform 
feature engineering and regression modeling. Both neural network approaches have a simi-
lar predictive performance in our example, however, the convolutional one uses much less 
parameters. Unlike the black box of the densely connected feed-forward neural network, 
the convolutional neural network can be interpreted and we explain how the driving behav-
ior risk factor is constructed by the convolutional neural network.

Table 5  Training-validation-test 
partitions; partition 0 is the split 
used in the previous sections

Partitions Training set (60%) Validation 
set (20%)

Test set (20%)

0 D1 = D1,1 ∪ D1,2 ∪ D1,3 D
2

D
3

1 D1 = D1,1 ∪ D1,2 ∪ D1,3 D
3

D
2

2 D1,1 ∪ D2 ∪ D3 D1,2 D1,3

3 D1,2 ∪ D2 ∪ D3 D1,3 D1,1

4 D1,3 ∪ D2 ∪ D3 D1,1 D1,2
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Specific locations in v-a heatmaps have their meanings, and we need to make sure that 
the convolution window has a right size and moves in a sensible way to capture these 
meanings. Our design of the convolutional neural network targets at detecting similar 
acceleration patterns in different speed intervals.

As byproducts of our empirical data analysis, we conclude that both the classical risk 
factors and driving behavior risk factor are needed for claims frequency modeling, and hard 
braking in low speeds contributes the most to the driving behavior risk factor. Thus, tele-
matics data contains driving style information beyond classical risk factors that is relevant 
for claim frequency prediction, and on the other hand, classical risk factors as, for instance, 
regional information may explain certain driving patterns. Letting these two ingredients 
interact will lead to better predictive models.

Appendix A: Keras code
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Appendix B: Approximation of the acceleration pattern z3
i,k

Following equations (3.10) and (3.12), and approximating the hyperbolic tangent function 
by its Taylor’s expansion of order 1, tanh(x) ≈ x , we have the following approximation:
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where the last approximation follows from zi,j,2k−1,1 ≈ zi,j,2k,1 ≈ (zi,j,2k−1,1 + zi,j,2k,1)∕2 . 
This is because the acceleration patterns in the two neighboring speed intervals should be 
similar.

Appendix C: Figures

See Figs. 11, 12 and 13.
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Fig. 11  Pair plots of acceleration patterns z3

i,k
 in each speed sub-interval (10(k − 1), 10k] km/h on the test 

data i ∈ D
3



269Machine Learning (2022) 111:243–272 

1 3

Fig. 12  Each row is for a data partition as shown in Table 5: (left) reduction in test error for glm (2.4), dnn 
(Listing 1), cnn (Listing 2), dnn + glm (4.1) and cnn + glm (4.2) compared to the homogeneous model 
(2.6); (middle) weights �j for each acceleration sub-interval; (right) weights �4

k
 for each speed sub-interval
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Fig. 13  Another data split using a different seed: (left) reduction in test error for glm (2.4), dnn (Listing 1), 
cnn (Listing 2), dnn + glm (4.1) and cnn + glm (4.2) compared to the homogeneous model (2.6); (middle) 
weights �j for each acceleration sub-interval; (right) weights �4

k
 for each speed sub-interval
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