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Abstract

Transfer-based adversarial attacks can effectively

evaluate model robustness in the black-box set-

ting. Though several methods have demonstrated

impressive transferability of untargeted adversar-

ial examples, targeted adversarial transferability

is still challenging. In this paper, we develop

a simple yet practical framework to efficiently

craft targeted transfer-based adversarial examples.

Specifically, we propose a conditional generative

attacking model, which can generate the adversar-

ial examples targeted at different classes by sim-

ply altering the class embedding and share a sin-

gle backbone. Extensive experiments demonstrate

that our method improves the success rates of tar-

geted black-box attacks by a significant margin

over the existing methods — it reaches an average

success rate of 29.6% against six diverse models

based only on one substitute white-box model in

the standard testing of NeurIPS 2017 competition,

which outperforms the state-of-the-art gradient-

based attack methods (with an average success

rate of <2%) by a large margin. Moreover, the

proposed method is also more efficient beyond an

order of magnitude than gradient-based methods.

1. Introduction

Recent progress in adversarial machine learning demon-

strates that deep neural networks (DNNs) are highly vulner-

able to adversarial examples (Szegedy et al., 2014; Good-

fellow et al., 2015), which are maliciously generated to

mislead a model to produce incorrect predictions. It has

been demonstrated that adversarial examples possess an

intriguing property of transferability (Liu et al., 2017; Wu

et al., 2020; Huang et al., 2019; Demontis et al., 2019; Yang
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Figure 1. The targeted adversarial examples crafted by MIM (Dong

et al., 2018) and the conditional generative semantic pattern (C-

GSP) crafted by our method for the Inception-v3 (Szegedy et al.,

2016) model given the target class Viaduct with perturbation budget

16 under the ℓ∞ norm constraint. We also show the predicted

labels and probabilities of these images by the black-box model

DenseNet-201 (Huang et al., 2017).

et al., 2020) — the adversarial examples crafted for a white-

box model can also mislead other unknown models, mak-

ing black-box attacks feasible. The current methods have

achieved impressive performance of untargeted black-box

attacks, intending to cause misclassification of the black-

box models (Liu et al., 2017; Dong et al., 2018). However,

the targeted black-box attacks, aiming at misleading the

black-box models by outputting the adversary-desired target

class, perform unsatisfactorily (Dong et al., 2020) and have

not been extensively explored (Zhang et al., 2020).

Existing efforts on targeted black-box attacks can be cate-

gorized as instance-specific and instance-agnostic attacks.

Specifically, the instance-specific attack methods (Goodfel-

low et al., 2016; Moosavi-Dezfooli et al., 2016; Kurakin

et al., 2017; Dong et al., 2018) craft adversarial examples by

performing gradient updates iteratively, which achieve unsat-

isfactory performance for targeted black-box attacks due to

easy overfitting to a white-box model (Dong et al., 2018; Xie

et al., 2019). On the other hand, the instance-agnostic attack

methods learn a universal adversarial perturbation (Zhang

et al., 2020) or a universal function (Song et al., 2018;

Naseer et al., 2019) on the data distribution independent

of specific instances. They can promote more general and

transferable adversarial examples since the universal pertur-
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bation or function can alleviate the data-specific overfitting

problem by training on an unlabeled dataset. Represent

CD-AP (Naseer et al., 2019) adopts a generative model as

a universal function to obtain an acceptable performance

when facing one specified target class. However, CD-AP

needs to learn a generative model for each target class while

performing multi-target attack (Han et al., 2019). Thus it

is not scalable to the increasing number of targets such as

hundreds of classes, limiting practical efficiency.

To address the aforementioned issues and develop an effec-

tive targeted black-box attack, in this paper we propose a

conditional generative model as the universal adversarial

function to craft adversarial perturbations. Thus we can

craft adversarial perturbations targeted at different classes,

using a single model backbone with different class embed-

dings. The proposed generative method is simple yet prac-

tical to obtain superior performance of targeted black-box

attacks, meanwhile with two technical improvements in-

cluding smooth projection mechanism that better helps the

generator to probe targeted semantic knowledge from the

classifier and adaptive Gaussian Smoothing with the focus

of making generated results obtain adaptive ability against

adversarially trained models. Thus ours only trains one

model and reaches an average success rate of 51.1% against

six naturally trained models and 36.4% against three adver-

sarially trained models based only on one substitute white-

box model in NeurIPS ImageNet dataset, which outperforms

CD-AP by a large margin of 6.0% and 31.3%, respectively.

While handling plenty of classes (e.g., 1,000 classes in Ima-

geNet), the effectiveness of generating targeted adversarial

examples will be affected by a single generative model due

to the difficulty of loss convergence in adversarial learn-

ing (Xu et al., 2019; Berthelot et al., 2017). Thus we train

a feasible number of models (e.g., 10∼20 models on Im-

ageNet) to further promote the effectiveness beyond the

single model backbone. Specifically, each model is learned

from a subset of classes specified by a designed hierarchical

partition mechanism by considering the diversity property

among subsets, for seeking a balance between effectiveness

and scalability. It reaches an average success rate of 29.6%

against six different models, outperforming the state-of-the-

art methods with an average success rate of <2% by a large

margin, based only on one substitute white-box model in the

NeurIPS 2017 competition. Moreover, the proposed method

achieves substantial speedup over gradient-based methods.

Furthermore, these adversarial perturbations generated by

the proposed Conditional Generative models can arise as

a result of strong Semantic Pattern (C-GSP) as shown in

Fig. 1. We experimentally find that the generated adversar-

ial semantic pattern itself achieves well-generalizing per-

formance among the different models and is robust to the

influence of data, which is very instructive for the under-

standing of adversarial examples.

2. Method

In this section, we introduce a conditional generative model

to learn a universal adversarial function, which can achieve

effective multi-target black-box attacks. While handing

plenty of classes, we design a hierarchical partition mecha-

nism to make the generative model capable of specifying any

target class under a feasible number of models, regarding

both the effectiveness and scalability.

2.1. Problem Formulation

We use xs to denote an input image belonging to an un-

labeled training set Xs ⊂ R
d, and use c ∈ C to denote a

specific target class. Let Fφ : Xs → R
K denote a clas-

sification network that outputs a class probability vector

with K classes. To craft a targeted adversarial example

x∗
s from a real example xs, the targeted attack aims to

fool the classifier Fφ by outputting a specific label c as

argmaxi∈C Fφ(x
∗
s)i = c, meanwhile the ℓ∞ norm of the

adversarial perturbation is required to no more than value ǫ
as ‖x∗

s − xs‖∞ ≤ ǫ.

Although some generative methods (Poursaeed et al., 2018;

Naseer et al., 2019) can learn targeted adversarial pertur-

bation, it does not take into account the effectiveness of

multi-target generation, thus leading to inconvenience. To

make the generative model learn how to specify multiple

targets, we propose a conditional generative network Gθ
that effectively crafts multi-target adversarial perturbations

by modeling class-conditional distribution, as illustrated in

Fig. 2. The conditional generative model Gθ : (Xs, C)→ P
learns a perturbation δ = Gθ(xs, c) ∈ P ⊂ R

d on the train-

ing data. The output δ of Gθ is projected within the fixed ℓ∞
norm, thus generating the perturbed image x∗

s = xs + δ.

Given a pretrained network Fφ, we propose to generate the

targeted adversarial perturbations by solving

min
θ

E(xs∼Xs,c∼C)[CE
(

Fφ(Gθ(xs, c) + xs

)

, c)],

s.t. ‖Gθ(xs, c)‖∞ ≤ ǫ.
(1)

By solving problem (1), we can obtain a targeted conditional

generator by minimizing the loss of specific target class in

the unlabeled training dataset. Note that we only optimize

the parameter θ of the generator Gθ using the training data

Xs, then the targeted adversarial example x∗
t can be crafted

by x∗
t = xt + Gθ(xt, c) for any given image xt in the test

data Xt, which only requires an inference for this targeted

image xt. We experimentally find that the objective (1) can

enforce the transferability for the generated perturbation

δ. A reasonable explanation is that δ can arise as a result

of strong and well-generalizing semantic pattern inherent

to the target class, which is robust to the influence of any

training data.
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Figure 2. An overview of our proposed generative method for crafting C-GSP, which includes modules of conditional generator and

classifier. The generator integrates the image and conditional class vector from Map network into a hidden incorporation. Note that only

the generator is trained in the whole pipeline to probe the target boundaries of the classifier.

2.2. Network Architecture

We now present the details of the conditional generative

model for targeted attack, as illustrated in Fig. 2. Specif-

ically, we design a mapping network to generate a target-

specific vector in the implicit space of each target and train

conditional generator Gθ to reflect this vector by constantly

misleading the classifier Fφ.

Mapping network. Given an one-hot class encoding

✶c ∈ R
K from target class c, the mapping network aims

to generate the targeted latent vector w = W(✶c), where

w ∈ R
M and W(·) consists of a multi-layer perceptron

(MLP) and a normalization layer, which can construct di-

verse targeted vectors w for a given target class c. ThusW
is capable of learning effective targeted latent vectors by

randomly sampling different classes c ∈ C in training phase.

Generator. Given an input image xs, the encoder first

calculates the feature map F ∈ R
N×H×W , where N , H

and W refer to the number of channels, height and width

of the feature map, respectively. The target latent vector

w, derived from the mapping networkW by introducing a

specific target class c, is expanded along height and width

directions to obtain the label feature map ws ∈ R
M×H×W .

Then the above two feature maps are concatenated along

the channels to obtain F ′ ∈ R
(N+M)×H×W . The obtained

mixed feature map is then fed to the subsequent network.

Thus our generator Gθ translates an input image xs and la-

tent target vector w into an output image Gθ(xs,w), which

enables Gθ to synthesize adversarial images of a series of

targets. For the output of feature map f ∈ R
d in the decoder,

we adopt a smooth projection P (·) to perform a change of

variables over f rather than directly minimizing its ℓ2 norm

as (Han et al., 2019) or clipping values outside the fixed

norm (Naseer et al., 2019), which can be denoted as

δ = P (f) = ǫ · tanh(f), (2)

where ǫ is the strength of perturbation. Since −1 ≤
tanh(f) ≤ 1, δ can automatically satisfy the ℓ∞-ball bound

with perturbation budget ǫ. This transformation can be

regarded as a better smoothing of gradient than directly

clipping values outside the fixed norm, which is also in-

strumental for Gθ to probe and learn the targeted semantic

knowledge from Fφ.

Training objectives. The training objectives seek to mini-

mize the classification error on the perturbed image of the

generator as

θ∗ ← argmin
θ

CE

(

Fφ

(

xs + Gθ(xs,W(✶c))
)

, c
)

, (3)

which adopts an end-to-end training paradigm with the goal

of generating adversarial images to mislead the classifier

the target label, and CE is the cross entropy loss.

2.3. Hierarchical Partition for Classes

While handling plenty of classes, the effectiveness of a

conditional generative model will decrease because the rep-

resentative capacity is limited with a single generator. There-

fore, we propose to divide all classes into a feasible number

of subsets to train models when the class number K is large,

e.g., 1,000 classes in ImageNet. To obtain a good partition,

we introduce a representative target class space, which is

nearly equivalent to the original class space C. Specifically,

we utilize the weights φcls ∈ R
D×C in the classifier layer

for the classification network Fφ. Therefore, φcls can be

regarded as the alternative class space since the weight vec-

tor dc ∈ R
D from φcls can represent a class center of the

feature embeddings of input images with same class c.

To capture more diverse examples in a given sampling space,

we adopt K-determinantal point processes (DPP) (Kulesza

& Taskar, 2012; 2011) to achieve a hierarchical partition,

which can take advantage of the diversity property among

subsets by assigning subset probabilities proportional to

determinants of a kernel matrix. First, we compute the

RBF kernel matrix L of φcls and eigendecomposition of

L, and a random subset V of the eigenvectors is chosen by

regarding the eigenvalues as sampling probability. Second,

we select a new class ci to add to the set and update V
in a manner that de-emphaseizes items similar to the one

selected. Each successive point is selected and V is updated

by Gram-Schmidt orthogonalization, and the distribution

shifts to avoid points near those already chosen.
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Table 1. Transferability comparison for multi-target attacks on ImageNet NeurIPS validation set (1k images) with the perturbation budget

of ℓ∞ ≤ 16. The results are averaged on 8 different target classes. Note that CD-AP† indicates that training 8 models can obtain results,

while our method only train one conditional generative model. * indicates white-box attacks.

Method Time (ms) Models
Naturally Trained Adversarially Trained

Inc-v3 Inc-v4 IncRes-v2 Res-152 DenseNet GoogleNet VGG-16 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

MIM ∼130 - 99.9∗ 0.8 1.0 0.4 0.2 0.2 0.3 <0.1 0.1 < 0.1
TI-MIM ∼130 - 98.5∗ 0.5 0.5 0.3 0.2 0.4 0.4 0.3 0.3 0.2

SI-MIM ∼130 - 99.8∗ 1.5 2.0 0.8 0.7 0.7 0.5 0.3 0.3 0.1

DIM ∼130 - 77.0∗ 2.7 0.5 0.8 1.1 0.4 0.8 0.1 0.2 0.1

TI-DIM ∼130 - 52.5∗ 1.1 1.2 0.5 0.5 0.5 0.8 0.4 0.6 0.4

SI-DIM ∼130 - 90.2∗ 3.8 4.4 2.0 2.2 1.7 1.4 0.5 0.5 0.2

CD-AP† ∼15 8 94.2∗ 57.6 60.1 37.1 41.6 32.3 41.7 1.5 2.2 1.2

CD-AP-gs† ∼15 8 69.7∗ 31.3 30.8 18.6 20.1 14.8 20.2 5.0 5.8 4.5

Ours ∼15 1 93.4∗ 66.9 66.6 41.6 46.4 40.0 45.0 39.7 37.2 32.2

3. Experiments

We consider the following datasets for training, including a

widely used object detection dataset MS-COCO (Lin et al.,

2014) and ImageNet training set (Deng et al., 2009). We con-

sider some public naturally trained networks, i.e., Inception-

v3 (Inc-v3) (Szegedy et al., 2016), Inception-v4 (Inc-v4)

(Szegedy et al., 2017), Resnet-v2-152 (Res-152) (He et al.,

2016) and Inception-Resnet-v2 (IncRes-v2) (Szegedy et al.,

2017), which are widely used for evaluating transferability.

Besides, we supplement DenseNet-201 (Dense-201) (Huang

et al., 2017), GoogleNet (Szegedy et al., 2015) and VGG-16

(Simonyan & Zisserman, 2014) and adversarially trained

networks (Tramèr et al., 2018), e.g., ens3-adv-Inception-

v3 (Inc-v3ens3), ens4-adv-Inception-v3 (Inc-v3ens4) and ens-

adv-Inception-ResNet-v2 (IncRes-v2ens).

Implementation details. We choose the same ResNet au-

toencoder architecture in (Johnson et al., 2016; Naseer et al.,

2019) as the basic generator networks, which consists of

downsampling, residual and upsampling layers. Smooth-

ing mechanism is proposed to improve the transferability

against adversarially trained models (Dong et al., 2019).

Instead of adopting smoothing for generated perturbation

while the training is completed as CD-AP (Naseer et al.,

2019), we introduce adaptive Gaussian smoothing kernel

to compute δ from Eq. (2) in the training phase, named

adaptive Gaussian smoothing, with the focus of making

generated results obtain adaptive ability. More implementa-

tion details are illustrated in Appendix.

3.1. Transferability Evaluation

Efficiency and effectivenessof multi-target black-box at-

tack. Among comparable methods, instance-specific meth-

ods, i.e., MIM, TI-DIM, DIM and TI-DIM, require iterative

mechanism with M steps by computing gradients to obtain

adversarial examples. Instance-agnostic methods only re-

quire the inference cost from the trained generator, thus pos-

sessing the priority for those attack scenarios within limited

time. However, instance-specific methods require to train 8

models to obtain all predictions from 8 different classes. As

a comparison, our conditional generative method only trains

one model to inference the results and outperforms in the

Table 2. Transferability comparison on NeurIPS 2017 competition

following the standard protocol with 1,000 stochastic target classes.
Targeted Black-box Attack in NeurIPS 2017 Competition

Method Inc-v4 IncRes-v2 Res-152 Dense-201 GoogleNet VGG-16

MIM 0.1 <0.1 <0.1 0.3 0.1 <0.1

TI-MIM 0.2 <0.1 <0.1 0.1 0.2 0.2

SI-MIM 0.6 0.6 0.1 0.4 0.3 0.1

DIM 1.5 1.0 <0.1 0.6 <0.1 0.5

TI-DIM 0.6 0.6 <0.1 0.3 0.3 0.3

SI-DIM 1.9 1.3 0.5 1.3 1.0 0.7

Ours 35.9 37.4 25.0 26.8 25.8 26.6

aspect of efficiency. Tab. 1 shows the transferability compar-

ison of different methods on both naturally and adversarially

trained models. The success rate of instance-specific attacks

are lower than 3%. The instance-agnostic attack CD-AP

obtains acceptable performance, yet inferior to proposed

method w.r.t black-box transferability. The primary rea-

son for such a trend lies in some distinctions as 1) direct clip

projection in CD-AP and our smooth projection in Eq. (2)

and 2) their Gaussian Smoothing and our adaptive Gaussian

Smoothing. Thus proposed conditional generative method

can be a reliable baseline w.r.t targeted black-box attacks.

Effectiveness on NeurIPS 2017 Competition We here fol-

low the official setting from NeurIPS 2017 adversarial com-

petition (Kurakin et al., 2018) for testing targeted black-box

transferability. Considering limited resource, we only focus

on the instance-specific attack. Our hierarchical partition

mechanism considers 20 models, with each specifying 50

diverse classes from k-DPP hierarchical partition in this

setting, to implement targeted attack by only once inference

for each target image. Our method outperforms all other

baseline methods in Tab. 2. The results demonstrate that

this method can be reliable in practical targeted attacks,

regarding both effectiveness and efficiency.

4. Discussion and Conclusion

Transferability of targeted black-box attack is affected by

data and model. Instance-specific methods obtain weak

transferability due to easily overfiting the data point and

white-box model. Proposed generative method reduces the

dependency for data points by learning from the unlabeled

training data, thus enabling to learn semantic pattern and

significantly improve the transferability of targeted attacks.
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A. Sampling Algorithm

We summarize the overall sampling procedure based on

k-DPP (Kulesza & Taskar, 2011) as follows.

• Compute the RBF kernel matrix L of φcls and eigen-

decomposition of L.

• A random subset V of the eigenvectors is chosen by

regarding the eigenvalues as sampling probability.

• Select a new class ci to add to the set and update V in

a manner that de-emphaseizes items similar to the one

selected.

• Update V by Gram-Schmidt orthogonalization, and

the distribution shifts to avoid points near those already

chosen.

By performing the Algorithm 1, we can obtain a subset with

k size. Thus while handling the conditional classes with K,

we can hierarchically adopt this algorithm to get the final

K/k subsets, which are regarded as conditional variables of

generative models to craft adversarial examples.

B. Some Implementation Details

The study of smoothing mechanism. Smoothing mecha-

nism has been proved to improve the transferability against

adversarially trained models. CD-AP (Naseer et al., 2019)

uses direct clip projection to have a fixed norm ǫ, and adopts

smoothing for generated perturbation while the generator G
is trained, i.e.,

Train: x∗
si

= Clipǫ(G(xsi),

Test: x∗
si

= W ∗ Clipǫ(G(xsi),
(4)

where W indicates Gaussian smoothing of kernel size of 3,

∗ indicates the convolution operation, and Clipǫ means clip-

ping values outside the fixed norm ǫ. As a comparison, we

introduce adaptive Gaussian smoothing kernel to compute

adversarial images x∗
si

from in the training phase, named

adaptive Gaussian smoothing as

Train & Test: x∗
si

= ǫ ·W ∗ tanh(G(xsi) + xsi , (5)

which can make generated results obtain adaptive ability in

the training phase. We perform training in ImageNet dataset

to report all results including comparable baselines.

Network architecture of generator. We adopt the same

autoencoder architecture in (Naseer et al., 2019) as the

basic generator networks. Besides, we also explore Big-

GAN (Brock et al., 2018) as conditional generator network.

An very weak testing performance is obtained even in the

Algorithm 1 Sampling Algorithm by kDPP

Input:Weight Vector θcls; Subset size k.

Output:A subset C.

Compute RBF kernel matrix L of θcls
Compute eigenvector/value {vn, λn}

N
n=1 pairs of L

// Phase I:

J ← φ, ek (λ1, . . . , λN ) =
∑

|J|=k

∏

n∈J λn

for n = N, ..., 1 do

if u ∼ U [0, 1] < λn
e
n−1

k−1

en
k

and k > 0 then

J ← J ∪ {n}; k ← k − 1
end if

end for

//Phase II:

V ← {vn}n∈J , Y ← φ
while |V | > 0 do

Select ci from C with P (ci) =
1

|V |

∑

v∈V

(

v⊤ei
)2

C ← C ∪ {ci}
V ← V⊥, an orthonormal basis for the subspace of V
orthogonal to ei

end while

white-box attack scenario, possibly explained by the weak

diversity of latent variable with the Gaussian distribution

from BigGAN in the training phase, whereas autoencoder

can take full advantage of large-scale training dataset, e.g.,

ImageNet. Furthermore, we also train the autoencoder with

Gaussian noise as the training dataset and obtain similar

inferior performance in the white-box attack scenario, indi-

cating that a large-scale training dataset is very significant

for generating transferable targeted adversarial examples.

Some details. In our experiments of testing time, we apply

NVIDIA 1080Ti GPUs. Instance-specific methods, i.e.,

MIM, TI-DIM, DIM and TI-DIM, adopt iterative steps M =
20 and follow their reported hyperparameters.

C. More Analyses

Targeted adversarial samples from proposed generative

method can produce semantic pattern inherent to the tar-

get class in Fig. 3. Why does generative semantic pattern

work?

First, generative methods can produce strong targeted se-

mantic pattern that is robust to the influence of data, which

is obtained by minimizing the loss of specific target class

in the training phase. To corroborate our claim, we directly

feed scaled crafted perturbations by instance-specific attack

MIM and our generative method into the classifier. Indeed,

we find that our generative perturbation is considered as

target class with a high degree of confidence whereas the

perturbation from MIM performs like the noise.

Second, the generated adversarial semantic pattern
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Figure 3. Generative examples of adversarial images with perturbation budget of ℓ∞ ≤ 16. We separately adopt the ImageNet and

MS-COCO dataset as the training dataset to implement the generation of targeted perturbations. Our method can generate semantic

pattern independent of training dataset.

achieves well-generalizing performance among the differ-

ent models. We feed 1k images from ImageNet test set

into the generator trained by Inc-v3 model to obtain 1k se-

mantic patterns, which are scaled to image pixel space and

then fed into different classifiers. We compute the mean

confidence of 0.46 for Dense-201, 0.44 for Inc-v4, and

0.35 for Res-152, whereas the perturbation from MIM is

lower than 0.01. The results show that our scaled semantic

pattern can directly achieve well-generalizing performance

among models, possibly explained by utilizing similar fea-

ture knowledge from the same class on different classifiers

trained on same training data distribution. Thus similar pat-

tern can be instrumental for transferability among models.

Therefore, transferability of targeted black-box attack is si-

multaneously affected by data and model. Instance-specific

methods easily overfit the data point and white-box model,

resulting in weak transferability. As a comparison, proposed

generative method with powerful learning capacity reduces

the dependency for data point by adopting the unlabeled

training data, thus enabling the model to learn semantic

pattern and improve the transferability of targeted black-box

attack. We hope that crafting C-GSP can be regarded as a

new reliable baseline method in terms of targeted black-box

attacks, which raises new security issues to develop more

robust DNNs.
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