
Boosting Single-thread Performance in Multi-core Systems 

through Fine-Grain Multi-Threading 
Carlos Madriles, Pedro López, Josep M. Codina, Enric Gibert, Fernando Latorre,  

Alejandro Martínez, Raúl Martínez and Antonio González 

Intel Barcelona Research Center, Intel Labs 
Universitat Politècnica de Catalunya, Barcelona (Spain) 

{carlos.madriles.gimeno, pedro.lopez, josep.m.codina, enric.gibert.codina, fernando.latorre,  
alejandrox.martinez, raulx.martinez, antonio.gonzalez}@intel.com 

 

ABSTRACT 

Industry has shifted towards multi-core designs as we have hit the 

memory and power walls. However, single thread performance 

remains of paramount importance since some applications have 

limited thread-level parallelism (TLP), and even a small part with 

limited TLP impose important constraints to the global 

performance, as explained by Amdahl’s law.  

In this paper we propose a novel approach for leveraging multiple 

cores to improve single-thread performance in a multi-core 

design. The proposed technique features a set of novel hardware 

mechanisms that support the execution of threads generated at 

compile time. These threads result from a fine-grain speculative 

decomposition of the original application and they are executed 

under a modified multi-core system that includes: (1) mechanisms 

to support multiple versions; (2) mechanisms to detect violations 

among threads; (3) mechanisms to reconstruct the original 

sequential order; and (4) mechanisms to checkpoint the 

architectural state and recovery to handle misspeculations.  

The proposed scheme outperforms previous hardware-only 

schemes to implement the idea of combining cores for executing 

single-thread applications in a multi-core design by more than 

10% on average on Spec2006 for all configurations. Moreover, 

single-thread performance is improved by 41% on average when 

the proposed scheme is used on a Tiny Core, and up to 2.6x for 

some selected applications. 

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architectures, D.3.4 

[Programming Languages]: Processors – compilers, code 

generation, optimization. 

General Terms 
Performance, Design. 

Keywords 
Speculative multithreading; Core-fusion; thread-level parallelism; 

single-thread performance; multicore; automatic parallelization.  

1. INTRODUCTION 
Single-threaded processors have shown significant performance 

improvements during the last decades by exploiting instruction 

level parallelism (ILP). However, this kind of parallelism is 

sometimes difficult to exploit requiring complex hardware 

structures that lead to prohibitive power consumption and design 

complexity. In this scenario, chip multiprocessors (CMPs) have 

emerged as a promising alternative in order to provide further 

performance improvements under a reasonable power budget.  

CMP processors comprise multiple cores where parallel 

workloads are executed. They exploit what is called thread level 

parallelism (TLP). However, the design of a CMP able to 

efficiently exploit TLP and ILP is not straight-forward. For 

instance, multi-core architectures based on simple cores are very 

effective to exploit TLP but their performance is compromised for 

lowly threaded applications. By contrast, multi-core architectures 

based on big cores usually have very few of them because of area 

and power constraints. They have limited TLP capabilities but are 

more effective to exploit ILP.  

Core Fusion [11] is an alternative that tries to get the best of both 

worlds. Core Fusion schemes use small cores to exploit highly 

threaded workloads, while dealing with lowly threaded scenarios 

by combining the computational capabilities of several cores. In 

order to achieve the effect of combining cores instructions are 

dynamically distributed to cores. Therefore, Core Fusion relies on 

parallelizing techniques but it is limited to the exploitation of ILP 

inside an instruction window of a typical size. It is well known 

that the parallelism available in a given instruction window is 

quite dependent on the size of this window. 

In this paper we propose Anaphase, a hardware/software co-

designed threading scheme that leverages multiple cores to 

execute a single-threaded code. This scheme is based on a novel 

speculative multithreading technique that decomposes single-

threaded applications in a fine-grain fashion. In this approach, the 

compiler is responsible for distributing instructions to cores 

whereas the hardware includes special components to support this 

execution model. 

When decomposing an application into speculative threads, the 

independence among threads is not guaranteed and memory 

accesses are not performed in sequential order. The hardware is 

responsible for reconstructing the original program order and 

detecting memory dependence violations among threads. 

Moreover, the hardware supports different versions of the memory 

state for each core. Finally, checkpointing and recovery 

mechanisms are implemented through special hardware support.  
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In this paper we focus on the hardware for Anaphase, and the 

main contributions of this paper are as follows: 

• A novel fine-grain threading-based approach to exploit 

multiple cores for boosting single-thread performance. We 

present results that show that this approach significantly 

speeds up single-threaded code, and it outperforms previous 

hardware-only schemes such as Core Fusion.  

• A cost-effective hardware support to implement Anaphase 

on top of a conventional multi-core system. In particular, a 

novel hardware component named Inter-Core Memory 

Coherency Module (ICMC) is proposed. The ICMC updates 

the memory state in program order, detects memory 

violations, and implements checkpointing and recovery in 

case of misspeculation. 

The rest of the paper is organized as follow. In Section 2, previous 

work related to Anaphase is discussed. In Section 3 the Anaphase 

scheme is described. In Section 4, the hardware support for 

Anaphase is described. Finally, the evaluation is presented in 

Section 5, future work in Section 6, and we conclude in Section 7. 

2. RELATED WORK 

2.1 Multi-core designs 
A significant amount of research efforts have been devoted to 

come up with appropriate design points to deal with ILP and TLP. 

These include alternatives comprising either a large number of 

tiny cores [3], a limited number of big cores [20], or 

heterogeneous designs [13]. Some researchers propose adaptive 

architectures and reconfigurable hardware where the 

characteristics of the architecture dynamically adapt to the 

parallelism of the applications. As far as we know, the techniques 

more closely related to our proposal are those that pursue the idea 

of combining or fusing cores [11][17][27].   

Core Fusion can be seen as a natural evolution of clustered 

microarchitectures [4][6]. In a clustered microarchitecture, 

instructions are distributed among the clusters statically at 

compile time, or dynamically through a steering logic. Instead, 

Core Fusion involves the task of distributing instructions in cores 

rather than clusters. Thus, starting from a single-threaded code, 

Core Fusion decomposes a dynamic stream of instructions into 

different hardware contexts. Therefore, Core Fusion exploits the 

concept of non-speculative multithreading execution where 

instructions are distributed in a fine-grain fashion. However, the 

parallelism exploited by core fusion techniques is limited to ILP. 

In this paper, we show that Anaphase achieves higher 

performance than Core Fusion techniques by exploiting TLP, in 

addition to ILP. 

2.2 Threading Schemes 
Traditional speculative multithreading schemes decompose 

sequential codes into large chunks of consecutive instructions 

[2][5][7][8][12][18][21][24][25][26]. Such coarse grain 

decomposition may constraint the benefits of this paradigm. This 

is particularly true when facing hard to parallelize codes, where 

coarse grain decomposition may introduce too many dependences 

among threads. This may end up limiting the parallelism in this 

codes and harming performance. Instead, Anaphase parallelizes 

applications at instruction granularity, which provides more 

flexibility and thus it has more potential to further exploit TLP 

than previous schemes. 

Moreover, previous hardware proposals for speculative 

multithreading [1][5][9][10][16][22] do not support the execution 

of speculative threads at the finer granularity proposed in this 

paper. 

3. ANAPHASE 
The proposed Anaphase scheme decomposes a sequential 

application into speculative threads (SpMT threads) at compile 

time. SpMT threads are generated for those regions that cover 

most of the execution time of the application. Although Anaphase 

can decompose a region into any number of speculative threads, 

in this paper we limit our study to partitioning each region into 

two threads. In this section we first describe the speculative 

threads considered in this model and its execution model and, 

then the compiler algorithms for generating them. 

3.1 Threads 
The main feature of the proposed threading scheme is that the 

application is shred into speculative threads at instruction 

granularity. An example of such fine-grain decomposition is 

shown in Figure 1. Figure 1 (a) depicts the static control flow 

graph (CFG) of a loop and a possible dynamic execution of it 

consisting of the basic block stream {A, B, D, A, C, D}, while 

Figure 1 (b) shows a possible fine-grain decomposition into 

speculative threads.  

Inter-thread dependences might arise between speculative threads. 

These dependences occur when a value produced in one 

speculative thread is required by another thread. Inter-thread 

dependences are detected at compile time analyzing the code and 

using profile information. Since not all actual dependences can be 

identified by the profiler (i.e. memory dependences), the resulting 

threads are speculative and may sometimes execute wrong. The 

hardware is responsible for identifying when the execution is 

wrong and act accordingly. 

For all inter-thread dependences identified at compile time, 

appropriate code is generated in the speculative threads to handle 

them. In particular, one of the following techniques is applied: (i) 

the dependence is satisfied by an explicit communication; or (ii) 

the dependence is satisfied by a pre-computation slice (p-slice), 

that is the subset of instructions needed to generate the consumed 

datum. Instructions included in a p-slice may need to be assigned 

to more than one thread. Therefore, speculative threads may 

contain replicated instructions, as is the case of instruction D1 in 

Figure 1. 

Finally, another feature of the proposed scheme is that each 

speculative thread is self-contained from the point of view of the 

control flow. This means that each thread has all the branches it 

needs to resolve its own execution. Note that in order to 

accomplish it those branches that affect the execution of the 

instructions of a thread need to be placed on the same thread. In 

case a branch needs to be placed in more than one thread it is 

replicated. This is also handled by the compiler when threads are 

generated. 



3.2 Execution Model 
The compiler detects that a particular region B is suitable for 

applying speculative multithreading. Hence it decomposes B into 

two speculative threads that are mapped somewhere else in the 

application code. We refer to this version of B as the optimized 

version.  

A spawn instruction is inserted in the original code before 

entering region B. This instruction creates a new thread, and both, 

the spawner and the spawnee speculative threads, start executing 

the optimized version of the code. When both threads complete, 

they synchronize, the speculative state becomes non-speculative 

and execution resumes on single thread. 

Two speculative threads synchronize every time an inter-thread 

dependence must be satisfied by an explicit communication. 

However, communications imply synchronization only on the 

consumer, since the producer puts the produced datum into a 

buffer in memory. 

On the other hand, checkpointing is performed by hardware at the 

places decided by the compiler through CKP instructions. This 

instruction marks the place where the register checkpoint can be 

taken. In this paper, CKP instructions are inserted at the 

beginning of any loop belonging to optimize regions. Then in case 

of violations, exceptions and interrupts the speculative threads are 

squashed, and the execution jumps to a recovery code generated at 

compile time, which in our case is the original sequential 

execution.  

3.3 Decomposition Algorithm 
Speculative threads are generated at compile time. The compiler is 

responsible for: (1) profiling the application, (2) analyzing the 

code and detecting the most convenient regions of code for 

parallelization, and finally, (3) decomposing the selected region 

into speculative threads.  

Anaphase decomposes selected regions using a multi-level graph 

partitioning [14]. This algorithm consists of two main steps: 

coarsening and refinement. The coarsening step creates a first 

partition of instructions among speculative threads. Then, the 

initial partition is refined in the refinement step by moving some 

instructions from one thread to the other. 

3.3.1 Coarsening 
The coarsening step receives the Data Dependence Graph (DDG) 

with profiling information indicating the number of occurrences 

of each instruction and dependence. Then, it iteratively reduces 

the DDG by collapsing pairs of nodes into supernodes until the 

final graph has as many supernodes as threads, describing a first 

partition of instructions to threads. 

The coarsening algorithm gives the highest priority to the fusion 

of those instructions belonging to the critical path. In case of a tie, 

it gives priority to those instructions that have larger number of 

common ancestors since we have measured that this heuristic 

provides the greater benefits to fuse instructions. By contrast, the 

algorithm promotes workload balance among threads giving very 

low priority to the fusion of nodes that do not depend on each 

other (directly or indirectly). Finally, memory level parallelism 

(MLP) is promoted giving very low priority to the fusion of 

delinquent loads [7] and their consumers. Loads with a miss rate 

higher than 10% in the L2 cache during profiling are considered 

as delinquent 

3.3.2 Refinement 
The second step of the multi-level graph partitioning is the 

refinement process. This step traverses the different supernodes 

created during the coarsening step and tries to refine the partition 

by moving supernodes to other threads and estimating their 

benefits based on an evolution of the traditional K-L algorithm 

[15]. The benefits are estimated by analyzing the execution time 

of the partition obtained after the movement.  

The execution time of a partition is estimated using a 20K 

dynamic instruction stream of the region obtained through 

profiling. Execution time is then computed, as the number of 

cycles of the longest thread, using a simple performance model 

that takes into account dependences, issue width resources and the 

size of the ROB (Reorder Buffer) of the target out-of-order core. 

The studied partition in each refinement includes all necessary 

branches in each thread to compute its control path, as well as all 

A1

A2

A3

B1

B2

B3

B4

D1

D2

D3

C1

C2

A1

A2

A3

B1

B2

B3

B4

D1

D2

D3

A1

A2

A3

C1

C2

D1

D2

D3

A2

B2

B3

D1

D2

C1

C2

A1

A3

B1

B4

D1

A

B

D

A

C

D

A2

B2

B3

D1

D2

A2

C1

C2

D1

D2

A

B

D

A

C

D

A1

A3

B1

B4

D3

A1

A3

D3

A

B

D

A

D

Sequential CFG Dynamic Stream

ti
m
e

CONTEXT 1
Thread 1

Thread 2

Dynamic Stream

CONTEXT 1 CONTEXT 2

ti
m
e

D3

D1

D1

bblock A

bblock B bblock C

bblock D

(a) (b)

Figure 1. Conceptual view of the fine-grain decomposition into speculative threads. 



required communications and p-slices. Given an inter-thread 

dependence, it is explicitly communicated if the amount of 

replicated dynamic instructions estimated to satisfy the 

dependence locally exceeds a threshold. Otherwise, the p-slice is 

built in the destination thread. 

4. ANAPHASE ARCHITECTURE 
In this paper we consider a multi-core x86 architecture [20] 

divided in tiles as shown in Figure 2. Every core executes 

instructions out-of-order. Every tile implements two cores with 

private first level write-through data cache and instruction cache. 

The first level data cache includes a state-of-the-art stream 

hardware prefetcher. These caches are connected to a shared 

copy-back L2 cache through a split transactional bus. The L2 

cache is connected through another interconnection network to 

main memory and to the rest of the tiles.  

Tiles have two different operation modes: single-core mode and 

cooperative mode. These cores execute conventional threads when 

the tile is in single-core mode and they execute speculative 

threads (one in each core) from the same decomposed application 

when the tile is in cooperative mode. When two Anaphase threads 

start running the optimized code and, the spawn instruction is 

executed, the cores transition from single to cooperative-core 

mode. 

When two speculative threads are running on a tile in 

cooperation-mode, synchronization among them occurs when an 

inter-thread dependence must be satisfied by an explicit 

communication. However, communications imply synchronization 

only on the consumer side, since the producer puts the produced 

datum when retires into a buffer in memory. Then, 

communications are handled through the regular memory 

hierarchy. 

On the other hand, every tile implements a hardware component 

called Inter-Core Memory Coherency Module (ICMC) that is in 

charge of controlling the activity of the cores inside the tile when 

they execute in cooperative mode. This piece of logic should 

interfere very little with the cores. Hence, the cores fetch, execute 

and retire instructions from the speculative threads in a decoupled 

fashion most of the time. Then, a subset of the instructions is sent 

to the ICMC after they retire in order to perform the validation of 

the execution. The set of instructions considered by the ICMC is 

limited to memory and some control instructions. We refer to 

those instructions as ordering instructions. 

The ICMC receives the ordering instructions and it handles them 

through the three structures shown in Figure 3. These 

components, together with some bit extensions included in the 

memory hierarchy provide the hardware support for Anaphase: 

• The ICMC sorts ordering instructions in order to: (1) make 

changes made by the multi-threaded application visible to 

the other tiles as if it would have been executed 

sequentially; and (2) detect memory dependence violations 

among the threads running on the cores of the tile. For the 

purpose of reconstructing the memory sequential order the 

ICMC implements one FIFO queue (memFIFO) per core as 

shown in Figure 3. These queues keep ordering instructions 

when they retired from the associated core as described in 

Section 4.1. 

• The ICMC and the extended memory hierarchy inside a tile 

allow each core running in a cooperative mode to update its 

own memory state, while still committing the same state that 

the original sequential execution will produce. This is 

accomplished as described in Section 4.2 by: (1) allowing 

different versions of the same line in multiple L1’s; and (2) 

avoiding speculative updates to propagate outside the tile. 

• On the other hand, the proposed scheme requires some form 

of register checkpointing to roll back the state to a correct 

state when a misspeculation is found. Frequent checkpoints 

should be taken in order to keep the penalty due to a 

misspeculation small, without increasing too much the 

overhead to create them. The ICMC implements a novel 

scheme described in Section 4.3 that can take frequent 

checkpoints (every few hundreds of instructions) of the 

architectural register state while allows a core running in a 

cooperative mode to retire instructions, reclaim execution 

resources and keep doing forward progress even when other 

cores are stalled.  

We describe the aforementioned tasks in more detail on the 

following sections. 

4.1 Reconstructing Memory Sequential Order 
When a tile is executing in cooperative mode, the ICMC is in 

charge of reconstructing the original sequential order of memory 

instructions that have been arbitrarily assigned to the speculative 

threads. This order allows detecting memory violations and 

updating memory correctly.  

The sequential order is reconstructed using certain marks called 

Program Order Pointer (POP) bits. POP bits are included by the 

compiler in ordering instructions. The POP bit of every ordering 

instruction indicates the speculative thread (e.g. 0 or 1) where the 

Figure 2. Multicore architecure overview. 

Figure 3. ICMC main structures. 



next instruction in the original sequential code was assigned. In 

case of conditional branches, two POP bits are included; one is 

used when the branch is taken and the other when the branch is 

not taken. An example of how these POP bits are assigned to 

instructions is shown in Figure 4. For example, load L1 has a 

POP bit of 0 because the next ordering instruction in sequential 

order (branch B1) is assigned to speculative thread 0.  

The order between two replicated instructions is not important as 

long as the order with respect to the rest of the instructions is 

guaranteed. Finally, indirect branches can have many destinations. 

This scenario can be handled by forcing the first ordering 

instruction of all known destinations to be assigned to the same 

thread. Alternatively nops are used as ordering instructions in 

those destination paths where the first instruction fits better in a 

different thread. 

The ICMC is in charge of committing all instructions in the 

original program order using the POP bits. In particular, when a 

core retires an ordering instruction, the instruction is stored in the 

memFIFO associated to the core. Then, the ICMC process and 

removes the instructions from the memFIFOs based on the POP 

bits. The value of the POP bit of the last committed instruction 

identifies the head of the memFIFO where the next instruction to 

commit resides.  We have measured that a switch between threads 

is performed each 1.7 instructions on average. This clearly show 

the fine-grain granularity of the Anaphase approach. 

Note that instructions are committed by the ICMC when they 

become the oldest instructions in the system in original sequential 

order. Therefore, this is the order in which store operations can 

update the shared cache levels and be visible outside the tile. 

From now on, we say that an instruction retires when it becomes 

the oldest instruction in a core and do the retirement. By contrast, 

we say that an instruction globally commits, or commits for short, 

when the instruction is processed by the ICMC because is the 

oldest in the tile. 

The contents of the entries in the memFIFOs is detailed in Figure 

5 (a): 2 TYPE bits that identify the type of instruction (ld, st, 

branch, ckp); 1 POP bit generated by the compiler; 64 bits for 

memory address; 32 bits for the value in case of a store; 2 bits to 

describe the size of the memory access; and 1 bit to mark 

replicated (rep) instructions. Replicated instructions are marked to 

avoid the ICMC to check for dependence violation. 

Note that memFIFOs allow each core to fetch, execute and retire 

instructions independently at core-level. The only synchronization 

happens when a core prevents the other core to retire instructions. 

A core may eventually fill up its memFIFO and stall until its 

retired instructions can leave the memFIFO. This situation occurs 

when the next instruction to be globally committed comes from a 

different core and this instruction has not retired yet. 

4.2 Memory State Management 
In Figure 6 the changes introduced in the memory hierarchy from 

the point of view of a single tile are shown. The main components 

and changes involved in managing the memory state are 

highlighted in grey. In the following sections the modifications in 

the L1 cache, L2 cache and the use of the UDT are detailed. 

4.2.1 L1 Cache 
The L1 data caches do not invalidate other L1 caches in 

cooperative mode when a line is updated: each L1 cache may have 

a different version of the same datum. These caches are extended 

with a versioned bit (V) per line. The V bit of a line in one core is 

set when a store instruction executes in that core and updates that 

line similar to [19].  

Speculative updates to the L1 are not propagated (written-

through) to the shared L2 cache. Store operations are sent to the 

ICMC which is in charge of updating the L2 cache in the original 

order when they globally commit.  

When a line with its V bit set is replaced from the L1, its contents 

are discarded. When the cores transition from cooperative to 

Figure 4. Example of how POP pointers are assigned to 

ordering instructions.  In this example “?” is used when 

there is no information about the following instructions. 

Figure 5. Contents of the main structures in the ICMC.  



single-core mode, all the L1 lines with the V bit set are invalidated 

since the correct data resides in the L2 and the ICMC. 

4.2.2 L2 Cache 
The shared L2 cache is extended with a speculative bit (S) per line 

and a set of two last version bits (LV) per chunk of information. A 

chunk is the granularity at which memory disambiguation between 

the two speculative threads (and hence, memory violations) are 

detected. In this work, we consider byte granularity. 

When a store commits, it updates the corresponding L2 line and 

sets its S bit to 1. Such S bit describes that the line has been 

modified since the last checkpoint. Once a new checkpoint is 

taken, the S bits are cleared. In case of a misspeculation, the 

threads are rolled back and the lines with an S bit set are 

invalidated. Hence, when a non-speculative dirty line is to be 

updated by a speculative store, the line must be written back to the 

next memory level in order to have a valid non-speculative 

version of the line somewhere in the memory hierarchy.  Since 

speculative state cannot go beyond the L2 cache, an eviction from 

the L2 of a line that is marked as speculative (S) implies rolling 

back to the previous checkpoint to resume executing the original 

application.  

On the other hand, the LV bits indicate the core that has the latest 

version of a particular chunk. When a store commits, it sets the 

LV bits of the modified chunks belonging to that core to one and 

resets the rest. If a store is tagged as replicated (executed by both 

cores), both cores will have the latest copy. In this case, the LV 

bits are set to 11. Upon a global commit of a load, these bits are 

checked to see whether the core that executed the load was the 

core having the latest version of the data. If the LV bit 

representing the core that executed the load is 0 and the bit for the 

other core is 1, a violation is detected and the threads are 

squashed. This is so because as each core fetches, executes and 

retires instructions independently and the L1 caches also work 

decoupled from each other, the system can only guarantee that a 

load will read the right value if this was generated in the same 

core. 

4.2.3 UDT 
The Update Description Table (UDT) is a table that describes the 

L2 lines that are going to be updated by store instructions located 

in the memFIFO queues. The purpose of the UDT is to delay any 

fill from the shared L2 cache to the L1 cache as long as there are 

still some stores pending to update that line. This way we avoid 

filling an L1 with a stale line from the L2. In particular, a fill to 

the L1 of a given core is delayed until there are no more pending 

stores in the memFIFOs for that particular core (there is no any 

entry in the UDT for the line tag).  

Note that there is no need to wait for stores from other cores that 

access the same line, since in case of a memory dependence the 

LV bits will already detect it, and in case that the two cores access 

different parts of the same line, the ICMC will properly merge the 

updates at the L2. 

An UDT entry as shown in Figure 5 (b) has: the tag identifying 

the L2 line, plus a valid bit attached to a memFIFO entry id for 

each core. The memFIFO entry id is the entry number of the last 

store that updates that line. This field is updated every time a store 

is appended to a memFIFO. If a store writes a line without an 

entry in the UDT then it allocates a new entry. By contrast, if a 

committed store is pointed by the memFIFO entry id then its valid 

bit is set to false; and if both valid bits are false then the entry is 

removed from the UDT. 

4.3 Register State Management  
In order to allow cores running in cooperative mode to work 

asynchronously, the ICMC is in charge of merging and building 

the register architectural state. Therefore, a core does not have to 

generate the complete architectural state. Instead, this can be 

partially computed by multiple cores.  

Figure 7 shows a conceptual view of the checkpointing 

mechanism. This mechanism conceptually creates a ROB where 

instructions are stored in the order they should be globally 

committed. However, since the threads execute asynchronously, 

the entries in this conceptual ROB are not allocated sequentially. 

Instead we have areas where we do not know either how many nor 

the kind of instructions to be allocated there. This situation may 

happen if for instance the core 0 is executing a region of code that 

should be committed after the instructions executed from core 1. 

In Figure 7, GRetire_C points to the last instruction retired by 

core C. As it can be seen, core 0 goes ahead of core 1 so that there 

are gaps (shown as shaded regions) between Gretire_0 and 

Gretire_1.  

Checkpoints taken by the core that retires the youngest 

instructions in the system are always partial checkpoints. We 

cannot guarantee that this core actually produces a whole 

architectural state. By contrast, checkpoints taken by the core that 

does not retire the youngest instruction in the system are complete 

checkpoints because it knows the instructions older than the 

checkpoint that the other core has executed. Therefore, it knows 

where each of the architectural values resides at that point.  

Figure 6. The extented memory hierarchy of a tile. 



The reason why a core takes periodic checkpoints even when they 

are partial, as core 0 in the example, is because all physical 

registers that are not pointed by these partial checkpoints are 

reclaimed. This feature allows this core to make forward progress 

with little increase on the pressure over its register file. Moreover, 

when the other core reaches the checkpoint, core 1 in the example, 

it is guaranteed that the registers containing the values produced 

by core 0 that belong to the architectural state at this point have 

not been reclaimed so that we can build the complete checkpoint 

with the information from core 1. On the other hand, registers 

being allocated in core 0 that did not belong to the checkpoint 

because they were overwritten by core 1 can also be released.  

Note that the core that goes ahead is not always the same. This 

role changes depending on the decomposition of instructions 

among threads. Therefore, the role of complete checkpointing is 

moving from one core to the other. 

At a given time, a complete checkpoint has pointers to the 

physical registers in the register files (either in core 0 or 1) where 

the value resides for each logical register. A checkpoint can be 

released and its physical registers reclaimed when all instruction 

have been globally committed and a younger checkpoint becomes 

complete.  

A checkpoint is taken when a CKP instruction inserted by the 

compiler is found, and at least a minimum number of dynamic 

instructions have been globally committed since the last 

checkpoint (CKP_DIST_CTE). This logic is shown in Figure 8. 

This CKP instruction has the IP of the recovery code which is 

stored along with the checkpoint, so that when an interrupt or data 

misspeculation occurs, the values pointed by the previous 

checkpoint are copied to the core that will resume the execution of 

the application. In this paper, we consider that this copy is done 

by hardware. However, it can also be done by software as the 

beginning of a service routine.  

A checkpoint includes the IP of the instruction where the 

checkpoint was created, the IP of the rollback code, and an entry 

for each logical register in the architecture. Each of these entries 

have: the physical register (PDest) where the last value produced 

prior to the checkpoint resides for that particular logical register; 

the overwritten bit (O) which is set to 1 if the PDest identifier 

differs from the PDest in the previous checkpoint; and the remote 

bit (R) which is set to 1 if the architectural state the logical 

register resides in another core. 

The components included in the ICMC for handling these 

checkpoints comprise: 

• One FIFO queue (lregFIFO) per core where all retired 

instructions that writes a logical register allocate an entry. 

Each entry as shown in Figure 5 (c) consists of: 1-bit field 

named ckp that is set to 1 in case there is an architectural 

state checkpoint associated to this entry; the identifier of the 

logical register written by the instruction (LDest); and the 

POP bit to identify which thread contains the next 

instruction in program order.  

• A set of pointers per lregFIFO: (1) a RetireP pointer to the 

first unused entry of the lregFIFO, where new retired 

instructions allocate an entry; (2) a CommitP pointer to the 

oldest allocated entry in the lregFIFO which is used to 

deallocate the lregFIFO entries in order; (3) a Gretire 

pointer to the last entry in the lregFIFO we visited in order 

to build a complete checkpoint.  

• A pool of checkpoint tables per lregFIFO. The number of 

these tables defines the maximum number of checkpoints 

we can have in-flight. Each pool of checkpoints works as a 

FIFO queue where checkpoints are allocated and reclaimed 

in order.  

Every time a core retires an instruction that produces a new 

architectural register value, a new entry is allocated in the 

corresponding lregFIFO. Then, it reads the entry in the active 

checkpoint for the logical register it overwrites. In case the O bit 

is set, the PDest identifier stored in the entry is reclaimed. Then, 

the O bit is set and the R bit unset. Finally, we update the PDest 

field with the physical register allocated by the retired instruction. 

Once we found the starting point of a new checkpoint, we reset all 

O bits in the new active checkpoint. 

When GRetire pointer does not match RetireP, we do not have to 

take any action, because we are the youngest instruction in the 

system. Otherwise, if the GRetire pointer matches the RetireP 

pointer means that this instruction is not the youngest instruction 

and so we are performing complete checkpoints. For that, we 

check the POP bit and in case it points to other core C, we use the 

GRetire pointer of C to walk over its lregFIFO until we find an 

entry with a POP pointer pointing to us again. For every entry we 

visit, we read the LDest value and update our active checkpoint: 

in case the O bit is set, we reclaim the physical register identifier 

written in PDest. Then, in any case we reset the O bit, set the R bit 

and update the PDest. When an entry with the ckp bit set to 1 is 

visited, the partial checkpoint with the information of our active 

checkpoint is completed. This merging involves reclaiming all 

PDest which in the partial checkpoint has the O bit set and the R 

bit in our active checkpoint is reset. Then, we update our active 

checkpoint resetting the O bit of these entries. 

Figure 8. Register checkpointing mechanism. 

Figure 7. Conceptual view of register checkpointing. 
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Figure 9. Anaphase performance compared to Core Fusion. 

4.4 Hardware Complexity 
We have used CACTI 5.3 [23] to measure the area required by 

our proposal in a contemporary CMP. For this study we have 

considered a processor with only one tile based on the parameters 

shown in Table 1 (Medium core), which is similar to an Intel® 

CoreTM 2 Duo processor. On 65 nm technology, the studied base 

processor has an area of 143 mm2. We have measured that our 

proposal, the ICMC and the extensions to L1 and L2 caches, 

increases the area up to 153.4 mm2 (7.2% increase). 

5. EXPERIMENTAL EVALUATION 

5.1 Framework 
The Anaphase speculative thread decomposition scheme has been 

implemented on top of the Intel® production compiler (icc). For 

evaluating the proposed technique, we have selected the 

SPEC2006 benchmark suite compiled with icc –O3. In total 12 

SpecFp and 12 SpecInt benchmarks have been optimized with 

Anaphase using the train input set for profiling information. 

Representative loops of the train execution have been selected to 

be speculative parallelized with Anaphase based on 20M 

instruction traces generated with the PinPoint tool. In these traces, 

those outer loops that cover more than 500K dynamic instructions 

have been selected for thread decomposition. 

For each of the selected loops, the Anaphase thread 

decomposition technique generates a partition for different 

replication thresholds, as described in section 3. Once all the 

partitions are generated, the Anaphase scheme selects the best 

partition for each loop and generates the optimized binary. 

The performance of the optimized benchmarks has been evaluated 

through a detailed cycle accurate simulator using the ref input set. 

The simulator models the x86 CMP architecture described in 

section 4. For this evaluation only one tile has been used. Two 

cores have been considered to represent different CMP scenarios. 

One out-of-order core, called Medium, that is similar to current 

CMP cores [20], and another called Tiny, where main structures 

have been reduced to half the size, which represents a likely core 

on a many-core environment.  

The main parameters that we have considered are shown in Table 

1. The shadowed fields on the table are per core. Regarding the 

ICMC structures, our studies show that 1024 entries per mem/lreg 

FIFO and 64 entries in the UDT for the Medium core gives us 

almost the maximum performance we can get with the threading 

scheme we are evaluating. 

In order to perform the performance simulations, for each studied 

benchmark, we have randomly selected traces of 100M 

instructions of the ref execution beginning with the head of each 

of its optimized loops. Results for the benchmark are then 

reported as the addition of all the simulated traces. On average, 

about 10 traces have been generated per benchmark. We have 

measured that on average the optimized loops found in these 

traces cover more than 90% of the whole ref execution. 

5.2 Results  
Figure 9 shows the performance of the Anaphase scheme. We 

have compared the execution of Anaphase with another scheme to 

boost single thread performance on CMPs based on dynamic non-

speculative fine-grain thread decomposition. This scheme closely 

models the Core Fusion proposal [11]. Performance for both 

schemes is reported as speedup over execution on a single core. 

For this comparison, both Tiny and Medium core configurations 

have been evaluated.  

As can be seen, Anaphase clearly outperforms the Core Fusion 

scheme on both core configurations. An average speedup of 41% 

and 31% is observed for the Tiny and Medium core respectively, 

whereas Core Fusion achieves 28% and 12%. Note that on a CMP 

with small cores, where the amount of ILP each core is able to 

exploit is limited by resources, Core Fusion performs significantly 

better than on a CMP with bigger cores. On the other hand, 

Anaphase performs well on both CM P environments since it 

better exploits different sources of parallelism: ILP, TLP, and 

MLP. Regarding TLP, we have measured that for these 

benchmarks Anaphase is able to speculate on a window 

comprised of several thousands and even a few millions of 

instructions. This is measured as the distance between the 

youngest instruction and the most senior instruction (not yet 

globally retired) in the system. Regarding MLP, we have observed 

that exploiting this parallelism is key for some benchmarks like 

bwaves, lbm, milc, hmmer, and zeusmp. As can be seen in Figure 

9, Anaphase significantly benefits from exploiting more MLP 

thanks to its fine-grain decomposition and the delinquent load 

heuristic. On the other hand, differences between the train and ref 

input sets affect the profiling information used by Anaphase and 

Table 1. Architecture configuration parameters. 

Parameter Tiny Core Medium Core 

Fetch, Retire and Issue width 2 4 

Pipeline stages 7 7 

Branch Predictor GShare history bits/table entries 12/4096 12/4096 

Sizes ROB/Issue Queue/MOB 48/16/24 96/32/48 

Miss Status Holding Registers per core 8 16 

L1 and ICache  size/ ways/ line size/ latency 16KB/4/32B/2 32KB/4/32B/2 

L2  size/ ways/ line size/ latency (round trip) 4MB/8/32B/32 4MB/8/32B/32 

Memory latency 328 328 

Explicit communication penalty  32 32 

Overhead spawn / commit (cycles) 64 / 64 64 / 64 

Mem Fifos / lreg Fifos Size 512 1024 

UDT Size 32 64 

 



may cause that available MLP remains to be exploited. This effect 

can be observed in the lbm benchmark, where Core Fusion 

decomposition ends up in a better distribution of load misses. 

Other features that may affect Anaphase performance compared to 

Core Fusion are inter-thread communications and the amount of 

replication due to control instructions. Regarding 

communications, although we have observed that for some 

benchmarks inter-thread communication latency is up to a few 

thousand cycles on average, the Anaphase decomposition scheme 

is able to adapt to it. On the other hand, we have verified that for 

some benchmarks, like libquantum, Core Fusion benefits a lot 

from having a dedicated communication mechanism with only 2 

cycles latency. In addition, Core Fusion requires a tight 

synchronization in the front-end in order to steer instructions 

among cores in sequential order. Anaphase allows asynchronous 

execution of each of the threads and thus no modifications on the 

front-end at the expenses of having to replicate some control 

instructions. We have observed that the impact on performance of 

this control replication is about 5% on average, and for some 

benchmarks like gcc and gobmk this is the cause why Anaphase 

performs worse than Core Fusion.  

Finally, in some benchmarks where Core Fusion performs better 

than Anaphase, like gemsFDTD, wrf, gcc, gobmk, h264ref, and 

libquantum, Anaphase suffers from low coverage of the optimized 

regions. 

Figure 10 shows the breakdown of dynamic executed instructions 

for the different benchmarks optimized with Anaphase. As 

expected, the number of instructions in optimized regions is very 

high in almost all the benchmarks. However, as previously 

pointed out, for some benchmarks like gemsFDTD, wrf, gcc, 

gobmk, h264ref, and libquantum, the non optimized code 

represents more than 20% of the dynamic execution. This low 

coverage is mainly caused by inaccuracies of the profiling 

information to select the loops to be optimized. 

As can be seen in the Figure 10, the amount of additional 

instructions needed to solve inter-thread dependences (replicated 

instructions and explicit communications) represent just about 

22% of the dynamic instructions on average. However, for some 

benchmarks like povray, astar, bzip2, gobmk, and sjeng, 

replication represents up to 40% of dynamic instructions. 

Although, this large amount of replication code does not imply a 

slowdown in performance, it may imply an increase in energy. 

One important thing to notice is that in Anaphase p-slices are 

conservative and do not include any speculative optimization. 

Previous work has shown that through speculative optimizations 

p-slices can be significantly reduced with little impact on accuracy 

[8]. On the other hand, explicit communications, only account for 

3% of additional instructions on average. This short amount of 

extra instructions has proven to be a very effective technique to 

handle inter-thread dependences. We have verified that with a 

scheme that do not allow explicit communications, the 

performance speedup of Anaphase for the studied benchmarks 

drops until 20% on average. 

Thanks to the checkpointing support, the Anaphase scheme is also 

very effective on reducing the amount of work that is wasted due 

to squashed regions. For all benchmarks the number of 

instructions wasted due to squashes represents less than 1%. It is 

worth to point out that on average 25% of the optimized regions 

turn out to be squashed due to memory misspeculations or 

evictions of speculative lines on the MLC. For some benchmarks, 

like bwaves and lbm, the percentage of squashed regions is close 

to 95%. We have measured that on average more than 50% of the 

squashes are due to evictions of speculative lines on the MLC. 

This strengthens the importance of having a fine-grain 

checkpointing mechanism as the one proposed for Anaphase. Our 

evaluations show that in order to take a checkpoint every 200 

original instructions on average, less than 8 live checkpoints are 

required for our system. 

6. FUTURE WORK 
Our future work can be decomposed into three big areas. First, we 

would like to improve the overall coverage of optimized regions. 

Increasing coverage is a simple mechanism to increase 

performance further. On a second set of future actions, we would 

like to study the implications of implementing Anaphase on a 

dynamic optimizer, and the interactions with the OS. Finally we 

will explore how Anaphase scales when fine-grain speculative 

multithreading is applied to more than two threads. 

7. CONCLUSIONS 
In this paper we have presented Anaphase fine-grain threading-

based approach to exploit multiple cores to boost single-thread 

performance. The proposed technique features a cost-effective 

hardware support for the execution of Anaphase threads generated 

at compile time. In particular, a novel hardware component named 

Inter-Core Memory Coherency Module is proposed which updates 

the memory state in program order, detects memory violations, 

and implements checkpointing and recovery mechanisms. 

Results reported in this paper strongly validate the effectiveness 

of Anaphase for boosting single-thread performance, resulting 

from exploiting ILP, TLP and MLP, with a high accuracy, and 

low overheads. In addition, results shown in this paper 

demonstrate that Anaphase fine-grain decomposition of 

applications into speculative threads provides an appropriate 

mechanism for combining the execution of cores and improving 

single-thread performance in a multi-core design. In particular, 

when Anaphase is used on a CMP with tiny cores single-thread 

performance of Spec2006 applications is improved by 41% on 

average, and up to 2.6x for some selected applications. 

Figure 10. Anaphase dynamic instruction breakdown. 
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Finally, we have shown that Anaphase outperforms previous 

hardware-only schemes to implement Core Fusion by more than 

10% on average on Spec2006 for all configurations. 
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