
https://helda.helsinki.fi

Boosting the Quality of Approximate String Matching by Synonyms

Lu, Jiaheng

2015

Lu , J , Lin , C , Wang , W , Li , C & Xiao , X 2015 , ' Boosting the Quality of Approximate

String Matching by Synonyms ' , ACM Transactions on Database Systems , vol. 40 , no. 3 ,

15 . https://doi.org/10.1145/2818177

http://hdl.handle.net/10138/158483

https://doi.org/10.1145/2818177

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

15

Boosting the Quality of Approximate String Matching by Synonyms

JIAHENG LU, Renmin University of China and University of Helsinki

CHUNBIN LIN, University of California, San Diego

WEI WANG, University of New South Wales

CHEN LI, University of California, Irvine

XIAOKUI XIAO, Nanyang Technological University

A string-similarity measure quantifies the similarity between two text strings for approximate string match-
ing or comparison. For example, the strings “Sam” and “Samuel” can be considered to be similar. Most existing
work that computes the similarity of two strings only considers syntactic similarities, for example, number
of common words or q-grams. While this is indeed an indicator of similarity, there are many important cases
where syntactically-different strings can represent the same real-world object. For example, “Bill” is a short
form of “William,” and “Database Management Systems” can be abbreviated as “DBMS.” Given a collection of
predefined synonyms, the purpose of this article is to explore such existing knowledge to effectively evaluate
the similarity between two strings and efficiently perform similarity searches and joins, thereby boosting
the quality of approximate string matching.

In particular, we first present an expansion-based framework to measure string similarities efficiently
while considering synonyms. We then study efficient algorithms for similarity searches and joins by propos-
ing two novel indexes, called SI-trees and QP-trees, which combine signature-filtering and length-filtering
strategies. In order to improve the efficiency of our algorithms, we develop an estimator to estimate the
size of candidates to enable an online selection of signature filters. This estimator provides strong low-error,
high-confidence guarantees while requiring only logarithmic space and time costs, thus making our method
attractive both in theory and in practice. Finally, the experimental results from a comprehensive study of
the algorithms with three real datasets verify the effectiveness and efficiency of our approaches.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval—Search process

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: String similarity search, similarity join, semantic search

ACM Reference Format:

Jiaheng Lu, Chunbin Lin, Wei Wang, Chen Li, and Xiaokui Xiao. 2015. Boosting the quality of approximate
string matching by synonyms. ACM Trans. Datab. Syst. 40, 3, Article 15 (October 2015), 42 pages.
DOI: http://dx.doi.org/10.1145/2818177

This research is partially supported by the 973 Program of China (Project No. 2012CB316205), NSF China
(No: 61472427), and a research fund from the University of Helsinki.
Authors’ addresses: J. Lu (corresponding author), Department of Computer Science, University of Helsinki,
Finland, FI-00014; email: jiaheng.lu@helsinki.fi; jiahenglu@gmail.com; C. Lin, University of California, San
Diego, La Jolla, CA 92093; email: chunbinlin@cs.ucsd.edu; W. Wang, School of Computer Science and Engi-
neering, University of New South Wales, Australia, 2052; email: weiw@cse.unsw.edu.au; C. Li, Department
of Computer Science, University of California, Irvine, CA 92697; email: chenli@ics.uci.edu; X. Xiao, School of
Computer Science and Engineering, Nanyang Technological University, Singapore, 639798; email: xkxiao@
ntu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 0362-5915/2015/10-ART15 $15.00

DOI: http://dx.doi.org/10.1145/2818177

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:2 J. Lu et al.

1. INTRODUCTION

Approximate string matching is used heavily in data integration [Huang and Madey
2004; Arasu et al. 2006, 2008], data deduplication [Chaudhuri et al. 2006; Christen
2012], and data search [Chaudhuri and Kaushik 2009]. Most existing work that com-
putes the similarity of two strings only considers syntactic similarities, for example,
number of common words or q-grams. Although this is indeed an indicator of similar-
ity, there are many important cases where syntactically-different strings can represent
the same real-world object. For example, “Big Apple” is a synonym of “New York,” and
“Transactions on Database Systems” can be abbreviated as “TODS.” This equivalence in-
formation can help us identify semantically-similar strings that may have been missed
by syntactical similarity-based approaches.

In this article, we study three problems related to approximate string matching with
synonyms.1 First, how to define an effective similarity measure between two strings
based on the synonyms? Traditional similarity functions cannot be easily extended to
handle the synonyms in similarity matching. Second, how to perform string similarity
search efficiently? That is, how to efficiently find all the similar strings from a given
collection of strings to a string query. Finally, how to efficiently perform similarity join
based on newly-defined similarity functions? That is, given two collections of strings,
how to efficiently find similar string pairs from the collections? These three problems
are closely related, because the similarity measures defined in the first problem will
naturally provide a search and join predicate to the second and third problems.

We give several applications in order to shed light on the importance of these three
problems. In a gene/protein database, one of the major obstacles that hinders effective
use is term variation [Tsuruoka et al. 2007], including Roman-Arabic (e.g., “Synapsin 3”
and “Synapsin III”), acronym variation (e.g., “IL-2” and “Interleukin-2”), and term ab-
breviation (e.g., “Ah receptor” and “Ah dioxin receptor”). A new similarity measure that
can handle term variation may help users discover more genes (proteins) of interest.
New measures are also applicable in information-extraction systems to aid mapping
from text strings to canonical entries by similarity matching. More applications can be
found in areas such as term classification and term clustering, which can be used for
advanced information retrieval/extraction applications.

String approximate searches and joins are also useful in data integration and data
cleaning. For example, in two representative data-cleaning domains, namely, addresses
and academic publications, there often exist rich sources of synonyms which can be
leveraged to improve the effectiveness of systems significantly. In addition, information
from different data sources often have various inconsistencies. The same real-world
entity could be represented in slightly different formats. Therefore, data cleaning needs
to find from a collection of entities those similar to a given entity. A typical query is
“find records related to Harvard University,” and an entity of “1350 Massachusetts Ave,
Cambridge, MA 02138” should be found and returned.

For the first problem of similarity measures, there is a wealth of research on string-
similarity functions on the syntactical level, such as Levenshtein distance [Wang et al.
2012], Hamming distance [Kondrak 2005], episode distance [Cohen et al. 2003], cosine
metric [Salton and Buckley 1988], Jaccard coefficient [Chaudhuri et al. 2006; Li et al.
2008], and dice similarity [Bayardo et al. 2007]. Unfortunately, none of them can be
trivially extended to leverage synonyms to improve the quality of similarity measure-
ment. One exception is the JaccT technique proposed by Arasu et al. [2008], which
generates all possible strings by applying synonym rewriting to both strings, returning

1For brevity, we use “synonym” to describe any kind of equivalent pairs which may include
synonym, acronym, abbreviation, variation, and other equivalent expressions.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:3

Fig. 1. An example to illustrate similarity matching with synonyms.

the maximum similarity among the transformed pairs of strings, as illustrated by the
following example.

Example 1.1. Figure 1 shows an example of two tables Q and T and a set of
synonyms. Consider two strings q1 and t2. Their token-based Jaccard similarity is only
2
8 . Now consider applying synonym pairs on them. Obviously, synonyms r1, r3, and r6

can be applied to q1, and r2, r3, r4, and r5 can be applied to t2. We use AR(s) to denote
the string generated by applying a set of synonym pairs R to the source string s. For
example, A{r1,r3}(q1) is “International Wireless Health Conf 2012.”

Arasu et al. [2008] considers all possible strings resulting from applying a subset
of applicable synonyms on them and then returns the maximum Jaccard similarity.
In the preceding example, it needs to consider 23 · 24 = 128 possible string pairs. The
maximum Jaccard value between A{r1,r3,r6}(q1) and A{r3}(t2), is 5

6 .

The main limitation in the preceding approach is that its string-similarity definition
has to generate all possible strings and compare their similarity for each pair in the
cross product. In general, given two strings s and t, assuming there are n1 (resp. n2)
synonym pairs applied on s (resp. t), then the preceding approach needs to compute
the similarities for 2n1+n2 pairs. Such a brute-force approach takes time exponential in
the number of applicable synonym pairs. A special case of the problem for single-token
synonyms is identified in Arasu et al. [2008], where the problem can be reduced to a
maximum bipartite graph matching-based problem. Unfortunately, in practice, many
synonyms contain multiple tokens, and even in the special case, it still has a worst-case
complexity that is quadratic in both the number of string tokens and the number of
applicable synonyms. Since such similarity measure has to be called for every candidate
pairs when employed in similarity joins, it introduces substantial overhead.

In this article, we propose a novel expansion-based framework to measure the sim-
ilarity of strings. Intuitively, given a string s, we first obtain its token set S and then
grow the token set by applying the applicable synonyms of s. When a synonym pair
lhs → rhs is applied, we merge all the tokens in rhs to the token set, that is, S = S∪rhs.
The similarity between two strings is the similarity between their expanded token sets.
We have two key ideas here: (i) We can avoid the exponential computational complex-
ity by expanding strings with all applicable synonym pairs; (ii) it costs less to perform
expanding operation than transforming operation, as illustrated next.

Example 1.2 (Continue the Previous Example). We apply all applicable synonym
pairs to q1 and t2 to obtain the “closure” of their tokens and then evaluate the Jaccard
similarity between the two expanded token sets. For instance, the fully-expanded set

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:4 J. Lu et al.

Fig. 2. Comparison of string-similarity algorithms with synonyms (assume both strings have length L; the
maximum number of applicable synonyms is n; k is the maximum size of the right-hand side of a rule).

of t2 by applying synonym pairs r2, r3, r4, and r5 is {International, Intl, WH, Conf, 2012,
Wireless, Health,Conference, United, Kingdom, UK}. The Jaccard similarity between
two fully-expanded token sets is 8

11 , which is also greater than the original similarity
2
8 without synonyms.

We note that the full expansion-based similarity illustrated in the preceding exam-
ple is efficient to compute and is also highly competitive in terms of effectiveness in
modeling the semantic similarity between strings. Nonetheless, using all the synonym
pairs to perform a full expansion may hurt the final similarities. Consider Example 1.2
again, where the use of rule r4 on t2 is detrimental to the similarity between q1 and
t2, as none of the expanded tokens appear in q1 or its expanded token set. Therefore,
we propose a selective expansion measure which selects only “good” synonym pairs
to expand both strings (Section 3), and accordingly, the similarity is defined as the
maximum similarity between two appropriately-expanded token sets of two strings.
Unfortunately, selective expansion is proved to be NP-hard by a reduction from the
3SAT problem. To provide an efficient solution, we propose a greedy algorithm, called
SE algorithm, which is optimal if the rhs tokens of the useful synonyms satisfy the
distinct property (the precise definition will be described in Section 3.3). We empiri-
cally show that the condition is likely to be true in practice. Figure 2 summarizes the
theoretical analysis of the two new similarity algorithms, contrasted with results of
existing methods [Arasu et al. 2008].

Given the newly-proposed similarity measures, it is imperative to study efficient
similarity search and join algorithms. For string-similarity search, we first show a
signature-based search algorithm, called search-baseline, by following the filter-and-
verification framework. It generates a set of tokens as signatures for each string in the
table, and then for the query string, finds candidate pairs that overlap in the signatures,
and finally verifies against the threshold using the previously proposed similarity mea-
sures. Further, we propose SI-search, which speeds up the performance by using native
indexes, SI-tree for strings from the table, and QP-tree for the query string, to reduce
the candidate size with integrated signatures and length filters (Section 4). Similarly,
for string similarity joins, we also propose two algorithms, one is the signature-based
baseline method (join-baseline), and the other is the SI-tree-based index join algorithm
(SI-join). We demonstrate that our join algorithms are flexible and may use different
signatures, including prefix filtering and locality sensitive hashing (LSH).

The methods for selecting signatures of strings may significantly affect the perfor-
mance of algorithms [Li et al. 2008; Qin et al. 2011]. Therefore, we propose an online
algorithm to dynamically estimate the filtering power of a signature filter. In particular,

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:5

we generate multiple signature filters using different strategies offline. Then, given a
query to search online or two tables to join online, we quickly estimate the performance
of different filters and select the best one to perform the actual filtering.

Our technical contribution here is to propose a hash-based synopsis data struc-
ture, termed Two-Dimensional Hash Sketch (2DHS), by extending the Flajolet-Martin
sketch [Flajolet and Martin 1985] on two join tables. We present novel estimation al-
gorithms to provide high-confidence estimates for comparing the filtering power of two
filters. Our method carries both theoretical and practical significance. In theory, we
can prove that, with any given high probability 1-δ, 2DHS returns correct estimates
on upper and lower bounds, and its space and time complexities are logarithmic in the
cardinality of input size. In practice, the experiments show that our estimation tech-
nique accurately predicts the quality of different filters in all three datasets and that
its running time is negligible compared to that of the actual filtering phase (accounting
for only 1% of the total join time).

Finally, we perform a comprehensive set of experiments on three datasets to demon-
strate the superior efficiency and effectiveness of our algorithms (Section 8). The results
show that our algorithms are up to two orders of magnitude more efficient than the
existing methods while offering comparable or better effectiveness.

Organization. The rest of this article is organized as follows. We review related works
in Section 2 and propose similarity measures in Section 3. In Section 4 and Section 5,
we study the approximate string search and approximate string join problems, respec-
tively. We present the high-confidence and low-error estimator in Section 6. Section 7
is dedicated to the extensions of our algorithms for more similarity measures and the
weighted tokens. Then Section 8 empirically evaluates the effectiveness and efficiency
of all proposed algorithms and the state-of-the-art approaches. Finally, Section 9 con-
cludes this article and sheds light on future work.

2. RELATED WORK

String Similarity Measures. There is a rich set of string-similarity measures, includ-
ing character n-gram similarity [Kondrak 2005], Levenshtein distance [Xiao et al.
2008; Wang et al. 2012], Jaro-Winkler measure [Winkler 1999], Jaccard similarity
[Chaudhuri et al. 2006], TF-IDF-based cosine similarity [Salton and Buckley 1988],
and hidden Markov model-based measure [Miller et al. 1999]. A comparison of many
string-similarity functions is performed in Cohen et al. [2003]. These metrics can only
measure syntactic similarity (or distance) between two strings but cannot capture
semantic similarities such as synonyms, acronyms, and abbreviations.

Machine learning-based methods [Bilenko and Mooney 2003; Tsuruoka et al. 2007]
have been proposed to improve the quality of traditional syntactic similarity-based
approaches. In particular, a learnable string similarity [Bilenko and Mooney 2003]
presents trainable measures to improve the effectiveness of duplicate detection,
and Tsuruoka et al. [2007] use logistic regression to learn a string-similarity measure
from an existing gene/protein name dictionary. Although these methods are effective
in capturing semantic similarities between strings, they are limited to special domains
and accuracy depends critically on the quality of the training data.

String-Similarity Searches and Joins. State-of-the-art approaches [Gravano et al.
2001; Chaudhuri et al. 2003, 2006; Sarawagi and Kirpal 2004; Bayardo et al. 2007; Li
et al. 2012; Wang et al. 2012; Bille 2012] for performing string-similarity searches and
joins mainly follow the filtering-and-verification framework. The basic idea is to first
employ an efficient filter to prune string pairs that cannot be similar, and then verify
the surviving string pairs by computing their real similarity. In the filtering step, there
are two methods for generating signatures for each string: (i) prefix filtering scheme

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:6 J. Lu et al.

[Chaudhuri et al. 2006; Bayardo et al. 2007; Xiao et al. 2008; Wang et al. 2012] first
transforms each string to a set of tokens. Then the tokens of each string are sorted
based on a global ordering, and a prefix set for each string is selected based on a
given similarity threshold to be signatures. The signatures can be used to guarantee
that if two strings are similar, then their signatures have enough overlap; (ii) LSH-
based scheme [Chaudhuri et al. 2003; Hadjieleftheriou et al. 2008; Xiao et al. 2011]
generates the signatures based on the idea of locality-sensitive hashing (LSH) [Broder
et al. 1997], that is, each signature is a concatenation of k minhashes of the set s
under a minwise independent permutation, and l such signatures are generated. k and
l are two user-defined parameters. The main limitation of the LSH approach is that
the algorithms are approximate and could miss some correct results. In this article,
we will extend these two signature schemes to perform efficient similarity join with
synonyms.

Synonyms Generation Approaches. Synonym pairs can be obtained in many ways,
such as users’ existing dictionaries [Tsuruoka et al. 2007], explicit inputs, and synonym
mining algorithms [Arasu et al. 2009]. In this article, we assume that all synonym
pairs are predefined, and our focus is how to effectively use the semantic information
to provide meaningful similarity measures and efficient join algorithms.

Estimation of Set Size. Our work is also related to the estimation of distinct pairs in
set-union. This is because, in the filtering phase, we need to estimate the number of
candidates (string pairs) morden to dynamically select a signature scheme. There are
many solutions proposed for the estimation of the cardinality of distinct elements. For
example, in their influential paper, Flajolet and Martin [1985] propose a randomized
estimator for distinct-element counting that relies on a hash-based synopsis; to date,
the Flajolet-Martin (FM) technique remains one of the most effective approaches for
this estimation problem. FM sketch and its variations (e.g., [Alon et al. 1996; Ganguly
et al. 2004]) focus on one-dimensional data. In our problem, we need to estimate the
distinct number of pairs, where each dimension is based on an independent FM sketch
from one join collection. It turns out that this problem is more complicated, and the
existing analysis cannot be extended easily. In addition, we note that the estimation
of the resulting size of a string-similarity join has been studied recently (e.g., [Lee
et al. 2009, 2011]), by using random sampling and an LSH scheme. Note that these
techniques cannot be directly applied here, since given a specific filter, our goal is to
estimate the cardinality of candidates, which is often much greater than that of final
results.

Finally, this article extends a previous conference paper [Lu et al. 2013] with the
following new contributions. (1) We study a new problem of approximate string search
with synonyms (Section 4), and show two algorithms, that is, a search-baseline and
an indexed approach QP-search based on a native index (QP-tree); and (2) we add the
extensions to several issues (Section 7), including three new similarity functions and
the weighted tokens.

3. STRING-SIMILARITY MEASURES

As described in Section 1, an expansion-based framework can efficiently measure the
similarity of strings with synonyms to avoid exponential computational complexity.
In this section, we describe two expansion-based measures in details. In particular,
Section 3.1 first introduces the preliminaries about synonym rules. Then Section 3.2
and Section 3.3 describe two expansion-based measures: full expansion and selective
expansion. Finally, Section 3.4 analyzes the optimality of the proposed methods.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:7

3.1. Preliminaries and Notations

Given two strings s1 and s2, let S1 and S2 denote the sets generated from s1 and s2,
respectively, by tokenization (e.g., splitting strings based on delimiters such as white
spaces). Let r denote a rule, which has the form: lhs(r) → rhs(r), where lhs(r) and rhs(r)
are the left- and right-hand sides of r, respectively. Slightly abusing the notation, lhs(r)
and rhs(r) can also refer to the set generated from the respective strings. Let R denote
a collection of synonym rules, that is, R = {r: lhs(r) → rhs(r)}. Given a string s, we say
a rule r ∈ R is an applicable rule of s if lhs(r) is a substring of s and let R(s) denote all
applicable rules of s.

Example 3.1. Given two strings: s1 = “SIGMOD Conf 2012 Arizona”, s2 = “ACM
SIGMOD Conference 2012 Arizona”, and two rules: r1: Conf → Conference, r2: ACM →
Association for Computing Machinery, the applicable rule sets are R(s1) = {r1},
R(s2) = {r2}.

3.2. Full Expansion

Given a string s, suppose a rule r : lhs(r) → rhs(r) ∈ R is an applicable rule of s, and
we use rhs(r) to expand the set S, that is, S′ = S ∪ rhs(r). Let sim(s1, s2, R) denote the
similarity between s1 and s2 based on R. Let R(s1) and R(s2) denote the applicable rule
set of s1 and s2, respectively. Under the expansion-based framework, sim(s1, s2, R) =
f (S′

1, S′
2), where S′

1 and S′
2 are expanded from S1 and S2 using some synonym rules in

R(s1) and R(s2), and f is a set-similarity function such as Jaccard, Cosine, etc.
Based on how applicable synonyms are selected to expand S, there are different

kinds of schemes. A simple one is the full expansion, which expands S using all their
applicable synonyms. That is, the expanded set S′ = S

⋃

r∈R(s) rhs(r).
The full expansion scheme is efficient to compute. Let L be the maximum length of

strings s1 and s2. The time cost of substring matching to identify the applicable synonym
pairs is O(L) using a suffix-trie-based method [Farach 1997]. Then the complexity of
the set expansion is O(L+kn), where n is the maximum number of applicable synonym
pairs for s1 and s2, and k is the maximum size of the right-hand side of a rule. As
we will demonstrate in our experimental section, the full expansion provides a highly
competitive performance with other optimized schemes to capture semantics of strings
using synonyms.

3.3. Selective Expansion

We observe that, as mentioned in Section 1, the full expansion cannot guarantee that
each applied rule is useful for similarity measure between two strings. Recall Exam-
ple 1.2 and Figure 1. The use of rule r4 on t2 is detrimental to the similarity between q1

and t2, as “United Kingdom” does not appear in q1. To address this issue, we propose an
optimized scheme, called selective expansion, whose goal is to maximize the similarity
value of two expanded sets by a judicious selection of applicable synonyms to apply.
Given a collection of synonym rules R and two strings s1 and s2, the selective expan-
sion scheme maximizes f (S′

1, S′
2). Suppose, without loss of generality, we use Jaccard

coefficient to measure the similarity between S′
1 and S′

2, which can be extended to
other functions. The selective-Jaccard similarity of s1 and s2 based on R (denoted by
SJ(s1, s2, R)) is defined as follows:

SJ(s1, s2, R) = max
R(s1)⊆R,R(s2)⊆R

{Jaccard(S′
1, S′

2)},

where S′
1 and S′

2 are the sets expanded from s1 and s2 usingR(s1) andR(s2), respectively.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:8 J. Lu et al.

Example 3.2 (Continuation of Example 3.1). Based on the full expansion
scheme, S′

1 = S1 ∪ rhs(r1) = {SIGMOD, Conf, Conference, 2012, Arizona}.
S′

2 = S2 ∪ rhs(r2) = {ACM, SIGMOD, Conference, 2012, Arizona, Association,

for, Computing, Machinery}. Therefore, Jaccard(S′
1, S′

2) = 4
10 . However, based on the

selective expansion scheme, we can only use r2 to expand S1 to achieve the maximal
similarity. Then, S′′

1 = {SIGMOD, Conference, Conf, 2012, Arizona}. Therefore,

SJ(s1, s2, R) = Jaccard(S′′
1 , S2) = 4

5 .

Unfortunately, we can prove that it is NP-hard to compute the selective-Jaccard
similarity with respect to the number of applicable synonym rules, by a reduction from
the well-known 3SAT problem [Iwama and Tamaki 2004].

THEOREM 3.3. Selective-Jaccard ∈ NP-hard.

The detailed proof can be found in Appendix A. Since selective-Jaccard is NP-hard,
we design an efficient greedy algorithm that guarantees optimality under certain con-
ditions, which has been shown to be met in most cases in practice. Before presenting
the algorithm, we will first define the notion rule gain, which can be used to estimate
the fitness of a rule to strings.

ALGORITHM 1: Computing a Rule Gain

Input : r, s1, s2, R = {ri: lhs(ri) → rhs(ri)}
Output: the rule gain of r, denoted RG(r, s1, s2, R)

1 U ← rhs(r) − S1; // r is applicable to s1, and S1 is the token set of s1

2 if (U = φ) then
3 return 0;

end
//Let R

′ ⊆ R denote all applicable rules of s2

4 S′
2 ← S2

⋃

ri∈R′ rhs(ri) //full-expanding S2

5 G ← (rhs(r) ∩ S′
2) − S1;

6 return RG(r, s1, s2, R) = |G|
|U | ;

Given two strings s1 and s2, a collection of synonyms R, and a rule r∈R, we assume
that r is an applicable rule for s1. We denote the rule gain of r by RG(r, s1, s2, R). When
s1, s2, and R are clear from the context, we shall simply speak of RG(r). Informally, the
rule gain is defined by the number of useful elements introduced by r divided by the
number of new elements in r. In particular, we say that a token t ∈ rhs(r) in r is useful if
t belongs to the full expansion set of s2 and t /∈ s1. The reason we use the full expansion
set of s2 rather than the original set is that s2 can be expanded using new rules, but all
possible new tokens must be contained in the full expansion set. We now go through
Algorithm 1. In line 1, we find the new elements U introduced by r. If U = ∅, then the
rule gain is zero (lines 2 ∼ 3). Line 4 fully expands s2, and line 5 computes the useful
elements G. Finally, the rule gain RG(r, s1, s2, R) = |G|

|U | is returned (line 6).

Example 3.4 (Continuation of Example 3.1). Since r1 is applicable for s1, we com-
pute RG(r1, s1, s2, R). Note that G = U = {Conference}. Therefore, RG(r1, s1, s2, R) =
1. Further, r2 is applicable for s2, then we compute RG(r2, s2, s1, R). Since U =
{Association, for, computing, machinery}, and G = ∅, RG(r2, s2, s1, R) = 0.

We develop a selective expand algorithm based on rule gains, which is formally
described in Algorithm 2. Before doing any expansion, we first compute a candidate
set of rules (line 1), which only consists of applicable rules with relatively higher

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:9

rule-gain values. In particular, in procedure findCandidateRuleSets, we first let Ci

contain all applicable rules whose rule gain is greater than zero (line 4), and then we
iteratively remove the useless rules whose rule gain is too small from Ci (lines 5∼11).
In lines 6∼7, we use the elements in Ci to expand Si to acquire S′

i. Then, in lines
9∼11, any rule whose rule gain is less than α

1+α
is removed from Ci, where α is the

Jaccard similarity of the current expanded sets S′
1 and S′

2 (line 8), as its similarity is
lower than the “average” similarity and its usage would be detrimental to the final
similarity. Subsequently, in line 2, we iteratively expand s1 and s2 using the most gain-
effective rule from the candidate sets. Finally, line 3 returns the maximal value between
Jaccard(s1, s2) (without the synonyms) and the new similarity θ using synonyms.

Example 3.5. We use Example 3.1 again to illustrate Algorithm 2. First, in line 4,
C1 = {r1}, and C2 = {r2}. Then S′

1 = {SIGMOD, Conf, Conference, 2012, Arizona},
S′

2 = {ACM, SIGMOD, Conference, 2012, Arizona, Association, for, Computing,
Machinery} (lines 6 and 7). Therefore, α = Jaccard(S′

1, S′
2) = 4/10 (line 8). Since RG(r1) =

1 and RG(r2) = 0, r2 is removed from C2 (line 11). Therefore, only C1 = {r1} is returned
in line 13. Subsequently, in line 19, rhs(r1) is added to S′

1. Therefore, only one rule r1 is
used to expand s1, and the final similarity is Jaccard(S′

1, S2) = 4/5.

Some readers may be wondering whether we can skip procedure findCandidateRule-
Set in Algorithm 2 and directly use the greedy strategy in line 2 to select rules for
expansion based on all applicable rules. Our answer is no, because line 1 wisely selects
only part of the applicable rules in order to avoid the blind expansion with rules that
are not suitable for global optimization.

Example 3.6. We use this example to demonstrate the importance of procedure
findCandidateRuleSet in Algorithm 2. Given two short strings: s1 = “a,” s2 = “b,” and
five rules: r1: “a” → “b t1,” r2: “a” → “c d e,” r3: “b” → “c t2 t3 t4 t5,” r4: “b” → “d t6 t7 t8
t9,” and r5: “b” → “e t10 t11 t12 t13,” where all items from t1 to t13 are “dirty” words which
cannot contribute to the similarity between s1 and s2. It turns out that the maximum
similarity is 1/3 = Jaccard(“a b t1”,“b”), which is achieved by applying only the rule r1

on s1. In Algorithm 2, line 1 returns C1 = {r2}, because those rules from t2 to t13 are all
removed from Ci in line 11. Therefore, only r1 is used to expand s1. But if line 1 were
cancelled, then all rules could be used to expand s1 or s2. Since RG(r2) = 1 > RG(r1) =
1/2. Then r2 is used to expand s1. Subsequently, the other four rules are applied as well.
Then the final similarity falls to 5/18 < 1/3.

In addition, as shown in the proof of Theorem 3.7, line 10 in procedure findCandi-
dateRuleSet lies in a key condition in order to guarantee the optimality of our algorithm
in some scenarios.

Performance Analysis. The time complexity of the SE algorithm is O(L+ kn2), where
L is the maximum length of s1 and s2, n is the total number of applicable synonyms for
s1 and s2, and k is the maximum size of the right-hand side of a rule. More precisely, we
use the suffix-trie to find applicable rule sets, and its complexity is O(L). In procedure
findCandidateRuleSet, the complexity to perform full expansion (lines 6 ∼ 7) is O(kn),
and the iteration time is no more than n; thus, the complexity is O(L + kn2).

3.4. Theoretical Analysis

In this section, we carve out one case and show that SE returns the optimal value and
then analyze the reduced time complexity in this optimal case.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:10 J. Lu et al.

ALGORITHM 2: Selective Expansion (SE) Algorithm

Input : s1, s2, R = {r: lhs(r) → rhs(r)}.
Output: Sim(s1, s2, R).

1 C1, C2 ← findCandidateRuleSet(s1, s2, R);
2 θ ← expand(s1, s2, C1, C2);
3 return max(Jaccard(s1, s2), θ);

Procedure findCandidateRuleSet(s1, s2, R)
4 Ci ← {r: r ∈ R ∧ lhs(r) is a substring of si(i = 1 or 2) ∧ RG(r) > 0};
5 repeat
6 S′

1 ← S1

⋃

r∈C1
rhs(r);

7 S′
2 ← S2

⋃

r∈C2
rhs(r);

8 α ← Jaccard(S′
1, S′

2);
9 for (r ∈ C1 ∪ C2) do

10 if (RG(r, s1, s2, C1 ∪ C2) < α

1+α
) then

11 Ci ← Ci − r; //r ∈ Ci , i = 1 or 2
12 Recompute S′

1, S′
2 and α;

end

end

until (no rule can be removed in line 11);
13 return C1, C2;

Procedure expand(s1, s2, C1, C2,)
//Let S′

1 and S′
2 denote the expanded sets of S1 and S2

14 S′
1 ← S1;

15 S′
2 ← S2;

16 while (C1 ∪ C2 �= φ) do
17 Find the current most rule-gain-effective rule r ∈ Ci (i = 1 or 2);
18 if ((RG(r, s1, s2, C1 ∪ C2) > 0) then
19 S′

i ← S′
i ∪ rhs(r);

end
20 Ci ← Ci- r;

end
21 return Jaccard(S′

1, S′
2);

THEOREM 3.7. Given two strings s1 and s2 and their applicable rule sets R(s1) and
R(s2), we call a rule r ∈ R(si) (i = 1 or 2) useful if RG(r) > 0. We can guarantee that SE
is optimal if the rhs tokens of all useful rules are distinct.

The proof of Theorem 3.7 can be found in Appendix B. Note that the condition in
Theorem 3.7 does not require all the rhs tokens to be distinct. It only requires those from
useful synonyms of s1 and s2 to be distinct, which are typically a very small subset. In
addition, under the condition, the time complexity can be reduced to O(L+n log n+nk).
The reason is that the complexity to perform full expansion (lines 6∼7) is reduced to
O(1). Since the tokens are distinct, and that of expanding (lines 15∼19) is O(n log n),
since the rule gain of each rule does not change, which can be implemented by a
maximal heap. Finally, the Jaccard computation in line 20 needs O(L+ kn) time in the
worst case. Therefore, the complexity of SE algorithm is O(L + n log n + nk).

4. STRING SIMILARITY SEARCH

In this section, we study the similarity search problem. That is, given a query string
q and a collection of strings T , a collection of synonyms R, and a similarity threshold
θ , similarity search finds all strings t ∈ T , such that sim(q, t, R) ≥ θ , where sim is one

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:11

Fig. 3. An Example to illustrate the generation of signatures (threshold = 0.9).

of the similarity functions in Section 3. Two search algorithms are proposed in the
following sections.

4.1. Preliminary on Prefix Filters

A naı̈ve algorithm for computing similarity search is to enumerate and compare every
pair of records with the query string. This method is obviously prohibitively expensive
for large datasets. Efficient algorithms exist by following the filtering-and-verification
framework, that is, given a query q and a table T , one or multiple filters are utilized to
prune away many records in T and then the verification is invoked for the remaining
records after filtering. Clearly, the stronger filtering power the method has, the better
performance than the naı̈ve algorithm. In the literature, the current modus operandi
is called prefix filter, which is based on the intuition that if two canonicalized records
are similar, some fragments of them should overlap with each other, as otherwise the
two records won’t have enough overlap. This intuition can be formally captured by the
prefix-filtering principle [Chaudhuri et al. 2006] rephrased here.

LEMMA 4.1 (PREFIX FILTER PRINCIPLE [CHAUDHURI ET AL. 2006]). Given an ordering O
of the token universe U and two strings s and t, each with tokens sorted in the or-
der of O, if Jaccard(s, t) ≥ θ , then the first ⌈(1 − θ)|s|⌉ smallest tokens of s and the first
⌈(1 − θ)|t|⌉ smallest tokens of t must share at least one token.

4.2. Search-Baseline Method

The first search algorithm we propose here is a prefix-filter-based approach, called
search-baseline, following the filtering-and-verification framework. That is, in the fil-
tering step, it generates candidate strings by identifying all strings t such that the
signatures of q and t overlap. In the verification step, it checks if sim(q, t, R) ≥ θ for
each candidate and outputs those that satisfy the similarity predicate.

To generate the signatures, given a string s, the signatures of s are a subset of tokens
in s containing the ⌈(1 − θ)|s|⌉ smallest elements of s according to a predefined global
ordering. Therefore, we generate signatures for a string s as follows. Let R ⊆ R be
the set of n application synonym pairs for s. For each subset Ri of R, we generate an
expanded set Si. For each Si, we obtain one signature set (denoted by sig(Si)). Note
that the number of subset Si is 2n. The exponential number is due to the fact that we
try to enumerate all possibilities of expanded sets for s with n synonym pairs. Finally,

we generate a signature set for s by including all signatures of Si: Sig(s,R) =
⋃2n

i=1
Sig(Si). Note that this generation of signatures can be performed offline.

LEMMA 4.2. Given two strings s1 and s2, a threshold value θ , and a collection of
synonym pairs R, if Sig(s1, R) ∩ Sig(s2, R) = ∅, then sim(s1, s2, R) < θ , where sim denotes
any of the similarity functions proposed in Section 3.

PROOF. Sig(s1, R) ∩ Sig(s2, R) = ∅. =⇒ For any S1i, S2 j expanded from s1 and s2,
Sig(S1i) ∩ Sig(S2 j) = ∅. =⇒ At least ⌈(1 − θ)|S1i|⌉ elements of S1i and ⌈(1 − θ)|S2 j |⌉

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:12 J. Lu et al.

Fig. 4. The structure of I-list.

Fig. 5. An example to illustrate I-list.

elements of S2 j have no common tokens. =⇒ The upper bound of the similarity < θ , as
desired.

Example 4.3. This example is employed to illustrate the generation of signatures
with synonyms. Consider the string q and synonyms in Figure 3(a). The applicable
synonyms for q are r5, r6, and the expanded sets of q are shown in Figure 3(b). For
each set, we choose the ⌈(1 − 0.9)|s|⌉ tokens to be the signatures for the set, which are
presented in Figure 3(b). Finally, the signature of q can be computed as the union of
the signatures, that is, Sig(q, R) = {SIGMOD, Computing, Conference, on}.

In our implementation, in order to avoid the most time-consuming operation, that
is, checking the signature overlap for each string pair to find the candidates, we design
a signature inverted list, called I-list (see Figure 4). Each token ti is associated with
an inverted list including all string IDs whose signatures contain the token ti. Thus,
given a signature ti, we can directly obtain all relevant strings without any signature-
overlapping check.

The search-baseline algorithm operates with two steps in the filtering phase. In
the first step, for each signature of query q, function getIList is employed to get the
I-list whose key is g. In the second step, the I-lists are merged together to obtain the
final candidates. Then in the verification phase, any of the two measures proposed in
Section 3 can be applied to check the candidates.

Example 4.4. This example is used to illustrate the search-baseline method. Con-
sider the query q in Figure 3 and the table in Figure 5(a). Search-baseline first computes
signatures for both query and strings in the table. Secondly, an I-list of the signatures
is constructed, as shown in Figure 5(b). Then search-baseline uses the query signa-
tures {SIGMOD, Computing, Conference, on} to find corresponding inverted lists, that
is, {q1, q2, q3} and {q1}. Finally, only q1 is returned as the query answer based on the
selected-expansion similarity function.

4.3. QP-Search Algorithm

In this section, we propose two native indexes for both query strings and the records
in the table, respectively, to improve the efficiency of the search-baseline method.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:13

Fig. 6. The structure of QP-tree and S-directory.

Fig. 7. An example to illustrate the indexes. The column L and F denote the number of tokens in the string
and in the full expanded set, respectively.

QP-Tree for the Query q. For the query string q, instead of computing the union
signatures Sig(q, R), we consider the signatures Sig(Qi) for each expanded set Qi.
Note that the length |Sig(Qi)| of the expanded sets here could be utilized to enhance
the filtering power. We build a query pattern tree, called QP-tree (see Figure 6(a)), which
has two levels: the nodes in the first level contain two fields 〈l, p〉, where l is an integer
to denote the size of each expanded set of query q, and p is a pointer to a signature set.
For example, the QP-tree in Figure 7(b) is built for the query in Figure 7(a). Building
QP-tree is on-the-fly for each coming query, which is fast.

SI-Tree for the Collection of Strings. We extend the idea of length filter [Sarawagi
and Kirpal 2004; Bayardo et al. 2007] to reduce the number of candidates. Intuitively,
given two strings s1 and s2 and a threshold value θ , if the size of the full expansion set
of s1 is much less than the size of s2, then without checking the signatures of s1 and s2,
one can claim that sim(s1, s2, R) must be smaller than θ . Based on the observation, we
propose a data structure, called S-directory, to organize the strings by their lengths.

The S-directory (see Figure 6(b)) is a tree structure with three levels, and nodes in
different levels can be categorized into different kinds.

—Root Entry. A node in level L0 is a root entry which has multiple pointers to the nodes
in level L1.

—Fence Entry. A node in level L1 is called fence entry and contains three fields 〈u, v, p〉,
where u and v are integers, and p is a set of of pointers to the nodes in L2. In
particular, u denotes the number of tokens of a string and v is the maximal number
of tokens in the fully-expanded sets of strings whose length is u.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:14 J. Lu et al.

—Leaf Entry. A node in level L2 is called leaf entry and contains two fields 〈t, p〉, where
t is an integer to denote the number of the tokens in the fully-expanded set of a string
whose length is u, and p is a pointer to an inverted list. As leaf entries are organized
in the ascending order of t, vi = tim (see Figure 6(b)).

We argue that S-directory can easily fit in the main memory, as the size of S-directory
is only O((vmax − umin)2), which is quadratic to the difference between the maximal size of
expanded sets and the shortest length of records. For example, in our implementation,
the size of S-directory for a table with one million strings on a USPS dataset is only
about 2.15KB.

To maximize the pruning power, we combine I-list and S-directory together. That is,
for each leaf-entry = 〈t, p〉, p points to a set of signatures (from the string whose size of
the full expansion set is t) associated with multiple I-lists. Thus, we have a combined
index, called SI-tree, that is, each leaf entry in S-directory is associated with an I-list.
For example, in Figure 7(d) and Figure 7(e), we draw the S-directory and SI-tree for
data in Figure 7(c), respectively.

ALGORITHM 3: QP-Search Algorithm

Input : QP-tree for query q and SI-tree for table T , a threshold θ , a collection of
synonyms R

Output: all records r ∈ T : sim(q, r, R) ≥ θ

1 C←−∅,R←−∅;
2 for (∀ F in SI, ∀ L in QP) do

//Fence-entry:F=<u, v, P>,Length-entry:L=<l, P>

3 if (F.u × θ ≤ L.l ≤ F.v

θ
) then

4 for (∀ E∈F.P) do
//Leaf-entry:E=<t, P>

5 if (min(E.t, L.l) ≥ max(E.t, L.l) × θ) then
6 for (∀ g is an overlapping signature between L.P and E.P) do
7 C = E.P→getIList(g);
8 C = C ∪ C;

end

end

end

end

end
9 for (∀ r in C) do

10 if sim(q, r, R)≥ θ then
R = R ∪ r;

end

end
11 Return R;

Based on the SI-tree and QP-tree, we design an algorithm (called QP-search) to
quickly select candidate strings for verification. See Algorithm 3, where line 3 and line 5
select the desired entries by length filtering. Then, in lines 6 ∼ 8, for each signature
g that is an overlapping signature between the query and the table, function getIList
returns the I-list whose key is g. Finally, in line 9, QP-search returns the candidate
strings for query q.

Example 4.5. We use this example to illustrate the QP-search algorithm. Consider
the query and the table in Figure 7. The QP-tree and SI-Tree are shown in Figures 7(b)
and 7(e). The query is q = “ACM SIGMOD 2013,” and the threshold θ = 0.9. Entries L1

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:15

Fig. 8. An example to illustrate FSI-trees.

and F1 satisfy the condition in line 3 (2 × 0.9 ≤ 3 ≤ 7/0.9), but L1 and E2 cannot pass
the test in line 5. Next, the entry L2 satisfies the conditions in both lines 3 and 5 with
F2 and E3, respectively. Unfortunately, there is no overlapping signatures between L2

and E3, thus entry L3 cannot pass the length filter. Finally, consider entries L4 and
E4, both of which luckily satisfy the conditions and have overlapping signatures “Con-
ference” and “on.” Subsequently, we obtain the candidate, that is, q1. To demonstrate
the advantage of the QP-search algorithm over the search-baseline, note that in the
filtering phase, search-baseline returns three candidates (see Example 4.4), whereas
QP-search returns only one candidate. Finally, the answer is “2013 ACM Intl Conf on
Management Data,” which refers to the same conference with q.

4.4. Extensions for Flexible Query Thresholds

In the previous sections, our model assumes that the search threshold is fixed and
that only the query can be changed online. However, in practice, users might change
the threshold at query time. Therefore, we now move to a more general case, where
both the search string and the threshold are flexible at query time. The new challenge
here is that we do not know the threshold in advance, and thus we cannot determine
the number of signatures of each record. A naı̈ve method is to compute the signatures
of records in the table online according to the given threshold, which is clearly pro-
hibitively expensive. Next we build a new index called FSI-trees (flexible signature
indexing) by extending SI-trees to solve this problem.

Suppose that all meaningful thresholds distribute in the range between 0.99 to
0.50. Then we select some representative thresholds (e.g., 0.95, 0.90, etc.) For each
representative threshold, we generate signatures for each record: see an example in
Figure 8(a). Note that the signatures of a string for lower thresholds are guaranteed to
become signatures of that for higher thresholds. To build an FSI-tree, the length and
fence entries of SI-trees remain the same, but each fence entry points to a set of I-lists
which come from all representative thresholds. Further, each element in the I-list of a
signature token s is a binary tuple (q, θ), where q is a record ID and θ is the minimal
threshold for which this signature s appears in q. For example, in Figure 8(b), the token
“Computing” is a signature of q1 for all thresholds ≥ 0.5.

We extend the QP-search algorithm for flexible thresholds. The algorithm almost
remains the same, the only change (see Algorithm 4) being that we select the string
candidates in I-lists by checking their thresholds (line 3).

An astute reader may notice that our method possibly introduces more candidates
because of the gap between representative thresholds and online thresholds. For ex-
ample, given a query threshold 0.83, suppose that the closest representative threshold
is 0.80. Then the number of signatures for threshold 0.80 may be greater than that for
0.83, but we argue that the problem has actually little impact on the final performance
of query processing. To understand this, assume that gap between two representative
thresholds is no more than 0.05 (that means, only 11 representative thresholds are

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:16 J. Lu et al.

ALGORITHM 4: Extended QP-Search for Flexible Thresholds

Input : QP-tree for query q and DSI-tree for table T , a threshold θ , a collection of
synonyms R.

Output: all records r ∈ T : sim(q, r, R) ≥ θ

1 Run lines 1 ∼ 7 in Algorithm 3;
2 for (∀ (q, θq)∈C) do
3 if (θq ≥ θ) then
4 C = C ∪ {q};

end

end
5 Continue lines 9 ∼ 11 in Algorithm 3;

“materialized” with signatures between 0.99 and 0.50). It can be proved that given a
string s, the difference between the numbers of signatures for thresholds θ1 and θ2

is ⌈|θ1 − θ2| · |s|⌉. Considering a string |s| = 10, we have 0.05 * 10 = 0.5, that is, for
most records in the table, the extra number of signatures due to the thresholds gap
is bounded by 0.5. Therefore, as our experimental results show in Section 8.2.2, the
performance of our algorithms for flexible thresholds is comparable to that for static
thresholds.

5. STRING SIMILARITY JOINS

In this section, we formulate the string-similarity join problem and develop the cor-
responding algorithms. Given two collections of strings S and T , a collection of syn-
onyms R, and a similarity threshold θ , a string-similarity join finds all string pairs
(s, t) ∈ S × T , such that sim(s, t, R) ≥ θ , where sim is one of the similarity functions in
Section 3. Two join algorithms would be proposed in the following sections.

5.1. Join-Baseline Method

The join-baseline (see Algorithm 5) method follows the filtering-and-verification frame-
work. In the filtering phase, it generates signatures for each string, then filters can-
didates by checking the overlaps of the signatures. Note that the way to generate
signatures is the same to that of the search-baseline method. In the verification phase,
it verifies the candidates by employing any of the two measures in Section 3.

ALGORITHM 5: Join-Baseline Algorithm

Input : Is and It //Is and It are I-list index for table S and T , respectively
Output: C: Candidate string pairs (s,t)∈ Is × It

1 C←−∅;
2 for (∀ g ∈ Is ∩ It) do

//g is a signature
3 Ls = Is→getIList(g);
4 Lt = It→getIList(g);
5 C = {(s, t)|s ∈ Is, t ∈ It};
6 C = C∪ C;

end
7 return C;

Example 5.1. We use this example to illustrate the join-baseline algorithm. Con-
sider a self join on the table in Figure 7(c), with θ = 0.8. The corresponding signatures
are listed in Figure 7(c). In the filtering phase, the join-baseline method generates
candidates (q1, q2), (q1, q3), (q2, q3), and {(qi, qi)|i ∈ [1, 4]}, since the signatures of those
string pairs overlap.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:17

5.2. SI-Join Algorithm

To further optimize the join-baseline method, we propose an index-join algorithm by
using SI-trees proposed in Section 4.

ALGORITHM 6: SI-Join Algorithm

Input : SI-Trees SIS for S and SIT for T , threshold value θ , a collection of synonym
pairs R.

Output: C: Candidate string pairs (s, t) ∈ SIS × SIT

1 C←−∅;
2 for (∀ Fs in SIS, ∀ Ft in SIT) do

//Fence-entry:F=<u, v, P>

3 if (min(Fs.v, Ft.v) ≥ θ × max(Fs.u, Ft.u)) then
4 for (∀ Es∈Fs.P,∀ Et∈Ft.P) do

//Leaf-entry:E=<t, P>

5 if (min(Es.t, Et.t) ≥ θ × max(Fs.u, Ft.u)) then
6 for (∀ g is an overlapping signature pointed by Es.P and Et.P) do
7 Ls = Es.P→getIList(g);
8 Lt = Et.P→getIList(g);
9 C = {(s, t)|s ∈ Ls, t ∈ Lt};

10 C = C∪ C;
end

end

end

end

end
11 return C;

SI-Join. (See Algorithm 6) comprising three steps in the filtering phase: in the first
step (lines 2 ∼ 3), consider two fence-entries Fs and Ft. If the maximal size of expanded
sets of strings below Fs (or Ft) is still smaller than θ times the length of original strings
below Ft (or Fs) (i.e., u), then all pairs of strings below Fs and Ft can be pruned safely.
Similarly, in the second step (lines 4 ∼ 5), given two leaf entries Es and Et, where all
expanded sets have the same size, if the size of expanded sets below Es (or Et) is smaller
than θ times the length of original strings below Et (or Es), then all string pairs below
Es and Et can be pruned safely. In the third step (lines 6 ∼ 10), for each signature g
that is an overlapping signature pointed by Es.P and Et.P, function getIList returns
the I-list whose key is g. Then SI-join generates string pair candidates for every two
I-lists.

Example 5.2. We use this example to illustrate the SI-join algorithm. Consider a
self join on the table in Figure 7(a) with θ = 0.8 and synonyms in Figure 7(b). The
corresponding SI-indices are shown in Figure 7(e). SI-join prunes all the string pairs
below F1 and F3, since min(7, 11) < 0.8×max(2, 9) (lines 2∼3). Similarly, all pairs below
(E1, E3) can be pruned (lines 4∼5). Then SI-join uses the signatures “Conference” and
“Conf” to get I-lists below (E2, E3) (lines 7∼8), since they are overlapping signatures
pointed by E2 and E3 (line 6). Then a candidate (q2, q3) is generated and added to
C (lines 9∼10). The final results are (q2, q3) and {(qi, qi)|i ∈ [1, 4]}. To demonstrate
the superiority of SI-join, we compare the numbers of candidates for two algorithms:
join-baseline outputs seven candidates, while SI-join returns five candidates.

Discussions on the Updates of Synonyms. Finally, we now consider the scenario of
supporting the update of synonyms, because it is likely that users perform a similarity

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:18 J. Lu et al.

join on a large dataset and then realize that there are some new synonym pairs that
should be added into the synonym collection. In this case, we show an incremental
algorithm for avoiding rerunning algorithms against the whole datasets. Consider the
following three steps. (1) Scan the tables to find the strings for which the new synonyms
are applicable; and (2) the fence entries, leaf entries, and I-lists of SI-trees are updated
correspondingly; and (3) rerun the SI-join algorithm, but we only consider the entries
which have been updated. It is worth pointing out that the newly-added synonyms
can only increase the size of results for similarity join with selective expansion, but
the full expansion has no such good property, and the newly-added synonyms may
decrease the similarity between two strings, and thus all affected string pairs have to
be recomputed.

6. ESTIMATION-BASED SIGNATURE SELECTION

6.1. Motivation

The previous algorithms generate signatures for each string according to a global order
of tokens. In theory, if N denotes the number of distinct tokens, there are N! ways to
permute the tokens to select signatures. A question then arises: which orders are
better for the approximate join algorithms? It is impractical to provide an order which
is always suitable to all datasets. Therefore, the remaining problem of our model is to
study which order of tokens should be used for the two specific join tables.

To address this problem, our main idea is to use multiple ways to generate signatures
offline then quickly estimate the quality of each signature filter to select the best one
to perform the actual filtering. The main challenge here is two fold. First, we need to
generate multiple promising filters offline. Second, the estimator should quickly select
the most effective filter online.

To address the first challenge, we use the itf -based method [Arasu et al. 2008; Li
et al. 2008] to generate filters. In particular, let tf(w) denote the occurrences of token
w appearing in the join tables, that is, the frequency of w. Then the inverse term
frequency of the token w, itf(w), is defined as 1/tf(w). The global order is arranged in a
descending order based on itf values. Intuitively, tokens with a high itf value are rare
tokens in the collection and have a high probability of being chosen as signatures. Since
tokens come from two sources, tables and rules, there are multiple ways to compare the
frequency of tokens as follows. (1) ITF1: sort the tokens from data tables and synonyms
separately by decreasing itf, then arrange tokens from tables first, followed by those
from synonyms; (2) ITF2: sort separately again, but synonyms first, tables second;
(3) ITF3: sort all the tokens together by a decreasing itf order; (4) ITF4: generate all
possibilities of expanded sets for each string, then sort the tokens by the decreasing itf
order in all the expanded sets.

In order to give an empirical study of the effect of different signatures on filtering
power, we perform experiments with ITF1∼ITF4. For ease of presentation, we employ
the number of candidates to demonstrate the filters’ filtering power. The filtering power
is measured by ψ = |C|

|N| , where |C| denotes the number of pruned pairs and |N| is

the total string pairs. We then show some attractive experimental results for string-
similarity joins.

We perform a set of experiments using ITF1∼ITF4 against two datasets: CONF and
USPS data. On the CONF dataset, we perform a join between two tables S and T
using a synonym table R. Table S contains 1,000 abbreviations of conference names,
while table T has 1,000 full expressions of conference names. On the USPS dataset,
we perform a self join on a table containing one million records, each of which contains
a person name, a street name, a city name, etc., using 284 synonyms. The detailed
description of the datasets can be found in Section 8.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:19

Fig. 9. Filtering powers of different signature filters.

Figure 9 reports the experimental results. We observe that (i) four signature filters
achieve quite different filtering powers. For instance, on the CONF dataset, when the
join threshold is 0.7, the filtering power of ITF1 is 89.2%, while that of ITF2 is only
53.1%; and (ii) no signature filter can always perform the best in each dataset. For
example, ITF1 performs the best in the USPS dataset, but it performs the worst in the
CONF dataset, the main reason being that ITF1 gives a higher priority for the tokens
in the data table to become signatures, but there are many overlaps in these signatures
in the CONF dataset, resulting in a large number of candidates.

These results suggest that it is unrealistic to find a one-size-fits-all solution to select-
ing signatures. Therefore, we propose an estimator to effectively estimate the filtering
power of different filters in order to dynamically select the best filter.

6.2. Estimation-Based Selection Algorithms for String Similarity Joins

Let ℓ(S, g) = {q
g
1 , . . . , q

g
n} denote a list of string IDs (i.e., I-lists in Figures 6 and 7)

associated with the signature token g from the table S. Then an ID pair (q
g
i , q

g
j) ∈

ℓ(S, g) × ℓ(T , g) is an element of the cross product of the two lists. Let G denote the set
of all common signatures between S and T . Therefore, our problem is to estimate the
cardinality of the union of all ID pairs from all signatures in G, that is, ∪g∈Gℓ(S, g) ×
ℓ(T , g). Before we describe our approach towards this goal, let us examine the lower
and upper bounds of this cardinality.

LEMMA 6.1. Given two tables S and T for similarity join and a signature filter λ, the
upper and lower bounds of the cardinality of the candidate pairs are

UB(λ) =
∑

g∈G

(‖ℓ(S, g)‖ × ‖ℓ(T , g)‖),

and

LB(λ) = max{‖ℓ(S, g)‖ × ‖ℓ(T , g)‖, g ∈ G},
where ‖ℓ(·, g)‖ denote the number of IDs in a list and G is the set of overlapping signa-
tures between S and T .

Example 6.2. We use this example to illustrate this lemma. Recall Figure 7(c) and
assume that there are two tables S and T , where S = {q1, q2} and T = {q3, q4}. Then
G = {Conference, Conf}. Thus, ℓ(S,Conference) = {q1, q2}, ℓ(T ,Conference) = {q3},
ℓ(S,Conf) = {q2}, ℓ(T ,Conference) = {q3}. Therefore, according to Lemma 6.1, UB(λ) =
2 + 1 = 3 and LB(λ) = max{2,1} = 2.

In Lemma 6.1, the upper bound is the total number of string pairs and the lower
bound is the maximal number of string pairs associated with one signature. A signature

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:20 J. Lu et al.

Fig. 10. An example of bit vector generated by the FM method. (The first 1-bit is the leftmost 1-bit.)

Table I. Summary of the Notations Used

Notation Explanation

Sig(q, R) the signatures of q with synonyms R

LB(λ), U B(λ) the lower and upper bounds of the cardinality of the candidates with the filter λ

ℓ(S, g) a list of string IDs associated with the signature g from the table S

μS the distinct number of string IDs for all signature tokens from the table S

ν
g
S

an FM sketch for the signature g in I-lists of the table S

2DHSg(i, j) the bucket (i, j) for a signature g in a two-dimensional hash sketch synopsis
(2DHS)

λ guarantees returning fewer candidates than signature λ′ if UB(λ) < LB(λ′). Therefore,
the tighter the bound, the better the results, since a tighter bound implies more accurate
estimates on the ability of a filter. In the following, we introduce tighter upper and lower
bounds than Lemma 6.1 by extending the Flajolet-Martin (FM) [Flajolet and Martin
1985] technique.

Flajolet-Martin Estimator. The Flajolet-Martin (FM) technique for estimating the
number of distinct elements (i.e., set-union cardinality) relies on a family of hash
functions H that map data values uniformly and independently over the collection of
binary strings in the input data domain L. In particular, FM works as follows: (i) use
a hash function h∈H to map string IDs to integers sufficiently uniformly in the range
[0, 2L−1]; (ii) initialize a bit vector ν (also called synopses) of length L to all zeros
and convert the integers into binary strings of length L; and (iii) compute the position
of the first 1-bit in the binary string (denoted as p(h(i))), and set the bit located at
position p(h(i)) to be 1. Note that for any i∈[0, 2L−1], p(h(i)) ∈ {0, . . . , logM-1} and
Pr[p(h(i)) = ℓ] = 1

2ℓ+1 , which means the bits in lower position have a higher probability
to be set to 1. Figure 10 illustrates the FM method. Assume there are six strings. The
length of the domain L = 4. Finally, the synopsis ν is “1110”.

Our Two-Dimensional Hash Sketch (2DHS). In the following, we describe our ideas
for extending the FM sketch to provide better bounds for estimating the number of
candidate pairs. The main challenge is that the existing FM-based methods are only
applicable to one-dimensional data, but we need to estimate the number of distinct
pairs based on two independent FM sketches. Note that the straightforward method
is infeasible for mapping two-dimensional data to one unique value and then using
the existing FM sketch for our problem. This is because two join tables are given
online, and thus we cannot perform the mapping operations offline to construct a one-
dimensional sketch. Therefore, we next describe four steps for estimating the number
of distinct pairs based on two predefined one-dimensional sketches. Table I summaries
the notations used.

Step 1 (Estimating the Distinct Number of One Table). First, we estimate the distinct
number of string IDs for all signature tokens from one table, that is, μS and μT , where
μS = ∪g∈Gℓ(S, g) and μT = ∪g∈Gℓ(T , g). Ganguly et al. [2004] provide an (ǫ, δ)-estimate
algorithm for μS (or μT) by using the extension of the FM technique, which estimates
the quantity of μS (or μT) within a small relative error ǫ and a high confidence 1-δ.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:21

Fig. 11. The structure of two-dimensional hash sketch (2DHS).

Space precludes detailed discussion about their method here; however, readers may
find it in Section 3.3 of Ganguly et al. [2004]. Note that after the first step, we indeed
obtain a new upper bound, μS × μT , but it is still not tight enough. We proceed to the
following steps to get a better value.

Step 2 (Constructing a Two-Dimensional Hash Sketch). Let ν
g

S and ν
g

T be two FM
sketches of signature g in I-lists of table S and table T , respectively. We construct a two-
dimensional hash sketch synopsis (2DHS) of signature g, which is a two-dimensional
bit vector. The bucket (i, j) in a 2DHS is 1 if and only if ν

g

S(i) = 1 and ν
g

T (j) = 1. Further,
let G be the set of common signatures of S and T . We construct a new 2DHS′, which is
the union of all 2DHS’s of each signature, namely, ∪g∈G2DHSg, such that 2DHS′(i, j) =
1 if ∃ 2DHSg(i, j) = 1.

Example 6.3. Figure 11 illustrates Step 2. Assume there are two common signatures
g1 and g2 of S and T , ν

g1

S = {1,1,1}, ν
g1

T = {1,1,0,1} and ν
g2

S = {1,1,0}, ν
g2

T = {1,1,1,0}.
Figure 11(b1) is the 2DHS of g1 and Figure 11(b2) is the 2DHS of g2. Then the union
2DHS is shown in Figure 11(b3).

Step 3 (Computing Witness Probabilities). Once the union 2DHS is built, we select
a bucket (i, j) to compute a witness probability as follows. We examine a collection
of ω independent 2DHS (ν

g
1 ,ν

g
2 , . . . , ν

g
ω) (each copy using independently-chosen hash

functions from H). Algorithm 7 shows the steps for computing witness probabilities. In
particular, let Rs = ⌊log2 μS⌋ and Rt = ⌊log2 μT ⌋. We investigate a column of buckets
(Rs, y) (line 2 ∼ 8), and a row of buckets (x, Rt) (line 9 ∼ 15), and select two smallest
indexes y and x at which only a constant fraction 0.3ω of the sketch buckets turns out
to be 1. As our analysis will show, the observed fraction p̂s and p̂t (line 16) and their
positions can be used to provide a robust estimate for bounds in the next step.

Step 4 (Computing Tighter Upper and Lower Bounds). The final step is to compute
the upper bound TUB and the lower bound TLB of a signature filter λ. Assume, without
loss of generality, that μS ≤ μT .

TUB(λ) = ϕ1 · min(u1, u2), where

u1 = μS ·
ln(1 − ps)

ln(1 − 1
2y)

, and ps =
p̂s

1 − (1 − 1
2Rs

)μS

;

u2 = μT ·
ln(1 − pt)

ln(1 − 1
2x)

, and pt =
p̂t

1 − (1 − 1
2Rt

)μT

.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:22 J. Lu et al.

ALGORITHM 7: Computing Two Witness Probabilities

Input : ω independent two-dimensional hash sketches (2DHS1, 2DHS2, . . . , 2DHSω), Rs

and Rt.
Output: p̂s and p̂t and two witness positions (Rs, y) and (x, Rt)

1 f = 0.3ω;
2 for (y from 0 to Rt) do
3 count = 0;
4 for (i from 1 to ω) do
5 if (2DHSi[Rs][y] == 1) then
6 count = count+1;

end

end
7 if (count≤ f) then
8 p̂s = count/ω and goto Line 9;

end

end
9 for (x from 0 to Rs) do

10 count = 0;
11 for (i from 1 to ω) do
12 if (2DHSi[x][Rt] == 1) then
13 count = count+1;

end

end
14 if (count≤ f) then
15 p̂t = count/ω and goto Line 16;

end

end
16 return p̂s, p̂t and their witness positions (Rs, y), (x, Rt)

TLB(λ) = ϕ2 · μS ·
ln(1 − p′

s)

ln(1 − 1
2y)

, where p′
s =

p̂s − p

1 − (1 − 1
2Rs

)μS

p =
[

1 −
(

1 −
1

2Rs+y

)μS
]

−
1

2y
×

[

1 −
(

1 −
1

2Rs

)μS
]

,

where constants ϕ1 = 1.43, ϕ2 = 0.8, are derived in Theorem 6.8.

Example 6.4. This example illustrates the computation of TUB and TLB. Assume
μS = 100 and μT = 200. Thus, Rs = ⌊log100

2 ⌋ = 6, Rt = ⌊log200
2 ⌋ = 7. Assume, in

Algorithm 7, that the returned values are p̂s = 0.2, p̂t = 0.19, x = 5, and y = 6.
According to the formulas in Step 4, we have ps = 0.2522, pt = 0.24, u1 = 1845, u2 =
1729, p = 0.0117, p′

s = 0.2375, and the upper bound TUB(λ) = 1.43 × 1729 = 2472
and TLB(λ) = 1722 × 0.8 = 1278.

Therefore, one filter is selected as the best if its TUB is less than all the TLBs of other
filters, which means that it returns the smallest number of candidates. In practice, if
there are several filters whose bounds have overlaps, then it means that their abilities
are similar with a high probability, and we can arbitrarily choose one of them to break
the tie.

Theoretical Analysis. We first demonstrate that, with an arbitrarily high probability,
the returned lower and upper bounds are correct; then we analyze its space and time
complexities.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:23

It is important to note that given n distinct ID pairs and a position (x, y) in a 2DHS
matrix, the probability that the bucket in (x, y) is 1 depends on the distribution of the
input data. To understand it, consider the following two cases: one is (1,1), (2,1), . . . ,
(n,1), and the other is (1,n+1), (2,n+2),. . . ,(n,2n). Both cases have n distinct pairs, but
their probabilities are different. The first case is 1

2y × [1− (1− 1
2x)n], but the second case

is [1 − (1 − 1
2x+y)n], respectively. Therefore, we need to differentiate the probabilities

for these two extremes. Let MIN(N, μS, μT , x, y) and MAX(N, μS, μT , x, y) denote the
minimum and maximum probabilities, respectively, that the bucket (x, y) is 1 with N
distinct pairs, where μS and μT denote the number of distinct IDs in each dimension,
respectively. The computation of the accurate values of the MIN and MAX is highly
complicated, but for the purpose of this article, to differentiate the ability of filters, we
derive a lower (resp. upper) bound for the MIN (resp. MAX) probability.

The following lemma implies that the MIN and MAX probabilities are monotonically
increasing on μS and μT . This monotonicity ensures that Lemmas 16 and 6.7 compute
the lower and upper bounds.

LEMMA 6.5. If μS ≥ μ′
S and μT ≥ μ′

T , then MIN(N, μS, μT , x, y) ≥
MIN(N, μ′

S, μ′
T , x, y) and MAX(N, μS, μT , x, y) ≥ MAX(N, μ′

S, μ′
T , x, y).

LEMMA 6.6. The lower bound of the MIN probability can be computed as

p1 =
[

1 −
(

1 −
1

2x

)μS
]

×
[

1 −
(

1 −
1

2y

)
N

μS

]

;

p2 =
[

1 −
(

1 −
1

2y

)μT
]

×
[

1 −
(

1 −
1

2x

)
N

μT

]

;

MIN(N, μS, μT , x, y) ≥ max(p1, p2).

PROOF (SKETCH). According to Lemma 6.5, the MIN probability is monotonically in-
creasing with μS and μT . Therefore, the final MIN probability is greater than p1 and
p2, since μS ≥ N

μT
and μT ≥ N

μS
. That concludes the proof.

LEMMA 6.7. Assume that μS ≤ μT . Then the upper bound of the MAX probability can
be computed as

p1 =
[

1 −
(

1 −
1

2x

)μS
]

×
[

1 −
(

1 −
1

2y

)
N

μS

]

;

p2 =
[

1 −
(

1 −
1

2x+y

)μS
]

−
1

2y
×

[

1 −
(

1 −
1

2x

)μS
]

;

MAX(N, μS, μT , x, y) ≤ p1 + p2.

PROOF (SKETCH). According to Lemma 6.5, with a fixed μS, the greater the value
μT , the greater the MAX probability. In the worst case, μT = N. Therefore, the MAX
probability pmax is no greater than

pmax ≤ 1 −
[

(

1 −
1

2x

)

+
1

2x
·
(

1 −
1

2y

)
N

μS

]μS

.

We then prove that pmax − p1 ≤ p2. We can show that pmax − p1 is a monotonically-
decreasing function when N ≥ μS. Therefore, when N = μS (in this case, N = μS = μT),

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:24 J. Lu et al.

we have the minimal value as follows.

pmax − p1 ≤ 1 −
[(

1 −
1

2x

)

+
1

2x
·
(

1 −
1

2y

)]μS

−
[

1 −
(

1 −
1

2x

)μS
]

×
[

1 −
(

1 −
1

2y

)]

= p2.

THEOREM 6.8. Given a signature filter λ, with any high probability 1-δ, our algorithm
guarantees correctly returning the upper bound and the lower bound in order to estimate
the number of candidate pairs with λ.

PROOF (SKETCH). There are three steps in this proof. Firstly, we show that the es-
timated probabilities p̂s and p̂t returned by Algorithm 7 are of low error and high
confidence, and then we show that our formulas TLB and TUB are correct. Finally, we
show how to adjust formulas based on the estimated p̂s, p̂t and μS, μT .

First, in Algorithm 7, by the Chernoff bound, the estimated p̂ = count/ω satisfies

| p̂ − p| ≤ ǫp with a probability at least 1-δ as long as ωp≥ 2 log(1/δ)
ǫ2 . Let ǫ = 0.15,

then ωp≥88 log(1/δ). Since p̂s and p̂t returned in Algorithm 7 are the smallest in-
dexes, where only 0.3ω of sketches turn to be 1, their values are no less than 0.3/2 =
0.15. Therefore, p ≥ 0.15, and we can generate enough number of sketches such that
ω ≥ 587 log(1/δ)=�(log 1

δ
). Strictly speaking, the witness probabilities p̂s and p̂t are

estimated values, and we need to use the Chernoff bound again to show that they are
close to 0.15 with a high confidence. The details are omitted here.

Second, according to Lemmas 16 and 6.7, it is not hard to mathematically compute
the lower bound and upper bound to estimate the number of distinct pairs number N.

Finally, the following two lemmas demonstrate that we only need to multiply a con-
stant in the formulas to use the low-error estimated p̂s, p̂t, μS, and μT , for the accuracy
guarantee. In particular, Lemma 6.9 is used to derive ϕ1 in TUB and Lemma 6.10 for ϕ2

in TLB, respectively. (A similar proof technique can be found in [Bar-Yossef et al. 2002;
Ganguly et al. 2004], even though our estimation is quite different from theirs.)

LEMMA 6.9. Let f(x) = ln(1 − x

1−(1− 1

2Rs
)μS (1+ε)). If y − x ≤ 0.15x for some x ≤ 0.3 and ε ≤

0.1, then f (y) − f (x) ≤ 0.43 f (x).

PROOF. Since 1−(1− 1
2Rs

)μS(1+ε) ≈ 1−e−(1+ε) and ε ≤ 0.1, then 1
1−e−(1+ε) ≥ 1.5. By Taylor

series, there is a value w ∈ (x, y) such that ln(1 − 1.5y) = ln(1 − 1.5x) − 1.5(y − x)/(1 −
1.5w). Thus, we have f (y)− f (x) ≤ 1.5(y−x)

1−1.5max(x,y) ≤ 0.225x
1−1.725x

≤ 0.225x
0.52 ≈ 0.43x ≤ −0.43ln(1−

1.5x) ≤ 0.43 f (x).

LEMMA 6.10. Let f(x) = ln(1 − x−p

1−(1− 1

2Rs
)μS (1+ε)). If x − y ≤ 0.15x for some x ≤ 0.3 and

ε ≤ 0.1, then f (x) − f (y) ≤ 0.2 f (x).

PROOF (SKETCH). First, we can prove p

1−(1− 1

2Rs
)μS (1+ε) <0.71. The details are omitted

here. Then by Taylor series again, there is a value w ∈ (x, y) such that ln(1.71 −
1.5y) = ln(1.71 − 1.5x) − (1.5(x − y))/(1.71 − 1.5w). Thus, we have | f (y) − f (x)| ≤

1.5(x−y)
1.71−1.5max(x,y) ≤ 0.225x

1.71−1.725x
≤ 0.225x

1.19 ≈ 0.189x ≤ 0.2ln(1.71 − 1.5x), since by Maclaurin

series, ln(1.71 − 1.5x) ≈ ln1.71 − (1.5/1.71)x ≈ 0.54 − 0.88x.

THEOREM 6.11. Given a high probability 1-δ, our estimator needs a total space of
�(T log M log(1/δ)) bits, where T is the number of overlapping signatures and M is

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:25

the maximal length of inverted list associated with a signature, and its computing

complexity is �(T log2 M + logM log(1/δ)).

PROOF. The size of one FM sketch is log M and there are T signatures, so the space
for storing all FM sketches is 2T log M. We need to generate a collection of ω = �(log 1

δ
)

sketches. Therefore, the total space requirement is �(T log M log(1/δ)). Further, to
compute the time complexity, in step 1, the computing cost is 2ωlogM. The cost of step 2
is 2T log2M and that of steps 3 and 4 are ωlogM and O(1), respectively. Therefore the
total cost is bounded by �(T log2 M + logM log(1/δ)).

6.3. LSH Filters and Multiple Filters

Although we focus on prefix filters in the preceding discussion, our indexes and esti-
mators can also be extended to other filters, such as the LSH scheme. In particular,
each signature s in LSH is a concatenation of a fixed number k of minhashes of the set,
and there are l such signatures (using different minhashes). Then, in the I-lists, each
inverted list is associated with a pair (s, i), where i means that signature s comes from
the ith minhash, 1 ≤ i ≤ l. Therefore, by replacing the prefix signature g with (s, i),
our SN-join (Algorithm 6) and 2DHS estimator can be directly applied on the LSH
scheme. As described in Section 8.2.3, we implement both LSH and prefix filters in our
algorithms to make a comprehensive comparison.

The approaches that we have mentioned so far mainly focus on one filter, but an
interesting alternative is to use multiple filters to enhance the filtering power, as more
rounds of filtering prune away more strings. But, by doing so, the time cost in the
filtering phase would increase. Therefore, there exists a trade-off between the number
of rounds of filtering and the overall running time. The following theorem formally
analyzes the filtering power of k rounds of prefix filters.

THEOREM 6.12. Given two strings s and t, and a collection of synonym pairs R, we
randomly generate k global orders for all tokens in s, t, and R. Assume that Sim(s, t, R) <

θ , where θ is a threshold value. Then the probability of the event that all k prefix filters

can not prune (s, t), that is, the probability of the false positive, is (1−e− (θl+1)(2l−2θl)
2N)k, where

N denotes the total number of tokens and l refers to the maximal length of s and t.

PROOF (SKETCH). We first estimate the expected size E(x) of the intersection set of
the tokens of s and t:

E(x) =
θl

∑

x=0

x × Pr[x|Sim(s, t, R) < θ]

=
∑θl

x=1 x/(N − 2l + x)!
∑θl

x=1 1/(N − 2l + x)!
≈

θl + 1

2
.

Then we consider the case that only one signature filter is applied to filter the string
pair (s, t). To prune (s, t), the condition must be satisfied that none of the tokens in s ∩ t
appears in the first 2l−2θl positions. Thus, the probability of filtering (s, t) using one

filter is (N−(θl+1)/2)!(N−2l+2θl)!
(N−(θl+1)/2−2l+2θl)!N! , which can be approximated to (1− 2l−2θl

N
)(θl+1)/2 by Strling’s

approximation [Kaporis et al. 2006]. Then we extend it to the case that k ≥ 1 signature
filters are applied, the probability of the event that the string pair (s, t) can not be
pruned through all filters, that is, the probability of the false positive, is (1 − (1 −
2l−2θl

N
)(θl+1)/2)k, which can be approximated to be (1 − e− (θl+1)(2l−2θl)

2N)k.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:26 J. Lu et al.

In particular, assume N = 50, l = 6, and θ = 0.5. If only one prefix filter is applied,
that is, k = 1, then the probability of false positive is 1 − e−0.24 = 0.17, which indicates
that one round of signature filtering can filter out most irrelevant strings. As we will
show in the experiments, we favor applying only one signature filter recommended by
our estimator because it strikes a good balance between the number of filters and the
overall running time.

7. VARIATIONS, EXTENSIONS, AND GENERALIZATIONS

In this section, we discuss interesting extensions and generalizations that can be done
to our algorithms, including multiple similarity measures and the weighted tokens.

7.1. Extension to Other Similarity Measures

As mentioned in the related work section, there exists a rich set of string similarity
measures. The choice of the similarity function is highly dependent on the application
domain and is out of the scope of this article, but the approaches presented here can be
extended to other similarity measures. We briefly comment on necessary modifications
to adapt our algorithms to three other similarity measures, including Overlap simi-
larity, Dice similarity, and Cosine similarity. Given two string s and t, these similarity
measures are defined as follows.

—Overlap similarity is defined as Overlap(s, t) = |s ∩ t|.
—Dice similarity is defined as Dice(s, t) = 2 |s∩t|

|s|+|t| .

—Cosine similarity is defined as Cosine(s, t) = −→s ·−→t
‖−→s ‖·‖−→t ‖ = �isi ·ti√

|s||t| .

Overlap Similarity. To adapt to Overlap similarity, the strategy of full expansion and
selective expansion can be applied again, but the major changes are related to prefix
filters and length filters. First, if Overlap(s, t) > θ , then the first |s| − θ smallest tokens
of s and the first |t| − θ smallest tokens of t must share at least one token. Therefore,
in the prefix filter, the number of signatures of a string s is |s| − θ . Second, given two
strings s and t, if Overlap(s, t) > θ , then min(|s|, |t)| > max(|s|, |t|) − θ . Therefore, line 3
in Algorithm 3 will be “if (F.u − θ < L.l < F.v + θ) then,” and line 5 will be “if (min(E.t,
L.l) > max(E.t,L.l) − θ) then.”

Dice Similarity. If Dice(s, t) > θ , then the first ⌈ 2(1−θ)
2−θ

|s|⌉ smallest tokens of s and

the first ⌈ 2(1−θ)
2−θ

|t|⌉ smallest tokens of t must share at least one token. Therefore, the

number of signatures of s is ⌈ 2(1−θ)
2−θ

|s|⌉. In addition, if Dice(s, t) > θ , then max(|s|, |t|) <

min(|s|, |t|) 2−θ
θ

. Therefore, line 3 in Algorithm 3 will be “if (F.u · θ
2−θ

< L.l < F.v · 2−θ
θ

)

then,” and Line 5 will be “if (max(E.t,L.l) < min(E.t,L.l) · 2−θ
θ

) then.”

Cosine Similarity. Finally, if Cosine(s, t) > θ , then the first ⌈ (2−θ2−θ)|s|
2 ⌉ smallest to-

kens of s and the first ⌈ (2−θ2−θ)|t|
2 ⌉ smallest tokens of t must share at least one token.

Therefore, the signatures of s contain ⌈ (2−θ2−θ)|s|
2 ⌉ elements. Regarding the length filter,

if Cosine(s, t) > θ , then min(s, t) ≥ max(s, t)×θ2. Therefore, line 3 in Algorithm 3 will be
“if (F.u × θ2 < L.l < F.v

θ2) then,” and line 5 will be “if (min(E.t, L.l) > max(E.t, L.l)×θ2)
then.”

7.2. Generalization to the Weighted Case

In this section, we extend our algorithms to the weighted case for tokens. For example,
consider a string s = “TODS Journal.” It is not difficult to see that “TODS” should be
assigned a greater weight than “Journal” in s. One common method for assigning

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:27

weights is to use the itf -based weights to generate filters described in Section 6.1. In
the following, we describe how to adapt our algorithms to the weighted case. Our search
and join algorithms remain the same, but we need to extend the indexing structures for
prefix and length filters. Here we use weighted Jaccard (WJ) similarity (defined next)
as the example and illustrate important changes. The extensions for other similarity
functions are similar. Given two strings s and t,

WJ(s, t) =
∑

x∈|s∩t| w(x)
∑

x∈|s∪t| w(x)
,

where w(x) denotes the weight of a token x. The binary Jaccard similarity we discussed
previously is just a special case when all the weights are 1.0.

To choose the global ordering of tokens, one option is to sort the tokens by decreasing

order of weight. Let w(s) =
∑|s|

i=1 w(xi) and xi be the ith token in s. Therefore, in the
prefix filter, the number of signatures of a string s is

min

{

n|
n

∑

i=1

w(xi) ≥ (1 − θ) · w(s)

}

.

We need to extend the SI-tree and FSI-tree in Section 4. A node in fence entries
contains three fields 〈u, v, p〉, where u is the total weight of tokens of a string and v is
the maximal weight of tokens in the fully expanded sets of strings whose length is u.
Similarly, a node in leaf entries contains two fields 〈t, p〉, where t is the total weight of
the tokens in the fully expanded set of a string whose length is u. After the necessary
update of these structures, Algorithm 3 and 5 can be used again for this weighted
tokens case.

8. EXPERIMENTS

In this section, we report an extensive experimental evaluation of algorithms on three
real-world datasets. First, we show the effectiveness and efficiency of the expansion-
based framework to measure the similarity of strings with synonyms. Second, we study
the performance of the search-baseline and QP-search algorithms. Third, we evaluate
the join-baseline, SI-join, and the state-of-the-art approaches to performing similarity
joins with prefixes and LSH signatures. Finally, we analyze the performance of 2DHS
estimators.

All the algorithms are implemented in Java 1.6.0 and run on a Windows XP with
dual-core Intel Xeon CPU 4.0GHz, 2GB RAM, and a 320GB hard disk.

8.1. Datasets and Synonyms

Datasets. We used three datasets: U.S. addresses (USPS), conference titles (CONF),
and gene/protein data (SPROT). These datasets differ from each other in terms of
rule number, rule complexity, data size, and string length. Our goal in choosing these
diverse sources is to understand the usefulness of algorithms in different real-world
environments.

USPS. We download common people names, street names, city names, states, and
zip codes from the United States Postal Service website (http://www.usps.com). We
then generate one million records, each of which contains a person name, a street
name, a city name, a state, and a zip code. USPS also publishes extensive information
about the format of U.S. addresses from which we obtained 284 synonym pairs. The
synonym pairs cover a wide range of alternate representations of common strings (e.g.,
“University → Uni.”).

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:28 J. Lu et al.

Table II. Characteristics of Datasets

String Len in Words # of Applicable Synonyms Per

Dataset # of Strings (avg/max) # of Synonyms String (avg/max)

USPS 1,000,000 6.75 / 15 284 2.19 / 5

CONF 10,000 5.84 / 14 1,000 1.43 /4

SPROT 1,000,000 10.32 / 20 10,000 17.96 /68

CONF. We collected 10,000 conference names from more than 10 domains, includ-
ing Medicine and Computer Science. We obtained 1,000 synonym pairs between the
full names of conferences and their abbreviations by manually examining conference
websites or homepages of scientists.

SPROT. We obtained one million gene/protein records from the Expasy website
(http://www.expasy.ch/sprot). Each record contains an identifier (ID) and its name.
In this dataset, each ID has 5 ∼ 22 synonyms. We generated 10,000 synonym rules
describing gene/protein equivalent expressions.

Table II gives the characteristics of the three datasets.

8.2. Experimental Results

8.2.1. Quality and Efficiency of Similarity Measures. The first experiment demonstrates the
effectiveness and efficiency of the various similarity measures. We compared our two
measures, full expansion (Full) and selective expansion (SE), with Jaccard without
synonyms and JaccT using synonyms from Arasu et al. [2008].

For each of the three datasets, we performed the experiments by conducting a simi-
larity join between the query table TQ and the target table TT as follows: (1) TQ consists
of 100 manually selected full names, and (2) TT has 200 records, where 100 of them are
the correct abbreviations of the corresponding records in TQ (i.e., the ground truth),
and the other 100 “dirty” records are selected such that each of them is a similar record
(in terms of Jaccard coefficient) to the corresponding records in TQ. This is to ensure
that there is only one correct matching record in TT for each record in TQ.

Quality of Measures. In Figure 12, we report the quality of the measures by testing
the Precision (P), recall (R), and F-measure = 2×P×R

P+R
(F) on three datasets. We observe

the following.

—The similarity measures using synonyms (including JaccT, Full, and SE) obtain
higher scores than Jaccard, which does not consider synonym pairs. The reason being
that without using synonyms, Jaccard has no chance of improving the similarity.

—SE significantly outperforms JaccT in each dataset. For example, on SPROT dataset,
the F-measures of SE and JaccT are 0.82 and 0.52, respectively, the main reason being
that an abbreviation may have various full expressions and the join records may
contain the combination of multiple expressions. Therefore, SE can apply multiple
rules, while JaccT can apply only one. Note that such a situation is not rare in
the real world, as one fragment of a string likely involves multiple synonym rules.
We illustrate one example on each of the three datasets in Figure 12 to compare the
performance of four similarity measures. For example, see CONF data in Figure 12:
VLDB has two different full expressions, that is, International Conference on Very
Large Databases (r1) and Proceedings of the VLDB Endowment (r2), and s1 contains
these two expressions. SE applies both r1 and r2 to s2 to obtain a high similarity score
(i.e., 0.93), while JaccT can only apply r2 to s2, and the similarity is only 0.57. Assume
that the join threshold is 0.8, then JaccT can not find the correct answer, while SE
can.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:29

Fig. 12. Quality of similarity measures (P: precision, R: recall, F: F-measure) and examples to illustrate the
quality of similarity measures.

Fig. 13. Empirical probabilities of optimal cases for SE.

Optimality Scenarios of Algorithm 2. As described in Theorem 3.7, SE is optimal if
the rhs tokens of useful rules are distinct. The purpose of this experiment is to verify
how likely this optimal condition is satisfied in practice. We perform experiments on
three datasets using different data sizes. The results are shown in Figure 13. The
average percentages of optimal cases are 71.39%, 68.11%, and 87.32% in USPS, CONF,
and SPROT data, respectively. Therefore, the conditions in Theorem 3.7 are likely to
be met by the majority of candidate string pairs, which means that the values returned
by the SE algorithm are optimal in most cases. Further, the percentage on SPROT data
is larger than those on USPS and CONF. This is because many of the synonym pairs
on SPROT are single-token-to-single-token synonyms, which are more likely to meet
the distinct condition. In contrast, many of the synonyms of the USPS and CONF are
multi-token synonyms.

Efficiency of Measures. Having verified the effectiveness of different measures, in the
sequel, we assessed their efficiency. Figure 14 shows the time cost of the four measures
based on the SPROT dataset (10K records) by running 108 times the string-similarity
measurement based on the nested-loop self-join. The x-axis denotes the number of
synonym rules applied on one single string, and the y-axis is the total running time.
We found that although the full-expansion needs to expand the string set using rules,
its performance is comparable to that of Jaccard, which does not use any rules at all.
This is because the full expansion adds all applied rules directly and its computing

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:30 J. Lu et al.

Fig. 14. Performance with varying synonyms.

Table III. Quality of Similarity Measures with Varying Noisy Synonyms

of noisy Jacc Full SE

rules P R F P R F P R F

0 0.63 0.35 0.45 0.55 0.70 0.62 0.87 0.84 0.85

20 0.63 0.35 0.45 0.53 0.62 0.57 0.87 0.84 0.85

40 0.63 0.35 0.45 0.57 0.60 0.58 0.86 0.82 0.84

60 0.63 0.35 0.45 0.67 0.53 0.59 0.84 0.82 0.83

80 0.63 0.35 0.45 0.74 0.45 0.56 0.84 0.80 0.82

100 0.63 0.35 0.45 0.00 0.30 0.00 0.82 0.80 0.81

Note: P: precision, R: recall, F: F-measure.

cost increases slowly with the number of rules. In contrast, JaccT needs to enumerate
all the possible intermediate strings, and its performance deteriorates rapidly with
the increase of rules. Finally, SE is in the “middle” of the two extremes, and avoids
enumerating all the possible strings to achieve better performance than JaccT, and
which selects only appropriate rules to achieve better effectiveness than full expansion
in terms of F-measures (illustrated in Figure 12).

Quality of Measures with Varying Noisy Synonyms. As the last experiment for
similarity measures, we studied the impact of the quality of the synonyms on similarity
measures. That is, given a list of poor synonyms instead of good ones, how much would
they affect the quality of the results? We investigate the quality of different measures
when noisy synonyms are added. The examples of noisy rules are shown next.

—VLDB→Volume location database.
—ICDE→International council for open and distance education.

We varied the number of new noisy synonyms from 0 to 100 while fixing the thresh-
old = 0.8 to measure the corresponding precision, recall, and F-measure for Jaccard,
Full, and SE.

As shown in Table III, the precision, recall, and F-measure of Jaccard remain the
same (and very low), which is expected, since Jaccard does not use any rule. For
the Full measure, the recall goes down dramatically because Full applies all the
possible rules, including good and poor synonyms. Finally, the precision and recall
of SE are much better than Jaccard and Full, which indicates that SE is robust and
insensitive to noisy synonym rules.

An interesting finding is that the precision of Full increases when the number of noisy
synonyms grows from 20 to 80 but drops to zero suddenly when the number reaches
100. It can be explained that with more noisy synonyms, fewer string pairs returned
from Full have higher similarity than 0.8. When the number of noisy synonyms goes

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:31

Fig. 15. Running time in three datasets of our search algorithms.

Fig. 16. Running time of our search algorithms with varying thresholds.

up to 100, none of the string pairs have similarity higher than 0.8. Therefore, at this
point, the precision of Full is zero.

8.2.2. Efficiency and Scalability of Search Algorithms. The second set of experiments tested
the efficiency and scalability of various search algorithms. We compared our algo-
rithms Search-baseline and QP-search. For our algorithms, since they can work with
the two similarity measures (i.e., full expansion, selective expansion), we denote
them as search-baseline(F), search-baseline(S), and QP-search(F), and QP-search(S),
respectively.

Metrics. We take the following measures: (i) the running time (including filtering
time, verification time, and the time for building QP-tree for a query), and (ii) the size
of candidates.

Running Time and Scalability. Figure 15 shows the running time of the four
search algorithms, where the threshold is 0.9. As shown, the running times of search-
baseline(F) and search-baseline(S) have an exponential growth, whereas QP-search(F)
and QP-search(S) scale better (i.e., linear), the reason being that QP-search generates
fewer candidates for the final verification.

To study the scalability of algorithms with the various threshold values, we plotted
Figure 16. As shown, the running time of the algorithms decreases with the growth
of the threshold values. In addition, QP-search scales well with various thresholds.
In contrast, when the threshold value is small, the running time of search-baseline
increases significantly. For example, in Figure 16(b), when threshold = 0.9, the running
time of search-baseline is about seven times more than that of QP-search. In addition,
when the threshold = 0.5, the performance of QP-search is at least 15 times better
than search-baseline.

We then studied the time cost of search-baseline and QP-search with different num-
bers of synonyms. Recall that the similarity search proceeds to generate signatures (or

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:32 J. Lu et al.

Fig. 17. Running time on the CONF dataset with varying numbers of applicable synonyms (# of tokens in
the query is two).

Fig. 18. Running time on the USPS dataset with varying numbers of applicable synonyms (# of tokens in
the query is six).

QP-index) for a given query, and then filters the candidates by checking the overlaps of
the signatures, and finally verifies the similarity. Therefore, we reported the individ-
ual execution time of signature generation, filtering, and verification in Figure 17. As
seen from this figure, we observe that QP-search(S) significantly outperforms search-
baseline(S) by one order of magnitude. The main reasons are as follows.

(i) Search-baseline(S) needs to unite all the signatures computed from each possible
expanded set, while QP-search(S) directly utilizes the intermediate signatures.
Therefore, the time for signature generation of QP-search(S) is less than that of
Search-baseline(S).

(ii) For the filtering phase, QP-search(S) utilizes the SI-index and QP-index to achieve
stronger filtering power than search-baseline(S). Thus, the filtering time of QP-
search(S) is less than search-baseline(S). In addition, due to the powerful filtering,
QP-search(S) generates fewer candidates than that of search-baseline(S). For ex-
ample, in Figure 17, we report the number of candidates for each query. As shown,
the number of candidates of search-baseline(S) is about one order of magnitude
more than that of QP-search(S).

(iii) QP-search(S) spends less time on verifying the candidates than search-baseline(S).
Therefore, the verification time of QP-search(S) is less than that of search-
baseline(S).

Therefore, QP-search(S) outperforms search-baseline(S) in each of the three phases.
Experiments in the USPS and SPROT datasets have a similar trend (as shown in
Figure 18 and Figure 19, respectively).

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:33

Fig. 19. Running time on the SPROT dataset with varying numbers of applicable synonyms (# of tokens in
the query is two).

Fig. 20. Flexible search vs. fixed search on the USPS data.

Experiments for Flexible Similarity Search. All of these experiments assume that
the query threshold is fixed. In this experiment, we show the experimental results
based on flexible thresholds mentioned in Section 4.4. We varied the search thresholds
from 0.85 to 0.99 for a total of 15 thresholds. Figure 20(b) plots the running time for
two approaches based on the USPS dataset, where the fixed method means generating
SI-trees for each threshold statically, thereby generating 15 SI-trees, but the flexible
approach is based on only one FSI-tree. Note that the fixed approach is an ideal method
and that it actually cannot handle the dynamic update of query thresholds. The curve
of the flexible method nicely gets close to that of the fixed. This empirical result in-
dicates that our algorithms are efficient for handling flexible thresholds. In addition,
Figure 20(a) compares the average numbers of signatures of strings for two methods.
The gap between the two approaches is small, which explains the reason for the good
performance of the flexible approach.

8.2.3. Efficiency and Scalability of Join Algorithms. The third set of experiments tested
the efficiency and scalability of various join algorithms. We compared our algorithms
join-baseline and SI-join with the algorithm in Arasu et al. [2008] (JaccT). Our im-
plementation of JaccT includes all the optimizations proposed in Arasu et al. [2008].
Since our algorithms can work with the two similarity measures (i.e., full expansion,
selective expansion), we denote them join-baseline(F), join-baseline(S), SI-join(F), and
SI-join(S), respectively. We implement all algorithms using both prefix and LSH filters.
Therefore, with respect to the algorithms using the LSH scheme, we append “-LSH”
to the name (e.g., JaccT-LSH denotes the JaccT algorithm using LSH scheme). Note
that we use the false negative ratio δ ≤ 5%, that is, the accuracy is 1 − δ ≥ 95%.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:34 J. Lu et al.

Fig. 21. Number of signatures (prefix filtering scheme and LSH scheme).

Fig. 22. Filtering ratio with varying thresholds.

The parameters k and l should satisfy δ ≥ (1 − θk)l [Xiao et al. 2011]. For example, if
threshold θ = 0.8, k = 3, then l should be at least 5 to guarantee > 95% accuracy.

Metrics. We take the following measures: (i) the size of signatures, (ii) the filtering
ratio of the algorithms, which is typically defined as the number of pruned string pairs
divided by the total number of string pairs; and (iii) the running time (including filtering
time and verification time).

Number of Signatures. We first performed experiments to report the number of sig-
natures of a query string. This has a major impact on the query time, as both JaccT
and our join algorithms need to frequently check the overlaps of string signatures. The
results are reported in Figure 21. For both prefix and LSH schemes, the number of
signatures of our expansion-based algorithms is smaller than that of JaccT, the reason
being is that based on a transformation framework, JaccT is more likely to include new
tokens into signatures than ours. In addition, we observe that the size of signatures in
the LSH scheme is greater than that in the prefix scheme, and the gap increases when
the threshold decreases. As we will see shortly, this results in substantial overhead of
filtering time for the LSH scheme.

Filtering Power. We investigated the filtering power of different algorithms in Fig-
ures 22 and 23, using the prefix and LSH schemes, respectively. The experiments were
performed on the USPS and SPROT datasets for self-join. For prefix-based algorithms,
join-baseline is slightly better than JaccT, while SI-join has a substantial lead over
JaccT and join-baseline. These results are mainly due to the additional filtering power
in SI-join brought by length filtering and signature filtering. Next, for LSH-based al-
gorithms, Figure 23 demonstrates a similar trend, that is, SI-join is the winner in all
settings by varying parameters k and l. Compared to the prefix scheme, LSH has a
slightly higher filtering ratio when parameters are set optimally (e.g., 99.2% v.s. 98.9%
in USPS data, with threshold 0.9). On the other hand, note that LSH may filter away

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:35

Fig. 23. Filter ratio (FR) and false negative (FN) with varying parameters k and l (accuracy = 95%,
threshold = 0.9).

Fig. 24. Filtering rates of the signature-filter (sig-filter), the length-filter (len-filter), and the hybrid filter,
that is, combining signature and length filters together (sig+len).

correct answers, resulting in false negatives, as can be seen from the false negative
percentages shown in Figure 23.

Effects of Different Filters. We analyze the effects of different filters, that is, signa-
ture filters, length filters, and signature-plus-length filters. As shown in Figure 24,
signature-plus-length filters obtain the strongest filtering power on all datasets, which
explains why our algorithms use these two kinds of filters together. There is no absolute
winner between signature filters and length filters. In particular, signature filters have
stronger filtering power on the USPS dataset (Figure 24(a)), while the opposite situa-
tion occurs in the SPROT dataset (Figure 24(c)), that is, length filters beat signature
filters. On the CONF dataset (Figure 24(b)), when the threshold value is small, signa-
ture filters win over length filters. However, when the threshold value is high, length
filters beat signature filters. Therefore, the individual effects of signature filters and
length filters depend on the datasets and the thresholds, and the combined structure
of both (i.e., SI-tree) achieves the best results.

Running Time and Scalability. Figure 25 and Figure 26 show the running time of
five join algorithms based on prefix and LSH schemes, respectively, where the join
threshold is 0.8. The x-axis represents the join data size. As shown, the running times
of both JaccT and join-baseline (i.e., join-baseline(F), join-baseline(S)) have exponential
growth, whereas SI-join (i.e., SI-join(F), SI-join(S)) scales better (i.e., linear) than join-
baseline and JaccT. The reason being that SI-join methods have more efficient filtering
strategies and generate smaller sizes of candidates. In addition, in order to study the
scalability of algorithms with the increase of the number of rules, we plot Figure 27,
where SI-join(F) (i.e., SI-join with the full expansion) is a clear winner in algorithms
using rules: it is insensitive to the number of rules and thus able to outperform other
methods when one string involves more than 10 rules.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:36 J. Lu et al.

Fig. 25. Running time in CONF and USPS datasets.

Fig. 26. Performance on LSH signature scheme.

Fig. 27. Performance with varying synonyms.

Prefix vs. LSH. We then seek to analyze system performance with different signature
schemes, namely, prefix vs. LSH. Figure 28 plots the running times of SI-join(S)-LSH
(LSH) and SI-join(S) (prefix) with varying join thresholds. Results on SI-join(F) and
join-baseline are similar. Note that, for SI-join(S)-LSH, the choice of k and l has sub-
stantial impact on the query time; hence we tune and use the parameters of k and l
for each threshold to achieve the best running time. Before we describe the results,
it should be noted that the two schemes, LSH and prefix, have different goals and
probably different application scenarios, as LSH is an approximate solution, but prefix
must return all correct answers, making it somewhat unfair for a direct comparison
between them. We observe that LSH is faster than prefix when the threshold is approx-
imately ≥ 0.8. This is mainly because more than one minhash signature is combined
(i.e, k ≥ 2) in these settings, which makes the LSH method quite selective. However,
when the threshold is less than 0.8, we try all reasonable combinations of k and l values
and still cannot find a setting to beat prefix, because when the threshold is small, in
order to improve the filtering power, we need to select a large k, which in turn requires

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:37

θ

Fig. 28. Prefix scheme vs. LSH scheme (with varying threshold values).

Fig. 29. Estimation results of 2DHS synopsis for prefix and LSH schemes (threshold = 0.90).

a large l to maintain the same confidence level (≥ 95%); this results in substantial
overhead in filtering time. Therefore, LSH trades the filtering time for higher filtering
power. Then the overall running time of LSH is greater than that of prefix in such a
case. This is also the reason why the best running time achieved for threshold < 0.8 is
with small k and l values to reduce the overall running time in Figure 28.

8.2.4. Estimation-Based Signature Selection. The fourth set of experiments studies the
quality of 2DHS synopsis on prefix and LSH schemes. For the prefix filter, we use
the four frequency-based signature filters (i.e., ITF1∼ITF4), described in Section 6.
For the LSH scheme, we vary parameters k and l to generate six filters. The offline
processing time for the generation of all signatures of one filter is around 200s ∼ 300s,
which is a one-time cost.

We first compute the upper bound (UB) and the lower bound (LB) of each filter by
Lemma 6.1. One filter is returned as the best if its UB is less than all the LBs of other
filters, which means that it returns the smallest number of candidates. For example,
in Figure 29(a), ITF2 is the best in the CONF dataset. If there is no filter which
can beat all other filters using only UB and LB, then we further compute the tighter
upper bound (TUB) and lower bound (TLB) using 2DHS synopsis. Consequently, in
Figure 29(b), ITF1 is the best filter in the USPS dataset, as its TUB is less than all
others TLBs. Note that our estimate correctly predicts the ability of four filters, which
can be empirically verified in Figure 9 for the prefix scheme. In addition, the estimate
cost accounts for only 1% of the join time. For example, in USPS dataset, the time cost
of our estimator is only 0.81s, while the filtering time is 83.7s and the total time is
113.4s.

8.2.5. One Filter versus Multiple Filters. We perform experiments to empirically compare
the performances of multiple signature filters versus one signature filter. Figures 30(a)
and 30(b) depict the filter ratio and the elapsed time for varied combinations of filters on
the USPS dataset. The results demonstrate that more filters, of course, have greater

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:38 J. Lu et al.

Fig. 30. Performance of combined signature filters.

Fig. 31. Performance of different similarity measures.

ability to filter strings, but it also incurs a significant time cost. For example, the
combination of three filters ITF1+ITF2+ITF3 can filter away about 99% string pairs (if
the join threshold = 0.9), but in this case, the running time is 320s, which is significantly
greater than 113s with only one filter, ITF1, which is recommended by our estimator.
Therefore, this result verifies the analysis of Theorem 6.12, that one effective filter beats
multiple filters, as it strikes an appropriate balance between time cost and filtering
ratio, thus improving the efficiency of the whole processing.

8.3. Extensions

The final set of experiments focuses on the extensions about other similarity measures
and the weighted tokens, which are discussed in Section 7.

Other Similarity Measures. Experiments are conducted to empirically compare the
performance of four similarity measures, that is, overlap, dice, cosine (as mentioned
in Section 7.1), and Jaccard. We compare four algorithms: QP(S)-O, QP(S)-D, QP(S)-C,
and QP(S)-J based on QP-search, where QP(S)-O uses the overlap measure, QP(S)-D
applies the dice measure, QP(S)-C utilizes the cosine measure, while QP(S)-J employs
the Jaccard measure. In Figure 31, we present the running time of these four algorithms
in three different datasets with threshold θ = 0.9 (for dice, cosine, and Jaccard) and
θ = 5 (for overlap). As shown, QP(S)-J performs the best, since the average number
of signatures of QP(S)-J is the smallest. In contrast, QP(S)-O, having a large size of
signatures, takes the longest to output its answers.

An interesting finding is that the precision of Full increases when the number of noisy
synonyms grows from 20 to 80, but drops to zero suddenly when the number reaches
100. It can be explained that with more noisy synonyms, fewer string pairs returned
from Full have higher similarity than 0.8. When the number of noisy synonyms goes

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:39

Table IV. Quality of Similarity Measures on Weighted Tokens

Threshold
θ

Full Full(W) SE SE(W)

P R F P R F P R F P R F

0.50 0.43 0.91 0.58 0.49 0.93 0.64 0.67 0.94 0.78 0.74 0.96 0.84

0.60 0.50 0.85 0.63 0.57 0.91 0.70 0.69 0.90 0.78 0.76 0.94 0.84

0.70 0.51 0.82 0.63 0.59 0.86 0.70 0.72 0.85 0.78 0.80 0.90 0.85

0.80 0.55 0.70 0.62 0.64 0.74 0.69 0.87 0.84 0.85 0.88 0.86 0.87

0.90 0.68 0.60 0.64 0.75 0.67 0.71 0.89 0.80 0.84 0.92 0.84 0.88

Note: P: precision, R: recall, F: F-measure.

Fig. 32. Running time in three datasets of our search algorithms on weighted tokens.

up to 100, none of the string pairs have similarity higher than 0.8. Therefore, at this
point, the precision of Full is zero.

Measures with Weighted Tokens. We investigate the quality and performance of the
measures with TF-IDF weighted tokens. Table IV shows the quality of the unweighted
measurements (Full and SE) and weighted measurements (Full(W) and SE(W)). As
expected, the precision, recall and F-measure of Full(W) (resp. SE(W)) are higher
than Full (resp. SE), since rare tokens are assigned with a higher weight. In addition,
Full(W) improves Full by around 10%, while SE(W) only improves 5% against SE. This
is because the irrelevant applicable rules in Full(W) now have less impact than that in
Full, which thereby significantly improves the quality of Full(W).

In Figure 32, we report the running time of QP algorithm (with selective expansion)
on weighted and unweighted tokens, that is, QP(S) and QP(S)-W, with varying thresh-
olds. As shown, QP(S) and QP(S)-W obtain similar performances. Note that QP(S)-W is
faster than QP(S) in some scenarios, because QP(S)-W may produce fewer candidates
than QP(S) due to the difference of prefix filtering conditions (as shown in Section 7.2).

Summary. Finally, we summarize the main findings.

(1) Considering four similarity measures, we observe that Jaccard is inadequate due
to its complete neglect of synonym rules. JaccT is not efficient because it enumer-
ates all transformed strings and entails large query overhead. Full-expansion is
extremely efficient, but its F-measure is not as good as selective-expansion, which
makes a good balance between effectiveness and efficiency.

(2) With respect to the similarity searches and joins, QP-search and SI-join are the
winners in the settings, respectively, over the previous algorithms (i.e., JaccT) and
baseline methods. Note that we achieve a speedup of up to 50∼300x on three
datasets over the state-of-the-art approach.

(3) Finally, 2DHS synopsis offers very good results and is extremely efficient at esti-
mating the filtering power of different filters, (<1 second, accounting for only 1% of
the total running time), which strongly motivates its application in practice.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:40 J. Lu et al.

9. CONCLUSION AND FUTURE WORK

In this article, we studied a set of efficient algorithms to boost the quality of approx-
imate string matching with synonyms. We present an expansion-based framework to
measure string similarities with synonyms and then several indexing structures and
algorithms for similarity searches and joins. We proposed an estimator for selecting
signatures online to optimize the efficiency of signature filters in algorithms. This
estimator provides provably high-confidence and low-error estimates to compare the
filtering power of filters with the logarithmic space and time complexity. The extensive
experiments demonstrated the advantages of our proposed approaches over state-of-
the-art methods.

Substantial room for future work exists. For example, it would be interesting to
explore the context of words to select synonyms for expansion. For instance, the rule
“UW → University of Waterloo” is more appropriate than “UW → University of Wash-
ington” if “Canada” appears in the context. Another direction is exploring a deeper
investigation of the different similarity functions. Exciting followup research could be
centered around Levenshtein distance. Finally, exploring other approximate algorithms
for selective expansion measures is also fertile ground for further research to provide
better worst-case guarantee.

APPENDIX

A. PROOF OF THEOREM 3.3

To prove Selective-Jaccard is NP-hard, we show that the decision version of the problem,
which is given two sets S1 and S2, a rule set R, and a threshold τ , we asks whether the
Jaccard similarity between the expanded sets S′

1 and S′
2 can be ≥ τ , is NP-complete.

To do this, we will prove that the decision version ∈ NP and that all NP-problems
are polynomial-time reducible to it. The first part is easy: the certificate is simply a
subset of applicable synonym pairs. To prove the second part, we show that 3SAT is
polynomial-time reducible to it.

We start the construction with a 3cnf-formula ϕ containing m clauses: ϕ = (a1 ∨ b1 ∨
c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (am ∨ bm ∨ cm), where each a, b, and c is a literal xi or ¬xi. Let
x1, x2, . . . , xn be the n variables of ϕ.

Now we show how to convert ϕ to an instance of the Selective-Jaccard problem
polynomially. The construction of S1 and S2 is simple: S1 = {l1, l2, . . . , ln}, S2 = {u1,
u2, . . . , um, v1,v2, . . . , vn}. The threshold τ = n+m

3n+m
.

The rule set R is constructed as follows. For each variable xi and ¬xi, if xi (¬xi) does
not appear in any clause, then generate a rule {li} → {xi (xi), vi}; otherwise assuming
xi appears in the jth clause, generate {li} → {xi (xi), vi, uj}.

To prove that this reduction works, we need to show that ϕ is satisfiable if and only
if Jaccard(S′

1, S′
2) ≥ τ . We start with a satisfying assignment through which ϕ is true.

For each variable xi, if it is assigned true and appears in the jth clause, the rule {li} →
{xi, vi, uj} will be chosen. And if xi does not appear in any clause, we use {li} → {xi, vi}.
Similarly, if xi is assigned false, we can choose the corresponding synonym pairs of xi.
S1 can be expanded to S′

1 = {l1, . . . , ln, u1, . . . , um, v1, . . . , vn, x1(x1), . . . , xn(xn)}, and
S2 can not be expanded; thus, Jaccard(S′

1, S2) = n+m
3×n+m

= τ .

Second, if Jaccard(S′
1, S2) ≥ τ , we show that ϕ is satisfiable. From the construction,

we can conclude that to make the similarity ≥ τ , we should add more vi and uj elements
into S1 and meanwhile add less xi or xi elements. In fact, if any uj is not added to S1, the

similarity is at most n+m−1
3×n+m

. If any vi is not added, the similarity is at most n+m−1
3×n+m−1 . If

both xi and xi are added to S1, the similarity is at most n+m
3×n+m+1 . Thus, we can conclude

that if a proper expansion exits, it just brings all vi or uj elements and at most n

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

Boosting the Quality of Approximate String Matching by Synonyms 15:41

different xi or xi elements. Thus, we assign xi ∈ ϕ true if xi appears in S′
1. Otherwise, xi

is false. As all the uj elements are added, each clause in ϕ is true, and ϕ is satisfiable,
which concludes the proof.

B. PROOF OF THEOREM 3.7

Let R∗ denote the rule set used by the optimal algorithm. Let R denote the set C1 ∪ C2

returned in line 1 of Algorithm 2. Then we will prove that R∗ = R as follows. Given an
applicable rule ri in R, let Gi denote the useful elements, Ui denote the new elements,
and let Zi = Ui − Gi. Let θ∗ and θ denote the full expansion similarity using R∗ and
R, respectively. Note that all the rules in both R and R∗ are useful. When all the rhs

tokens are distinct, θ = |S1∩S2+
∑

Gi |
|S1∪S2+

∑

Zi | . For a rule r∗ ∈ R∗, we have G∗

Z∗ > θ∗ ≥ θ , that is,
G∗

U ∗ > θ
1+θ

, that is, RG(r∗) > θ
1+θ

, which means that r∗ will not be removed in Procedure

findCandidateRuleSet (line 11), and r∗ ∈ R. Thus, R∗ ⊆ R.
We then prove R ⊆ R∗ by contradiction. Assume that there exists a rule r ∈ R but

r �∈ R∗, θ = |S1∩S2+
∑

G∗
i +Gi |

|S1∪S2+
∑

Z∗
i +Zi | . According to Algorithm 2, Gi

Zi
> θ . Thus, θ >

|S1∩S2+
∑

G∗
i |

|S1∪S2+
∑

Z∗
i | = θ∗,

which contradicts to the optimal property and such r does not exist. Thus, R ⊆ R∗.
Finally, we show that all the candidate rules in C1 ∪ C2 will be used in Procedure

expand (line 2). If all the rhs tokens are distinct, the rule gain value will not change.
The rule gain value of each rule is greater than zero, and therefore all the rules will be
used by SE in the expanding phase, which concludes the proof.

REFERENCES

N. Alon, Y. Matias, and M. Szegedy. 1996. The space complexity of approximating the frequency moments.
In Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC’99). 20–29.

A. Arasu, S. Chaudhuri, and R. Kaushik. 2008. Transformation-based Framework for Record Matching. In
Proceedings of the IEEE 24th International Conference on Data Engineering (ICDE’08). 40–49.

A. Arasu, S. Chaudhuri, and R. Kaushik. 2009. Learning string transformations from examples. Proc. VLDB
2, 1, 514–525.

A. Arasu, V. Ganti, and R. Kaushik. 2006. Efficient exact set-similarity joins. In Proceedings of the VLDB
Conference (VLDB’06). 918–929.

Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. 2002. Counting distinct elements in
a data stream. In Proceedings of the 6th International Workshop on Randomization and Approximation
Techniques (RANDOM’02). 1–10.

R. J. Bayardo, Y. Ma, and R. Srikant. 2007. Scaling up all pairs similarity search. In Proceedings of the 16th
International World Wide Web Conference (WWW’07). 131–140.

M. Bilenko and R. J. Mooney. 2003. Adaptive duplicate detection using learnable string similarity measures.
In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’03). 39–48.

P. Bille. 2012. Faster approximate string matching for short patterns. Theory Comput. Syst. 50, 3, 492–515.

A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. 1997. Syntactic clustering of the Web. Comput.
Netw. 29, 8–13, 1157–1166.

S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. 2003. Robust and efficient fuzzy match for online data
cleaning. In Proceedings of the SIGMOD Conference. 313–324.

S. Chaudhuri, V. Ganti, and R. Kaushik. 2006. A primitive operator for similarity joins in data cleaning. In
Proceedings of the IEEE 22nd International Conference on Data Engineering (ICDE’06). 5–16.

S. Chaudhuri and R. Kaushik. 2009. Extending autocompletion to tolerate errors. In Proceedings of the
SIGMOD Conference. 707–718.

P. Christen. 2012. A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans.
Knowl. Data Eng. 24, 9, 1537–1555.

W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. 2003. A comparison of string distance metrics for name-
matching tasks. In Proceedings of the IJCAI-03 Workshop on Information Integration (IIWeb’03). 73–78.

M. Farach. 1997. Optimal suffix tree construction with large alphabets. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science (FOCS’97). 137–143.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

15:42 J. Lu et al.

P. Flajolet and G. N. Martin. 1985. Probabilistic counting algorithms for data base applications. J. Comput.
Syst. Sci. 31, 2, 182–209.

S. Ganguly, M. N. Garofalakis, and R. Rastogi. 2004. Tracking set-expression cardinalities over continuous
update streams. VLDB J. 13, 4, 354–369.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava. 2001. Approx-
imate string joins in a database (almost) for free. In Proceedings of the VLDB Conference (VLDB’01).
491–500.

M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava. 2008. Hashed samples: Selectivity estimators for
set similarity selection queries. Proc. VLDB 1, 1, 201–212.

Y. Huang and G. R. Madey. 2004. Web data integration using approximate string join. In Proceedings of the
13th International World Wide Web Conference (Alternate Track Papers & Posters). 364–365.

K. Iwama and S. Tamaki. 2004. Improved upper bounds for 3-SAT. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’04).

A. C. Kaporis, C. Makris, S. Sioutas, A. K. Tsakalidis, K. Tsichlas, and C. D. Zaroliagis. 2006. Dynamic inter-
polation search revisited. In Proceedings of the 33rd International Colloquium on Automata, Languages
and Programming (ICALP’06). 382–394.

G. Kondrak. 2005. N-gram similarity and distance. In Proceedings of the 12th International Conference on
String Processing and Information Retrieval (SPIRE’05). 115–126.

H. Lee, R. T. Ng, and K. Shim. 2009. Power-law based estimation of set similarity join size. Proc. VLDB 2, 1,
658–669.

H. Lee, R. T. Ng, and K. Shim. 2011. Similarity join size estimation using locality sensitive hashing. Proc.
VLDB 4, 6, 338–349.

C. Li, J. Lu, and Y. Lu. 2008. Efficient merging and filtering algorithms for approximate string searches. In
Proceedings of the IEEE 24th International Conference on Data Engineering (ICDE’08). 257–266.

G. Li, D. Deng, J. Wang, and J. Feng. 2012. Pass-join: A partition-based method for similarity joins. In
Proceedings of the VLDB Conference (VLDB’12).

J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. 2013. String similarity measures and joins with synonyms. In
Proceedings of the International Conference on Management of Data (SIGMOD/PODS’13). 373–384.

D. R. H. Miller, T. Leek, and R. M. Schwartz. 1999. A hidden markov model information retrieval system. In
Proceedings of the 22nd Annual International ACMSIGIR Conference on Research and Development in
Information Retrieval (SIGIR’99). 214–221.

J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. 2011. Efficient exact edit similarity query processing with the
asymmetric signature scheme. In Proceedings of the SIGMOD Conference. 1033–1044.

G. Salton and C. Buckley. 1988. Term-weighting approaches in automatic text retrieval. Inf. Process. Manage.
24, 5, 513–523.

S. Sarawagi and A. Kirpal. 2004. Efficient set joins on similarity predicates. In Proceedings of the SIGMOD
Conference. 743–754.

Y. Tsuruoka, J. McNaught, J. Tsujii, and S. Ananiadou. 2007. Learning string similarity measures for
gene/protein name dictionary look-up using logistic regression. Bioinformatics 23, 20, 2768–2774.

J. Wang, G. Li, and J. Feng. 2012. Can we beat the prefix filtering?: An adaptive framework for similarity
join and search. In Proceedings of the SIGMOD Conference. 85–96.

W. E. Winkler. 1999. The state of record linkage and current research problems. Tech. rep., Statistical
Research Division, U.S. Census Bureau.

C. Xiao, W. Wang, and X. Lin. 2008. Ed-join: An efficient algorithm for similarity joins with edit distance
constraints. PVLDB 1, 1, 933–944.

C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. 2011. Efficient similarity joins for near-duplicate detection.
ACM Trans. Datab. Syst. 36, 3, 15.

Received September 2014; revised April 2015; accepted June 2015

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 15, Publication date: October 2015.

