
Boosting Structured Prediction
for Imitation Learning

Nathan Ratliff, David Bradley, J. Andrew Bagnell, Joel Chestnutt
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

{ndr, dbradley, dbagnell, joel.chestnutt }@ri.cmu.edu

Abstract

The Maximum Margin Planning (MMP) (Ratliff et al., 2006) algorithm solves
imitation learning problems by learning linear mappings from features to cost
functions in a planning domain. The learned policy is the result of minimum-cost
planning using these cost functions. These mappings are chosen so that example
policies (or trajectories) given by a teacher appear to be lower cost (with a loss-
scaled margin) than any other policy for a given planning domain. We provide a
novel approach, MMPBOOST , based on the functional gradient descent view of
boosting (Mason et al., 1999; Friedman, 1999a) that extends MMP by “boosting”
in new features. This approach uses simple binary classification or regression to
improve performance of MMP imitation learning, and naturally extends to the
class of structured maximum margin prediction problems. (Taskar et al., 2005)
Our technique is applied to navigation and planning problems for outdoor mobile
robots and robotic legged locomotion.

1 Introduction

“Imitation learning” of control or navigational behaviors is important in many application areas.
Recently, (Ratliff et al., 2006) demonstrated that imitation learning of long horizon and goal-directed
behavior can be naturally formulated as a structured prediction problem over a space of policies or
system trajectories. In this work, the authors demonstrate that efficient planning algorithms (e.g. for
deterministic systems or general Markov Decision Problems) can be taught to generalize a set of
examples provided by a supervisor. In essence, the algorithm attempts to linearly combine features
into costs so that the resulting cost functions make demonstrated example policies appear optimal
by a margin over all other policies. The technique utilizes the idea that while a desired behavior or
control strategy is often quite clear to a human expert, hand designing cost functions that induce this
behavior may be difficult.

Unfortunately, this Maximum Margin Planning (MMP) approach, as well as related techniques for
maximum margin structured learning developed in (Taskar et al., 2005) and (Taskar et al., 2003),
depend on linearly combining a prespecified set of features.1 Adopting a new variant of the general
ANYBOOSTalgorithm described in (Mason et al., 1999) or similarly (Friedman, 1999a), we propose
an alternate extension to Maximum Margin Planning specifically, and maximum margin structured
learning generally, in which we perform subgradient descent in the space of cost functions rather
than within any fixed parameterization. In this way, we show that we can “boost in” new features
using simple classification that help us a solve a more difficult structured prediction problem. The

1Alternatively, all of these methods admit straightforward kernelization allowing the implicit learning within
a Reproducing Kernel Hilbert space, but these kernel versions can be extremely memory and computationally
intensive.

application of boosting to structured learning techniques was first explored in (Dietterich et al.,
2004), within the context of boosting Conditional Random Fields. This paper extends that result to
maximum-margin techniques, and provides a more general functional gradient derivation.

We then demonstrate three applications of our technique. First, using only smoothed versions of an
overhead image as input, we show that MMPBOOSTis able to match human navigation performance
well on the task of navigating outdoor terrain. Using the same input, linear MMP, by contrast,
performs almost no better than straight line paths. Next we demonstrate that we can develop a
local obstacle detection/avoidance control system for an autonomous outdoor robot by observing an
expert teleoperator drive. Finally, we demonstrate on legged locomotion problems the use a slow
but highly accurate planner to train a fast, approximate planner using MMPBOOST .

2 Preliminaries

We model, as in (Ratliff et al., 2006), planning problems as discrete Markov Decision Processes.
Let s and a index the state and action spacesS andA, respectively; and letpi(s′|s, a) denote
transition probabilities for examplei. A discount factor on rewards (if any) is absorbed into the
transition probabilities. Our cost (negative reward) functions are learned from supervised trajectories
to produce policies that mimic the demonstrated behavior. Policies are described byµ ∈ G, where
G is the space of all state-action frequency counts. In the case of deterministic planning,µ is simply
an indicator variable denoting whether the state-actions, a transition is encountered in the optimal
policy. In the following, we useM both to denote a particular MDP, as well as to refer to the set of
all state-action pairs in that MDP.

We hypothesize the existence of a base feature spaceX from which all other features are derived.
A cost function over an MDPM is defined through this space asc(fM), wherefM : M → X
denotes a mapping from state-action pairs to points in base feature space, andc is a cost function
overX . Intuitively, each state-action pair in the MDP has an associated feature vector, and the cost
of that state-action pair is a function of that vector.

The input to the linear MMP algorithm is a set of training instancesD = {(Mi, pi, Fi, µi, li)}ni=1.
Each training instance consists of an MDP with transition probabilitiespi and state-action pairs
(si, ai) ∈ Mi over whichd-dimensional vectors of features mapped from the base feature spaceX
are placed in the form of ad × |M| feature matrixFi. In linear MMP,Fi is related toc above by
[wT F]s,a = c(fMi(s, a)).

µi denotes the desired trajectory (or full policy) that exemplifies behavior we hope to match. The
loss vectorli is a vector on the state-action pairs that indicates the loss for failing to match the
demonstrated trajectoryµi. Typically, in this work we use a simple loss function that is 0 on all
states occupied in the example trajectory and 1 elsewhere.

We use subscripts to denote indexing by training instance, and reserve superscripts for indexing into
vectors. (E.g.µs,a

i is the expected state-action frequency for states and actiona of examplei.) It is
useful for some problems, such as robot path planning, to imagine representing the features as a set
of maps and example paths through those maps. For instance, one feature map might indicate the
elevation at each state, another the slope, and a third the presence of vegetation.

3 Theory

We discuss briefly the linear MMP regularized risk function as derived in (Ratliff et al., 2006) and
provide the subgradient formula. We then present an intuitive and algorithmic exposition on the
boosted version of this algorithm we use to learn a nonlinear cost function. The precise derivation
of this algorithm has been postponed to the appendix.

3.1 The Maximum Margin Planning risk function

Crucial to the Maximum Margin Planning (MMP) approach is the development of a convex, but
non-differentiable regularized risk function for the general margin or slack scaled (Tsochantaridis
et al., 2005) maximum margin structured prediction problem. In (Ratliff et al., 2006), the authors
show that a subgradient descent procedure on this objective function can utilize efficient inference

techniques resulting in an algorithm that is tractable in both computation and memory for large
problems.

The risk function under this framework is

R(w) =
1
n

n∑
i=1

βi

(
wT Fiµi − min

µ∈Gi

(wT Fi − lTi)µ
)

+
λ

2
‖w‖2,

which gives the following subgradient with respect tow

gw =
1
n

n∑
i=1

Fi∆wµi + λw,

HereFi is the current set of learned features over examplei, µ∗ = arg minµ∈Gi
(wT Fi − lTi)µ

and∆wµi = µ∗ − µi. This latter expression points out that, intuitively, the subgradient compares
the state-action visitation frequency counts between the example policy and the optimal policy with
respect to the current reward functionwT Fi. The algorithm in its most basic form is given by
the update rulewt+1 ← wt − γtgt, where{γt}∞t=1 is a prespecified stepsize sequence andgt is a
subgradient at the current timestept.

Note that computing the subgradient requires solving the problemµ∗ = arg minµ∈Gi
(wT Fi− lTi)µ

for each MDP. This is precisely the problem of solving the particular MDP with the cost function
wT Fi − lTi , and can be implemented efficiently via a myriad of specialized algorithms such asA∗

in the context of planning.

3.2 Structured boosting of MMP

Maximum margin planning in its original formulation assumed the cost map is a linear function
of a set of prespecified features. This is arguably the most restrictive assumption made in this
framework. Similar to many machine learning algorithms, we find in practice substantial effort is
put into choosing these features well. In this section, we describe at an intuitive and algorithmic level
a boosting procedure for learning a nonlinear function of our base features. For clarity of exposition,
a full derivation in terms of the functional gradient descent view of boosting (Mason et al., 1999) is
postponed to the appendix. We encourage the reader to review this derivation as it differs in flavor
from those previously seen in the literature in ways important to its application to general structured
prediction problems.

This gradient boosting framework serves as a reduction (Beygelzimer et al., 2005) from the problem
of finding good features for structured prediction to a problem of simple classification. At a high
level, this algorithm learns a new feature by learning a classifier that is best correlated with the
changes we would like to have made to locally decrease the loss had we an infinite number of
parameters at our disposal.

In the case of MMPBOOST , this forms the following algorithm which is iterated:

• Fit the current model (using the current features) and compute the resulting loss-augmented
cost map.

• Run the planner over this loss-augmented cost map to get the best loss-augmented path.
Presumably, when the current feature set is not yet expressive enough, this path will differ
significantly from the example path.

• Form positive examples by gathering feature vectors encountered along this loss-
augmented path{(x(i)

planned, 1)} and form negative examples by gathering feature vectors

encountered along the example path{(x(j)
example,−1)}.

• Learn a classifier using this data set to generalize these suggestions to other points on the
map.

• Apply this classifier to every cell of all example maps and add the result as a new feature
to the feature matrix.

This simple procedure forms the MMPBOOST algorithm. If the original set of features cannot cor-
rectly represent as a linear function the cost variation necessary to explain the decisions made by

Figure 1: The four subimages to the left show (clockwise from upper left) a grayscale image used as base
features for a hold out region, the first boosted feature learned by boosted MMP for this region, the results of
boosted MMP on an example over this region (example red, learned path green), and the best linear fit of this
limited feature set. The plot on the right compares boosting objective function value (red) and loss on a hold
out set (blue) per boosting iteration between linear MMP (dashed) and boosted MMP (solid).

the trainer, this algorithm tries to find a new feature as a nonlinear function of the original base set
of features, that can best simultaneously raise the cost of the current erroneous path, and lower the
cost of the example path. Importantly, this function takes the form of a classifier that can generalize
this information to each cell of every map. Adding this feature to the current feature set provides an
incremental step toward explaining the decisions made in the example paths.

4 Applications

In this section we demonstrate on three diverse problems how MMPBOOST improves performance
in navigation and planning tasks.

4.1 Imitation Learning for Path Planning

We first consider a problem of learning to imitate example paths drawn by humans on publicly
available overhead imagery. In this experiment, a teacher demonstrates optimal paths between a set
of start and goal points on the image, and we compare the performance of MMPBOOST to that of
a linear MMP algorithm in learning to imitate the behavior. The base features for this experiment
consisted of the raw grayscale image, 5 Gaussian convolutions of it with standard deviations 1, 3, 5,
7, and 9, and a constant feature. Cost maps were created as a linear combination of these features
in the case of MMP, and as a nonlinear function of these features in the case of MMPBOOST . The
planner being trained was an 8-connected implementation of A*.

The results of these experiments are shown in Figure 1. The upper right panel on the left side
of that Figure shows the grayscale overhead image of the holdout region used for testing. The
training region was similar in nature, but taken over a different location. The features are particularly
difficult for MMP since the space of cost maps it considers for this problem consists of only linear
combinations of the same image at different resolutions. e.g. imagine taking various blurred versions
of an image and trying to combine them to make any reasonable cost map. The lower left panel on
the left side of Figure 1 shows that the best cost map MMP was able to find within this space
was largely just a map with uniformly high cost everywhere. The learned cost map was largely
uninformative causing the planner to choose the straight-line path between endpoints.

The lower right panel on the left side of Figure 1 shows the result of MMPBOOSTon this problem on
a holdout image of an area similar to that on which we trained. In this instance, we used regression
trees with 10 terminal nodes as our dictionaryH, and trained them on the base features to match
the functional gradient as described in Section 3.2. Since MMPBOOST searches through a space
nonlinear cost functions, it is able to perform significantly better than the linear MMP. Interestingly,
the first feature it learned to explain the supervised behavior was to a large extent a road detection

learned cost map

1

2

3

4

5

6

7

8

x 10−3

demonstrated
engineered
learned

1 2 3 4 5 6 7 8
4

5

6

7

8

9

10

11

12

13

Boosting round

A
ve

ra
ge

 lo
ss

 o
f D

*
pa

th

Average loss per round of boosting

learned
engineered

Figure 2:Left: An example learned cost map for a narrow path through trees showing the engineered system
(blue line) wanting to take a short cut to the goal by veering off into dense woods instead of staying on the path
as the human demonstrated (green line). In the learned cost map several boosted features combine to make the
lowest-cost path (red line) match the human’s preference of staying on the path. The robot is currently located
in the center of the cost map. Right: A graph of the average A* path loss over the examples in each round of
boosting. In just a few rounds the learned system exceeds the performance of the carefully engineered system.

classifier. The right panel of Figure 1 compares plots of the objective value (red) and the loss on the
holdout set (blue) per iteration between the linear MMP (dashed) and MMPBOOST(solid).

The first feature shown in figure 1 is interesting in that it largely represents the result of a path
detector. The boosting algorithm chooses positive examples along the example path, and nega-
tive examples along the loss-augmented path, which are largely disjoint from the example paths.
Surprisingly, MMPBOOST also outperformed linear MMP applied to additional features that were
hand-engineered for this imagery. In principle, given example plans, MMPBOOST can act as a so-
phisticated image processing technique to transform any overhead (e.g. satellite) image directly to a
cost map with no human intervention and feature engineering.

4.2 Learning from Human Driving Demonstration

We next consider the problem of learning to mimic human driving of an autonomous robot in com-
plex outdoor and off-road terrain. We assume that a coarseglobal planningproblem has been solved
using overhead imagery and the MMPBOOST application presented above. Instead, we use MMP-
BOOST to learn an local obstacle detection/avoidance system.

We consider the local region around the vehicle’s position at timet separately from the larger global
environment. Our goal is to use the vehicle’s onboard sensors to detect obstacles which were not
visible in the overhead imagery or were not present when the imagery was collected. The onboard
sensor suite used consists of ladar scanners to provide structural information about the environment,
and color and NIR cameras to provide appearance information. From these sensors we compute a
set of base features for each cell in a discretized 2-D map of the local area. These base features
include quantities such as the estimated elevation and slope of the ground plane in the cell, and the
average color and density of ladar points in the cell for various height ranges above the estimated
ground plane. As training data we use logged sensor data from several kilometers of teleoperation
of a large mobile robot through a challenging outdoor environment by an experienced operator.

In the previous example, the algorithm had access to both the complete path demonstrated by the
teacher, and the same input data (overhead image) the teacher used while generating the path. How-
ever, in this example not only is the input data different (since the teacher generally controls the
robot from behind and to the side using their own prior knowledge of the environment and highly
capable vision system), but we face the additional challenge of estimating the path planned by the
teacher at a particular time step from the vehicle motion we observe in future time steps, when the
teacher is using additional data.

For this experiment we assume that the next 10 m of the path driven by the vehicle after timet
matches the operator’s intended path at timet, and only compute loss over that section of the path.

Figure 3:Left is an image of the robot used for the quadruped experiments. The center pair of images shows
a typical height map (top), and the corresponding learned cost map (bottom) from a holdout set of the biped
planning experiments. Notice how platform-like regions are given low costs toward the center but higher costs
toward the edges, and the learned features interact to lower cost chutes to direct the planner through complicated
regions. Right are two histograms showing the ratio distribution of the speed of both the admissible Euclidean
(top) and the engineered heuristic (bottom) over an uninflated MMPBOOST heuristic on a holdout set of 90
examples from the biped experiment. In both cases, the MMPBOOSTheuristic was uniformly better in terms of
speed.

In practice this means that we create a set of local examples from each teleoperated path by sampling
the internal state of the robot at discrete points in time. At each timet we record the feature map
generated by the robots onboard sensors of the local 10 m radius area surrounding it as well as the
path the robot followed to the boundary of that area. Additionally, we model the operator’s prior
knowledge of the environment and their sensing of obstacles beyond the 10 m range by using our
global planning solution to generate the minimum path costs from a set of points on the boundary
of each local map to the global goal. The operator also attempted to match the range at which he
reacted to obstacles not visible in the overhead data (such as vehicles that were placed in the robot’s
path) with the 10 m radius of the local map. An 8-connected variant of A* then chooses a path to one
of the points on the boundary of the local map that minimizes the sum of costs accumulated along
the path to the boundary point with the cost-to-goal from the boundary point to the goal. Using 8
terminal node classification trees as our dictionaryH, we then apply the MMPBOOSTalgorithm to
determine transformations from base features to local costs so that the local trajectories executed by
the human are chosen by the planner with large margin over all the other possible local trajectories.

The results of running MMPBOOSTon the 301 examples in our data set are compared to the results
given by the current human engineered cost production system used on the robot in Figure 2. The
engineered system is the result of many man-hours of parameter tunning over weeks of field testing.
The learned system started with the engineered feature maps, and then boosted in additional features
as necessary. After just a few iterations of boosting the learned system displays significantly lower
average loss than the engineered system, and corrects important navigational errors such as the one
shown.

4.3 Learning a Fast Planner from a Slower one

Legged robots have unique capabilities not found in many mobile robots. In particular, they can
step over or onto obstacles in their environment, allowing them to traverse complicated terrain.
Algorithms have been developed which plan for foot placement in these environments, and have
been successfully used on several biped robots (Chestnutt et al., 2005). In these cases, the planner
evaluates various steps the robot can execute, to find a sequence of steps that is safe and is within the
robot’s capabilities. Another approach to legged robot navigation uses local techniques to reactively
adjust foot placement while following a predefined path (Yagi & Lumelsky, 1999). This approach
can fall into local minima or become stuck if the predefined path does not have valid footholds along
its entire length.

Footstep planners have been shown to produce very good footstep sequences allowing legged robots
to efficiently traverse a wide variety of terrain. This approach uses much of the robot’s unique abili-
ties, but is more computationally expensive than traditional mobile robot planners. Footstep planning
occurs in a high-dimensional state space and therefore is often too computationally burdensome to
be used for real-time replanning, limiting its scope of application to largely static environments. For

cost diff speedup cost diff speedup
mean std mean std mean std mean std

biped admissible biped inflated
MMPBOOSTvs Euclidean 0.91 10.08 123.39 270.97 9.82 11.78 10.55 17.51
MMPBOOSTvs Engineered -0.69 6.7 20.31 33.11 2.55 6.82 11.26 32.07

biped best-first quadruped inflated
MMPBOOSTvs Euclidean -609.66 5315.03 272.99 1601.62 3.69 7.39 2.19 2.24
MMPBOOSTvs Engineered 3.42 37.97 6.4 17.85 -4.34 8.93 3.51 4.11

Figure 4:Statistics comparing the MMPBOOSTheuristic to both a Euclidean and discrete navigational heuris-
tic. See the text for descriptions of the values.

most applications, the footstep planner implicitly solves a low dimensional navigational problem
simultaneously with the footstep placement problem. Using MMPBOOST , we use body trajectories
produced by the footstep planner to learn the nuances of this navigational problem in the form of a
2.5-dimensional navigational planner that can reproduce these trajectories. We are training a sim-
ple, navigational planner to effectively reproduce the body trajectories that typically result from a
sophisticated footstep planner. We could use the resulting navigation planner in combination with a
reactive solution (as in (Yagi & Lumelsky, 1999)). Instead, we pursue a hybrid approach of using
the resulting simple planner as a heuristic to guide the footstep planner.

Using a 2-dimensional robot planner as a heuristic has been shown previously (Chestnutt et al.,
2005) to dramatically improve planning performance, but the planner must be manually tuned to
provide costs that serve as reasonable approximations of the true cost. To combat these computa-
tional problems we focus on the heuristic, which largely defines the behavior of the A* planner.
Poorly informed admissible heuristics can cause the planner to erroneously attempt numerous dead
ends before happening upon the optimal solution. On the other hand, well informed inadmissible
heuristics can pull the planner quickly toward a solution whose cost, though suboptimal, is very
close to the minimum. This lower-dimensional planner is then used in the heuristic to efficiently and
intelligently guide the footstep planner toward the goal, effectively displacing a large portion of the
computational burden.

We demonstrate our results in both simulations and real-world experiments. Our procedure is to
run a footstep planner over a series of randomly drawn two-dimensional terrain height maps that
describe the world the robot is to traverse. The footstep planner produces trajectories of the robot
from start to goal over the terrain map. We then apply MMPBOOSTagain using regression trees with
10 terminal nodes as the base classifier to learn cost features and weights that turn height maps into
cost functions so that a 2-dimensional planner over the cost map mimics the body trajectory. We
apply the planner to two robots: first the HRP-2 biped robot and second the LittleDog2 quadruped
robot.The quadruped tests were demonstrated on the robot.3

Figure 4 shows the resulting computational speedups (and the performance gains) of planning with
the learned MMPBOOSTheuristic over two previously implemented heuristics: a simple Euclidean
heuristic that estimates the cost-to-go as the straight-line distance from the current state to the goal;
and an alternative 2-dimensional navigational planner whose cost map was hand engineered. We
tested three different versions of the planning configuration: (1) no inflation, in which the heuristic is
expected to give its best approximation of the exact cost so that the heuristics are close to admissible
(Euclidean is the only one who is truly admissible); (2) inflated, in which the heuristics are inflated
by approximately2.5 (this is the setting commonly used in practice for these planners); and (3) Best-
first search, in which search nodes are expanded solely based on their heuristic value. The cost diff
column relates on average the extent to which the cost of planning under the MMPBOOSTheuristic
is above or below the opposing heuristic. Loosely speaking this indicates how many more footsteps
are taken under the MMPBOOSTheuristic, i.e. negative values support MMPBOOST . The speedup
column relates the average ratio of total nodes searched between the heuristics. In this case, large
values are better, indicating the factor by which MMPBOOSToutperforms its competition.

The most direct measure of heuristic performance arguably comes from the best-first search results.
In this case, both the biped and quadruped planner using the learned heuristic significantly outper-

2Boston Dynamics designed the robot and provided the motion capture system used in the tests.
3A video demonstrating the robot walking across a terrain board is provided with this paper.

form their counterparts under a Euclidean heuristic.4 While Euclidean often gets stuck for long
periods of time in local minima, both the learned heuristic and to a lesser extent the engineered
heuristic are able to navigate efficiently around these pitfalls. We note that A* biped performance
gains were considerably higher: we believe this is because orientation plays a large role in planning
for the quadruped.

5 Conclusions and Future Work

MMPBOOST combines the powerful ideas of structured prediction and functional gradient descent
enabling learning by demonstration for a wide variety of applications. Future work will include ex-
tending the learning of mobile robot path planning to more complex configuration spaces that allow
for modeling of vehicle dynamics. Further, we will pursue applications of the gradient boosting
approach to other problems of structured prediction.

Acknowledgments

The authors gratefully acknowledge the partial support of this research by the DARPA Learning for Locomotion
and UPI contracts, and thank John Langford for enlightening conversations on reduction of structured learning
problems.

References

Beygelzimer, A., Dani, V., Hayes, T., Langford, J., & Zadrozny, B. (2005). Error limiting reductions between
classification tasks.ICML ’05. New York, NY.

Chestnutt, J., Lau, M., Cheng, G., Kuffner, J., Hodgins, J., & Kanade, T. (2005). Footstep planning for the
Honda ASIMO humanoid.Proceedings of the IEEE International Conference on Robotics and Automation.

Dietterich, T. G., Ashenfelter, A., & Bulatov, Y. (2004). Training conditional random fields via gradient tree
boosting.ICML ’04.

Friedman, J. H. (1999a). Greedy function approximation: A gradient boosting machine.Annals of Statistics.

Hassani, S. (1998).Mathematical physics. Springer.

Mason, L., J.Baxter, Bartlett, P., & Frean, M. (1999). Functional gradient techniques for combining hypotheses.
Advances in Large Margin Classifiers. MIT Press.

Ratliff, N., Bagnell, J. A., & Zinkevich, M. (2006). Maximum margin planning.Twenty Second International
Conference on Machine Learning (ICML06).

Taskar, B., Chatalbashev, V., Guestrin, C., & Koller, D. (2005). Learning structured prediction models: A large
margin approach.Twenty Second International Conference on Machine Learning (ICML05).

Taskar, B., Guestrin, C., & Koller, D. (2003). Max margin markov networks.Advances in Neural Information
Processing Systems (NIPS-14).

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and
interdependent output variables.Journal of Machine Learning Research, 1453–1484.

Yagi, M., & Lumelsky, V. (1999). Biped robot locomotion in scenes with unknown obstacles.Proceedings of
the IEEE International Conference on Robotics and Automation(pp. 375–380). Detroit, MI.

6 Appendix: Structured boosting derivation

Gradient boosting to serves as a reduction (Beygelzimer et al., 2005) from the problem of finding
good features for structured prediction to a problem of simple classification. We consider a dictio-
naryH of binary classifiers over the base feature space (fromX → {0, 1}) as potential features,
and at each step we find the dictionary elementh that has the largest projection onto the functional
gradient of our empirical risk functionR. We define the functional gradient ofR implicitly as the a
linear approximation to the change in the functional for a small change in the input function:

F [h + εg] = F [h] + ε〈∇fF [h], g〉+ ε2O(‖g‖2). (1)

4The best-first quadruped planner under the MMPBOOSTheuristic is on average approximately 1100 times
faster than under the Euclidean heuristic in terms of the number of nodes searched.

In this work, we measure this change in function space using the naturalL2 inner product:5 〈f, g〉 =∫
X

f(x)g(x)dP (x).

Consider a generic risk functionalR of the form

R[h] =
1
N

N∑
i=1

Ci(
∑

j

θjh(xj)), (2)

wherexj are given by the data,Ci are arbitrary differentiable functionals, andθj are real numbers.6

Let {ex}x∈X denote the representers of evaluation (Hassani, 1998) for our base feature space with
respect to theL2 inner product. These are functions which have the property that for anyh ∈ H and
x ∈ X , 〈h, ex〉 = h(x).7 It is easy to show that∇fh(x) = ∇f 〈h, ex〉 = ex; using linearity and
the chain rule, the functional gradient of this risk can therefore be derived as:

∇fR[h] =
1
N

N∑
i=1

∇fCi(
∑

j

θjh(xj)) (3)

=
1
N

N∑
i=1

∂

∂α
Ci(α) |h(xi)

∑
j

θj∇f 〈h, exj 〉 (4)

=
1
N

N∑
i=1

∑
j

θj
∂

∂α
Ci(α) |h(xj) exj . (5)

The gradient boost approach requires us to find elements ofH which maximize the inner product
with this functional gradient. TheL2 inner product of this functional gradient and any element can
be computed asφ ∈ H:

〈φ, ∇fR[h]〉 = 〈φ,
1
N

N∑
i=1

∑
j

θj
∂

∂α
Ci(α) |h(xj) exj 〉 (6)

=
1
N

N∑
i=1

∑
j

θj
∂

∂α
Ci(α) |h(xj) φ(xj). (7)

We are now equipped to compute the functional gradient of the MMP risk. To apply this to MMP,
we consider the following functional form of the risk. Given dataD = {(Mi, µMi)}Ni=1, we can
write our empirical risk as the following functional

R[c] =
1
N

N∑
i=1

 ∑
(s,a)∈Mi

µs,a
Mi

c(fMi
(s, a))−min

µ̃Mi

∑
(s,a)∈Mi

µ̃s,a
Mi

(c(fMi
(s, a))− LMi

(s, a))

 .

(8)

Referencing Equation 5, the functional gradient of this risk becomes

∇fR[c] =
1
N

N∑
i=1

 ∑
(s,a)∈Mi

µs,a
Mi
∇fc(fMi

(s, a))−
∑

(s,a)∈Mi

µ̃s,a∗
Mi
∇fc(fMi

(s, a))

 (9)

=
1
N

N∑
i=1

∑
(s,a)∈Mi

(
µs,a
Mi
− µ̃s,a∗

Mi

)
efMi

(s,a), (10)

5This choice is in contrast with the inner product chosen by (Mason et al., 1999), in which the proposed inner
product is only measured at the data-pointsx and hence only forms a degenerate inner product on functions.
Our approach shows that the natural inner product on functions leads as well to an appealing reduction to
classification. More generally, this derivation holds for any inner product for which representers of evaluation
exist.

6Note that this functional differs from those considered in either (Mason et al., 1999) or (Friedman, 1999a)
in that eachCi can depend on multiplexi.

7In the case of a uniform densityp(x), this reduces toex ≡ δx. In other words, for a uniform density the
representers of evaluation are Dirac delta functions.

whereµ̃s,a∗
Mi

minimize the latter terms in Equation 8. This produces the following boosting recipe:
chooseh as

arg max
h∈H

〈h, ∇fR[c]〉 = arg max
h∈H

1
N

N∑
i=1

∑
(s,a)∈Mi

(
µs,a
Mi
− µ̃s,a∗

Mi

)
h(fMi

(s, a)). (11)

Optimizing equation 11 forms the basis of our approach. When considering deterministic path
planning and classifiersH, the solution to this optimization can be seen intuitively. In this case,
∆µMs,a

i
= µs,a

Mi
− µ̃s,a∗

Mi
take on values in{−1, 0, 1}, andh ∈ H take on values in{−1, 1}. For

maximizing Equation 11, the setting ofh(fMi(s, a)) doesn’t matter when∆µMs,a
i

= 0. Other-
wise, we want to find anh that agrees most with the positive and negative labels provided by the
functional gradient. In other words, we strive to minimize a 0/1 loss on the classification data set
{(fMi(s, a),∆µMs,a

i
)} over all MDPs and state-action pairs for which the frequency count differ-

ence is nonzero.

In general, maximizing Equation 11 is equivalent to minimizing a weighted 0/1 loss classifica-
tion problem, where the weights are given by the difference in the state-action frequency counts
|∆µMs,a

i
|, and the label is given by the sign.

As in standard AnyBoost, we typically can only approximately minimize the 0/1 loss and, equiva-
lently, can only approximately find the classifier inH that corresponds to the direction of steepest
descent. In practice, we also wish to induce a relatively small number of features and get the maxi-
mum predictive gain out these. Instead of simply iterating the boosting procedure, we refit the MMP
learner using each new learned classifier as an additional feature. To this end, we fit the current
model using the subgradient method described in section 3.1 after learning each feature. This forms
the algorithm suggested in section 3.2.

