
Boosting Single-thread Performance in Multi-core Systems

through Fine-Grain Multi-Threading
Carlos Madriles, Pedro López, Josep M. Codina, Enric Gibert, Fernando Latorre,

Alejandro Martínez, Raúl Martínez and Antonio González

Intel Barcelona Research Center, Intel Labs
Universitat Politècnica de Catalunya, Barcelona (Spain)

{carlos.madriles.gimeno, pedro.lopez, josep.m.codina, enric.gibert.codina, fernando.latorre,
alejandrox.martinez, raulx.martinez, antonio.gonzalez}@intel.com

ABSTRACT

Industry has shifted towards multi-core designs as we have hit the

memory and power walls. However, single thread performance

remains of paramount importance since some applications have

limited thread-level parallelism (TLP), and even a small part with

limited TLP impose important constraints to the global

performance, as explained by Amdahl’s law.

In this paper we propose a novel approach for leveraging multiple

cores to improve single-thread performance in a multi-core

design. The proposed technique features a set of novel hardware

mechanisms that support the execution of threads generated at

compile time. These threads result from a fine-grain speculative

decomposition of the original application and they are executed

under a modified multi-core system that includes: (1) mechanisms

to support multiple versions; (2) mechanisms to detect violations

among threads; (3) mechanisms to reconstruct the original

sequential order; and (4) mechanisms to checkpoint the

architectural state and recovery to handle misspeculations.

The proposed scheme outperforms previous hardware-only

schemes to implement the idea of combining cores for executing

single-thread applications in a multi-core design by more than

10% on average on Spec2006 for all configurations. Moreover,

single-thread performance is improved by 41% on average when

the proposed scheme is used on a Tiny Core, and up to 2.6x for

some selected applications.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures, D.3.4

[Programming Languages]: Processors – compilers, code

generation, optimization.

General Terms
Performance, Design.

Keywords
Speculative multithreading; Core-fusion; thread-level parallelism;

single-thread performance; multicore; automatic parallelization.

1. INTRODUCTION
Single-threaded processors have shown significant performance

improvements during the last decades by exploiting instruction

level parallelism (ILP). However, this kind of parallelism is

sometimes difficult to exploit requiring complex hardware

structures that lead to prohibitive power consumption and design

complexity. In this scenario, chip multiprocessors (CMPs) have

emerged as a promising alternative in order to provide further

performance improvements under a reasonable power budget.

CMP processors comprise multiple cores where parallel

workloads are executed. They exploit what is called thread level

parallelism (TLP). However, the design of a CMP able to

efficiently exploit TLP and ILP is not straight-forward. For

instance, multi-core architectures based on simple cores are very

effective to exploit TLP but their performance is compromised for

lowly threaded applications. By contrast, multi-core architectures

based on big cores usually have very few of them because of area

and power constraints. They have limited TLP capabilities but are

more effective to exploit ILP.

Core Fusion [11] is an alternative that tries to get the best of both

worlds. Core Fusion schemes use small cores to exploit highly

threaded workloads, while dealing with lowly threaded scenarios

by combining the computational capabilities of several cores. In

order to achieve the effect of combining cores instructions are

dynamically distributed to cores. Therefore, Core Fusion relies on

parallelizing techniques but it is limited to the exploitation of ILP

inside an instruction window of a typical size. It is well known

that the parallelism available in a given instruction window is

quite dependent on the size of this window.

In this paper we propose Anaphase, a hardware/software co-

designed threading scheme that leverages multiple cores to

execute a single-threaded code. This scheme is based on a novel

speculative multithreading technique that decomposes single-

threaded applications in a fine-grain fashion. In this approach, the

compiler is responsible for distributing instructions to cores

whereas the hardware includes special components to support this

execution model.

When decomposing an application into speculative threads, the

independence among threads is not guaranteed and memory

accesses are not performed in sequential order. The hardware is

responsible for reconstructing the original program order and

detecting memory dependence violations among threads.

Moreover, the hardware supports different versions of the memory

state for each core. Finally, checkpointing and recovery

mechanisms are implemented through special hardware support.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ISCA’09, June 20–24, 2009, Austin, Texas, USA.

Copyright 2009 ACM 978-1-60558-526-0/09/06...$5.00.

In this paper we focus on the hardware for Anaphase, and the

main contributions of this paper are as follows:

• A novel fine-grain threading-based approach to exploit

multiple cores for boosting single-thread performance. We

present results that show that this approach significantly

speeds up single-threaded code, and it outperforms previous

hardware-only schemes such as Core Fusion.

• A cost-effective hardware support to implement Anaphase

on top of a conventional multi-core system. In particular, a

novel hardware component named Inter-Core Memory

Coherency Module (ICMC) is proposed. The ICMC updates

the memory state in program order, detects memory

violations, and implements checkpointing and recovery in

case of misspeculation.

The rest of the paper is organized as follow. In Section 2, previous

work related to Anaphase is discussed. In Section 3 the Anaphase

scheme is described. In Section 4, the hardware support for

Anaphase is described. Finally, the evaluation is presented in

Section 5, future work in Section 6, and we conclude in Section 7.

2. RELATED WORK

2.1 Multi-core designs
A significant amount of research efforts have been devoted to

come up with appropriate design points to deal with ILP and TLP.

These include alternatives comprising either a large number of

tiny cores [3], a limited number of big cores [20], or

heterogeneous designs [13]. Some researchers propose adaptive

architectures and reconfigurable hardware where the

characteristics of the architecture dynamically adapt to the

parallelism of the applications. As far as we know, the techniques

more closely related to our proposal are those that pursue the idea

of combining or fusing cores [11][17][27].

Core Fusion can be seen as a natural evolution of clustered

microarchitectures [4][6]. In a clustered microarchitecture,

instructions are distributed among the clusters statically at

compile time, or dynamically through a steering logic. Instead,

Core Fusion involves the task of distributing instructions in cores

rather than clusters. Thus, starting from a single-threaded code,

Core Fusion decomposes a dynamic stream of instructions into

different hardware contexts. Therefore, Core Fusion exploits the

concept of non-speculative multithreading execution where

instructions are distributed in a fine-grain fashion. However, the

parallelism exploited by core fusion techniques is limited to ILP.

In this paper, we show that Anaphase achieves higher

performance than Core Fusion techniques by exploiting TLP, in

addition to ILP.

2.2 Threading Schemes
Traditional speculative multithreading schemes decompose

sequential codes into large chunks of consecutive instructions

[2][5][7][8][12][18][21][24][25][26]. Such coarse grain

decomposition may constraint the benefits of this paradigm. This

is particularly true when facing hard to parallelize codes, where

coarse grain decomposition may introduce too many dependences

among threads. This may end up limiting the parallelism in this

codes and harming performance. Instead, Anaphase parallelizes

applications at instruction granularity, which provides more

flexibility and thus it has more potential to further exploit TLP

than previous schemes.

Moreover, previous hardware proposals for speculative

multithreading [1][5][9][10][16][22] do not support the execution

of speculative threads at the finer granularity proposed in this

paper.

3. ANAPHASE
The proposed Anaphase scheme decomposes a sequential

application into speculative threads (SpMT threads) at compile

time. SpMT threads are generated for those regions that cover

most of the execution time of the application. Although Anaphase

can decompose a region into any number of speculative threads,

in this paper we limit our study to partitioning each region into

two threads. In this section we first describe the speculative

threads considered in this model and its execution model and,

then the compiler algorithms for generating them.

3.1 Threads
The main feature of the proposed threading scheme is that the

application is shred into speculative threads at instruction

granularity. An example of such fine-grain decomposition is

shown in Figure 1. Figure 1 (a) depicts the static control flow

graph (CFG) of a loop and a possible dynamic execution of it

consisting of the basic block stream {A, B, D, A, C, D}, while

Figure 1 (b) shows a possible fine-grain decomposition into

speculative threads.

Inter-thread dependences might arise between speculative threads.

These dependences occur when a value produced in one

speculative thread is required by another thread. Inter-thread

dependences are detected at compile time analyzing the code and

using profile information. Since not all actual dependences can be

identified by the profiler (i.e. memory dependences), the resulting

threads are speculative and may sometimes execute wrong. The

hardware is responsible for identifying when the execution is

wrong and act accordingly.

For all inter-thread dependences identified at compile time,

appropriate code is generated in the speculative threads to handle

them. In particular, one of the following techniques is applied: (i)

the dependence is satisfied by an explicit communication; or (ii)

the dependence is satisfied by a pre-computation slice (p-slice),

that is the subset of instructions needed to generate the consumed

datum. Instructions included in a p-slice may need to be assigned

to more than one thread. Therefore, speculative threads may

contain replicated instructions, as is the case of instruction D1 in

Figure 1.

Finally, another feature of the proposed scheme is that each

speculative thread is self-contained from the point of view of the

control flow. This means that each thread has all the branches it

needs to resolve its own execution. Note that in order to

accomplish it those branches that affect the execution of the

instructions of a thread need to be placed on the same thread. In

case a branch needs to be placed in more than one thread it is

replicated. This is also handled by the compiler when threads are

generated.

3.2 Execution Model
The compiler detects that a particular region B is suitable for

applying speculative multithreading. Hence it decomposes B into

two speculative threads that are mapped somewhere else in the

application code. We refer to this version of B as the optimized

version.

A spawn instruction is inserted in the original code before

entering region B. This instruction creates a new thread, and both,

the spawner and the spawnee speculative threads, start executing

the optimized version of the code. When both threads complete,

they synchronize, the speculative state becomes non-speculative

and execution resumes on single thread.

Two speculative threads synchronize every time an inter-thread

dependence must be satisfied by an explicit communication.

However, communications imply synchronization only on the

consumer, since the producer puts the produced datum into a

buffer in memory.

On the other hand, checkpointing is performed by hardware at the

places decided by the compiler through CKP instructions. This

instruction marks the place where the register checkpoint can be

taken. In this paper, CKP instructions are inserted at the

beginning of any loop belonging to optimize regions. Then in case

of violations, exceptions and interrupts the speculative threads are

squashed, and the execution jumps to a recovery code generated at

compile time, which in our case is the original sequential

execution.

3.3 Decomposition Algorithm
Speculative threads are generated at compile time. The compiler is

responsible for: (1) profiling the application, (2) analyzing the

code and detecting the most convenient regions of code for

parallelization, and finally, (3) decomposing the selected region

into speculative threads.

Anaphase decomposes selected regions using a multi-level graph

partitioning [14]. This algorithm consists of two main steps:

coarsening and refinement. The coarsening step creates a first

partition of instructions among speculative threads. Then, the

initial partition is refined in the refinement step by moving some

instructions from one thread to the other.

3.3.1 Coarsening
The coarsening step receives the Data Dependence Graph (DDG)

with profiling information indicating the number of occurrences

of each instruction and dependence. Then, it iteratively reduces

the DDG by collapsing pairs of nodes into supernodes until the

final graph has as many supernodes as threads, describing a first

partition of instructions to threads.

The coarsening algorithm gives the highest priority to the fusion

of those instructions belonging to the critical path. In case of a tie,

it gives priority to those instructions that have larger number of

common ancestors since we have measured that this heuristic

provides the greater benefits to fuse instructions. By contrast, the

algorithm promotes workload balance among threads giving very

low priority to the fusion of nodes that do not depend on each

other (directly or indirectly). Finally, memory level parallelism

(MLP) is promoted giving very low priority to the fusion of

delinquent loads [7] and their consumers. Loads with a miss rate

higher than 10% in the L2 cache during profiling are considered

as delinquent

3.3.2 Refinement
The second step of the multi-level graph partitioning is the

refinement process. This step traverses the different supernodes

created during the coarsening step and tries to refine the partition

by moving supernodes to other threads and estimating their

benefits based on an evolution of the traditional K-L algorithm

[15]. The benefits are estimated by analyzing the execution time

of the partition obtained after the movement.

The execution time of a partition is estimated using a 20K

dynamic instruction stream of the region obtained through

profiling. Execution time is then computed, as the number of

cycles of the longest thread, using a simple performance model

that takes into account dependences, issue width resources and the

size of the ROB (Reorder Buffer) of the target out-of-order core.

The studied partition in each refinement includes all necessary

branches in each thread to compute its control path, as well as all

A1

A2

A3

B1

B2

B3

B4

D1

D2

D3

C1

C2

A1

A2

A3

B1

B2

B3

B4

D1

D2

D3

A1

A2

A3

C1

C2

D1

D2

D3

A2

B2

B3

D1

D2

C1

C2

A1

A3

B1

B4

D1

A

B

D

A

C

D

A2

B2

B3

D1

D2

A2

C1

C2

D1

D2

A

B

D

A

C

D

A1

A3

B1

B4

D3

A1

A3

D3

A

B

D

A

D

Sequential CFG Dynamic Stream

ti
m
e

CONTEXT 1
Thread 1

Thread 2

Dynamic Stream

CONTEXT 1 CONTEXT 2

ti
m
e

D3

D1

D1

bblock A

bblock B bblock C

bblock D

(a) (b)

Figure 1. Conceptual view of the fine-grain decomposition into speculative threads.

required communications and p-slices. Given an inter-thread

dependence, it is explicitly communicated if the amount of

replicated dynamic instructions estimated to satisfy the

dependence locally exceeds a threshold. Otherwise, the p-slice is

built in the destination thread.

4. ANAPHASE ARCHITECTURE
In this paper we consider a multi-core x86 architecture [20]

divided in tiles as shown in Figure 2. Every core executes

instructions out-of-order. Every tile implements two cores with

private first level write-through data cache and instruction cache.

The first level data cache includes a state-of-the-art stream

hardware prefetcher. These caches are connected to a shared

copy-back L2 cache through a split transactional bus. The L2

cache is connected through another interconnection network to

main memory and to the rest of the tiles.

Tiles have two different operation modes: single-core mode and

cooperative mode. These cores execute conventional threads when

the tile is in single-core mode and they execute speculative

threads (one in each core) from the same decomposed application

when the tile is in cooperative mode. When two Anaphase threads

start running the optimized code and, the spawn instruction is

executed, the cores transition from single to cooperative-core

mode.

When two speculative threads are running on a tile in

cooperation-mode, synchronization among them occurs when an

inter-thread dependence must be satisfied by an explicit

communication. However, communications imply synchronization

only on the consumer side, since the producer puts the produced

datum when retires into a buffer in memory. Then,

communications are handled through the regular memory

hierarchy.

On the other hand, every tile implements a hardware component

called Inter-Core Memory Coherency Module (ICMC) that is in

charge of controlling the activity of the cores inside the tile when

they execute in cooperative mode. This piece of logic should

interfere very little with the cores. Hence, the cores fetch, execute

and retire instructions from the speculative threads in a decoupled

fashion most of the time. Then, a subset of the instructions is sent

to the ICMC after they retire in order to perform the validation of

the execution. The set of instructions considered by the ICMC is

limited to memory and some control instructions. We refer to

those instructions as ordering instructions.

The ICMC receives the ordering instructions and it handles them

through the three structures shown in Figure 3. These

components, together with some bit extensions included in the

memory hierarchy provide the hardware support for Anaphase:

• The ICMC sorts ordering instructions in order to: (1) make

changes made by the multi-threaded application visible to

the other tiles as if it would have been executed

sequentially; and (2) detect memory dependence violations

among the threads running on the cores of the tile. For the

purpose of reconstructing the memory sequential order the

ICMC implements one FIFO queue (memFIFO) per core as

shown in Figure 3. These queues keep ordering instructions

when they retired from the associated core as described in

Section 4.1.

• The ICMC and the extended memory hierarchy inside a tile

allow each core running in a cooperative mode to update its

own memory state, while still committing the same state that

the original sequential execution will produce. This is

accomplished as described in Section 4.2 by: (1) allowing

different versions of the same line in multiple L1’s; and (2)

avoiding speculative updates to propagate outside the tile.

• On the other hand, the proposed scheme requires some form

of register checkpointing to roll back the state to a correct

state when a misspeculation is found. Frequent checkpoints

should be taken in order to keep the penalty due to a

misspeculation small, without increasing too much the

overhead to create them. The ICMC implements a novel

scheme described in Section 4.3 that can take frequent

checkpoints (every few hundreds of instructions) of the

architectural register state while allows a core running in a

cooperative mode to retire instructions, reclaim execution

resources and keep doing forward progress even when other

cores are stalled.

We describe the aforementioned tasks in more detail on the

following sections.

4.1 Reconstructing Memory Sequential Order
When a tile is executing in cooperative mode, the ICMC is in

charge of reconstructing the original sequential order of memory

instructions that have been arbitrarily assigned to the speculative

threads. This order allows detecting memory violations and

updating memory correctly.

The sequential order is reconstructed using certain marks called

Program Order Pointer (POP) bits. POP bits are included by the

compiler in ordering instructions. The POP bit of every ordering

instruction indicates the speculative thread (e.g. 0 or 1) where the

Figure 2. Multicore architecure overview.

Figure 3. ICMC main structures.

next instruction in the original sequential code was assigned. In

case of conditional branches, two POP bits are included; one is

used when the branch is taken and the other when the branch is

not taken. An example of how these POP bits are assigned to

instructions is shown in Figure 4. For example, load L1 has a

POP bit of 0 because the next ordering instruction in sequential

order (branch B1) is assigned to speculative thread 0.

The order between two replicated instructions is not important as

long as the order with respect to the rest of the instructions is

guaranteed. Finally, indirect branches can have many destinations.

This scenario can be handled by forcing the first ordering

instruction of all known destinations to be assigned to the same

thread. Alternatively nops are used as ordering instructions in

those destination paths where the first instruction fits better in a

different thread.

The ICMC is in charge of committing all instructions in the

original program order using the POP bits. In particular, when a

core retires an ordering instruction, the instruction is stored in the

memFIFO associated to the core. Then, the ICMC process and

removes the instructions from the memFIFOs based on the POP

bits. The value of the POP bit of the last committed instruction

identifies the head of the memFIFO where the next instruction to

commit resides. We have measured that a switch between threads

is performed each 1.7 instructions on average. This clearly show

the fine-grain granularity of the Anaphase approach.

Note that instructions are committed by the ICMC when they

become the oldest instructions in the system in original sequential

order. Therefore, this is the order in which store operations can

update the shared cache levels and be visible outside the tile.

From now on, we say that an instruction retires when it becomes

the oldest instruction in a core and do the retirement. By contrast,

we say that an instruction globally commits, or commits for short,

when the instruction is processed by the ICMC because is the

oldest in the tile.

The contents of the entries in the memFIFOs is detailed in Figure

5 (a): 2 TYPE bits that identify the type of instruction (ld, st,

branch, ckp); 1 POP bit generated by the compiler; 64 bits for

memory address; 32 bits for the value in case of a store; 2 bits to

describe the size of the memory access; and 1 bit to mark

replicated (rep) instructions. Replicated instructions are marked to

avoid the ICMC to check for dependence violation.

Note that memFIFOs allow each core to fetch, execute and retire

instructions independently at core-level. The only synchronization

happens when a core prevents the other core to retire instructions.

A core may eventually fill up its memFIFO and stall until its

retired instructions can leave the memFIFO. This situation occurs

when the next instruction to be globally committed comes from a

different core and this instruction has not retired yet.

4.2 Memory State Management
In Figure 6 the changes introduced in the memory hierarchy from

the point of view of a single tile are shown. The main components

and changes involved in managing the memory state are

highlighted in grey. In the following sections the modifications in

the L1 cache, L2 cache and the use of the UDT are detailed.

4.2.1 L1 Cache
The L1 data caches do not invalidate other L1 caches in

cooperative mode when a line is updated: each L1 cache may have

a different version of the same datum. These caches are extended

with a versioned bit (V) per line. The V bit of a line in one core is

set when a store instruction executes in that core and updates that

line similar to [19].

Speculative updates to the L1 are not propagated (written-

through) to the shared L2 cache. Store operations are sent to the

ICMC which is in charge of updating the L2 cache in the original

order when they globally commit.

When a line with its V bit set is replaced from the L1, its contents

are discarded. When the cores transition from cooperative to

Figure 4. Example of how POP pointers are assigned to

ordering instructions. In this example “?” is used when

there is no information about the following instructions.

Figure 5. Contents of the main structures in the ICMC.

single-core mode, all the L1 lines with the V bit set are invalidated

since the correct data resides in the L2 and the ICMC.

4.2.2 L2 Cache
The shared L2 cache is extended with a speculative bit (S) per line

and a set of two last version bits (LV) per chunk of information. A

chunk is the granularity at which memory disambiguation between

the two speculative threads (and hence, memory violations) are

detected. In this work, we consider byte granularity.

When a store commits, it updates the corresponding L2 line and

sets its S bit to 1. Such S bit describes that the line has been

modified since the last checkpoint. Once a new checkpoint is

taken, the S bits are cleared. In case of a misspeculation, the

threads are rolled back and the lines with an S bit set are

invalidated. Hence, when a non-speculative dirty line is to be

updated by a speculative store, the line must be written back to the

next memory level in order to have a valid non-speculative

version of the line somewhere in the memory hierarchy. Since

speculative state cannot go beyond the L2 cache, an eviction from

the L2 of a line that is marked as speculative (S) implies rolling

back to the previous checkpoint to resume executing the original

application.

On the other hand, the LV bits indicate the core that has the latest

version of a particular chunk. When a store commits, it sets the

LV bits of the modified chunks belonging to that core to one and

resets the rest. If a store is tagged as replicated (executed by both

cores), both cores will have the latest copy. In this case, the LV

bits are set to 11. Upon a global commit of a load, these bits are

checked to see whether the core that executed the load was the

core having the latest version of the data. If the LV bit

representing the core that executed the load is 0 and the bit for the

other core is 1, a violation is detected and the threads are

squashed. This is so because as each core fetches, executes and

retires instructions independently and the L1 caches also work

decoupled from each other, the system can only guarantee that a

load will read the right value if this was generated in the same

core.

4.2.3 UDT
The Update Description Table (UDT) is a table that describes the

L2 lines that are going to be updated by store instructions located

in the memFIFO queues. The purpose of the UDT is to delay any

fill from the shared L2 cache to the L1 cache as long as there are

still some stores pending to update that line. This way we avoid

filling an L1 with a stale line from the L2. In particular, a fill to

the L1 of a given core is delayed until there are no more pending

stores in the memFIFOs for that particular core (there is no any

entry in the UDT for the line tag).

Note that there is no need to wait for stores from other cores that

access the same line, since in case of a memory dependence the

LV bits will already detect it, and in case that the two cores access

different parts of the same line, the ICMC will properly merge the

updates at the L2.

An UDT entry as shown in Figure 5 (b) has: the tag identifying

the L2 line, plus a valid bit attached to a memFIFO entry id for

each core. The memFIFO entry id is the entry number of the last

store that updates that line. This field is updated every time a store

is appended to a memFIFO. If a store writes a line without an

entry in the UDT then it allocates a new entry. By contrast, if a

committed store is pointed by the memFIFO entry id then its valid

bit is set to false; and if both valid bits are false then the entry is

removed from the UDT.

4.3 Register State Management
In order to allow cores running in cooperative mode to work

asynchronously, the ICMC is in charge of merging and building

the register architectural state. Therefore, a core does not have to

generate the complete architectural state. Instead, this can be

partially computed by multiple cores.

Figure 7 shows a conceptual view of the checkpointing

mechanism. This mechanism conceptually creates a ROB where

instructions are stored in the order they should be globally

committed. However, since the threads execute asynchronously,

the entries in this conceptual ROB are not allocated sequentially.

Instead we have areas where we do not know either how many nor

the kind of instructions to be allocated there. This situation may

happen if for instance the core 0 is executing a region of code that

should be committed after the instructions executed from core 1.

In Figure 7, GRetire_C points to the last instruction retired by

core C. As it can be seen, core 0 goes ahead of core 1 so that there

are gaps (shown as shaded regions) between Gretire_0 and

Gretire_1.

Checkpoints taken by the core that retires the youngest

instructions in the system are always partial checkpoints. We

cannot guarantee that this core actually produces a whole

architectural state. By contrast, checkpoints taken by the core that

does not retire the youngest instruction in the system are complete

checkpoints because it knows the instructions older than the

checkpoint that the other core has executed. Therefore, it knows

where each of the architectural values resides at that point.

Figure 6. The extented memory hierarchy of a tile.

The reason why a core takes periodic checkpoints even when they

are partial, as core 0 in the example, is because all physical

registers that are not pointed by these partial checkpoints are

reclaimed. This feature allows this core to make forward progress

with little increase on the pressure over its register file. Moreover,

when the other core reaches the checkpoint, core 1 in the example,

it is guaranteed that the registers containing the values produced

by core 0 that belong to the architectural state at this point have

not been reclaimed so that we can build the complete checkpoint

with the information from core 1. On the other hand, registers

being allocated in core 0 that did not belong to the checkpoint

because they were overwritten by core 1 can also be released.

Note that the core that goes ahead is not always the same. This

role changes depending on the decomposition of instructions

among threads. Therefore, the role of complete checkpointing is

moving from one core to the other.

At a given time, a complete checkpoint has pointers to the

physical registers in the register files (either in core 0 or 1) where

the value resides for each logical register. A checkpoint can be

released and its physical registers reclaimed when all instruction

have been globally committed and a younger checkpoint becomes

complete.

A checkpoint is taken when a CKP instruction inserted by the

compiler is found, and at least a minimum number of dynamic

instructions have been globally committed since the last

checkpoint (CKP_DIST_CTE). This logic is shown in Figure 8.

This CKP instruction has the IP of the recovery code which is

stored along with the checkpoint, so that when an interrupt or data

misspeculation occurs, the values pointed by the previous

checkpoint are copied to the core that will resume the execution of

the application. In this paper, we consider that this copy is done

by hardware. However, it can also be done by software as the

beginning of a service routine.

A checkpoint includes the IP of the instruction where the

checkpoint was created, the IP of the rollback code, and an entry

for each logical register in the architecture. Each of these entries

have: the physical register (PDest) where the last value produced

prior to the checkpoint resides for that particular logical register;

the overwritten bit (O) which is set to 1 if the PDest identifier

differs from the PDest in the previous checkpoint; and the remote

bit (R) which is set to 1 if the architectural state the logical

register resides in another core.

The components included in the ICMC for handling these

checkpoints comprise:

• One FIFO queue (lregFIFO) per core where all retired

instructions that writes a logical register allocate an entry.

Each entry as shown in Figure 5 (c) consists of: 1-bit field

named ckp that is set to 1 in case there is an architectural

state checkpoint associated to this entry; the identifier of the

logical register written by the instruction (LDest); and the

POP bit to identify which thread contains the next

instruction in program order.

• A set of pointers per lregFIFO: (1) a RetireP pointer to the

first unused entry of the lregFIFO, where new retired

instructions allocate an entry; (2) a CommitP pointer to the

oldest allocated entry in the lregFIFO which is used to

deallocate the lregFIFO entries in order; (3) a Gretire

pointer to the last entry in the lregFIFO we visited in order

to build a complete checkpoint.

• A pool of checkpoint tables per lregFIFO. The number of

these tables defines the maximum number of checkpoints

we can have in-flight. Each pool of checkpoints works as a

FIFO queue where checkpoints are allocated and reclaimed

in order.

Every time a core retires an instruction that produces a new

architectural register value, a new entry is allocated in the

corresponding lregFIFO. Then, it reads the entry in the active

checkpoint for the logical register it overwrites. In case the O bit

is set, the PDest identifier stored in the entry is reclaimed. Then,

the O bit is set and the R bit unset. Finally, we update the PDest

field with the physical register allocated by the retired instruction.

Once we found the starting point of a new checkpoint, we reset all

O bits in the new active checkpoint.

When GRetire pointer does not match RetireP, we do not have to

take any action, because we are the youngest instruction in the

system. Otherwise, if the GRetire pointer matches the RetireP

pointer means that this instruction is not the youngest instruction

and so we are performing complete checkpoints. For that, we

check the POP bit and in case it points to other core C, we use the

GRetire pointer of C to walk over its lregFIFO until we find an

entry with a POP pointer pointing to us again. For every entry we

visit, we read the LDest value and update our active checkpoint:

in case the O bit is set, we reclaim the physical register identifier

written in PDest. Then, in any case we reset the O bit, set the R bit

and update the PDest. When an entry with the ckp bit set to 1 is

visited, the partial checkpoint with the information of our active

checkpoint is completed. This merging involves reclaiming all

PDest which in the partial checkpoint has the O bit set and the R

bit in our active checkpoint is reset. Then, we update our active

checkpoint resetting the O bit of these entries.

Figure 8. Register checkpointing mechanism.

Figure 7. Conceptual view of register checkpointing.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

S
p

e
e

d
u

p

CoreFusion_tiny Anaphase_tiny CoreFusion_medium Anaphase_medium

Figure 9. Anaphase performance compared to Core Fusion.

4.4 Hardware Complexity
We have used CACTI 5.3 [23] to measure the area required by

our proposal in a contemporary CMP. For this study we have

considered a processor with only one tile based on the parameters

shown in Table 1 (Medium core), which is similar to an Intel®

CoreTM 2 Duo processor. On 65 nm technology, the studied base

processor has an area of 143 mm2. We have measured that our

proposal, the ICMC and the extensions to L1 and L2 caches,

increases the area up to 153.4 mm2 (7.2% increase).

5. EXPERIMENTAL EVALUATION

5.1 Framework
The Anaphase speculative thread decomposition scheme has been

implemented on top of the Intel® production compiler (icc). For

evaluating the proposed technique, we have selected the

SPEC2006 benchmark suite compiled with icc –O3. In total 12

SpecFp and 12 SpecInt benchmarks have been optimized with

Anaphase using the train input set for profiling information.

Representative loops of the train execution have been selected to

be speculative parallelized with Anaphase based on 20M

instruction traces generated with the PinPoint tool. In these traces,

those outer loops that cover more than 500K dynamic instructions

have been selected for thread decomposition.

For each of the selected loops, the Anaphase thread

decomposition technique generates a partition for different

replication thresholds, as described in section 3. Once all the

partitions are generated, the Anaphase scheme selects the best

partition for each loop and generates the optimized binary.

The performance of the optimized benchmarks has been evaluated

through a detailed cycle accurate simulator using the ref input set.

The simulator models the x86 CMP architecture described in

section 4. For this evaluation only one tile has been used. Two

cores have been considered to represent different CMP scenarios.

One out-of-order core, called Medium, that is similar to current

CMP cores [20], and another called Tiny, where main structures

have been reduced to half the size, which represents a likely core

on a many-core environment.

The main parameters that we have considered are shown in Table

1. The shadowed fields on the table are per core. Regarding the

ICMC structures, our studies show that 1024 entries per mem/lreg

FIFO and 64 entries in the UDT for the Medium core gives us

almost the maximum performance we can get with the threading

scheme we are evaluating.

In order to perform the performance simulations, for each studied

benchmark, we have randomly selected traces of 100M

instructions of the ref execution beginning with the head of each

of its optimized loops. Results for the benchmark are then

reported as the addition of all the simulated traces. On average,

about 10 traces have been generated per benchmark. We have

measured that on average the optimized loops found in these

traces cover more than 90% of the whole ref execution.

5.2 Results
Figure 9 shows the performance of the Anaphase scheme. We

have compared the execution of Anaphase with another scheme to

boost single thread performance on CMPs based on dynamic non-

speculative fine-grain thread decomposition. This scheme closely

models the Core Fusion proposal [11]. Performance for both

schemes is reported as speedup over execution on a single core.

For this comparison, both Tiny and Medium core configurations

have been evaluated.

As can be seen, Anaphase clearly outperforms the Core Fusion

scheme on both core configurations. An average speedup of 41%

and 31% is observed for the Tiny and Medium core respectively,

whereas Core Fusion achieves 28% and 12%. Note that on a CMP

with small cores, where the amount of ILP each core is able to

exploit is limited by resources, Core Fusion performs significantly

better than on a CMP with bigger cores. On the other hand,

Anaphase performs well on both CM P environments since it

better exploits different sources of parallelism: ILP, TLP, and

MLP. Regarding TLP, we have measured that for these

benchmarks Anaphase is able to speculate on a window

comprised of several thousands and even a few millions of

instructions. This is measured as the distance between the

youngest instruction and the most senior instruction (not yet

globally retired) in the system. Regarding MLP, we have observed

that exploiting this parallelism is key for some benchmarks like

bwaves, lbm, milc, hmmer, and zeusmp. As can be seen in Figure

9, Anaphase significantly benefits from exploiting more MLP

thanks to its fine-grain decomposition and the delinquent load

heuristic. On the other hand, differences between the train and ref

input sets affect the profiling information used by Anaphase and

Table 1. Architecture configuration parameters.

Parameter Tiny Core Medium Core

Fetch, Retire and Issue width 2 4

Pipeline stages 7 7

Branch Predictor GShare history bits/table entries 12/4096 12/4096

Sizes ROB/Issue Queue/MOB 48/16/24 96/32/48

Miss Status Holding Registers per core 8 16

L1 and ICache size/ ways/ line size/ latency 16KB/4/32B/2 32KB/4/32B/2

L2 size/ ways/ line size/ latency (round trip) 4MB/8/32B/32 4MB/8/32B/32

Memory latency 328 328

Explicit communication penalty 32 32

Overhead spawn / commit (cycles) 64 / 64 64 / 64

Mem Fifos / lreg Fifos Size 512 1024

UDT Size 32 64

may cause that available MLP remains to be exploited. This effect

can be observed in the lbm benchmark, where Core Fusion

decomposition ends up in a better distribution of load misses.

Other features that may affect Anaphase performance compared to

Core Fusion are inter-thread communications and the amount of

replication due to control instructions. Regarding

communications, although we have observed that for some

benchmarks inter-thread communication latency is up to a few

thousand cycles on average, the Anaphase decomposition scheme

is able to adapt to it. On the other hand, we have verified that for

some benchmarks, like libquantum, Core Fusion benefits a lot

from having a dedicated communication mechanism with only 2

cycles latency. In addition, Core Fusion requires a tight

synchronization in the front-end in order to steer instructions

among cores in sequential order. Anaphase allows asynchronous

execution of each of the threads and thus no modifications on the

front-end at the expenses of having to replicate some control

instructions. We have observed that the impact on performance of

this control replication is about 5% on average, and for some

benchmarks like gcc and gobmk this is the cause why Anaphase

performs worse than Core Fusion.

Finally, in some benchmarks where Core Fusion performs better

than Anaphase, like gemsFDTD, wrf, gcc, gobmk, h264ref, and

libquantum, Anaphase suffers from low coverage of the optimized

regions.

Figure 10 shows the breakdown of dynamic executed instructions

for the different benchmarks optimized with Anaphase. As

expected, the number of instructions in optimized regions is very

high in almost all the benchmarks. However, as previously

pointed out, for some benchmarks like gemsFDTD, wrf, gcc,

gobmk, h264ref, and libquantum, the non optimized code

represents more than 20% of the dynamic execution. This low

coverage is mainly caused by inaccuracies of the profiling

information to select the loops to be optimized.

As can be seen in the Figure 10, the amount of additional

instructions needed to solve inter-thread dependences (replicated

instructions and explicit communications) represent just about

22% of the dynamic instructions on average. However, for some

benchmarks like povray, astar, bzip2, gobmk, and sjeng,

replication represents up to 40% of dynamic instructions.

Although, this large amount of replication code does not imply a

slowdown in performance, it may imply an increase in energy.

One important thing to notice is that in Anaphase p-slices are

conservative and do not include any speculative optimization.

Previous work has shown that through speculative optimizations

p-slices can be significantly reduced with little impact on accuracy

[8]. On the other hand, explicit communications, only account for

3% of additional instructions on average. This short amount of

extra instructions has proven to be a very effective technique to

handle inter-thread dependences. We have verified that with a

scheme that do not allow explicit communications, the

performance speedup of Anaphase for the studied benchmarks

drops until 20% on average.

Thanks to the checkpointing support, the Anaphase scheme is also

very effective on reducing the amount of work that is wasted due

to squashed regions. For all benchmarks the number of

instructions wasted due to squashes represents less than 1%. It is

worth to point out that on average 25% of the optimized regions

turn out to be squashed due to memory misspeculations or

evictions of speculative lines on the MLC. For some benchmarks,

like bwaves and lbm, the percentage of squashed regions is close

to 95%. We have measured that on average more than 50% of the

squashes are due to evictions of speculative lines on the MLC.

This strengthens the importance of having a fine-grain

checkpointing mechanism as the one proposed for Anaphase. Our

evaluations show that in order to take a checkpoint every 200

original instructions on average, less than 8 live checkpoints are

required for our system.

6. FUTURE WORK
Our future work can be decomposed into three big areas. First, we

would like to improve the overall coverage of optimized regions.

Increasing coverage is a simple mechanism to increase

performance further. On a second set of future actions, we would

like to study the implications of implementing Anaphase on a

dynamic optimizer, and the interactions with the OS. Finally we

will explore how Anaphase scales when fine-grain speculative

multithreading is applied to more than two threads.

7. CONCLUSIONS
In this paper we have presented Anaphase fine-grain threading-

based approach to exploit multiple cores to boost single-thread

performance. The proposed technique features a cost-effective

hardware support for the execution of Anaphase threads generated

at compile time. In particular, a novel hardware component named

Inter-Core Memory Coherency Module is proposed which updates

the memory state in program order, detects memory violations,

and implements checkpointing and recovery mechanisms.

Results reported in this paper strongly validate the effectiveness

of Anaphase for boosting single-thread performance, resulting

from exploiting ILP, TLP and MLP, with a high accuracy, and

low overheads. In addition, results shown in this paper

demonstrate that Anaphase fine-grain decomposition of

applications into speculative threads provides an appropriate

mechanism for combining the execution of cores and improving

single-thread performance in a multi-core design. In particular,

when Anaphase is used on a CMP with tiny cores single-thread

performance of Spec2006 applications is improved by 41% on

average, and up to 2.6x for some selected applications.

Figure 10. Anaphase dynamic instruction breakdown.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
yn

a
m

ic
 In

st
ru

ct
io

n
s

(%
)

NonOptimized Optimized Replication Communications Squashed

Finally, we have shown that Anaphase outperforms previous

hardware-only schemes to implement Core Fusion by more than

10% on average on Spec2006 for all configurations.

8. ACKNOWLEDGMENTS
This work has been partially supported by the Spanish Ministry of

Science and Innovation under contract TIN 2007-61763 and the

Generalitat de Catalunya under grant 2005SGR00950. We thank

the reviewers for their helpful and constructive comments.

9. REFERENCES
[1] H. Akkary and M.A. Driscoll, “A Dynamic Multithreading

Processor”, in Proc. of the 31st Int. Symp. on

Microarchitecture, 1998

[2] S. Balakrishnan, G. Sohi, “Program Demultiplexing: Data-

flow based Speculative Parallelization of Methods in

Sequential Programs”, in Proc. of the Int. Symp. on

Computer Architecture, pp. 302-313, 2006

[3] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,

S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese,

"Piranha: A Scalable Architecture Based on Single-Chip

Multiprocessing", in Proc. of the 27th Int. Symp. on

Computer Architecture, pp. 282-293, June 2000

[4] R. Canal, J.-M. Parcerisa, and A. Gonzalez, “A Cost-

effective Clustered Architecture”. in Int. Conf. on Parallel

Architectures and Compilation Techniques, pp 160–168,

Newport Beach, CA, October 1999

[5] M. Cintra, J.F. Martinez and J. Torrellas, “Architectural

Support for Scalable Speculative Parallelization in Shared-

Memory Systems”, in Proc. of the 27th Int. Symp. on

Computer Architecture, 2000

[6] J. D. Collins and D. M. Tullsen, “Clustered Multithreaded

Architectures - Pursuing Both Ipc and Cycle Time”, in Int.

Parallel and Distributed Processing Symp., April 2004

[7] J. D. Collins, H. Wang, D.M. Tullsen, C. Hughes, Y-F. Lee,

D. Lavery and J.P. Shen,”Speculative Precomputation: Long

Range Prefetching of Delinquent Loads”, in Proc. of the 28th

Int. Symp. on Computer Architecture, 2001

[8] C. García, C. Madriles, J. Sánchez, P. Marcuello, A.

González, D. Tullsen, “Mitosis Compiler: An Infrastructure

for Speculative Threading Based on Pre-Computation

Slices”, in Procs. of the Conf. on Programming Language

Design and Implementation, 2005

[9] S. Gopal, T.N. Vijaykumar, J.E. Smith and G.S. Sohi,

“Speculative Versioning Cache”, in Proc. of the 4th Int.

Symp. on High Performance Computer Architecture, 1998

[10] L. Hammond, M. Willey and K. Olukotun, “Data

Speculation Support for a Chip Multiprocessor”, in Proc. of

the Int. Conf. on Architectural Support for Programming

Languages and Operating Systems, 1998

[11] E. Ipek, M. Kirman, N. Kirman, and J.F. Martinez, “Core

fusion: Accommodating Software Diversity in Chip

Multiprocessors”, in Proc. of the Int. Symp. on Computer

Architecture, 2007

[12] T. Johnson, R. Eigenmann, and T. Vijaykumar, “Min-Cut

Program Decomposition for Thread-Level Speculation”, in

Procs. of Conf. on Programming Language Design and

Implementation, 2004

[13] J. A. Kahle , M. N. Day , H. P. Hofstee , C. R. Johns , T. R.

Maeurer , and D. Shippy, “Introduction to the Cell

Multiprocessor”, IBM Journal of Research and

Development, v.49 n.4/5, p.589-604, July 2005

[14] G. Karypis, and V. Kumar, “Analysis of Multilevel Graph

Partitioning”, in Procs. of the 7th Supercomputing, 1995

[15] B. Kernighan, and S. Lin, “An Efficient Heuristic Procedure
for Partitioning of Electrical Circuits”, in Bell System

Technical Journal, 1970

[16] V. Krishnan and J. Torrellas, “Hardware and Software
Support for Speculative Execution of Sequential binaries on

a Chip-Multiprocessor”, in Int. Conf. on Supercomputing,

pp. 85-92, 1998

[17] F. Latorre, J. Gonzalez, and A. Gonzalez, “Back-end
Assignment Schemes for Clustered Multithreaded

Processors”, in Intl. Conf. on Supercomputing, pp 316–325,

Malo, France, June–July 2004

[18] P. Marcuello, and A. González, “Thread-Spawning Schemes

for Speculative Multithreaded Architectures”, in Procs. of

the Symp. on High Performance Computer Architectures,

2002

[19] J.F. Martinez, J. Renau, M.C. Huang, M. Prvulovic, and J.

Torrellas, “Cherry: Checkpointed Early Recycling in Out-of-

order Microprocessors”, in Procs. of the Int. Symp. on

Microarchitecture, November 2002

[20] A. Mendelson, J, Mandelblat, S. Gochman, A. Shemer, R.

Chabukswar, E. Niemeyer, A. Kumar, "CMP Implementation

in Systems Based on the Intel® CoreTM Duo Processor", in

Intel Technology Journal, Volume 10, Issue 2, 2006

[21] T. Ohsawa, M. Takagi, S. Kawahara, and S. Matsushita,

“Pinot: Speculative Muti-threading Processor Architecture

Exploiting Parallelism over a wide Range of Granularities”,

in Proc. of the 38th Int. Symp. on Microarchitecture, 2005

[22] M. Prvulovic, M. J. Garzarán, L. Rauchwerger, and J.

Torrellas, “Removing Architectural Bottlenecks to the

Scalability of Speculative Parallelization”, in Proc. of the

28th Int. Symp. on Computer Architecture, 2001

[23] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. P. Jouppi,

“CACTI 5.1”, Technical Report HPL-2008-20, HP Labs.

[24] N. Vachharajani, R. Rangan, E. Raman, M. Bridges, G.

Ottoni, and D. August, “Speculative Decoupled Software

Pipelining”, in Procs. of the Conference on Parallel

Architecture and Compilation Techniques, pp. 49-59, 2007

[25] C.B. Zilles and G.S. Sohi, “Execution-Based Prediction
Using Speculative Slices”, in Proc. of the 28th Int. Symp. on

Computer Architecture, 2001

[26] C.B. Zilles and G.S. Sohi, “Master/Slave Speculative

Parallelization”, in Proc. of the 35th Int. Symp. on

Microarchitecture, 2002

[27] H. Zhong, S. A. Lieberman, and S. A. Mahlke, “Extending

Multicore Architectures to Exploit Hybrid Parallelism in

Single-thread Applications”. In Int. Symp. on High-

Performance Computer Architecture, 2007

