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Boosting selective nitrogen reduction to ammonia
on electron-deficient copper nanoparticles
Yun-Xiao Lin 1, Shi-Nan Zhang 1, Zhong-Hua Xue1, Jun-Jun Zhang 1, Hui Su 1, Tian-Jian Zhao 1,

Guang-Yao Zhai 1, Xin-Hao Li 1*, Markus Antonietti 2 & Jie-Sheng Chen1*

Production of ammonia is currently realized by the Haber–Bosch process, while electro-

chemical N2 fixation under ambient conditions is recognized as a promising green sub-

stitution in the near future. A lack of efficient electrocatalysts remains the primary hurdle for

the initiation of potential electrocatalytic synthesis of ammonia. For cheaper metals, such as

copper, limited progress has been made to date. In this work, we boost the N2 reduction

reaction catalytic activity of Cu nanoparticles, which originally exhibited negligible N2

reduction reaction activity, via a local electron depletion effect. The electron-deficient Cu

nanoparticles are brought in a Schottky rectifying contact with a polyimide support which

retards the hydrogen evolution reaction process in basic electrolytes and facilitates the

electrochemical N2 reduction reaction process under ambient aqueous conditions. This

strategy of inducing electron deficiency provides new insight into the rational design of

inexpensive N2 reduction reaction catalysts with high selectivity and activity.
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T
he exploration of electrochemical N2 fixation into ammo-
nia, sustainable fertilizers for crops or energy carriers in
the hydrogen economy1,2, has drawn tremendous

interest due to the gentle and ambient process and low energy
requirements3–5. In nature, only certain nitrogenase bacteria are
able to selectively break the nonpolar triple bond, which is the
most important process in the natural nitrogen cycle6. Pioneering
works applying various noble metal-based N2 reduction reaction
(NRR) catalysts (e.g., Au, Pt, Ru, Ag)7–10 as well as several
recent examples of transition metals11–15 and carbonaceous
catalysts16–18 have already demonstrated the extraordinary
advantages of these heterogeneous electrocatalysts, although the
overall efficiency remains unsatisfactory. Further exploring novel
strategies to elevate the selectivity (Faradaic efficiency) to NH3

and production rates of NRR catalysts, which are inexpensive and
abundant, still remains challenging but highly alluring for the
possible decentral NH3 generation on any scale under mild
conditions.

Here, we report an effective strategy to boost the NRR activity of
less active copper nanocatalysts via modulating the electron density
of Cu nanoparticles over a significant potential scale to simulta-
neously depress the hydrogen evolution reaction (HER) activity and
elevate the NRR activity for a higher Faradaic efficiency and yield
rate of NH3 (17.2 µg h−1 cm−2) in addition to a turnover frequency
(TOF) value of 0.26 h−1. Textural analysis sufficiently demonstrates
that the Mott–Schottky effect19–23 leads to an electron redistribu-
tion at the interface of polyimide (PI)24 and copper and thus
controls the work functions of Cu species for more feasible N2

reduction, giving rise to a new high TOF value of 0.26 h−1, which is
higher than that of noble metal-based NRR catalysts.

Results
Fabrication and structure of Cu/PI catalysts. The synthetic
process for the Cu/PI catalysts is depicted in Fig. 1a (for
experimental details, please see the Methods). A modified sol-
vothermal method was applied to prepare PI nanoflowers, which
were further condensed at 300 °C (PI-300), 400 °C (PI-400) and
600 °C (PI-600) to tailor the conjugating degrees and used as
supports for depositing Cu nanoparticles via a wet impregnation
method23. The color change in the PI supports from deep yellow
to black directly reflects the gradually narrowed band structures,
which have been further confirmed by their UV-vis spectra
(Fig. 1b). The chemical structure of the PI support was verified by
solid-state nuclear magnetic resonance (SSNMR) spectroscopy
(Supplementary Fig. 1). After the introduction of Cu components,
the flower-like morphology (Fig. 1b inset) of the PI supports with
the thin nanosheets as the primary subunits remains unchanged,
as revealed by the scanning electron microscopy (SEM) (Sup-
plementary Fig. 2) and transmission electron microscopy (TEM)
observation (Fig. 1c and Supplementary Fig. 3–5), as did the
chemical structure as confirmed by the Fourier transform infrared
(FT-IR) analysis (Supplementary Fig. 6). TEM (Fig. 1c) and high-
angle annular dark-field (HAADF) (Fig. 1d) images further
demonstrate the integration of Cu nanoparticles inside the PI
flower. The similar mean sizes of Cu nanoparticles around 30 nm
(Supplementary Fig. 7) for all Cu/PI samples exclude possible size
effect on their catalytic activity. Further Energy dispersive X-ray
(EDX) mapping (Fig. 1d insert) images exhibit the homogenous
distribution of N and O atoms along the PI supports and also
verify the formation of Cu-containing nanoparticles. A typical
crystalline lattice distance of 0.2 nm (Fig. 1e), attributed to the
(111) facet of metallic Cu, further confirmed by its X-ray dif-
fraction (XRD) patterns (Supplementary Fig. 8), prove the
coexistence of Cu and PI in the Cu/PI samples. X-ray photo-
electron spectrum (XPS) results (Supplementary Fig. 9) not only

provide a chemical composition of Cu/PI containing only C, N, O
and Cu but also exclude the presence of lattice oxygen in possible
copper oxides or hydroxides (Supplementary Fig. 10).

N2 reduction reaction performance of Cu/PI catalysts. We
initially examined the possibility of the Cu/PI hybrids for use as
NRR electrocatalysts in basic solution (0.1 M KOH) at room
temperature. At first glance, the Cu/PI electrode (exemplified
with Cu/PI-300 materials) offered a larger current density in N2

flow than the reference measurement in Ar (Fig. 2a), revealing a
possible selectivity towards N2 reduction. Indeed, a standard
electrocatalytic reaction over the Cu/PI-300 electrode with
an optimized Cu content of 5% (Supplementary Fig. 11 and
Table 1–2) resulted in the best NRR Faradaic efficiency of 6.56%
at a potential of −0.3 V vs. RHE (Fig. 2b and Supplementary
Fig. 12). Carbon cloth (current collector), bare PI-300 electrode
(Fig. 2b) and CuOx/PI-based electrode (Supplementary Table 2)
were inert under the given conditions. It should be noted that the
yields of ammonia were determined by both colorimetric method
(Supplementary Fig. 13) and ion chromatography method (Sup-
plementary Fig. 14). 15N isotope labeling experiments (Fig. 2a
insert and Supplementary Fig. 15) confirm the electrocatalytic
reduction process of the N2 gas over the Cu/PI-300 electrode into
corresponding ammonia.

The mass loadings of Cu/PI-300 on the carbon cloth also
slightly change the Faradaic efficiencies and the NH3 yield rates,
and this condition was optimized as 5 mg cm−2 to afford
the highest Faradaic efficiency (6.56%) and NH3 yield rate
(12.4 µg h−1 cm−2) at a potential of −0.3 V vs. RHE (Fig. 2c and
Supplementary Fig. 16). Cu/C catalyst (Supplementary Fig. 12), as
a control sample of Cu nanoparticles prepared from the same
method with Cu/PI, provide a Faradaic efficiency of only 0.17%
(Fig. 2b) and a rather low yield rate of NH3 (~ 0.7 µg h−1 cm−2)
(Supplementary Table 2), attesting to the essential contribution of
the Cu/PI combination to the high selectivity to NRR. The NH3

yield rate of the Cu/PI-300 electrode with a catalyst loading of 5
mg cm−2 could be further elevated to 17.2 µg h−1 cm−2 at an
optimized potential of −0.4 V vs. RHE (Fig. 2d and Supplemen-
tary Fig. 17).

Effect of electron deficient Cu. To understand the supporting
effect on the NRR activity of supported Cu nanoparticles, we
calculated the electronic structures of Cu clusters on PI and
carbon supports via density functional theory (DFT) simulation.
The electron density difference (EDD) (Fig. 3a, b) and Hirshfeld
charge (Supplementary Fig. 18) results illustrate that the PI as a
semiconductor support could attract more electrons from the Cu
cluster (0.06 for each Cu atom) than that by carbon support (0.02
for each Cu atom) in Cu/C model, indicating a rectifying contact
between Cu and PI semiconductors. Indeed, the programable
band structures of PI-300, PI-400 and PI-600 samples (Fig. 3c)
were further estimated on the basis of ultraviolet photoelectron
spectroscopy (UPS) results (Supplementary Fig. 19), UV-vis
absorption spectra (Fig. 1b and Supplementary Fig. 20) and
Mott–Schottky plots (Supplementary Fig. 21). The thermal con-
densation process largely elevated the valence band positions of
PI supports for PI-300 and PI-400 with higher synthetic tem-
peratures, while their conduction bands were slightly elevated
simultaneously. As presented by the SSNMR and FT-IR results
(Supplementary Fig. 1 and 6), the PI-600 sample was highly
condensed into organic carbons with a narrower band gap and
also an improved conductivity. Accordingly, the estimated work
functions of the PI supports decrease from PI-300 via PI-400 to
PI-600. It is thus reasonable that PI-300 could attract more
electrons from the deposited Cu nanoparticles due to the
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rectifying Mott-Schottky effect25,26 at the Cu/PI interface, which
was reflected by the greatly enhanced work function of Cu in Cu/
PI-300 (Fig. 3d) estimated from the UPS analysis results (Sup-
plementary Fig. 22). Furthermore, the gradual shifts of typical Cu
2p3/2 XPS peaks (Fig. 3e) to higher energy was attributed to the
gradually increased numbers of electrons donated by Cu particles
of the PI supports with even higher work functions (Fig. 3d). It
doubly verified that PI-300 could attract more electrons from the
deposited Cu nanoparticles according to the larger shift of Cu
2p3/2 XPS peak for Cu/PI-300 (Fig. 3e). It should be noted that
the typical Cu 2p3/2 peaks of copper oxides was estimated to be
centered at 935.0 eV (data not shown), directly excluding the
presence of CuO as the main component in all Cu/PI samples.
The gradually decreased electron density in metallic Cu in Cu/PI
samples from Cu/PI-600 to Cu/PI-300 (Fig. 3d, e) again confirm
that Cu is the electron donor, as depicted in the right side of
Fig. 3c, making the Cu nanoparticles more “noble”.

Density functional theory calculations. We next carefully ana-
lyzed the actual role of the electron deficiency of Cu nanoparticles
in activating N2 molecules and boosting their NRR activity. The
polarization of adsorbed N2 molecules was gradually enhanced by
Cu surface with lowered electronic density which was well pre-
sented by the obvious differences in the electron density differ-
ence (Fig. 3f insert) and Hirshfeld charge (Supplementary Fig. 23)

of each N atom after changing the catalytic surface from the
pristine Cu to the electron-deficient Cu (Cu-0.04e− and Cu-
0.06e-) models. The strengthened interaction with N2 on Cu
surface with lowered electronic density was also well reflected by
the enhanced adsorption energy (Fig. 3f). Such a strong interac-
tion between N2 and Cu/PI dyads was further confirmed by the
N2 adsorption-desorption and N2-TPD analysis results (Fig. 3g
and Supplementary Fig. 24–25). More pronounced electron-
deficiency of Cu nanoparticles from Cu/PI-600 via Cu/PI-400 to
Cu/PI-300 leads to gradually increased N2 adsorption capacities
for 0.6, 2.6 and 4.1 times as compared to the values of corre-
sponding bare PI supports (Supplementary Fig. 25c). The lowest
surface area of Cu/PI-300 among all Cu/PI samples (Supple-
mentary Fig. 24) directly demonstrate the main contribution of
electron-deficient Cu to its high N2 adsorption capacity.

Moreover, depressing the HER process during NRR is another
aspect to ensure the final selectivity of a catalyst. For the HER
process in basic electrolyte conditions, the adsorption of water
molecules and desorption of OH− usually dominate the entire
mass transfer process. An electron-deficient surface of Cu
nanoparticles obviously generates a strong electrostatic interaction
with the OH− anions (Fig. 3h inset), which is undesirable for HER
on the Cu-centers in base solution. As a result, Cu/PI-300
exhibited the worst HER performance (Fig. 3h) among all Cu/PI
samples in this work. The much higher Tafel slope for HER over
the Cu/PI-300 catalyst compared with other controls
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(Supplementary Fig. 26) directly confirm the negative effect of the
electron-deficiency induced in the Cu nanoparticles on HER,
which is, on the other hand, highly preferred for the improvement
of NRR performance for gradually elevated ammonia yields
(Fig. 3i). More importantly, the addition of first hydrogen atom to
pre−adsorbed N2 (*N2) as the rate−limiting step and the following
steps, according to the calculated Gibbs free energy change (ΔG)
of the NRR (Fig. 4a and S27) are also gradually facilitated by
the Cu clusters with even lower electronic density as reflected
by the remarkably lowered ΔG (from 2.30 eV on pristine Cu
via 1.76 eV on Cu-0.04e- to 1.60 eV on Cu-0.06e-). The
dissociation step from *NNH4 to *NH2 proceed automatically
again due to the largely reduced free energy by the electron-
defecient Cu surface.

Both experimental and theoretical results demonstrate the key
effect of electron density of metallic Cu nanoparticles on the
promoted NRR process. As a results, the Cu/PI-300 nanocompo-
site containing electron-deficient Cu nanoparticles is the first
example of Cu-based nanocatalysts for electrochemical NRR with
a Faradaic efficiency of 6.56%, while CuS (Supplementary Fig. 28),
as the best-in-class Cu-based NRR catalyst in the literature, yields
a Faradaic efficiency of only 0.18%27. Furthermore, the NH3

generation yield rate of Cu/PI-300 (17.2 µg h−1 cm−2) is also
among the highest levels reported for state-of-the-art NRR
electrocatalysts, far surpassing the reported Cu-based NRR
electrocatalyst and comparable to noble metal-based counterparts
(Fig. 4b and Supplementary Table 3). It should be noted that
utilization of more noble Cu nanoparticles as the catalytically
active centers in Cu/PI-300 provides a TOF value of 0.26 h−1 for
NRR, outpacing that of the traditional noble metal-based NRR
electrode in the three-electrode system7.

Catalytic stability. The rectifying contact at the highly coupled
interface of Cu and PI also ensures the electrochemical stability of

the Cu/PI-300 catalyst for long-term NRR processes. The flat and
repeatable i-t curves at −0.4 V vs. RHE in 0.1 mol L−1 KOH
(Fig. 4c) exhibited negligible attenuation after a 30-h run of
standard NRR reactions with the electrolyte renewed every 6 h.
The excellent durability of the catalytic active species in the Cu/
PI-300 catalyst were also further indicated by the stable NH3 yield
rates, TOF values (Fig. 4d), and Faradaic efficiencies (Supple-
mentary Fig. 29) for the following four runs of the recycling test.
This is especially remarkable as ammonia is known to etch bulk
copper to form stable amine-complexes.

Discussion
In conclusion, herein we present and describe success in
designing electron-deficient Cu nanoparticles on semi-
conductive PI for application as inexpensive but effective
metal catalysts to reduce gaseous dinitrogen under ambient
conditions. Importantly, the Mott–Schottky interface contact
between the metal and semiconductor tunes the electron den-
sity of Cu nanoparticles for preferred adsorption of OH− in
basic solution to inhibit the HER process. Simultaneously,
electron-deficient Cu nanoparticles remarkably enhance the
pre-adsorption of N2 molecules for an improved NH3 genera-
tion yield, as visible even in N2-TPD. The present result opens
new directions in the search for Mott–Schottky catalysts, using
inexpensive and common metals and supports to improve and
optimize the specific reaction from impossible to high yield,
and resulting in a de novo breakthrough for Cu-catalyzed NRR
and a design guideline for other inexpensive metal-based
Mott–Schottky catalysts.

Methods
Preparation of PI nanoflower. PI nanoflower was synthesized by following a
previously reported procedure28. In a 250 mL beaker, 1,4-diaminobenzene (1.08 g,
100 mmol) was dissolved into DMF (anhydrous, 60 mL) solution before benzene-
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1,2,4,5-tetracarboxylic dianhydride (2.18 g, 100 mmol) was added with stirring. The
reaction was kept overnight until the viscosity stopped increasing. Then, 30 mL of
the solution was transferred into a Teflon-inner autoclave to further polymeriza-
tion at 180 °C for 10 h. After cooling down, the precipitate in the autoclave was
filtrated and washed with DMF and ethanol for several times. The obtained yel-
lowish solid was dried in vacuum overnight and grounded into fine powder. The
powder were then heated to 300, 400, or 600 °C at a rate of 5 °C/min and

maintained at that temperature for 8 h in a tube furance with N2 flow to generate
PI-300, PI-400 or PI-600, respectively.

Preparation of Cu/PI catalyst and Cu/C catalyst. 100mg of PI-300, PI-400, PI-
600, or carbon black and 19mg Cu(NO3)2·3H2O were dispersed into 8mL of water
via sonication and vigorous stir for 2 h. 200 μL 1M NaOH solution was added to the
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solution before another two-hour stirring. And then, 0.5mL of 1M NaBH4 was added
dropwise to this suspension. The obtained mixture was separated via centrifugation,
washed thoroughly with distilled water and ethanol, then dried in vacuum at 60 °C
overnight. The powder was obtained as Cu/PI-300, Cu/PI-400, Cu/PI-600, or Cu/C.

Preparation of CuOx/PI-300 catalyst. 100 mg of PI-300 and 19 mg Cu
(NO3)2·3H2O were dispersed into 8 mL of water via sonication and vigorous stir for
2 h. 200 μL 1M NaOH solution was added to the solution before another two-hour
stirring. The obtained mixture was separated via centrifugation, washed thoroughly
with distilled water, then dried in furnace at 100 °C overnight. The powder was
obtained as CuOx/PI-300.

Preparation of Cu/PI/carbon cloth electrodes. 20 mg catalyst (Cu/PI-300, Cu/
PI-400, or Cu/PI-600), 800 μL of H2O, 800 μL of EtOH and 280 μL of 5 wt% Nafion
solution in alcohol were mixed and sonicated to generate the catalyst ink. 230/350/
470/590/700 μL ink was dropped on the carbon cloth evenly at certain area (1 cm ×
1 cm) and then dried at room temperature to afford the Cu/PI/carbon cloth
electrodes for electrochemical NRR measurements with the mass loading of 2.50/
3.75/5.00/6.25/7.50 mg cm−2, respectively.

Preparation of the reference carbon cloth electrodes. 20 mg catalyst (Cu/C or
PI-300), 800 μL of H2O, 800 μL of EtOH and 280 μL of 5 wt% Nafion solution in
alcohol were mixed and sonicated to generate the catalyst ink. 470 μL ink was
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Fig. 4 Density functional theory calculations and stability. a Calculated absorption configurations (bottom) and corresponding Gibbs free energy diagrams

of each step of NRR process on pristine Cu (black), Cu-0.04e− (blue) and Cu-0.06e−(red) models. b The turnover frequency (TOF) values and NH3

generation yield rates of Cu/PI-300 and benchmarked NRR electrocatalyst in the literature (details listed in Table S3). The i-t curves c of five runs of 6-h

NRR reaction over a reused Cu/PI-300 at −0.4 V vs. RHE and corresponding NH3 yield rates and TOF values d
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dropped on the carbon cloth evenly at certain area (1 cm × 1 cm) and then dried at
room temperature to afford the reference cloth electrodes for electrochemical NRR
measurements with the mass loading of 5.00 mg cm−2.

Data availability
The data that support the findings of this study are available from the corresponding

authors upon request.
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