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Abstract

We show that any weak ranker that can achieve an area under the ROC curve
slightly better than1/2 (which can be achieved by random guessing) can be effi-
ciently boosted to achieve an area under the ROC curve arbitrarily close to 1. We
further show that this boosting can be performed even in the presence of indepen-
dent misclassification noise, given access to a noise-tolerant weak ranker.

1 Introduction

Background. Machine learning is often used to identify members of a given class from a list of
candidates. This can be formulated as a ranking problem, where the algorithm takes a input a list of
examples of members and non-members of the class, and outputs a function that can be used to rank
candidates. The goal is to have the top of the list enriched for members of the class of interest.

ROC curves [12, 3] are often used to evaluate the quality of a ranking function. A point on an ROC
curve is obtained by cutting off the ranked list, and checking how many items above the cutoff are
members of the target class (“true positives”), and how many are not (“false positives”).

TheAUC [1, 10, 3] (area under the ROC curve) is often used as a summary statistic. It is obtained
by rescaling the axes so the true positives and false positives vary between0 and1, and, as the name
implies, examining the area under the resulting curve.

The AUC measures the ability of a ranker to identify regions in feature space that are unusually
densely populated with members of a given class. A ranker can succeed according to this criterion
even if positive examples are less dense than negative examples everywhere, but, in order to succeed,
it must identify where the positive examples tend to be. This is in contrast with classification, where,
if Pr[y = 1|x] is less than1/2 everywhere, just predictingy = −1 everywhere would suffice.

Our Results. It is not hard to see that anAUC of 1/2 can be achieved by random guessing (see [3]),
thus it is natural to define a “weak ranker” to be an algorithm that can achieveAUC slightly above
1/2. We show that any weak ranker can be boosted to a strong ranker that achievesAUC arbitrarily
close to the best possible value of1.

We also consider the standard independent classification noise model, in which the label of each
example is flipped with probabilityη. We show that in this setting, given anoise-tolerantweak
ranker (that achieves nontrivialAUC in the presence of noisy data as described above), we can
boost to a strong ranker that achievesAUC at least1 − ǫ, for anyη < 1/2 and anyǫ > 0.

Related work. Freund, Iyer, Schapire and Singer [4] introduced RankBoost, which performs rank-
ing with more fine-grained control over preferences between pairs of items than we consider here.
They performed an analysis that implies a bound on theAUC of the boosted ranking function in
terms of a different measure of the quality of weak rankers. Cortes and Mohri [2] theoretically ana-
lyzed the “typical” relationship between the error rate of a classifier based on thresholding a scoring
function and theAUC obtained through the scoring function; they also pointed out the close rela-
tionship between the loss function optimized by RankBoost and theAUC. Rudin, Cortes, Mohri,
and Schapire [11] showed that, when each of two classes are equally likely, the loss function op-
timized by AdaBoost coincides with the loss function of RankBoost. Noise-tolerant boosting has
previously been studied for classification. Kalai and Servedio [7] showed that, if data is corrupted



with noise at a rateη, it is possible to boost the accuracy of any noise-tolerant weak learner arbitrar-
ily close to1− η, and they showed that it is impossible to boost beyond1− η. In contrast, we show
that, in the presence of noise at a rate arbitrarily close to1/2, theAUC can be boosted arbitrarily
close to1. Our noise tolerant boosting algorithm uses as a subroutine the “martingale booster” for
classification of Long and Servedio [9].

Methods. The key observation is that a weak ranker can be used to find a “two-sided” weak classifier
(Lemma 4), which achieves accuracy slightly better than random guessing on both positive and
negative examples. Two-sided weak classifiers can be boosted to obtain accuracy arbitrarily close
to 1, also on both the positive examples and the negative examples; a proof of this is implicit in the
analysis of [9]. Such a two-sided strong classifier is easily seen to lead toAUC close to1.

Why is it possible to boost past theAUC past the noise rate, when this is provably not possible for
classification? Known approaches to noise-tolerant boosting [7, 9] force the weak learner to provide
a two-sided weak hypothesis by balancing the distributions that are constructed so that both classes
are equally likely. However, this balancing skews the distributions so that it is no longer the case that
the event that an example is corrupted with noise is independent of the instance; randomization was
used to patch this up in [7, 9], and the necessary slack was only available if the desired accuracy was
coarser than the noise rate. (We note that the lower bound from [7] is proved using a construction in
which the class probability of positive examples is less than the noise rate; the essence of that proof
is to show that in that situation it is impossible to balance the distribution given access to noisy
examples.) In contrast, having a weak ranker provides enough leverage to yield a two-sided weak
classifier without needing any rebalancing.

Outline. Section 2 gives some definitions. In Section 3, we analyze boosting theAUC when there
is no noise in an abstract model where the weak learner is given a distribution and returns a weak
ranker, and sampling issues are abstracted away. In Section 4, we consider boosting in the presence
of noise in a similarly abstract model. We address sampling issues in Section 5.

2 Preliminaries

Rankings and AUC.Throughout this work we letX be a domain,c : X → {−1, 1} be a classifier,
andD be a probability distribution over labeled examples(x, c(x)). We say thatD is nontrivial (for
c) if D assigns nonzero probability to both positive and negative examples. We writeD+ to denote
the marginal distribution over positive examples andD− to denote the marginal distribution over
negative examples, soD is a mixture of the distributionsD+ andD−.

As has been previously pointed out, we may view any functionh : X → R as a ranking ofX . Note
that if h(x1) = h(x2) then the ranking does not orderx1 relative tox2. Given a ranking function
h : X → R, for each valueθ ∈ R there is a point(αθ, βθ) on theROC curve ofh, whereαθ is the
false positive rate andβθ is the true positive rate of the classifier obtained by thresholdingh at θ:
αθ = D−[h(x) ≥ θ] and βθ = D+[h(x) ≥ θ]. Every ROC curve contains the points(0, 0) and
(1, 1) corresponding toθ = ∞ and−∞ respectively.

Given h : X → R andD, the AUC can be defined asAUC(h;D) = Pru∈D+,v∈D− [h(u) >

h(v)] + 1
2Pru∈D+,v∈D− [h(u) = h(v)]. It is well known (see e.g. [2, 6]) that theAUC as defined

above is equal to the area under the ROC curve forh.

Weak Rankers. Fix any distributionD. It is easy to see that any constant functionh achieves
AUC(h;D) = 1

2 , and also that forX finite andπ a random permutation ofX , the expectedAUC

of h(π(·)) is 1
2 for any functionh. This motivates the following definition:

Definition 1 A weak ranker with advantageγ is an algorithm that, given any nontrivial distribution
D, returns a functionh : X → R that hasAUC(h;D) ≥ 1

2 + γ.

In the rest of the paper we show how boosting algorithms originally designed for classification can
be adapted to convert weak rankers into “strong” rankers (that achieveAUC at least1− ǫ) in a range
of different settings.



3 From weak to strong AUC

The main result of this section is a simple proof that theAUC can be boosted. We achieve this in a
relatively straightforward way by using the standard AdaBoost algorithm for boosting classifiers.

As in previous work [9], to keep the focus on the main ideas we will use an abstract model in which
the booster successively passes distributionsD1,D2, ... to a weak ranker which returns ranking
functionsh1, h2, .... When the original distributionD is uniform over a training set, as in the usual
analysis of AdaBoost, this is easy to do. In this model we prove the following:

Theorem 2 There is an algorithm AUCBoost that, given access to a weak ranker with advantageγ
as an oracle, for any nontrivial distributionD, outputs a ranking function withAUC at least1 − ǫ.
The AUCBoost algorithm makesT = O( log(1/ǫ)

γ2 ) many calls to the weak ranker. IfD has finite
support of sizem, AUCBoost takesO(mT log m) time.

As can be seen from the observation that it does not depend on the relative frequency of positive
and negative examples, theAUC requires a learner to perform well on both positive and negative
examples. When such a requirement is imposed on a base classifier, it has been calledtwo-sided
weak learning. The key to boosting theAUC is the observation (Lemma 4 below) that a weak
ranker can be used to generate a two-sided weak learner.

Definition 3 A γ two-sided weak learner is an algorithm that, given a nontrivial distributionD,
outputs a hypothesish that satisfies bothPrx∈D+ [h(x) = 1] ≥ 1

2 + γ andPrx∈D− [h(x) = −1] ≥
1
2 + γ. We say that such anh hastwo-sided advantageγ with respect toD.

Lemma 4 Let A be a weak ranking algorithm with advantageγ. Then there is aγ/4 two-sided
weak learnerA′ based onA that always returns classifiers with equal error rate on positive and
negative examples.

Proof: Algorithm A′ first runsA to get a real-valued ranking functionh : X → R. Consider the
ROC curve corresponding toh. Since theAUC is at least12 + γ, there must be some point(u, v) on
the curve such thatv ≥ u + γ. Recall that, by the definition of the ROC curve, this means that there
is a thresholdθ such thatD+[h(x) ≥ θ] ≥ D−[h(x) ≥ θ] + γ. Thus, for the classifier obtained by

thresholdingh atθ, the class conditional error ratesp+
def
= D+[h(x) < θ] andp−

def
= D−[h(x) ≥ θ]

satisfyp+ + p− ≤ 1 − γ. This in turn means that eitherp+ ≤ 1
2 − γ

2 or p− ≤ 1
2 − γ

2 .

Suppose thatp− ≤ p+, so thatp− ≤ 1
2 −

γ
2 (the other case can be handled symmetrically). Consider

the randomized classifierg that behaves as follows: given inputx, (a) if h(x) < θ, it flips a biased
coin, and with probabilityζ ≥ 0, predicts1, and with probability1 − ζ, predicts−1, and (b) if
h(x) ≥ θ, it predicts 1. Letg(x, r) be the output ofg on inputx and with randomizationr and let

ǫ−
def
= Prx∈D−,r[g(x, r) = 1] andǫ+

def
= Prx∈D+,r[g(x, r) = −1]. We haveǫ+ = (1 − ζ)p+ and

ǫ− = p− + ζ(1 − p−). Let us chooseζ so thatǫ− = ǫ+; that is, we chooseζ = p+−p
−

1+p+−p
−

. This
yields

ǫ− = ǫ+ =
p+

1 + p+ − p−
. (1)

For any fixed value ofp− the RHS of (1) increases withp+. Recalling that we havep++p− ≤ 1−γ,

the maximum of (1) is achieved atp+ = 1−γ−p−, in which case we have (definingǫ
def
= ǫ− = ǫ+)

ǫ = (1−γ)−p
−

1+(1−γ−p
−

)−p
−

= (1−γ)−p
−

2−γ−2p
−

. The RHS of this expression is nonincreasing inp−, and therefore

is maximized atp− is 0, when it takes the value12 − γ
2(2−γ) ≤ 1

2 − γ
4 . This completes the proof.

Figure 1 gives an illustration of the proof of the previous lemma; since they-coordinate of (a) is at
leastγ more than thex-coordinate and (b) lies closer to (a) than to(1, 1), they-coordinate of (b) is
at leastγ/2 more than thex-coordinate, which means that the advantage is at leastγ/4.

We will also need the following simple lemma which shows that a classifier that is good on both the
positive and the negative examples, when viewed as a ranking function, achieves a goodAUC.
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Figure 1: The curved line represents the
ROC curve for ranking functionh. The
lower black dot (a) corresponds to the value
θ and is located at(p−, 1−p+). The straight
line connecting(0, 0) and(1, 1), which cor-
responds to a completely random ranking,
is given for reference. The dashed line (cov-
ered by the solid line for0 ≤ x ≤ .16)
represents the ROC curve for a rankerh′

which agrees withh on thosex for which
h(x) ≥ θ but randomly ranks thosex for
which h(x) < θ. The upper black dot (b)
is at the point of intersection between the
ROC curve forh′ and the liney = 1−x; its
coordinates are(ǫ, 1 − ǫ). The randomized
classifierg is equivalent to thresholdingh′

with a valueθ′ corresponding to this point.

Lemma 5 Let h : X → {−1, 1} and suppose thatPrx∈D+ [h(x) = 1] = 1 − ǫ+ and
Prx∈D− [h(x) = −1] = 1 − ǫ−. Then we haveAUC(h;D) = 1 − ǫ++ǫ

−

2 .

Proof: We have

AUC(h;D) = (1 − ǫ+)(1 − ǫ−) +
ǫ+(1 − ǫ−) + ǫ−(1 − ǫ+)

2
= 1 −

ǫ+ + ǫ−
2

.

Proof of Theorem 2: AUCBoost works by running AdaBoost on12D
++ 1

2D
−. In roundt, each copy

of AdaBoost passes its reweighted distributionDt to the weak ranker, and then uses the process of
Lemma 4 to convert the resulting weak ranking function to a classifierht with two-sided advantage
γ/4. Sinceht has two-sided advantageγ/4, no matter howDt decomposes into a mixture ofD+

t

andD−

t , it must be the case thatPr(x,y)∈Dt
[ht(x) 6= y] ≤ 1

2 − γ/4.

The analysis of AdaBoost (see [5]) shows thatT = O
(

log(1/ǫ)
γ2

)

rounds are sufficient forH to have

error rate at mostǫ under 1
2D+ + 1

2D−. Lemma 5 now gives that the classifierH(x) is a ranking
function withAUC at least1 − ǫ.

For the final assertion of the theorem, note that at each round, in order to find the value ofθ that
definesht the algorithm needs to minimize the sum of the error rates on the positive and negative
examples. This can be done by sorting the examples using the weak ranking function (inO(m log m)
time steps) and processing the examples in the resulting order, keeping running counts of the number
of errors of each type.

4 Boosting weak rankers in the presence of misclassification noise

The noise model: independent misclassification noise.The model ofindependent misclassifica-
tion noisehas been widely studied in computational learning theory. In this framework there is a
noise rateη < 1/2, and each example (positive or negative) drawn from distributionD has its true
labelc(x) independently flipped with probabilityη before it is given to the learner. We writeDη to
denote the resulting distribution over (noise-corrupted) labeled examples(x, y).

Boosting weak rankers in the presence of independent misclassification noise.We now show
how theAUC can be boosted arbitrarily close to 1 even if the data given to the booster is corrupted
with independent misclassification noise, using weak rankers that are able to tolerate independent
misclassification noise. We note that this is in contrast with known results for boosting the accuracy
of binary classifiers in the presence of noise; Kalai and Servedio [7] show that no “black-box”
boosting algorithm can be guaranteed to boost the accuracy of an arbitrary noise-tolerant weak
learner to accuracy1 − η in the presence of independent misclassification noise at rateη.
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Figure 2: The branching program produced
by the boosting algorithm. Each nodevi,t

is labeled with a weak classifierhi,t; left
edges correspond to -1 and right edges to 1.

As in the previous section we begin by abstracting away sampling issues and using a model in which
the booster passes a distribution to a weak ranker. Sampling issues will be treated in Section 5.

Definition 6 A noise-tolerant weak ranker with advantageγ is an algorithm with the following
property: for any noise rateη < 1/2, given a noisy distributionDη, the algorithm outputs a ranking
functionh : X → R such thatAUC(h;D) ≥ 1

2 + γ.

Our algorithm for boosting theAUC in the presence of noise uses the Basic MartiBoost algorithm
(see Section 4 of [9]). This algorithm boosts any two-sided weak learner to arbitrarily high accuracy
and works in a series of rounds. Before roundt the space of labeled examples is partitioned into a
series of binsB0,t, ..., Bt−1,t. (The original binB0,1 consists of the entire space.) In thet-th round
the algorithm first constructs distributionsD0,t, ...,Dt−1,t by conditioning the original distribution
D on membership inB0,t, ..., Bt−1,t respectively. It then calls a two-sided weak learnert times
using each ofD0,t, ...,Dt−1,t, getting weak classifiersh0,t, ..., ht−1,t respectively. Having done
this, it createst + 1 bins for the next round by assigning each element(x, y) of Bi,t to Bi,t+1 if
hi,t(x) = −1 and toBi+1,t+1 otherwise. Training proceeds in this way for a given numberT of
rounds, which is an input parameter of the algorithm.

The output of Basic MartiBoost is a layered branching program defined as follows. There is a node
vi,t for each round1 ≤ t ≤ T + 1 and each index0 ≤ i < t (that is, for each bin constructed during
training). An itemx is routed through the branching program the same way a labeled example(x, y)
would have been routed during the training phase: it starts in nodev0,1, and from each nodevi,t it
goes tovi,t+1 if hi,t(x) = −1, and tovi+1,t+1 otherwise. When the itemx arrives at a terminal
node of the branching program in layerT + 1, it is at some nodevj,T+1. The prediction is1 if
j ≥ T/2 and is−1 if j < T/2; in other words, the prediction is according to the majority vote of
the weak classifiers that were encountered along the path through the branching program that the
example followed. See Figure 3.

The following lemma is proved in [9]. (The crux of the proof is the observation that positive (re-
spectively, negative) examples are routed through the branching program according to a random
walk that is biased to the right (respectively, left); hence the name “martingale boosting.”)

Lemma 7 ([9]) Suppose that Basic MartiBoost is provided with a hypothesishi,t with two-sided ad-
vantageγ w.r.t. Di,t at each nodevi,t. Then forT = O(log(1/ǫ)/γ2), Basic MartiBoost constructs
a branching programH such thatD+[H(x) = −1] ≤ ǫ andD−[H(x) = 1] ≤ ǫ.

We now describe our noise-tolerantAUC boosting algorithm, which we call Basic MartiRank.
Given access to a noise-tolerant weak rankerA with advantageγ, at each nodevi,t the Basic Marti-
Rank algorithm runsA and proceeds as described in Lemma 4 to obtain a weak classifierhi,t. Basic
MartiRank runs Basic MartiBoost withT = O(log(1/ǫ)/γ2) and simply uses the resulting classifier
H as its ranking function. The following theorem shows that Basic MartiRank is an effectiveAUC
booster in the presence of independent misclassification noise:

Theorem 8 Fix anyη < 1/2 and anyǫ > 0. Given access toDη and a noise-tolerant weak rankerA
with advantageγ, Basic MartiRank outputs a branching programH such thatAUC(H ;D) ≥ 1−ǫ.

Proof: Fix any nodevi,t in the branching program. The crux of the proof is the following simple
observation: for a labeled example(x, y), the route through the branching program that is taken



by (x, y) is determined completely by the predictions of the base classifiers, i.e. only byx, and
is unaffected by the value ofy. Consequently ifDi,t denotes the original noiseless distributionD
conditioned on reachingvi,t, then the noisy distribution conditioned on reachingvi,t, i.e. (Dη)i,t, is
simplyDi,t corrupted with independent misclassification noise, i.e.(Di,t)

η. So each time the noise-
tolerant weak rankerA is invoked at a nodevi,t, it is indeed the case that the distribution that it is
given is an independent misclassification noise distribution. ConsequentlyA does construct weak
rankers withAUC at least1/2+ γ, and the conversion of Lemma 4 yields weak classifiers that have
advantageγ/4 with respect to the underlying distributionDi,t. Given this, Lemma 7 implies that the
final classifierH has error at mostǫ on both positive and negative examples drawn from the original
distributionD, and Lemma 5 then implies thatH , viewed a ranker, achievesAUC at least1 − ǫ.

In [9], a more complex variant of Basic MartiBoost, called Noise-Tolerant SMartiBoost, is presented
and is shown to boost any noise-tolerant weak learning algorithm to any accuracy less than1 − η
in the presence of independent misclassification noise. In contrast, here we are using just the Basic
MartiBoost algorithm itself, and can achieve anyAUC value1 − ǫ even forǫ < η.

5 Implementing MartiRank with a distribution oracle

In this section we analyze learning from random examples. Formally, we assume that the weak
ranker is given access to an oracle for the noisy distributionDη. We thus now view anoise-tolerant
weak ranker with advantageγ as an algorithmA with the following property: for any noise rate
η < 1/2, given access to an oracle forDη, the algorithm outputs a ranking functionh : X → R

such thatAUC(h;D) ≥ 1
2 + γ.

We letmA denote the number of examples from each class that suffice forA to construct a ranking
function as described above. In other words, ifA is provided with a sample of draws fromDη

such that each class, positive and negative, has at leastmA points in the sample with that true label,
then algorithmA outputs aγ-advantage weak ranking function. (Note that for simplicity we are
assuming here that the weak ranker always constructs a weak ranking function with the desired
advantage, i.e. we gloss over the usual confidence parameterδ; this can be handled with an entirely
standard analysis.)

In order to achieve a computationally efficient algorithm in this setting we must change the Marti-
Rank algorithm somewhat; we call the new variant Sampling Martirank, or SMartiRank. We prove
that SMartiRank is computationally efficient, has moderate sample complexity, and efficiently gen-
erates a high-accuracy final ranking function with respect to the underlying distributionD.

Our approach follows the same general lines as [9] where an oracle implementation is presented
for the MartiBoost algorithm. The main challenge in [9] is the following: for each nodevi,t in the
branching program, the boosting algorithm considered there must simulate a balanced version of
the induced distributionDi,t which puts equal weight on positive and negative examples. If only a
tiny fraction of examples drawn fromD are (say) positive and reachvi,t, then it is very inefficient
to simulate this balanced distribution (and in a noisy scenario, as discussed earlier, if the noise rate
is high relative to the frequency of the desired class then it may in fact be impossible to simulate
the balanced distribution). The solution in [9] is to “freeze” any such node and simply classify any
example that reaches it as negative; the analysis argues that since only a tiny fraction of positive
examples reach such nodes, this freezing only mildly degrades the accuracy of the final hypothesis.

In the ranking scenario that we now consider, we do not need to construct balanced distributions, but
we do need to obtain a non-negligible number of examples from each class in order to run the weak
learner at a given node. So as in [9] we still freeze some nodes, but with a twist: we now freeze
nodes which have the property that for some class label (positive or negative), only a tiny fraction of
examples fromD with that class labelreach the node. With this criterion for freezing we can prove
that the final classifier constructed has high accuracy both on positive and negative examples, which
is what we need to achieve goodAUC. We turn now to the details.

Given a nodevi,t and a bitb ∈ {−1, 1}, let pb
i,t denoteD[x reachesvi,t and c(x) = b]. The

SMartiRank algorithm is like Basic MartiBoost but with the following difference: for each nodevi,t



and each valueb ∈ {−1, 1}, if

pb
i,t <

ǫ · D[c(x) = b]

T (T + 1)
(2)

then the nodevi,t is “frozen,” i.e. it is labeled with the bit1− b and is established as a terminal node
with no outgoing edges. (If this condition holds for both values ofb at a particular nodevi,t then the
node is frozen and either output value may be used as the label.) The following theorem establishes
that if SMartiRank is given weak classifiers with two-sided advantage at each node that is not frozen,
it will construct a hypothesis with small error rate on both positive and negative examples:

Theorem 9 Suppose that the SMartiRank algorithm as described above is provided with a hypothe-
sishi,t that has two-sided advantageγ with respect toDi,t at each nodevi,t that is not frozen. Then
for T = O(log(1/ǫ)/γ2), the final branching program hypothesisH that SMartiRank constructs
will haveD+[H(x) = −1] ≤ ǫ andD−[H(x) = 1] ≤ ǫ.

Proof: We analyzeD+[h(x) = −1]; the other case is symmetric.

Given an unlabeled instancex ∈ X , we say thatx freezes at nodevi,t if x’s path through the
branching program causes it to terminate at a nodevi,t with t < T + 1 (i.e. at a nodevi,t which was
frozen by SMartiRank). We haveD[x freezes andc(x) = 1] =

∑

i,t D[x freezes atvi,t andc(x) =

1] ≤
∑

i,t
ǫ·D[c(x)=1]

T (T+1) ≤ ǫ
2 · D[c(x) = 1]. Consequently we have

D+[x freezes] =
D[x freezes andc(x) = 1]

D[c(x) = 1]
<

ǫ

2
. (3)

Naturally, D+[h(x) = −1] = D+[(h(x) = −1) & (x freezes)] + D+[(h(x) =
−1) & (x does not freeze)]. By (3), this is at mostǫ2 + D+[(h(x) = −1) & (x does not freeze)].
Arguments identical to those in the last two paragraphs of the proof of Theorem 3 in [9] show that
D+[(h(x) = −1) & (x does not freeze)] ≤ ǫ

2 , and we are done.

We now describe how SMartiRank can be run given oracle access to Dη and sketch the analysis of
the required sample complexity (some details are omitted because of space limits). For simplicity of

presentation we shall assume that the booster is given the valuep
def
= min{D[c(x) = −1],D[c(x) =

1]}; we note if thatp is not givena priori, a standard “guess and halve” technique can be used
to efficiently obtain a value that is within a multiplicative factor of two ofp, which is easily seen
to suffice. We also make the standard assumption (see [7, 9]) that the noise rateη is known;
this assumption can similarly be removed by having the algorithm “guess and check” the value to
sufficiently fine granularity. Also, the confidence can be analyzed using the standard appeal to the
union bound – details are omitted.

SMartiRank will replace (2) with a comparison of sample estimates of the two quantities. To allow
for the fact that they are just estimates, it will be more conservative, and freeze when the estimate of
pb

i,t is at most ǫ
4T (T+1) times the estimate ofD[c(x) = b].

We first observe that for any distributionD and any bitb, we havePr(x,y)∼Dη [y = b] = η + (1 −

2η)Pr(x,c(x))∼D[c(x) = b], which is equivalent toD[c(x) = b] = D
η[y=b]−η
1−2η . Consequently, given

an empirical estimate ofDη[y = b] that is accurate to within an additive± p(1−2η)
10 (which can easily

be obtained fromO( 1
p2(1−2η)2 ) draws toDη), it is possible to estimateD[c(x) = b] to within an

additive±p/10, and thus to estimate the RHS of (2) to within an additive± ǫp
10T (T+1) . Now in order

to determine whether nodevi,t should be frozen, we must compare this estimate with a similarly
accurate estimate ofpb

i,t (arguments similar to those of, e.g., Section 6.3 of [9] can be used to show
that it suffices to run the algorithm using these estimated values). We have

pb
i,t = D[x reachesvi,t] · D[c(x) = b | x reachesvi,t] = Dη[x reachesvi,t] · Di,t[c(x) = b]

= Dη[x reachesvi,t] ·

(

Dη
i,t[y = b] − η

1 − 2η

)

.

A standard analysis (see e.g. Chapter 5 of [8]) shows that this quantity can be estimated to additive
accuracy±τ using poly(1/τ, 1/(1−2η)) many calls toDη (briefly, if Dη[x reachesvi,t] is less than



τ(1−2η) then an estimate of 0 is good enough, while if it is greater thanτ(1−2η) then aτ -accurate
estimate of the second multiplicand can be obtained usingO( 1

τ3(1−2η)3 ) draws fromDη, since at
least aτ(1 − 2η) fraction of draws will reachvi,t.) Thus for eachvi,t, we can determine whether
to freeze it in the execution of SMartiRank using poly(T, 1/ǫ, 1/p, 1/(1− 2η)) draws fromDη.

For each of the nodes that are not frozen, we must run the noise-tolerant weak rankerA using the
distributionDη

i,t. As discussed at the beginning of this section, this requires that we obtain a sample
from Dη

i,t containing at leastmA examples whose true label belongs to each class. The expected
number of draws fromDη that must be made in order to receive an example from a given class
is 1/p, and sincevi,t is not frozen, the expected number of draws fromDη belonging to a given
class that must be made in order to simulate a draw fromDη

i,t belonging to that class isO(T 2/ǫ).
Thus,O(T 2mA/(ǫp)) many draws fromDη are required in order to run the weak learnerA at any
particular node. Since there areO(T 2) many nodes overall, we have that all in allO(T 4mA/(ǫp))
many draws fromDη are required, in addition to the poly(T, 1/ǫ, 1/p, 1/(1− 2η)) draws required
to identify which nodes to freeze. Recalling thatT = O(log(1/ǫ)/γ2), all in all we have:

Theorem 10 LetD be a nontrivial distribution overX , p = min{D[c(x) = −1],D[c(x) = 1]},
andη < 1

2 . Given access to an oracle forDη and a noise-tolerant weak rankerA with advantage
γ, the SMartiRank algorithm makesmA· poly(1

ǫ , 1
γ , 1

1−2η , 1
p ) calls toDη, and and with probability

1 − δ outputs a branching programH such thatAUC(h;D) ≥ 1 − ǫ.
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