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Abstract. We consider the setting in which an untrusted server stores a collection of data and
is asked to compute a function over it. In this scenario, we aim for solutions where the untrusted
server does not learn information about the data and is prevented from cheating. This problem is
addressed by verifiable and private delegation of computation, proposed by Gennaro, Gentry and
Parno (CRYPTO’10), a notion that is close to both the active areas of homomorphic encryption
and verifiable computation (VC). However, in spite of the efficiency advances in the respective
areas, VC protocols that guarantee privacy of the inputs are still expensive. The only exception is a
protocol by Fiore, Gennaro and Pastro (CCS’14) that supports arithmetic circuits of degree at most
2. In this paper we propose new efficient protocols for VC on encrypted data that improve over
the state of the art solution of Fiore et al. in multiple aspects. First, we can support computations
of degree higher than 2. Second, we achieve public delegatability and public verifiability whereas
Fiore et al. need the same secret key to encode inputs and verify outputs. Third, we achieve a
new property that guarantees that verifiers can be convinced about the correctness of the outputs
without learning information on the inputs. The key tool to obtain our new protocols is a new
SNARK that can efficiently handle computations over a quotient polynomial ring, such as the one
used by Ring-LWE somewhat homomorphic encryption schemes. This SNARK in turn relies on a
new commit-and-prove SNARK for proving evaluations on the same point of several committed
polynomials. We propose a construction of this scheme under an extractability assumption over
bilinear groups in the random oracle model.

1 Introduction

Due to the ubiquity of the Internet and the advent of cloud computing, it is increasingly common
for users to exchange and receive information processed on remote machines. Online storage
services are already widely available on the Internet, and allow users to store, access and share
their data from anywhere and from multiple devices. This phenomenon includes not only storage:
it is more and more common to rely on computation performed on third party machines.

While this shift in the computing trend brings several benefits, new security challenges also
emerge. These challenges are related to a main question: what happens if the remote machine
is not trusted? In this work we are particularly concerned with two security problems in this
space. First, we would like to ensure that the untrusted machine can perform the computation
without learning the private data of the users. Second, we would like to enable the receivers of
computation results to efficiently check that such results are correct. Both problems are in the
scope of two important research lines in cryptography.

Privacy-Preserving Computation. The first problem is related to fully homomorphic en-
cryption (FHE) [RAD78, Gen09]. While for a long time it was only known how to construct
homomorphic encryption schemes supporting a single operation (e.g., only addition [Pai99]
or multiplication [ElG84]), Gentry’s breakthrough showed the first FHE scheme that enables
computing any function on encrypted data. If Gentry’s first FHE was mostly a feasibility result,
research in this area has progressed significantly giving rise to many new FHE schemes (e.g.,
[SV10, BV11, BGV12, GSW13, DM15, CGGI16, CGGI17]) that are efficient and see their first
practical applications.
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Ensuring Correctness of Computation. The second problem is related to verifiable compu-
tation (VC) [GGP10] and related notions such as interactive proofs [GMR85], probabilistically
checkable proofs [AS92] and succinct arguments [Kil92]. Briefly speaking, these are protocols
that enable a powerful prover to convince a verifier that a statement (e.g., correctness of a
computation, y “ fpxq) is true in such a way that the verifier can run with fewer resources, e.g.,
faster than re-executing the function. Similarly to FHE, also in this research area, results have
been confined to theory for long time. However, several recent works have shown a change in this
trend, and today we have several VC protocols that are efficient and have been experimented in
practical scenarios, see e.g., [GKR08, CMT12, GGPR13, PHGR13, BCG`13, Gro16, ZGK`17,
WJB`17, AHIV17, WTs`18, BCG`18, BBC`18, BCR`19, MBKM19, CFQ19, XZZ`19].

1.1 Ensuring Correctness of Privacy-Preserving Computation

In spite of the research mentioned above, the problem of ensuring both the correctness and the
privacy of computation performed on untrusted machines has received much less attention in
the literature. There are three main works that considered explicitly this problem.

The first one is the seminal paper of Gennaro et al. [GGP10] who introduced the notion of
non-interactive verifiable computation. In [GGP10] they indeed show how to combine garbled
circuits and FHE in order to build a VC scheme for arbitrary functions that also preserves the
privacy of the computation’s inputs and outputs against the computing machine.

The second work is that of Goldwasser et al. [GKP`13] that shows how to use their succinct
single-key functional encryption scheme in order to build a VC protocol that preserves the
privacy of the inputs (but not of the outputs).

Both these two solutions [GGP10, GKP`13] are however not very satisfactory in terms
of efficiency. The main issue in the construction of [GGP10] is that they need the full power
of FHE to perform homomorphic evaluations of garbled circuits. Some of the efficiency issues
in [GKP`13] include the use of several instances of an attribute-based encryption that must
support an expressive class of predicates (at NC1 circuits), and an inherent design limitation
(due to following the approach of [PRV12]) by which their scheme supports functions with a
single bit of output (which in practical scenarios like computing on large integers would require
multiple instances of their protocol).

A third work that considered the problem of ensuring correctness of privacy-preserving
computation is the one of Fiore et al. [FGP14] who proposed a solution that combines an FHE
and a VC scheme. The idea of their generic construction is rather simple and consists into using
a VC in order to prove that the homomorphic evaluation on ciphertexts has been done correctly.
As discussed in [FGP14], even this solution may encounter efficiency limits. This is due to the
fact that the VC scheme must be executed on a computation that, due to the FHE ciphertext
expansion, is of much larger representation than the computation that would be executed on
plain text. Motivated by this issue, [FGP14] also proposed an efficient solution that, for the case
of quadratic functions, can avoid this issue. The efficient construction in [FGP14] overcomes
the problem of ciphertext expansion in two ways: (1) they consider homomorphic encryption
schemes working in the Ring-LWE setting in which ciphertexts are represented by polynomials
in a given polynomial ring; (2) they develop, as the VC building block, an homomorphic MAC
scheme especially tailored to handle messages that are polynomials in which the prover execution
can be independent of the degree of such polynomials. However, for reasons that we will detail
later (see Section 3), their technique is inherently bound to computations of multiplicative depth
1. Also, by using an homomorphic MAC as VC, verification requires a secret key, the same secret
key used to encode the inputs. This limits the applicability of these solutions to scenarios where
users and verifiers are either the same entity or they share a secret key.



3

1.2 Our Contributions

We propose a new protocol for verifiable computation on encrypted data that improves on the
state-of-the-art solution of Fiore et al. [FGP14] in multiple aspects. Notably, we can support
HE computations of multiplicative depth larger than 1. Second, we achieve public verifiability
whereas [FGP14] is only privately verifiable. Finally, our scheme has an additional property that
guarantees that verifiers may be convinced of outputs correctness without learning information
on the original inputs. This latter property is particularly relevant in the publicly verifiable
setting where the users who encrypt the data and the verifiers are distinct entities. Technically,
we achieve this property because our protocol allows for re-randomizing the encrypted results,
which was not possible in [FGP14] that only considered deterministic HE evaluations.

Our key tool to obtain this result is a new SNARK that can efficiently handle computations
that are arithmetic circuits f over a quotient polynomial ring Rq :“ ZqrXs{xRpXqy (exactly like
the popular choice for many Ring-LWE schemes) in which the prover’s costs have a minimal
dependence on the degree d of RpXq. Specifically, let f be the circuit over Rq and f̂ be the
corresponding circuit over Zq (i.e., the one that would be computed on plaintexts where additions
and multiplications in Rq are replaced by the corresponding operations in Zq). Then, whereas
a naive application of [FGP14]’s generic solution would incur a cost for proof generation at
least Opd ¨ |f̂ |q where |f̂ | is f̂ ’s circuit size, our scheme lets proof generation be doable in time
Opd ¨ n` |f̂ |q where n is f̂ ’s input size. We stress that here we are considering the cost of proof
generation, after having performed the HE computation; or in other words we consider the cost
of generating the proof once the witness is available. To see how this efficiency feature concretely
improves, consider for example an f̂ that is a multivariate polynomial of degree c ě 2 by which
|f̂ | can be nc, and consider that for Ring-LWE security the degree d can be a rather large integer
(e.g., d « 8000). Then removing the multiplicative factor d ¨ |f̂ | can significantly speed up the
prover’s costs. Let us also notice that the factor d ¨ n is unavoidable as the prover must read the
input.

Our SNARK for arithmetic circuits over polynomial rings is built in a modular way using
two building blocks: a commit-and-prove SNARK for arithmetic circuits (AC-Π), and a commit-
and-prove SNARK for multiple polynomial evaluations (MUniEv-Π).

To instantiate AC-Π, we can use any commit-and-prove SNARK for arithmetic circuits
that supports the same commitment key as our scheme MUniEv-Π. Given the recent result of
Campanelli et al. [CFQ19], MUniEv-Π can be instantiated with a variety of schemes including
the efficient commit-and-prove variant of Groth16 [Gro16] proposed in [CFQ19].

For scheme MUniEv-Π, we propose a construction based on the Strong Diffie-Hellman and
Power Knowledge of Exponent (PKE) assumptions in bilinear groups, in the random oracle model.
We believe this scheme can also have other applications. Slightly more in detail, MUniEv-Π allows
one to prove the following statement: given a commitment C to ` degree-d polynomials tPjpXquj ,
a commitment C 1 to a vector of ` Zq-elements tpjuj , and a public point k, show that pj “ Pjpkq
for all j “ 1 to `. In comparison to using an existing general-purpose commit-and-prove SNARK
for arithmetic circuits (e.g., LegoGroth16 from [CFQ19]), our scheme MUniEv-Π has slightly
smaller proofs and proving time at least three times faster (cf. Section 7.3 for more details).

Finally, we note that our scheme MUniEv-Π is in turn constructed from a SNARK BivPE-Π
for the partial evaluation of a committed bivariate polynomial, i.e., given commitments C and
C 1 to P pX,Y q and QpY q respectively, prove that QpY q “ P pk, Y q for some public point k. We
construct BivPE-Π by extending the univariate polynomial commitment techniques of Kate et
al. [KZG10]. It is worth mentioning that other works [PST13, ZGK`17] extended [KZG10] to
support the evaluation of multivariate polynomials, which include bivariate ones. However, the
main difference (crucial for our application) is that we can support partial evaluations in one
variable while keeping the result polynomial also committed.
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1.3 Organization

In Section 2 we introduce notation and basic cryptographic definitions. Section 3 describes our
SNARK for arithmetic computations in quotient polynomial rings. In Section 4 we show how to
combine our SNARK from Section 3 together with Ring-LWE-based HE schemes in order to
build a verifiable computation scheme with input and output privacy, and also how to achieve
the new property of preserving privacy of the inputs from the verifier. In Section 5 we state the
computational assumptions needed by our schemes, and we present the BivPoly.Com commitment.
In Section 6 we build our SNARK BivPE-Π for bivariate polynomials partial evaluation and then
in Section 7 we show how turn it into an efficient MUniEv-Π for the simultaneous evaluation of
many univariate polynomials. In Section 8 we prove the security of our scheme BivPE-Π.

2 Notation and Definitions

Notation. Let λ P N be the computational security parameter. We say that a function is
negligible in λ, and we denote it by negl, if it is a fpλq “ opλ´cq for every fixed constant c. We
also say that a probability is overwhelming in λ if it is 1´ negl. When sampling uniformly at
random the value a from the set S, we employ the notation aÐ$S. When sampling the value
a from the probabilistic algorithm M, we employ the notation a Ð M. We use :“ to denote
assignment. We consider NP binary relations R between statements u and witnesses w.

An adversary is denoted by A and is assumed to be probabilistic Turing machines that run
in polynomial time, i.e., PPT. For two PPT machines A,B, with the writing pA}Bqpxq we denote
the execution of A followed by the execution of B on the same input x and with the same random
coins.

2.1 Commitment Schemes

For completeness, we recall the definition of a knowledge commitment scheme:

Definition 1 (Non-Interactive Commitment). A non-interactive commitment scheme is a
tuple of algorithms Com “ pComGen,Com,ComVer,OpenVerq:

ComGenp1λq Ñ ck: Generates a commitment public key ck. It specifies a message space Mck, a
randomness (opening) space Rck, and a commitment space Cck. This algorithm is run by a
trusted or distributed authority;

Compck,mq Ñ pc, oq: Outputs a commitment c and an opening information o. Given a message
m PMck, the sender picks a randomness o P Rck and computes the commitment pc, oq.

ComVerpck, cq Ñ 0{1: Checks whether c is a well-formed commitment. If so, it outputs 1,
otherwise it outputs 0;

OpenVerpck, c,m, oq Ñ 0{1: Outputs 1 if the value m PMck is the committed message in the
commitment c and 0 if pm, o, cq does not correspond to a valid pair opening-commitment.

We say Com “ pComGen,Com,ComVer,OpenVerq is a secure commitment scheme if it satisfies
the following properties:

Correctness. Let ck Ð ComGenp1λq. Any commitment of m PMck honestly generated pc, oq Ð
Compck,mq is successfully verified by ComVerpck, cq and by OpenVerpck, c,m, oq.

Hiding. It is statistically hard, for any adversary A, to generate two messages m0,m1 PMck

such that A can distinguish between their corresponding commitments c0 and c1 where
pc0, o0q Ð Compck,m0q and pc1, o1q Ð Compck,m1q.

Binding. It is computationally hard, for any adversary A, to come up with a collision
pc,m0, o0,m1, o1q, such that o0 and o1 are valid opening values for two different pre-images
m0 ‰ m1 for c. For any adversary A, the following probability is negligible

Pr

»

–

OpenVerpck, c,m0, o0q “ 1 ck Ð ComGenp1λq
^ OpenVerpck, c,m1, o1q “ 1 pc, pm0, o0q, pm1, o1qq Ð Apckq

^ m0 ‰ m1

fi

fl .
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Knowledge Binding [BL07]. For every adversary A that produces a valid commitment c
associated to a message that verifies, i.e. such that ComVerpck, cq “ 1, there is an extractor
ExtA that is able to output a pre-image m and a valid opening o of c, with overwhelming
probability:

Pr

»

–

ck Ð ComGenp1λq
OpenVerpck, c,m, oq “ 1 pc; pm, oqq Ð pA}ExtAqpckq

ComVerpck, cq “ 1

fi

fl “ 1´ neglpλq.

For the sake of simplicity, throughout this work, we will omit the commitment key ck from
the input of the algorithms, and with a slight abuse of notation, we will adopt the writing
Compmq Ñ pc, oq.

2.2 SNARKs – Succinct Non-Interactive Arguments of Knowledge

We recall the definition of (zero-knowledge) succinct non-interactive arguments of knowledge
(zk-SNARKs).

Definition 2 (SNARK for NP). A SNARK is defined by three algorithms,

Π.Genp1λ,Rq Ñ crs: on input a security parameter λ P N and a NP relation R, the generation
algorithm outputs a common reference string crs;

Π.Provepcrs, u, wq Ñ π: given a prover reference string crs, an instance u and a witness w s.t.
pu,wq P R, this algorithm produces a proof π;

Π.Verpcrs, u, πq Ñ b: on input a verification state crs, an instance u, and a proof π, the verifier
algorithm outputs b “ 0 (reject) or b “ 1 (accept);

satisfying completeness, succinctness, knowledge-soundness as described below:

Correctness. For all valid statement pu,wq P R,

Pr

„

Verpcrs, u, πq “ 0 crs Ð Π.Genp1λ,Rq
^ pu,wq P R π Ð Provepcrs, u, wq



“ neglpλq;

Succintness. The size of the proof is linear in the security parameter λ, i.e. independent of the
size of the computation or the witness;

Knowledge-Soundness [BG93]. A non-interactive proof system Π is knowledge-sound for
the class Z of auxiliary input generators if for any PPT adversary AKS there exists an
extractor ExtA such that:

Pr

„

Verpcrs, u, πq “ 1 crs Ð Π.Genp1λ,Rq, aux Ð Zpcrsq
^ Rpu,wq “ 0 ppu, πq;wq Ð pAKS}ExtAqpcrs, auxq



“ neglpλq.

Zero Knowledge. A Π protocol is a (statistical) zero-knowledge for a relation R if there exists
a stateful interactive polynomial-size simulator Sim “ pSimcrs, SimProveq such that for all
stateful interactive distinguishers D, for every large enough security parameter λ P N, every
auxiliary input aux, the two probabilities are negligibly close:

Prrpu,wq P R^Dpπq “ 1 pcrsq Ð Genp1λq, pu,wq Ð Dpcrs, auxq,

π Ð Provepcrs, u, wqs;

Prrpu,wq P R^Dpπq “ 1 pcrs, trapq Ð Simcrsp1λq, pu,wq Ð Dpcrs, auxq,

π Ð SimProvepcrs, trap, u, auxqs.
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Commit and Prove SNARKs. Let Rpu,wq be an NP relation where w “ ptxiui, ωq. A
commit-and-prove SNARK (CaP-SNARK) for commitment scheme Com and relation Rpu,wq
is a SNARK for the “commit-and-prove relation” Rckpu˚, w˚q where u˚ “ pu, tciuiq, w

˚ “

ptxiui, toiui, ωq and that holds iff Rpu, ptxiui, ωqq holds and OpenVerpci,mi, oiq “ 1 for all i. We
adopt the syntax for CaP-SNARK used in [CFQ19]:

Π.Genpck,Rq Ñ crs: on input a relation-independent commitment key ck and a NP relation R,
it generates the crs;

Π.Provepcrs, pu, tciuiq, ptxiui, toiui, ωqq Ñ π: outputs a proof;
Π.Verpcrs, pu, tciuiq, πq Ñ b: rejects or accepts the proof.

3 Proof Systems for Arithmetic Function Evaluation over Quotient
Polynomial Rings

In this section we describe our commit-and-prove SNARK for arithmetic computations in quotient
polynomial rings.

Let R be the quotient ring Z{xRpXqy for some polynomial R P ZrXs of degree d. For a
prime q " d we define F “ Zq a finite field and Rq “ R{qR. We want to construct a succinct
non-interactive zero-knowledge argument system for some relation Rf of correct evaluation of
an arithmetic function fp¨q : Rqn Ñ Rq taking n P N inputs in the quotient ring Rq “ R{qR.
The function f to be evaluated on polynomials tPju

n
j“1 in the quotient ring Rq is considered to

be public.

Let MPoly-Com “ pMPoly.ComGen,MPoly.Com,MPoly.ComVer,MPoly.OpenVerq be a linearly
homomorphic commitment scheme for (many) univariate polynomials, i.e., the message space M
consists in vectors of n ď ` polynomials of degree d ď ν, for some integer bounds `, ν chosen
in MPoly.ComGen. In Section 7 we show an efficient instantiation of such a scheme in bilinear
groups.

We describe a Commit-and-Prove SNARK, Rq-Π, for commitment scheme MPoly-Com and
for the following relation

Rck
f :“ tpu “ pC,P q;w “ ptPju

n
j“1, ρ, T qq :

MPoly.OpenVerpC, tPju, ρq “ 1 ^ P “ fpPjq ´ TRu

The relation Rck
f implicitly contains two bounds `, ν on, respectively, the number of inputs of f

and the degree df of f as an arithmetic circuit.
In a nutshell, given a compact commitment C and a public polynomial P P Rq, our Rq-Π

scheme allows to prove that C opens to some polynomials Pj P R @j “ 1 . . . n such that P is the
result of evaluating the function f on tPjuj , evaluation done in the polynomial ring Rq.

High-Level Description of our Rq-Π SNARK. We build our Rq-Π scheme as a combination
of the following building blocks:

– MUniEv-Π “ pMUniEv-Π.Gen,MUniEv-Π.Prove,MUniEv-Π.Verq: a CaP-SNARK for the si-
multaneous evaluation of n univariate polynomials tPju

n
j“1 in a point k, where tPju are

committed with MPoly-Com. Proposing efficient constructions of MPoly-Com and MUniEv-Π
are key technical contributions of this paper; these are detailed in Section 7.

– AC-Π “ pAC-Π.Gen,AC-Π.Prove,AC-Π.Verq: a CaP-SNARK for arithmetic circuits over Zq
where inputs and outputs are committed (as a vector of degree-0 polynomials) with the
MPoly-Com scheme.
Various instantiations of AC-Π compatible with our pairing-based MPoly-Com commitment
can be obtained by using for example the compiler recently proposed in [CFQ19];1 a
particularly efficient one is a commit-and-prove variant of [Gro16].

1 In particular, relevant to our work is the compiler that shows that commit-and-prove SNARKs for Pedersen-like
commitments can be made compatible with one another.
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The two building blocks above are used as follows.
The prover, knowing a quotient polynomial T P ZqrXs such that fppPjqjq “ P ` TR, starts

by computing a commitment CT to T P ZqrXs (which may have degree higher than that of R).

Next, the key idea is that instead of directly proving that P “ fppPjqjq´TR for the committed
polynomials tPju and T (that would require to work with a large arithmetic circuits f), we
use the homomorphic properties of the polynomial ring ZqrXs to “compress the computation”.
Namely, to prove P “ fppPjqjq ´ TR, we evaluate all the polynomials in a random point k and
then prove the relation on the resulting scalars, using the fact that:

f̂pPjpkqq ´RpkqT pkq “ pfpPjq ´RT qpkq “ P pkq.

where f̂ : Znq Ñ Zq is an arithmetic circuit that is the same as f except that every addition
(resp. multiplication) in Rq is replaced by an addition (resp. multiplication) in Zq.

This idea is similar to the homomorphic hash function defined by Fiore et al. [FGP14]. In
[FGP14], they let this idea work by evaluating the polynomials “in the exponent”, i.e., they
publish a set of group elements gk

i
, and then they compute homomorphically over these encodings

to get gP pkq.

This technique however hits two problems: first, they cannot deal with reductions modulo
RpXq, and second, to compute homomorphically a multiplication on these encodings, they have
to “consume” a pairing, and thus only degree-2 computations can be supported.

In our case, we solve these issues by exploiting the power of the commit and prove paradigm
in order to obtain, for every evaluation, a fresh random k. Then, having k P Zq allows us to
support higher-degree computations as well as to deal with modular reductions.

To proceed with the protocol, the prover thus needs to get a random point k, not of its
choice and independent of the values committed in CT and C and of the statement P . This is
possible by using a random oracle Hash to obtain a value k on which it evaluates the polynomials
tPjpkq “ pju

n
j“1, Rpkq “ r, P pkq “ p and T pkq “ t1.

Next, the prover compactly commits to the respective evaluations of the polynomials
pT, tPju

n
j“1q as pC 1, ρ1q. At this point the prover will use:

1. the MUniEv-Π scheme to prove that C 1 is a commitment to a vector of n`1 scalars pt, tpju
n
j“1q

that are the results of evaluating in point k a vector of n` 1 polynomials pT, tPju
n
j“1q that

are committed in CT ˆ C;

Remark 3. We consider linearly homomorphic commitment schemes MPoly-Com and we
commit in CT and C to vectors of n` 1 ď ` polynomials pCT , τq Ð MPoly.CompT, 0, 0 . . . 0q
and pC, ρq Ð MPoly.Comp0, tPju

n
j“1q with an appropriate number of 0’s, i.e., pT, tPjuq “

pT, t0uq` p0, tPjuq, such that computing CT ˆC results in a commitment pCT ˆC, τ `ρq Ð
MPoly.CompT, tPju

n
j“1q to the concatenation of T , tPju.

2. the AC-Π scheme to prove that p “ P pkq “ f̂pppjqjq ´ rt
1, and that t1, tpju

n
j“1 are openings

of C 1.

More formally, the algorithms of the protocol are described in Figure 1. A detailed intuition
of the functionalities of each algorithm follows.

3.1 Formal Description of Our Rq-Π Scheme.

We construct a commit-and-prove SNARK scheme Rq-Π “ pGen,Prove,Verq for any relation Rck
f

with respect to some bounds `, ν on the cardinality of tPjuj and on the degree df of f .
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Rq-Π.Genpck,Rck
f q Ñ crs

1: crsC Ð MUniEv-Π.Genpck,Revalq, crs1 Ð AC-Π.Genpck, R̂f q

2: return crs :“ pcrsC , crs1q

Rq-Π.Provepcrs, x, wq

1: pC,P q :“ x, ptPju
n
j“1, ρ, T q :“ w

2: pCT , τq Ð MPoly.CompT q
3: k Ð HashpC,P,CT q
4: p “ P pkq, r “ Rpkq,
5: t1 “ T pkq, pj “ Pjpkq
6: pC 1, ρ1q Ð MPoly.Compt1, tpjuq
7: uC :“ pCT ˆ C,C

1, kq
8: πC Ð MUniEv-Π.ProvepcrsC , uC , wCq,
9: π1 Ð AC-Π.Provepcrs1, u1 “ pC 1, p, rq, w1q

10: returns π “ pCT , C
1, πC , π

1
q

Rq-Π.Verpcrs, x “ pC,P q, πq

1: π :“ pCT , C
1, πC , π

1
q

2: k Ð HashpC,P,CT q
3: p :“ P pkq, r :“ Rpkq
4: uC :“ pCT ˆ C,C

1, kq
5: u1 :“ pC 1, p, rq
6: bC Ð MUniEv-Π.VerpcrsC , uC , πCq
7: b1 Ð AC-Π.Verpcrs1, u1, π1q
8: return pbC ^ b

1
q “ 1.

Fig. 1. Our SNARK Rq-Π for Evaluations over Polynomial Rings

Relations for MUniEv-Π and AC-Π. We define the intermediate statements Reval, R̂f to be
proven using the two SNARKs, MUniEv-Π and AC-Π:

Reval: We first define the relation for simultaneous evaluation of multiple polynomials on a point
k, to be supported by MUniEv-Π. The prover has to convince the verifier that for a given point k
(that in our case is random, but part of the statement) and two commitments CT ˆC and C 1, it
knows the corresponding opening values pT, tPjuj , τ ` ρq and pt1, tpjuj , ρ

1q such that Pjpkq “ pj
for all j, and T pkq “ t1.

More formally, MUniEv-Π.Prove takes as input a statement uC “ pCT ˆ C,C 1, kq, and a
witness wC “ ppT, tPjuq, pt

1, tpjuq, τ ` ρ, ρ
1q, and Reval holds for puC , wCq iff:

Reval :“ tpuC , wCq :@j, pj “ Pjpkq ^ t
1 “ T pkq ^ pC 1, ρ1q “ MPoly.Compt1, tpjuq

^ pCT ˆ C, τ ` ρq “ MPoly.CompT, tPjujqu.

R̂f : We define the relation for correct computation of f̂ , to be supported by AC-Π. The prover
has to convince the verifier that an equality holds for some scalar values t1, tpju, p, r P Zq. The
inputs p, r are known by the verifier (they are public) and t1, tpju are given implicitly in a
committed form pC 1, ρ1q “ MPoly.Compt1, tpjuq. More formally, given a statement u1 “ pC 1, p, rq

and a witness w1 “ pρ1, t1, tpjuq for the computation p “ f̂ppjq ´ rt
1 and for the opening of C 1,

the relation is defined as follows:

R̂f :“ tpu1, w1q : p “ f̂ppjq ` rt
1 ^ pC 1, ρ1q “ MPoly.Compt1, tpjuqu.

CRS Generation. The setup algorithm Rq-Π.Genpck,Rck
f q, given a commitment key ck Ð

MPoly.ComGenp1λq that supports commitments up to ` different polynomials Pj P Rq (all of
degrees ď d) and one commitment to a polynomial T P ZqrXs of higher degree (up to ν)2 and
the NP relation Rck

f including the bound parameters `, ν, outputs a crs enabling the proof and
verification of a function f of degree df ă ν over a set of polynomials tPju

n
j“1 of cardinality

n ď `.
First it runs the generation algorithm for MUniEv-Π and computes a part of the setup,

crsC Ð MUniEv-Π.Genpck,Revalq.

2 The commitment key ck can have some special property for optimization, for example, it may consist of two keys,
one for committing to polynomials Pj P Rq of degrees ď d and another longer key to commit to polynomials
T P ZqrXs of degree ν.
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Then it generates a common reference string for AC-Π that will be used for proving com-
putations of f̂ : crs1 Ð AC-Π.Genpck, R̂f q. As an observation, AC-Π assumes commitments to
vectors of scalars; these can be done with MPoly-Com, by seeing them as vectors of degree-0
polynomials.

Prover. Given a reference string crs, statement u “ pC,P q and witness w “ ptPju
n
j“1, ρ, T q

where P is a public polynomial, C is a compact commitment to polynomials tPju
n
j“1 P Rq with

opening ρ, and T P ZqrXs is a quotient polynomial, the prover algorithm produces a proof π
that fppPjqjq “ P ` TR as follows:

– The prover commits to T “
řν
i“0 TiX

i: pCT , τq Ð MPoly.CompT q.
– The prover then runs k Ð HashpC,P,CT q to obtain a random value k.
– The prover evaluates the polynomials in k : tPjpkq “ pju

n
j“1, Rpkq “ r, P pkq “ p and

T pkq “ t.
– The prover commits the respective evaluations t1, tpju

n
j“1 as pC 1, ρ1q Ð MPoly.Compck, t1, tpju

n
j“1q.

– The prover runs the algorithm for MUniEv-Π to prove that the opening values t1, tpju of the
commitment C 1 are evaluation in k of the polynomials T, tPju, committed in CT ˆ C :

πC Ð MUniEv-Π.ProvepcrsC , uC , wCq

where uC “ pCT ˆ C,C
1, kq, wC “ ppT, tPjuq, pt

1, tpjuq, τ ` ρ, ρ
1q.

– It then runs the proving algorithm of AC-Π for proving the evaluation of f̂ on scalars with a
witness w1 for the computation p “ f̂ppjq ´ rt and for the opening of C 1:

π1 Ð AC-Πpcrs1, u1 “ pC 1, p, rq, w1q.

– The prover eventually outputs π “ pCT , C
1, πC , π

1q.

Verifier. The algorithm Ver on input a statement u “ pC,P q and a proof π :“ pCT , C
1, πC , π

1q

recomputes the randomness k by running k Ð HashpC,P,CT q. Then the Verifier has only to
evaluate the known polynomials P,R in k obtaining p :“ P pkq, r :“ Rpkq. Once it has all the
elements to redefine the two statements uC :“ pCT ˆ C,C

1, kq and u1 :“ pC 1, p, rq for the proofs
πC and π1 it runs the corresponding verification algorithms of these two SNARKs, MUniEv-Π.Ver
and AC-Π.Ver to check the proofs and outputs the conjunction of the two answers.

3.2 Security Analysis

About the above construction, we can state the following security result.

Theorem 4. Assuming that AC-Π and MUniEv-Π are secure commit-and-prove arguments of
knowledge, the new construction Rq-Π described above satisfies completeness, succinctness,
zero-knowledge and knowledge-soundness.

Proof. Before diving in the technicalities of the security proof, we provide a short intuition
for the knowledge soundness property. The proof consists of two main steps: First, we rely
on the knowledge-soundness of the two SNARKs to show that for any adversary creating an
accepting proof there is a knowledge extractor that, with all but negligible probability, returns
witnesses that correctly satisfy the two relations Reval, R̂f mentioned previously. Second, the
only remaining possibility is that the polynomial V “ P ˚ ´ fpPjq ` TR is nonzero. However,
V pkq “ 0 and this holds for a random point k sampled by the random oracle independently of
V , which can happen only with probability degpV q{q which is negligible.

Correctness. We aim to prove that under the hypothesis that the commitment pC, ρq on tPjuj
open correctly and the two SNARKs are secure, the previous protocol is correct, proving the
evaluation of f on polynomials Pj in the ring Rq. Correctness of the protocol follows from the
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correctness of MUniEv-Π and AC-Π schemes. If the prover follows the protocol as expected, the
commitments CT , C

1 are correctly computed, the two proofs πC , π
1 are generated honestly, then

from the correctness of the two SNARK the verification algorithm accepts with overwhelming
probability.

Knowledge Extractor. First we build for any PPT adversary A against the SNARK a
knowledge-extractor ExtA that runs on the same input as the adversary A. Moreover, whenever
A outputs px “ pC,P q, πq where π is a proof that verifies, the extractor ExtA produces a
corresponding witness w “ ptPju

n
j“1, ρq.

To this end, we should show that from any A we can define two adversaries M.A and Π.A
for the MUniEv-Π and AC-Π schemes respectively. These adversaries are simply defined: First,
from the input crs, aux of adversary A, we can redefine their own crs’s and auxiliary information.

M.A just takes the crsC and redefines the remaining elements as auxC . Π.A proceeds similarly,
partitions the elements in crs as follows: pcrs1, aux1q. Next, both M.A and Π.A execute A, get its
output π “ pCT , C

1, πC , π
1q and return as respective outputs the subpart πC and π1 of the proof

π.
By the knowledge soundness of the two schemes MUniEv-Π and AC-Π we can deduce that

there exist respective extractors M.Ext and Π.Ext that output the respective witnesses wC “
pT, tPju, t

1, tpju, ρ, τ, ρ
1q and w1.

From these two extractors we define ExtA by keeping only parts of the witnesses: w :“ ptPju, ρq.
Finally, by the knowledge soundness of MUniEv-Π and AC-Π schemes, we have that for an
accepting proof πC , respectively π1, the extractors M.Ext and Π.Ext return a wrong witness
wC , w

1 with negligible probability, and consequently, the same holds also for ExtA.

Remark 5. Notice that we require in the knowledge soundness Theorem 2 the extractor ExtA to
take the same input as the adversary A. In our specific case, A is an adversary with black-box
acces to a random oracle Hash. We may consider the slightly different knowledge soundness
definition for oracle SNARKs (OSNARKs) from [FN16]. Fortunately, in the same work, the
authors show a positive result on the existence of such OSNARKs for (pseudo)random oracles,
based on classical SNARKs that are assumed to satisfy proof of knowledge with respect to
randomly-distributed auxiliary input. This way we can deal with black-box access to Hash, as
such hash function can be simulated with a random string as auxiliary input.

Soundness. Above we have basically shown that for every A there exists an extractor ExtA that
with all but negligible probability returns a witness such that the two statements are valid. In
particular, the knowledge soundness of the MUniEv-Π gives us that the values t1, tpiu are correct
evaluations in point k of the polynomials T, tPju

n
j“1, while the knowledge soundness of CaP´ Π

gives us that p˚ ´ f̂ppjq ` t
1r “ 0. The only remaining possible case, in which the adversary A

would be successful in cheating is if the polynomial V “ P ˚ ´ fpPjq ` TR is not zero. However,

p˚ ´ f̂ppjq ` t
1r “ 0 means that V pkq “ 0.

Based on our choice of q " d and the random choice of k P Zq we can argue that PrrV pkq “
0s “ negl.

Indeed, the probability that the random point k generated by the random oracle Hash, after
(and thus independently) of the values C,P,CT , to be a root of the non-zero polynomial V is
degpV q{q which is negligible, since the degrees of the polynomials are assumed to be bounded
by polypλq.This shows that V must be the zero polynomial.

Zero-Knowledge. We have to construct a simulator Sim “ pSimcrs,SimProveq as in the Theo-
rem 2, using the zero-knowledge simulators of the underlying SNARKs: pSimcrsC ,SimMUniEv-Π.Proveq,
pSimcrs1 , SimΠq as follows:

Simcrs is the same as Gen, but for the two specific crsC and crs1 that are generating by
running respectevely pcrsC , trapCq Ð SimcrsC p1λq and pcrs1, trap1q Ð Simcrs1p1λq for the two
zero-knowledge SNARKs.
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Provepcrs, x, wq

1: pC,P q :“ x, ptPiu
n
i“1, ρ, T q :“ w

2: pCT , τq Ð MPoly.CompT q
3: k Ð HashpC,P,CT q
4: p “ P pkq, r “ Rpkq,
5: t1 “ T pkq, pi “ Pipkq
6: pC 1, ρ1q Ð MPoly.Compt1, tpiuq
7: uC :“ pCT , C, C

1, kq
8: πC Ð MUniEv-Π.ProvepcrsC , uC , wCq,
9: π1 Ð AC-Π.Provepcrs1, u1 “ pC 1, p, rq, w1q

10: returns π “ pCT , C
1, πC , π

1
q

SimProve
pcrs, xq

1: pC,P q :“ x
2: pC0, τq Ð MPoly.Comp0q
3: k Ð HashpC,P,C0q

4: p “ P pkq, r “ Rpkq,
5: t˚ “ 0, p˚i “ 0
6: pC˚, ρ1q Ð MPoly.Compt˚, tp˚i uq
7: uC :“ pC0}C,C

˚, kq
8: πC Ð SimMUniEv-Π.Prove

pcrsC , trapC , uCq,
9: π1 Ð SimΠ

pcrs1, trap1, u1 “ pC˚, p, rqq
10: returns π “ pC0, C

˚, πC , π
1
q

Fig. 2. A Simulator for the Zero-Knowledge.

Then, SimProve is able to generate a simulated proof for any commitment C and any polynomial
P P Rq by committing any T ˚ P ZqrXs (we can use T ˚ :“ 0) and then using the simulators for
the zero-knowledge of the two underlying SNARKs. We proceed with a sequence of games in
order to show the indistinguishability of the simulation.

Hybrid 0. This is the real protocol, described in Figure 2, where proof π is generated by Prove
algorithm.

Hybrid 1. In this game, we still use the witness of the evaluation, w “ ptPiu
n
i“1, ρq, and we

generate pCT , τq Ð MPoly.Compck, T q as in step 2 of the real protocol, but in order to
generate the proof π, we run instead the zero-knowledge simulators for the two SNARKs,
pSimcrsC , SimMUniEv-Π.Proveq and pSimcrs1 ,SimΠq.
Based on the fact that MUniEv-Π and AC-Π are zero-knowledge schemes, the two games are
perfectly indistinguishable.

Hybrid 2. The SimProve algorithm described in Figure 2 outputs the proof. Based on the
perfectly hiding property of the commitment scheme MPoly-Com the values C0 and CT as
well as C˚ and C 1 in the two hybrids are indistinguishable.

[\

4 Applications to Computing on Encrypted Data

In this section we detail on how we can use our scheme Rq-Π for computations over polynomial
rings to build a VC scheme with input and output privacy.

4.1 Verifiable Computation

Here we recall the notion of verifiable computation from [GGP10]. We adapt the definitions
to fit the setting (that is in the scope of our construction) where we have public verifiability
and public delegatability [PRV12], as well as privacy of the inputs and outputs. A VC scheme
VC “ pKeyGen,ProbGen,Compute,Verify,Decodeq consists of the following algorithms:

KeyGenp1λ, fq Ñ pPKf , SKf q: Given the security parameter, the key generation algorithm
outputs a public key and a matching secret key for the function f .

ProbGenPKf pxq Ñ pσx, τxq: The problem generation algorithm uses the public key PKf to
encode the input x into a public value σx, to be given to the computing party, and a public
value τx to be given to the verifier.

ComputePKf pσxq Ñ σy: Given the public key PKf and the encoded input, the compute
algorithm returns an encoded version of the function’s output.

VerifyPKf pτx, σyq Ñ acc: Given the public key PKf for function f , and the public verifier
information τx, the verification algorithm accepts (output acc “ 1) or rejects (output
acc “ 0) an output encoding σy.
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DecodeSKf pσyq Ñ y: Given the secret key SKf for function f , and an output encoding σy, the
decoding algorithm outputs a value y.

The correctness of a VC scheme is the obvious property: if one runs Compute on an honestly
generated input encoding of x, then the output must verify and its decoding should be y “ fpxq.

For security, intuitively we want to say that an adversary that receives the public pa-
rameters for a function f and an encoding of an input x cannot create an encoding that
passes verification and decodes to y1 ‰ fpxq. More formally, we say that a publicly verifiable
computation scheme VC is secure for a function f , if for any PPT adversary A, we have that
PrrExpPubV erifA rVC, f, λs “ 1s “ neglpλq, where the experiment ExpPubV erif is described below.

The input privacy notion intuitively says that no information about the inputs is leaked. This is
defined using a typical indistinguishability experiment. Note that input privacy implies also output
privacy. More formally, we say that a publicly verifiable (and publicly delegatable) VC scheme VC
is private for a function f , if for any PPT adversary A, we have that PrrExpPrivA rVC, f, λs “ 1s ď
1
2 ` neglpλq, where the experiment ExpPriv is described below.

Experiment ExpPubV erifA rVC, f, λs
pPK,SKq Ð KeyGenp1λ, fq;
xÐ ApPKf q;
pσx, τxq Ð ProbGenPKf pxq;
σ̂y Ð ApPKf , σx, τxq;
âccÐ VerifyPKf pτx, σ̂yq

ŷ Ð DecodeSKf pσ̂yq
If âcc “ 1 and ŷ ‰ fpxq,

output ‘1’, else ‘0’;

Experiment ExpPrivA rVC, f, λs
bÐ t0, 1u;
pPKf , SKf q Ð KeyGenp1λ, fq;
px0,x1q Ð ApPKf q

pσb, τbq Ð ProbGenPKf pxbq;

b̂Ð ApPKf , σbq

If b̂ “ b, output ‘1’, else ‘0’

4.2 Our VC Scheme

We describe our VC scheme below. The construction is essentially an instantiation of the
generic solution of Fiore et al. [FGP14] when using an homomorphic encryption scheme whose
homomorphic evaluation algorithm fits our relation Rf . This can be obtained by using HE
schemes in the Ring-LWE setting where the ciphertext space works over the same ring Rq
supported by our Rq-Π construction, and where the evaluation algorithm does not involve
modulus switches and rounding operations. An example of such a scheme is the one of Brakerski
and Vaikunthanatan [BV11].

Let MPoly-Com “ pMPoly.ComGen,MPoly.ComVer,MPoly.OpenVerq be a polynomial com-
mitment scheme, Rq-Π “ pRq-Π.Gen,Rq-Π.Prove,Rq-Π.Verq be a CaP zk-SNARK for polynomial
rings computation, and let HE “ pHE.KeyGen,HE.Enc,HE.Eval,HE.Decq be a homomorphic
encryption scheme in the Ring-LWE setting. Then our VC scheme works as follows:

KeyGenp1λ, f̂q Ñ pPKf , SKf q:
– Run ppk, skq Ð HE.KeyGenpλq to generate a key pair for HE.
– Run crs Ð Rq-Π.Genpck,Rck

f q to generate the common reference string of Rq-Π for the

relation Rck
f .

– Set PKf “ ppk, crs, f̂q and SKf “ psk, crsq.
ProbGenPKf pxq Ñ pσx, τxq:

– Parse x “ txiu
n
i“1 and compute ciphertexts Pi Ð HE.Encppk, xiq

– Compute the commitment pC, ρq “ MPoly.ComptPiuq and define σx “ pC, tPiu, ρq and
τx “ C.

ComputePKf pσxq Ñ σy:
– Parse σx “ pC, tPiu, ρq;
– Compute the result ciphertext P Ð HE.Evalppk, f̂ , tPiuq “ fptPiuq.
– Run π Ð Rq-Π.Provepcrs, pC,P q, ptPiu, ρqq.
– Define σy “ pP, πq
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VerifyPKf pτx, σyq Ñ acc: output bÐ Rq-Π.Verpcrs, pC,P q, πq.
DecodeSKf pτx, σyq Ñ y: Decrypt y “ HE.Decpsk, P q.

Following the general result in [FGP14], the scheme satisfies correctness, security and privacy.
In particular, privacy relies on the semantic security of HE, and security on the soundness of the
SNARK.

4.3 Preserving Privacy of the Inputs Against the Verifier

The VC scheme described in the previous section works when the homomorphic computation
P Ð fptPiuq on the ciphertexts is deterministic. This can raise the issue that the result ciphertext
P may reveal information on the plaintexts txiu underlying tPiu (e.g., in lattice-based schemes
such information may be inferred by looking at the distribution of the noise recovered as P ’s
decryption time).

It would be therefore interesting to capture the setting where one wants to hide information
on the xi’s even from the decryptor. Such a property would turn useful in scenarios where the
data encryptor and decryptor are different entities. As an example, consider the case of users
that store medical data x on a cloud server which computes some query f on behalf of an analyst,
who however is not entitled to learn more than fpxq.

In this section, we provide a formal definition of this property, that we call context-hiding,
and then describe how our scheme from the previous section can be extended to achieve this
additional property.

Defining Context-Hiding. Informally, this property says that output encodings σy, as well
as the input verification tokens τx, do not reveal any information on the input x. Notably this
should hold even against the holders of the secret key SKf . We formalize this definition in a
zero-knowledge style, requiring the existence of simulator algorithms that, without knowing
the input, should generate pτx, σyq that look like the real ones. More precisely, a VC scheme is
context-hiding for a function f if there exist simulator algorithms S1, S2 such that:

– the keys pPKf , SKf q and pPK 1
f , SK

1
f q are statistically indistinguishable, where pPKf , SKf q Ð

KeyGenp1λ, fq and pPKf , SKf , tdq Ð S1p1
λ, fq;

– for any input x, the following distributions are negligibly close

pPKf , SKf , σx, τx, σyq « pPKf , SKf , σx, τ
1
x, σ

1
yq

where pPKf , SKf , tdq Ð S1p1
λ, fq, pσx, τxq Ð ProbGenPKf pxq,

σy Ð ComputePKf pσxq, and pσ1y, τ
1
xq Ð S2ptd, SKf , fpxqq.

Our Context-Hiding Secure VC scheme. Before describing the scheme in detail, let us
provide some intuition.

The first observation is that for the HE scheme this problem can be solved by adding to the
result P an encryption of 0, P ˚0 , whose noise can statically hide that in P (a so called noise
flooding technique). However if we do this change in our VC scheme we have two issues: (1) the
computation is not deterministic anymore; (2) the prover may create a bogus encryption of 0,
not of the correct distribution, in order to make decryption fail. We can solve these issues by
using the fact that, as underlying tool for verifiability, we are using a SNARK that can handle
deterministic computations. In particular, we can do the following.

For (2) we add to the public key s honestly generated encryptions of 0 tP ˚i u
s
i“1, and then ask

the untrusted party to compute the result as P 1 “ P `P ˚0 with P ˚0 “
řn
i“1 bi ¨P

˚
i , for uniformly

random bits bi. By choosing appropriately the noise parameters in the P ˚i ’s and by taking s « λ,
based on the leftover hash lemma, P ˚0 can statistically hide the noise in P .

Formally, adding such a randomization at the end of computing a function f guarantees
leveled circuit privacy. In a nutshell, a somewhat-FHE HE is leveled circuit private if there
exists a simulator algorithm HE.S such that HE.Sppk, d, fpxqq « HE.Evalppk, f,HE.Encpxqq are
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statistically close. Here the input d taken by the simulator represents information on the depth
of f .

For (1), we simply consider proving a slightly different relation, that is:

R˚f :“ tpu “ pC,P 1, tP ˚i u
s
i“1q;w “ ptPju

n
j“1, T, ρ, b1, . . . , bsqq :

pC, ρq “ MPoly.ComptPjuq ^ @i P rss bi P t0, 1u ^

P 1 “ fpPjq `
s
ÿ

i“1

biP
˚
i ´ TR u

To use our scheme Rq-Π on the above relation, we can do the following. Given a function
f : Rqn Ñ Rq, define the function f 1 : Rqn`s ˆ Zsq Ñ Rq that takes n` 2s inputs such that

f̂ 1px1, . . . , xn, o1, . . . , os, b1, . . . , bsq “ f̂px1, . . . , xnq `
s
ÿ

i“1

bi ¨ oi.

Then we use our Rq-Π on the following relation

R1f :“ tpu “ pC 1, P 1q;w “ ptPju
n
j“1, tP

˚
i u

s
i“1, tbiu

s
i“1, T, ρ

1qq :

pC 1, ρ1q “ MPoly.ComptPju, tP
˚
i u, tbiuq ^ @i P rssbi P t0, 1u ^

P 1 “ f 1pPj , tP
˚
i u, tbiuq ´ TR u

where C 1 “ C ˆ C˚ ˆ Cb and ρ1 “ ρ ` ρ˚ ` ρb. It can be seen that R1f matches the format
Rf 1 (for the function f 1 and a larger set of inputs) of relations supported by our Rq-Π scheme.
One change however is that the commitment C 1 cannot be created directly by ProbGen as it
contains elements that depend on a specific computation. We can solve this problem by using the
homomorphic property of the commitment scheme: namely we assume that at key generation
a commitment pC˚, ρ˚q “ MPoly.ComptP ˚i uq is created and made public, and that the prover
creates a similar commitment pCb, ρbq “ MPoly.Comptbiuq to the random coefficients. Then C 1

can be obtained as C ¨ C˚ ¨ Cb and its opening is ρ1 “ ρ` ρ˚ ` ρb.
A more precise description of the protocol is given below.

KeyGenp1λ, f̂q Ñ pPKf , SKf q:
– Run ppk, skq Ð HE.KeyGenpλq to generate the key pair for HE.
– Run crs Ð Rq-Π.Genpck,Rf 1q to generate the Rq-Π crs for the relation Rf 1 .
– For i “ 1 to s: P ˚i Ð HE.Encppk, 0q and compute a commitment pC˚, ρ˚q “ MPoly.ComptP ˚i uq.
– Set PKf “ ppk, tP ˚i u

s
i“1, C

˚, ρ˚, crs, f̂q and SKP “ psk, crsq.
ProbGenPKf pxq Ñ pσx, τxq: this is the same as in the previous section.
ComputePKf pσxq Ñ σy: parsing σx “ pC, tPiu, ρq, do the following:

– Sample b1, . . . , bsÐ$ t0, 1u uniformly at random, and compute a commitment pCb, ρbq “
MPoly.Comptbiuq (thinking of each bi as a degree-0 polynomial).

– Compute the result ciphertext P 1 Ð fptPiuq `
řs
i“1 biP

˚
i .

– Run π Ð Rq-Π.Provepcrs, pC ˆ C˚ ˆ Cb, P
1q, ptPiu, tP

˚
i u, tbiu, ρ, ρ

˚, ρbqq.
– Define σy “ pP

1, Cb, πq
VerifyPKf pτx, σyq Ñ acc: output bÐ Rq-Π.Verpcrs, pC ˆ C˚ ˆ Cb, P q, πq.

DecodeSKf pτx, σyq Ñ y: Decrypt y “ HE.Decpsk, P 1q.

Theorem 6. If HE is semantically secure and circuit private, and Rq-Π is knowledge sound
and zero-knowledge, then the VC described above is correct, secure, private and context-hiding.

Proof (Sketch). The proof of the result is rather simple. Below we provide a proof sketch. First,
notice that based on the correctness of Rq-Π and that of HE, we obtain correctness of our
protocol.
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The security follows from the knowledge soundness of the SNARK. The only detail to mention
is that we also rely on the correctness of the HE scheme in order to make sure that, for honestly
generated ciphertexts tPiu of txiu, and tP ˚i u for 0, and for binary coefficients tbiu, the ciphertext
P 1 Ð fptPiuq `

řs
i“1 biP

˚
i decrypts to f̂pxq.

Finally, we can prove context-hiding via a simple hybrid argument based on the privacy
property of the HE scheme and the zero-knowledge of our SNARK. We define the VC simulators
as follows. S1 proceeds exactly as KeyGen except that it runs the SNARK simulator pcrs, tdq Ð
SimcrspRf 1 , λq instead of Gen, and set its trapdoor to be td. S2ptd, SKf , yq first sets τ 1x “ C where
C is created as a commitment to some dummy input. Next, it creates Cb as another commitment to
a dummy value, and computes P 1 as an encryption of y using HE.Sppk, d, yq (where d is information
on the depth of f), and finally it invokes the SNARK simulator π Ð SimProvepcrs, pCˆC˚ˆCb, P

1qq.
Then S2 outputs τ 1x and σ1y “ pP

1, Cb, πq.
The indistinguishability of the keys is immediate from the zero-knowledge of the SNARK. For

the second property, we can define an hybrid simulator S1 that, with knowledge of σx, runs as
S2 but creates P 1 as in Compute. It is easy to see that the output of S1 is indistinguishable from
that of S2 by the property of HE.Hide, also by the hiding of the commitment and by the zero-
knowledge of the SNARK we obtain that the values pτ 1x, σ

1
yq generated by S1 are indistinguishable

from the ones generated using ProbGen and Compute.

5 Bivariate Polynomial Commitment

Our final goal is to build an efficient instantiation of the MUniEv-Π scheme for the evaluation
on the same point of many univariate polynomials committed with MPoly-Com. This is the key
tool for our Rq-Π scheme for computations over polynomial rings presented in Section 3.

We construct MPoly-Com and MUniEv-Π starting from a commitment scheme BivPoly.Com
for bivariate polynomials and a commit-and-prove argument BivPE-Π for the partial evaluation,
in one variable, of a committed bivariate polynomial.

In this section we recall bilinear pairings and the computational assumptions needed by
our schemes, and then we present the BivPoly.Com commitment scheme. The construction of
the BivPE-Π commit-and-prove SNARK is described in Section 6, while their conversion into
MPoly-Com and MUniEv-Π appears in Section 7.

5.1 Computational Assumptions

Security of our constructions rely on various computational assumptions. We state here our
assumptions over bilinear groups. Some of them are standard q-type assumptions in the frame of
DLog-hard groups and others are extractable (non-falsifiable) assumptions, a class of assumptions
inherent to the security of SNARKs as shown in [GW11].

Bilinear Groups. Let the generator G input a security parameter λ and output a description
of a bilinear group gk :“ pq,G,G,GT , eq Ð$Gp1λq such that

– q is a λ-bit prime;
– G,G,GT are cyclic groups of order q;
– e : G ˆ G Ñ GT is a bilinear asymetric map (pairing), which means that @a, b P Zq :

epga, gbq “ epg, gqab;
– if g and g generate G and G respectively, then epg, gq generates GT ;
– membership in G,G,GT can be efficiently decided, group operations and the pairing e are

efficiently computable, generators are efficiently sampleable, and the descriptions of the
groups and group elements each have size Opλq bits.
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The d–Strong Diffie-Hellman Assumption (d´SDH). The Strong Diffie-Hellman assump-

tion [BB08] says that given pg, gs, . . . , gs
d
q it is infeasible to compute y “ g

1
s´r for a chosen

r P Zq. In our applications, a few more group elements Σ are given as input to the adversary:

Assumption 1 (d´ SDH) The d–Strong Diffie-Hellman assumption holds relative to a bilinear
group gk if for all PPT adversaries A we have, on the probability space gk Ð Gp1λq, Σ Ð

ppg, gs, . . . gs
d
q; pg, gsqq, gÐ$G, gÐ$G, and sÐ$Zq:

Advd´sdh
A pλq :“ Pr

”

pr, yq Ð Apgk, Σq ^ y “ g
1
s´r

ı

“ neglpλq.

An adaptation of the proof in Boneh and Boyen [BB08] shows that our variant of the d´ SDH
assumption holds in the generic bilinear group model.

Knowledge of Exponent Assumptions. The knowledge of exponent (KEA) assumption
introduced by Damgard [Dam92] says that given g, gα in a group G it is infeasible to create c, ĉ
so ĉ “ cα without knowing a so c “ ga and ĉ “ pgαqa.
d-Power Knowledge of Exponent Assumption (d´ PKE) is another long-standing extractable

assumption. It says that given tg, gs, gs
2
, . . . , gs

d
, ĝ, ĝs, ĝs

2
, . . . , ĝs

d
u with ĝ “ gα, it is infeasible

to create c, ĉ where ĉ “ cα without knowing a0, a1, . . . ad that satisfy c “
śd
i“0pg

siqai .

The pd, `q–Bivariate PKE Assumption (pd, `q ´ BPKE). We introduce a bivariate power
knowledge of exponent assumption that is a simple extension of the popular d´PKE assumption.

The pd, `q–Bivariate Power Knowledge of Exponent Assumption for a bilinear group gk, noted
by pd, `q´BPKE is a hybrid between PKE assumption for d different powers of s and ` powers of
t and KEA assumption for input ph, ĥ :“ hαq P G2. It takes the two basis pg, ĝ :“ gαq, ph, ĥ :“ hαq

and all the powers tgs
itj , ĝs

itju
d,`
i,j“0 and claims that it is infeasible to create c, ĉ such that ĉ “ cα

without knowing δ, taiju
d,`
i,j“0, that satisfy c “ hδ

śd,`
i,j“0pg

sitj qaij . More formally:

Assumption 2 (pd, `q ´ BPKE) The pd, `q ´ BPKE assumption holds relative to a bilinear
group gk for the class Z of auxiliary input generators if, for every aux P Z and PPT adversary
A, there exists a PPT extractor Ext such that, on the probability space gk Ð Gp1λq, Σ Ð

pg, tgs
itju

d,`
i,j“0, tĝ

sitju
d,`
i,j“0; ph, ĥ, h

sq; pg, ĝ, gsqq, aux Ð Zpgk, Σq, g, hÐ$G, gÐ$G, α, s, tÐ$Zq,
ĝ :“ gα, ĥ :“ hα, and ĝ :“ gα:

Advd´pke
A pλq :“ Pr

«

pc, ĉ; δ, taiju
d,`
i,j“0q Ð pA}Extqpgk, Σ; auxq

epĉ, gq “ epc, gαq ^ c ‰ hδ
śd,`
i,j“0pg

sitj qaij

ff

“ neglpλq.

5.2 Knowledge Commitment for Bivariate Polynomials

Based on an efficient construction of a polynomial commitment scheme proposed by [KZG10] we
further construct a knowledge commitment scheme for bivariate polynomials that is perfectly
hiding and computationally binding. This will later allow us to use commitments in a CaP-SNARK
BivPE-Π for polynomial partial evaluation.

The commitment scheme BivPoly.Com “ pBiv.ComGen,Biv.Com,Biv.ComVer,Biv.OpenVerq
consists of four algorithms as described in Figure 3 and it is specialized for (bivariate) polynomials
P P ZqrX,Y s: the message space Mck is defined by polynomials in ZqrX,Y s of degree in X
bounded by a value d and degree in Y bounded by some value `.

Remark 7. The Biv.ComGen algorithm computes two extra values g1 :“ gs, h1 :“ hs to be added
to ck (step 4). Although these elements are not used by the commitment scheme, they are useful
to construct our Commit and Prove SNARK for partial evaluations of polynomials committed
with BivPoly.Com. In other words, used as a stand alone commitment scheme, BivPoly.Com may
have a slightly shorter commitment key ck (by removing step 4 from Biv.ComGen).
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Biv.ComGenp1λ, d, `q Ñ ck

1: gk Ð Gp1λq, g, hÐ$G, gÐ$G, α, s, tÐ$Zq
2: ĝ :“ gα, ĥ :“ hα, ĝ :“ gα

3: gij :“ gs
itj , ĝij :“ ĝs

itj
@ i ă d, j ă `

4: g1 :“ gs, h1 :“ hs

5: return ck “ tgk, pgijq
d,`
i,j“0, pĝijq

d,`
i,j“0; ph, ĥq; pg, ĝq; pg1, h1qu

Biv.Compck, P q Ñ pC, ρq

1: P :“
řd,`
i,j“0 aijX

iY j

2: ρÐ$Zq
3: c “ hρ

śd,`
i“0,j“0 g

aij
ij

4: ĉ “ ĥρ
śd,`
i“0,j“0 ĝ

aij
ij

5: C Ð pc, ĉq
6: return pC, ρq

Biv.ComVerpck, Cq Ñ b

1: C :“ pc, ĉq
2: return b :“ pepc, ĝq “ epĉ, gqq

Biv.OpenVerpck, C, P, ρq Ñ P

1: C :“ pc, ĉq, P “
řd,`
i,j“0 aijX

iY j

2: b1 Ð ComVerpck, Cq
3: b2 Ð pc “ hρ

śd,`
i,j“0 g

aij
ij q

4: return pb1 ^ b2q

Fig. 3. Our BivPoly.Com for Bivariate Polynomial

Security of the Commitment BivPoly.Com. We call BivPoly.Com a knowledge commitment,
since the prover cannot make a valid commitment without “knowing” the committed values. We
will rely on the pd, `q ´ BPKE assumption for extracting the committed polynomials. We can
state the following theorem on the security of BivPoly.Com:

Theorem 8. The commitment scheme BivPoly.Com is perfectly hiding and computationally
binding assuming the d´ SDH assumption holds in G. Moreover, assuming pd, `q ´ BPKE, the
scheme is knowledge binding.

Proof. We thus prove the required properties:

Perfect Hiding: Since C “ pc, ĉq “ pgδ, ĝδq in G2 for some δ P Zq, we have that c and ĉ are
uniformly distributed elements of G2 with the property ĉ “ cα, independently of the committed
values ai.

Computational Binding: Assume that there exists a non-uniform probabilistic time adversary
A that creates two valid openings pA “

řd,`
i,j“0 aijX

iY j , ρq and pB “
řd,`
i,j“0 bijX

iY j , τq of the
same commitment C “ pc, ĉq, i.e.,

hρgAps,tq “ hτgBps,tq.

By the homomorphic property of the commitment scheme we have zpρ´ τq `Aps, tq ´Bps, tq “
0 mod q, for some z such that h “ gz. We distinguish the following cases, with specific non-zero
polynomials for which s or t are roots:

1. Either the two randomness are the same ρ ´ τ “ 0, leading to Aps, tq ´ Bps, tq “ 0. We
reduce the case to the d ´ SDH assumption for s or the ` ´ SDH assumption for t in the
following two sub-cases:
(a) If

ř

ip
ř

jpaij´bijqt
jqXi is the zero polynomial, meaning that all the coefficients

ř

jpaij´

bijqt
j are zero @i P t0, . . . du. Since polynomials A and B are different, there exist a

ı̃ P t0, . . . du so that t is a root of the polynomial
ř

jpaı̃j ´ bı̃jqY
j .

(b) If there exists at least one index i0, such that
ř

jpai0j ´ bi0jqt
j ‰ 0, then we have that s

is a root of the polynomial defined by fixing t:
ř

ip
ř

jpaij ´ bijqt
jqXi.

2. The two randomness ρ ‰ τ , then we construct an algorithm that breaks the DLog instance
pg, h “ gzq.

We now conclude that with non-zero polynomials such that s or t is a root we break the d´SDH
assumption for s or the `´ SDH assumption for t, and then we explain how we break discrete
logarithm in the latter case:
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1. We will study separately the two sub-cases, one reduction to d´ SDH assumption for s, and
another one for `´ SDH assumption for t.
(a) Consider an adversary A against the commitment scheme that breaks the binding with

non-negligible probability ε. The probability of A producing a pair A,B satisfying the
first case, sub-case (a) is at least ε{4. We show how to construct an algorithm BSDH

1

against `´ SDH assumption for t that calls the adversary A. The adversary BSDH
1 using

its challenge

σ “ pg, gs, . . . , gs
d
, pg, gsqq

picks random scalars α, tÐ$Zq and computes a commitment key ck for A:

ck “ tgk, pgijq
d,`
i,j“0, pĝijq

d,`
i,j“0; ph, ĥq; pg, ĝqu.

Consider that A outputs C “ pc, ĉq, two scalars ρ “ τ and two polynomials A and B
that both pairs pρ,Aq and pτ,Bq are valid openings.
This means we have that Aps, tq´Bps, tq seen as a polynomial in s, t equals to 0. Knowing
that for some index ı̃, we have

ř

jpaı̃j´bı̃jqt
j “ 0, the adversary BSDH

1 is able to compute

g
1
t in the following way: Consider cj0 “ aı̃j0 ´ bı̃j0 the first non-zero coefficient of the

polynomial
ř

jpaı̃j ´ bı̃jqY
j . We have that gcj0 t

j0
“ g´t

j0Qptq, so g
1
t “ g

´
Qptq
cj0 for some

polynomial QpY q of degree ă `´ cj0 . BSDH
1 is then able to solve the d´ SDH instance.

(b) For the second case, the adversary BSDH
2 against d ´ SDH assumption for s runs an

adversary A that outputs a second-type (b) forgery. In the same manner, the adversary
BSDH
2 using its challenge picks random scalars α, tÐ$Zq and computes a commitment

key ck for A.
We show how to construct an algorithm BSDH

2 against d´ SDH assumption for s that
calls the adversary A. The adversary BSDH

2 using its challenge

σ “ pg, gs, . . . , gs
d
, pg, gsqq

picks random scalars α, tÐ$Zq and computes a commitment key ck for A:

ck “
 

gk, pgijq
d,`
i,j“0, pĝijq

d,`
i,j“0; ph, ĥq; pg, ĝq

(

.

In a similar way as in the previous case, with the non-zero polynomial for which s is a
root, BSDH

2 is able to compute g1{s and solve the d´ SDH instance.
2. For this case we construct an algorithm B that uses A to efficiently solve a DLog instance.

Given a DLog instance pg, h “ gzq, the algorithm B chooses α, s, tÐ$Zq, sets ĝ :“ gα, ĥ :“ hα

and presents

ck “
 

gk, pgijq
d,`
i,j“0, pĝijq

d,`
i,j“0; ph, ĥq; pg, ĝq

(

.

to A.
Since this ck has the same distribution as a real common reference string there is a over-
whelming probability for adversary A to return two valid openings for the same commitment
C.
Consider that A outputs C “ pc, ĉq, two scalars ρ, τ and two polynomials A and B that
both pairs are valid openings.
Therefore, we have that gzpρ´τq`Aps,tq´Bps,tq “ 1 which implies zpρ´τq`Aps, tq´Bps, tq “ 0.

B is then able to compute the discrete logarithm value z “ Bps,tq´Aps,tq
ρ´τ . It is easy to see

that the success probability of B solving the DLog instance is a small constant inferior to
the advantage of A in breaking the binding property of the commitment scheme.

Knowledge Commitment: The existence of a non-uniform probabilistic polynomial time
knowledge extractor Ext that extract the contents of the knowledge commitment made by a
non-uniform probabilistic polynomial time committer A that outputs a valid pair pc, ĉq follows
directly from the pd, `q ´ BPKE assumption.
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BivPE-Π.Genpck,Rckq Ñ crs :“ ck

BivPE-Π.Provepcrs, u, wq

1: pC,C 1, kq :“ u, pP,Q, ρ, ρ1q :“ w
2: W :“

`

P ´Q
˘

{pX ´ kq
3: pD,ωq Ð Biv.CompW q
4: g̃ :“ h1{h

k, x, yÐ$Zq
5: U :“ ephxg̃y, gq
6: eÐ Hashpu,D,Uq
7: σ “ x´ pρ1 ´ ρqe mod q
8: τ “ y ´ ωe mod q
9: return π :“ pD, e, σ, τq

BivPE-Π.Verpcrs, u, πq Ñ b

1: pC,C 1, kq :“ u, pD, e, σ, τq :“ π
2: pc, ĉq :“ C, pc1, ĉ1q :“ C 1, pd, d̂q :“ D
3: b1 Ð Biv.ComVerpCq
4: b2 Ð Biv.ComVerpC 1q
5: b3 Ð Biv.ComVerpDq
6: A “ epd, g1{g

k
q ¨ epc{c1, gq´1

7: U :“ ephσ g̃τ , gqAe, s.t. g̃ :“ h1{h
k

8: b4 Ð pe “ Hashpu,D,Uqq
9: return pb1 ^ b2 ^ b3 ^ b4q

Fig. 4. Our CaP-SNARK for Bivariate Polynomial Partial Evaluation

6 CaP-SNARK for Bivariate Polynomial Evaluation

In this section we show how to construct a commit-and-prove SNARK BivPE-Π for the partial
evaluation in a single variable of bivariate polynomials.

6.1 Relations for Bivariate Polynomial Partial Evaluation

The relation R for partial evaluation of bivariate polynomials is defined over tuples pk, P pX,Y q, QpY qq P
Zq ˆ ZqrX,Y s ˆ ZqrY s as follows

R :“ tpk, P pX,Y q, QpY qq : QpY q “ P pk, Y qu.

The scheme we propose in this section is a Commit-and-Prove (CaP) SNARK for the above R
where P P ZqrX,Y s and Q P ZqrY s are committed in C and C 1 respectively using BivPoly.Com.
3

Namely, following the definition from Section 2.2, BivPE-Π is a zk-SNARK for the following
commit-and-prove relation

Rck :“ tpu “ pC,C 1, kq;w “ pP,Q, ρ, ρ1qq : (1)

pC, ρq “ Biv.CompP q ^ pC 1, ρ1q “ Biv.CompQq ^ QpY q “ P pk, Y qu.

6.2 Our BivPE-Π Scheme for Bivariate Polynomial Evaluation

We aim to build an efficient commit-and-prove SNARK, BivPE-Π, dedicated to partial evaluation
for bivariate polynomials P P ZqrX,Y s in X “ k P Zq.

Our scheme is based on an algebraic property of polynomials. We remark that pX ´ kq
perfectly divides the polynomial P pX,Y q ´ P pk, Y q for k P Zq.

BivPE-Π works for an (R-independent) bivariate polynomial commitment scheme BivPoly.Com “

pBiv.ComGen,Biv.Com,Biv.ComVer,Biv.OpenVerq, as detailed in Figure 4, and has to satisfy com-
pleteness, succinctness, zero-knowledge and knowledge-soundness.

Description of Our BivPE-Π Protocol. Let BivPoly.Com be a bi-variate polynomial knowledge
commitment scheme. We construct a zero-knowledge SNARK scheme for any relation Rck with
respect to some bounds d, ` on the degrees in X and in Y of the polynomials P P ZqrX,Y s
supported by BivPoly.Com. Our protocol is formally depicted in Figure 4.

CRS generation. The setup algorithm outputs a crs enabling the proof and verification of
statements for the associated relation Rck defined in Eq. (1).

We remark that Gen algorithm is just using the same public information (commitment key)
ck from the BivPoly.Com scheme.

3 Note that, although Q is a uni-variate polynomial in Y , it can also be seen as a bivariate polynomial.
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Prover. Given crs, the statement u “ pC,C 1, kq (two commitments C,C 1 and an evaluation point
k) and the witness w “ pP,Q, ρ, ρ1q (the corresponding polynomials P P ZqrX,Y s, Q P ZqrY s
and their randomness ρ, ρ1), the prover proceeds to compute a proof π that P pk, Y q “ QpY q,
pC, ρq “ Biv.CompP q, and pC 1, ρ1q “ Biv.CompQq in two steps:

Step 1. (From 1 to 3 in the Prove algorithm from Figure 4.) The prover computes a witness
to the correct (partial) evaluation in k P Zq of the polynomial P P ZqrX,Y s as P pk, Y q “
Q P ZqrY s. The witness of this evaluation is a polynomial W P ZqrX,Y s defined as the

quotient W :“ P pX,Y q´QpY q
X´k . This is a well-defined polynomial in ZqrX,Y s if and only if

P pk, Y q “ Q P ZqrY s. The element of the proof π that enables checking this algebraic

property over the polynomials P and Q will be a commitment pD “ pd, d̂q, ωq to the
polynomial W , where ωÐ$Zq is a fresh randomness.

Remark 9. To this point, the verifier should be convinced that the polynomial Q is the good
evaluation in k of P , only by checking the corresponding polynomial equation evaluated in a
random hidden point ps, tq : W ps, tqps ´ kq “ P pk, tq ´ Qptq. This can be translated in terms
of commitments pC, ρqpC 1, ρ1q, pD,ωq to P,Q,W as a pairing check: epd, g1{g

kq ¨ epc{c1, gq´1 “
ephps´tqω´pρ´ρ

1q, gq where C “ pc, ĉq, C 1 “ pc1, ĉ1q, D “ pd, d̂q.
Because of the hiding property, the verifier does not have access to the openings of the

commitments, as it does not know the randomness ρ, ρ1, ω.
We therefore need the prover to provide something more together with the commitment D.

The prover needs to compute an extra proof of knowledge of the randomnesses ω used to create
this comitment and of the correct relation to satisfy with respect to the randomness ρ, ρ1 of
the statement commitments C,C 1 such that the pairing expression cancels the respective terms
hpρ´ρ

1q and hps´tqω.
This is easily solved by building a Schnorr proof of knowledge of the exponents ω, pρ1´ρq that

appear in A “ ephps´kqω´pρ´ρ
1q, gq “ ephpρ

1´ρqhps´kqω, gq. If we define g̃ :“ h1{h
k “ hs´k, then

this proof is a classical Schnorr proof for the public value A “ ephρ
1´ρg̃ω, gq “ eph, gqρ

1´ρ ¨epg̃, gqω

in the target group G. But we will show we can make it more efficient.

Step 2. (From 4 to 7 in the Prove algorithm from Figure 4.) This step consists in this non-
interactive Schnorr proof associated to the value A “ ephρ

1´ρg̃ω, gq:
– Choose x, y P Zq,
– Define U “ ephxg̃y, gq, this corresponds to the first round in the interactive Schnorr

proof protocol, where the prover sends its commitment.
– Sample the challenge to the Schnorr proof by running the random oracle (hash function)

on input the statement to be proven and the commitment U: eÐ Hashpu,D,Uq,
– Compute the answers σ “ x´ pρ1 ´ ρqe mod q and τ “ y ´ ωe mod q.

The values sent as Schnorr proof are three scalars e, σ, τ , where e is the output of the hash
function Hashpu,D,Uq and does not depend on the size of U P GT . After the two described
steps, the prover algorithm outputs π :“ pD, e, σ, τq.

Verifier. First, the verifier parses the received statement and proof (steps 1 and 2 in the
Ver algorithm from Figure 4), then it makes sure the commitments C,C 1, D are well-formed
(steps 3 to 5 in the Ver algorithm from Figure 4) by running the Biv.ComVer algorithm. If
this is not the case, we discard the proof π. To verify the proof π, one needs the polynomial
equation W pX,Y qpX ´ kq “ P pk, Y q ´ QpY q to hold for some secret evaluation points ps, tq.
We can rewrite this equation in terms of pairings applied to the commitments pC,C 1, Dq:
epd, g1{g

kq ¨ epc{c1, gq´1. If the polynomials W,P,Q evaluated in the secret points s, t satisfy the
equation W ps, tqps´kq “ P pk, tq´Qptq, then all the exponents in base g cancel out in the pairing
expression. It is not the case for the exponents in base h which correspond to the randomness
used in the commitments. The important remark is that if D is correct, the remaining value
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A “ epd, g1{g
kq ¨ epc{c1, gq´1 can be written only in terms of the 3 randomness ρ, ρ1, ω used to

commit to P,Q,W :
A “ ephps´kqωhpρ

1´ρq, gq “ ephρ
1´ρg̃ω, gq.

This can be checked by the usual verification procedure of the Schnorr proof transmitted in π,
i.e. the values pe, σ, τq: Compute A “ epd, g1{g

kq ¨ epc{c1, gq´1 and U “ ephσ g̃τ , gq ¨ Ae then run
the Hash function to check whether e “ Hashpu,D,Uq.

Security of BivPE-Π. The security of our scheme is captured in the following theorem whose
proof is elaborated in Section 8:

Theorem 10. Assuming both the d´ SDH and pd, `q ´ BPKE assumptions hold in the bilinear
group gk, the protocol CaP-BivPE-Π is a zero-knowledge Succinct Non-Interactive Argument of
Knowledge in the random oracle model.

Random Oracle Model. We point out that in the case one is not interested in hiding the
committed bivariate polynomial P and its partial evaluation Q, then it is possible to define a
simplified version of our scheme that does not need the Schnorr-style proof and thus is secure
without random oracles. This protocol is the same as CaP-BivPE-Π except that one would set
ω “ ρ “ ρ1 “ 0 (so the commitments are no longer hiding); this way the evaluation proof can be
just the commitment D and it can be verified with the pairing check epd, g1{g

kq “ epc{c1, gq.

7 CaP-SNARK for Simultaneous Evaluations

In this section we show how we can use our BivPE-Π scheme for the partial evaluation of one
bivariate polynomial on a point k in order to prove the evaluation of many univariate polynomials
on the same point k. The resulting scheme MUniEv-Π can be used in the protocol presented in
Section 4 for verifiable computation using HE on Ring-LWE.

More precisely, we show how to use our BivPoly.Com and BivPE-Π to define a commitment
scheme and a compact proof system dedicated to multi-polynomials evaluation in the same
random point k: given a single compact knowledge commitment C for a set of univariate
polynomials tPjpXquj P ZqrXs and a public evaluation point k P Zq, we want to prove that some
values tpjuj committed in C 1 are indeed evaluations of the committed polynomials in this point
k.

7.1 Commitment for Multiple Univariate Polynomials

We describe below, MPoly-Com, our new knowledge commitment for a set of univariate poly-
nomials. It is obtained in a straightforward way from BivPoly.Com. It is defined as follows,
where for simplicity we consider `` 1 committed univariate polynomials Pj “

řd
i“0 pijX

i for all
0 ď j ď `, 0 ď i ď d:

MPoly.ComGenp1λ, d, `q Ñ ck: Given some degree bound d and some maximal bound `` 1 on
the cardinal of the polynomial set to be committed, it runs ck Ð Biv.ComGenp1λ, d, `q, where
d, ` are the bounds on the degrees on X and Y of the bivariate polynomials in ZqrX,Y s.

MPoly.Compck, tPju0ďjď`q Ñ pC, ρq: Given a set tPju of ` ` 1 polynomials in ZqrXs, with co-

efficients tpiju
iďd,jď`
i,j“0 we can define the bivariate polynomial P “

řd,`
i,j“0 pijX

iY j and run
pC, ρq Ð Biv.Compck, P q;

MPoly.ComVerpck, C “ pc, ĉqq Ñ 0{1: Runs bÐ Biv.ComVerpck, C “ pc, ĉqq;

MPoly.OpenVerpck, C, tPju0ďjď`, ρq Ñ tPjuj: Runs P Ð Biv.OpenVerpck, C, P, ρq where P is

parsed as
řd,`
i,j“0 pijX

iY j . then output 1, else output 0 (reject).

We state the following theorem. Its proof simply follows from the way we encode multiple
polynomials into a bivariate one.
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Theorem 11. This commitment scheme MPoly-Com is perfectly hiding, computationally binding,
and knowledge binding assuming the scheme BivPoly.Com also is so.

Proof. Let us show these three properties from the initial BivPoly.Com commitment.

Perfect hiding: Since C “ pc, ĉq in G2 is generated by Biv.Com algorithm, and BivPoly.Com is
hiding, we have that MPoly-Com is perfectly hiding as well.

Computational binding: Assume that there exists a non-uniform probabilistic time adversary
A that given a commitment C “ pc, ĉq creates two valid openings ptAjuj , ρq, ptBjuj , τq, where all
Aj , Bj P ZqrXs. Then we create an adversary B against the binding of BivPoly.Com that runs A
and outputs the pair of polynomials in ZqrX,Y s as follows A :“

ř`
j“0AjY

j and B :“
ř`
j“0BjY

j .
We have that pA, ρq and pB, ρq are two valid openings for the commitment C. This breaks the
binding property of BivPoly.Com.

Knowledge binding: This property follows directly from the knowledge binding of BivPoly.Com
scheme.

7.2 Succinct Proof of Multiple Evaluations in a Point k

The construction of an efficient MUniEv-Π dedicated to multiple uni-variate polynomial evalu-
ations in some common point k follows as well from the BivPE-Π scheme we built for partial
evaluations. More precisely, for some parameters d, ` and some given knowledge commitments
C,C 1 for polynomials of maximal degree d, tPju0ďjď` P ZqrXs and scalars tpju0ďjď` P Zq and
a public evaluation point k P Zq, we want to prove that pj is the evaluation Pjpkq for any
0 ď j ď `.

Description of Our CaP MUniEv-Π Protocol. We now describe our protocol for proving
multiple uni-variate polynomial evaluations in some common point k, where the j index is always
considered as 0 ď j ď `, and thus for `` 1 polynomials:

MUniEv-Π.Genp1λ,Runiq Ñ crs: On input a security parameter λ P N and a NP relation
Runi :“ tpu “ ptPjuj , kq;w “ tpjuq : Pjpkq “ pju, define the associated relation Rbi :“

tpu “ pP pX,Y q, kq;w “ QpY qq : QpY q “ P pk, Y qu where P pX,Y q :“
ř`
j“0 PjY

j , QpY q :“
ř`
j“0 pjY

j . Output the common reference string by running crs Ð Genpck,Rbiq;

MUniEv-Π.Provepcrs, u “ pC,C 1, kq, w “ ptPjuj , tpjuj , ρ, ρ
1q: Given crs, the instance u and the

witness w, the prover defines new bi-variate polynomials P pX,Y q :“
ř`
j“0 PjY

j , QpY q :“
ř`
j“0 pjY

j and compute the proof π for those: π Ð Provepcrs, u “ pC,C 1, kq, w “ pP,Q, ρ, ρ1q.
Output π :“ pD, e, σ, τq;

MUniEv-Π.Verpcrs, u, πq Ñ b: Same algorithm as for partial-evaluation BivPE-Π.

Remark 12. The commitment D to the bivariate polynomial W P ZqrX,Y s that appears in
the proof can be seen as a commitment to a vector of univariate polynomials tWjuj using the

MPoly-Com as follows: Write Wj “
řd
i“0wijX

i, then running MPoly.Compck, tWjujq gives the
same output pD,ωq as running Biv.Compck,W q.

Theorem 13. Assuming the BivPE-Π is a public coin argument of knowledge of openings of
C and C 1 to some polynomials P P ZqrX,Y s, Q P ZqrY s such that P pk, Y q “ QpY q, then
MUniEv-Π is a public coin argument of knowledge of openings of C and C 1 to a set of polynomials
tPjuj P ZqrXs and a set of scalars tpjuj P Zq such that Pjpkq “ pj@0 ď j ă `.

Proof. We prove the required properties:

Correctness. Follows from the BivPE-Π correctness.
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Knowledge Soundness. We first build a knowledge-extractor. This knowledge extractor
directly follows from Theorem 14 and an extended extractor can be defined as in Theorem 15.
For any adversary B against BivPE-Π, there exists an aggregated machine B˚ that outputs the
same as B together with a extended witness wit “ pP, ρ,Q, ρ1,W, ωq.

From the output of this extended machine B˚ we can further extract tPj :“
řd
i“0 pijX

iuj , tpj :“

qjuj ,Wj :“
řd
i“0wijX

iuj just by reading the respective coefficients pij , qj , wij from the bivariate

polynomials P “
řd,`
i,j“0 pijX

iY j , Q “
ř`
j“0 qjY

j , and W “
řd,`
i,j“0wijX

iY j .
Therefore, for any adversary A against the MUniEv-Π protocol, there exists an extended ma-

chine A˚ that runs the aggregate machine B˚ under its output and further returns the same state-
ment and proof as A toghether with an extended witness wit “ ptPjuj , ρ, tpjuj , ρ

1, tWju, ω; δ, γq,
where Pj ,Wj P ZqrXs, pj P Zq are the openings of the commitments pC,C 1, Dq under randomness
ρ, ρ1, ω and δ, γ are such that A “ epd, g1{g

kq ¨ epc{c1, gq´1 “ ephδ g̃γ , gq.

Soundness. We reduce the soundness of MUniEv-Π to the soundness of BivPE-Π. Suppose there
exists an adversary A against the soundness of MUniEv-Π, with the corresponding associated
extended machine A˚ that outputs a cheating proof π˚ that passes the verification check with
non-negligible probability. We then build an efficient adversary B against BivPE-Π that runs the
machine A˚ to break the protocol with non-negligible probability.

B runs A˚ that outputs the corresponding tuple proof-statement-witness u “ pC,C 1, kq, π˚ “
pD, e, σ, τq,wit “ ptPjuj , ρ, tpjuj , ρ

1, tWju, ω; δ, γq. Then, we can define some corresponding
bivariate polynomials as follows and build an extractor for B: We have the corresponding
polynomials P P ZqrX,Y s and Q P ZqrY s defined from the univariate polynomials extracted

above: P pX,Y q :“
ř`
j“0 PjpXqY

j , QpY q :“
ř`
j“0 pjY

j .
We know by our assumption that in the output of A˚ there exists at least one j0 P t0, . . . `u

such that Pj0pkq ‰ pj0 . Then it follows that the previous defined P and Q do not satisfy the
required statement: P pk, Y q ‰ QpY q, wich breaks the soundness of the BivPE-Π. [\

7.3 Efficiency and Comparison

We summarize the performance of our scheme MUniEv-Π in terms of prover and verification
time and proof size. The proof consists of 2 elements from the group G and 3 elements of Zq.
Generating a proof for ` polynomials of degree d requires a total of 2`d exponentiations in G in
order to compute the commitment D, and Op`d log dq operations in Zq in order to compute the
polynomial W pX,Y q using polynomial division.4 Verifying a proof requires 5 pairings, and the
following number of exponentiations: 6 in G, 1 in G and 1 in GT .5

We compare MUniEv-Π against a solution based on a general-purpose SNARK restricted
to proving multiple polynomial evaluations in a commit-and-prove fashion. For the latter, we
choose the LegoGroth16 scheme from [CFQ19], which makes the SNARK of [Gro16] (which is
currently among the most efficient SNARKs) to efficiently work with committed inputs, and that
achieves the following efficiency. The proof consists of 4 elements of G and 1 element of G. Let m
and n be the size and degree of the QAP modeling the evaluation of ` polynomials of degree d,
and note that m,n ě `d. Proof generation requires 2m` n` `d` ` and m exponentiations in G
and G respectively, as well as Opn log nq operations in Zq for a polynomial division. Verification
requires 7 pairings.

The analysis above shows that our scheme MUniEv-Π has slightly smaller proofs and, more
notably, has faster proof generation. Considering that m,n ě `d and that G operations are at
least twice slower than in G, our prover is at least 3 times faster.
4 Note that W can be computed by aggregating the results of ` polynomial divisions of degree d.
5 The numbers are obtained by observing that the six pairings for Biv.ComVer can be batched resulting into 2

pairings and 4 exponentiations in G.
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Provepcrs, u, wq

1: W :“ pP ´Qq{pX ´ kq
2: pD,ωq Ð Biv.CompW q
3: x, yÐ$Zq
4: U :“ ephxg̃y, gq
5: eÐ Hashpu,D,Uq

6: σ “ x´ pρ1 ´ ρqe
7: τ “ y ´ ωe
8: π :“ pD, e, σ, τq

SimProve
pcrs, u “ pC,C 1, kqq

1: W˚ :“ 0 P ZqrX,Y s
2: pD˚ “ pd, d̂q, ωq Ð Biv.CompW˚

q

3: e, x, y, kÐ$Zq, A “ epd, g1{g
k
qepc{c1, gq´1

4: U˚ “ ephxg̃y, gqAe
5: If Hashpu,D˚,U˚q P Query, abort

Else, Hashpu,D˚,U˚q :“ e
6: σ :“ x
7: τ :“ y
8: π :“ pD˚, e, σ, τq

Fig. 5. A Simulator for the Zero-Knowledge.

8 Security Analysis of our CaP BivPE-Π

In what follows we prove the main security result of our paper, Theorem 10.

Correctness. Correctness of our protocol can be proved by direct verification: if the commitments
C,C 1, D are honestly generated, the checks the Ver algorithm does all pass through. We consider
C “ hρgP ps,tq, C 1 “ hρ

1

gp, D “ hωgW psq, where Q “ P pk, Y q and W pX,Y q “ P pX,Y q´P pk,Y q
px´kq . We

have that U :“ ephxg̃y, gq and the verifier computes U from u and π as follows:

U “ ephσ g̃τ , gq ¨ Ae “ ephσ g̃τ , gq ¨ epd, g1{g
kqe ¨ epc{c1, gq´e

“ ephσ g̃τ , gq ¨ ephωgW psq, gs´kqe ¨ ephρ´ρ
1

gP ps,tq´p, gq´e

“ ephσ g̃τ , gq ¨ eph, gqeps´kqω ¨ epg, gqeps´kqW psq ¨ eph, gqepρ
1´ρq ¨ epg, gq´epP ps,tq´pq

“ ephσ g̃τ , gq ¨ eph, gqeps´kqω`epρ
1´ρq “ ephσ g̃τ , gq ¨ ephepρ

1´ρqg̃eω, gq “ ephxg̃y, gq.

Zero-Knowledge. We consider the case of a honest verifier Ver to prove zero-knowledge of our
scheme, as we use the Fiat-Shamir heuristic to convert it into a non-interactive proof [PS00].
We thus have to construct a simulator Sim “ pSimcrs,SimProveq, where Simcrs is the same as
Gen algorithm and outputs pcrs, trap :“Kq. SimProve is able to generate a simulated proof for
any commitments C,C 1 and any k by committing any W ˚ (we can use W ˚ :“ 0) and then
simulating the Schnorr’s proof. We proceed with a sequence of games in order to show the
indistinguishability of the simulation.

Hybrid 0. This is the real protocol, described in Figure 5, where proof π is generated by
Prove algorithm.

Hybrid 1. In this game, we use the witness of the evaluation, w “ pP,Q, ρ, ρ1q, and we
generate W P ZqrX,Y s as in step 1 of the real protocol, but in order to generate the proof π, we
run instead the zero-knowledge simulator of the Schnorr proof (as in the lines 4 to 8 in SimProve

procedure). Based on the fact that x, y are picked uniformly at random, U is uniformly random
as well and the probability that the value pu,D,Uq had already been queried to the Hash oracle
is qh{q, where qh is the number of queries asked to the oracle and q is the order of the group. It
follows that the probability of this simulator to be distinguishable from the real proof algorithm
is as well negligible.

Hybrid 2. The SimProve algorithm described in Figure 5 outputs the proof. Based on the
perfectly hiding property of the commitment scheme the values D˚ and D in the two hybrids 1
and 2 are indistinguishable.

Knowledge Soundness. Before going into the technical details of the proof, we provide some
intuition about its strategy. The polynomial commitment scheme BivPoly.Com requires the prover
Prove to exhibit two values pc, ĉq, that are the same encoding of coefficients of a polynomial
P pX,Y q in the exponent, but with respect to different bases. The reason that we require the
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prover to duplicate its effort w.r.t. α is so that the simulator in the security proof can extract
representations of pc, ĉq as a polynomial P pX,Y q, under the pd, `q ´ BPKE assumption.

Suppose an adversary A manages to forge a SNARK of a false statement that nonetheless
passes the verification test. The intuition behind the proof is to use the adversary A and the
fact that the commitment scheme BivPoly.Com is extractable to be able to solve the d´ SDH
assumption for d “ degpP q in X. There is a similar complementary case that allows this adversary
to solve the d´ SDH assumption for d “ degpP q in Y (actually ` in our notations).

To proceed to proving Theorem 10, we first need two preliminary lemmas:

Lemma 14 (Global Extractor). Assume that BivPoly.Com is an extractable commitment
scheme with perfect hiding and computational binding properties and that pd, `q´BPKE assumption
holds in the bilinear group gk. For any PPT adversary AKS agains the knowledge soundness of
BivPE-Π that has non-negligeable probability of success in breaking the scheme, there exists an
extractor Ext such that:

Pr

»

—

—

—

—

–

crs Ð BivPE-Π.Genp1λ,Rq, z Ð Zpcrsq
C “ Biv.CompP, ρq ppu, πq; witq Ð pAKS}Ext˚qpcrs, zq

^ C 1 “ Biv.CompQ, ρ1q u :“ pC,C 1, kq, π :“ pD,U, σ, τq
^ D “ Biv.CompW,ωq wit :“ pP, ρ,Q, ρ1,W, ωq

BivPE-Π.Verpcrs, u, πq “ 1

fi

ffi

ffi

ffi

ffi

fl

“

“ 1´ neglpλq.

Proof. We show the existence of an extractor Ext˚ that will output the polynomials P pX,Y q,
QpY q, W ˚pX,Y q and the randomness ρ, ρ1, ω corresponding to the commitments C,C 1, D, with
overwhelming probability.

Let AKS be an adversary that breaks the KS of the protocol BivPE-Π with overwhelming
probability, meaning it outputs a false proof that passes the verifier checks. Consider now the
adversary BBPKE that takes as input σ Ð pg, tgs

itju
d,`
i,j“0, tĝ

sitju
d,`
i,j“0; ph, ĥ, h

sq; pg, gα, gsqq and

runs the adversary AKS against the scheme. BBPKE can provide a valid CRS to AKS by using its
inputs:

crs “ tgk, pgijq
d,`
i,j“0, pĝijq

d,`
i,j“0; ph, ĥ, h1q; pg, g

α, g1qu.

The statement u, corresponding to π Ð AKSpcrsq, contains the values C :“ pc, ĉq, C 1 :“ pc1, ĉ1q
that verify epc, ĝq “ epĉ, gq and epc1, ĝq “ epĉ1, gq. The same holds for the value D provided in
the proof π “ pD, e, σ, τq, i.e. epd, ĝq “ epd̂, gq.

Provided that for any adversary BBPKE that outputs valid commitment pair pc, ĉq, there
exists an extractor that returns the corresponding witness (the opening). We run the extractor
ExtB associated to BBPKE for each of the inputs C “ pc, ĉq, C 1 “ pc1, ĉ1q, D “ pd, d̂q. This returns
the description of polynomials P pX,Y q, QpY q,W ˚pX,Y q and some scalars ρ, ρ1, ω. Note that
the existence and efficacy of ExtB is guaranteed by the pd, `q ´ BPKE assumption. We will then
define a general extractor Ext˚ associated to the adversary AKS by running ExtB on the same
input. We call this global algorithm composed of the adversary AKS and the general extractor
Ext˚, machine M :“ AKS||Ext˚. [\

Lemma 15 (Extended Adversary Machine). Assume that pd, `q´BPKE assumption holds
in the bilinear group gk and that Schnorr proof used in the BivPE-Π protocol is sound. For
any PPT adversary AKS against the knowledge soundness of the scheme BivPE-Π that outputs
u “ pC,C 1, kq, π “ pD, e, σ, τq, where C,C 1, D are well-formed commitments under BivPoly.Com
and the proof π verifies, i.e. Verpcrs, u, πq, there exists a machine, extended adversary A˚ that
outputs the same as AKS together with an extended witness wit “ pP, ρ,Q, ρ1,W, ω, δ, γq, where
P,W P ZqrX,Y s, Q P ZqrY s are the openings of the commitments pC,C 1, Dq under randomness
ρ, ρ1, ω and δ, γ are such that A “ epd, g1{g

kq ¨ epc{c1, gq´1 “ ephδ g̃γ , gq.
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Proof. We use the previous defined machine M from Theorem 14 and the rewinding tech-
nique [PS00] for proving the soundness of the Schnorr’s proof to extract the scalars δ, γ such
that A “ ephδ g̃γ , gq: Consider the game between the challenger and the machine M against
the soundness of the Schnorr’s proof. The challenger runs M by fixing the values pC,C 1, Dq
and changing the oracle definition to get a fork with e1 Ð HashpU,D,Uq ‰ e. The forger M
will output two distinct forgeries corresponding to the same random oracle query, but for two
distinct answers of the random oracle, e and e1. The Forking Lemma shows that by rewinding
the adversary Opqh{εq times, where qh is the maximal number of random oracle queries of the
machine M and ε its success probability, then one finds two such forgeries pσ, τq, pσ1, τ 1q with
constant probability, which enables to compute the values δ, γ such that A “ ephδ g̃γ , gq.

Using the existence of Ext˚ extractor and of the algorithm that rewinds the machine M in
order to obtain the output δ, γ as described before, we can define an aggregate machine A˚
corresponding to the concatenation of both. This machine A˚ takes the same input as AKS and
outputs the witness corresponding to the commitment openings pP, ρq, pQ, ρ1q, pW,ωq and two
scalars δ, γ satisfying A “ ephδ g̃γ , gq. [\

Knowledge Soundness. We now have all the tools to prove the soundness in two steps.

Step 1. First we show that for every PPT adversary AKS against the soundness of the protocol,
there exists an extractor ExtA that runs on the same input and random coins as AKS and outputs
a witness. Defining the extractor ExtA is straightforward from the Theorem 14 by running the
Ext˚ and keeping just the values pP, ρ,Q, ρ1q from its output.

Assuming the existence of an adversary AKS and extractor ExtA that has a non-negligible
success probability in winning the soundness game against the protocol BivPE-Π, we now show
that we can either solve the discrete logarithm problem, or break the d´ SDH assumption.

Step 2. Suppose the machine A˚ associated to AKS defined in the Theorem 15 is able to output
a cheating pair statement-proof u “ pC,C 1, kq, π “ pD, e, σ, τq and a witness wit “ pρ, ρ1, ω, P,
Q˚,W ˚, pδ, γqq such that it passes verification checks, but the extracted values P P ZqrX,Y s, Q˚ P
ZqrY s are not satisfying the expected relation Q˚pY q “ P pk, Y q.

For simplicity, we will call ∆ “ ρ1 ´ ρ. Assuming that the commitment scheme is binding,
then one of the following scenarios must hold:

1. The polynomials extracted do not satisfy the correct relation not even when evaluated in

s: W ˚ps, tq ‰ P ps,tq´Q˚ptq
s´k . This type of forgery can be reduced to the DLog problem for

pg, hq P G, in the case 1 below (see Theorem 16);
2. The polynomial W ˚ P ZqrX,Y s committed in D does not satisfy the correct relation

with respect to the other extracted values P,Q˚, but still evaluated in s, t we have that

W ˚ps, tq “ P ps,tq´Q˚ptq
s´k . We reduce the case to the d´ SDH assumption, in the case 2 below

(see Theorem 17).
[\

Lemma 16 (Case 1). Consider the adversarial machine A˚ associated to AKS defined by
the Theorem 15 that outputs some values u “ pk,C,C 1, D, e, σ, τq and pρ, P, ρ1, Q˚, ω,W ˚, δ, γq,
such that P pk, Y q ‰ Q˚pY q, where P,W ˚ P ZqrX,Y s, Q˚ P ZqrY s and pP, ρq, pQ˚, ρ1q, pW ˚, ωq
are the openings of the commitments pC,C 1, Dq and pδ, γq satisfy A :“ ephωgW

˚ps,tq, g1{g
kq ¨

eph´∆gP ps,tq´Q
˚ptq, gq´1 “ ephδ g̃γ , gq. Given that the verification check outputs 1 for π, there is

a negligible probability that the values k, P,Q˚,W ˚ are such that W ˚ps, tq ‰ P ps,tq´Q˚ptq
ps´kq under

DLog assumption with respect to the group G.

Proof. Let BDLog be an adversary that gets the challenge pg, hq P G and simulates the crs to A˚
by picking α, s P Zp and computing the missing elements. We define g̃ :“ hs´k, and we denote
δ, γ, the two outputs of A˚ such that A “ ephδ g̃γ , gq. Assuming the binding of the commitment
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scheme, the check in the verification step of the scheme gives us: ephps´kqωgps´kqW
˚ps,tq, gq ¨

ephρ´ρ
1

gP ps,tq´Q
˚ptq, gq´1 “ ephδ g̃γq. By the non-degeneracy of the pairing map, it must be that

hδ`ps´kqγ´∆´ps´kqω “ gps´kqW
˚ps,tq´P ps,tq`Q˚ptq.

Since ps´ kqW ˚ps, tq ´ P ps, tq `Q˚ptq ‰ 0, we can extract the discrete logarithm of h in basis
g. [\

Lemma 17 (Case 2). Consider the adversarial machine A˚ associated to AKS defined by
the Theorem 15 that outputs some values u “ pk,C,C 1, D, e, σ, τq and pρ, P, ρ1, Q˚, ω,W ˚, δ, γq,
such that P pk, Y q ‰ Q˚pY q, where P,W ˚ P ZqrX,Y s, Q˚ P ZqrY s and pP, ρq, pQ˚, ρ1q, pW ˚, ωq
are the openings of the commitments pC,C 1, Dq and pδ, γq satisfy A :“ ephωgW

˚ps,tq, g1{g
kq ¨

eph´∆gP ps,tq´Q
˚ptq, gq´1 “ ephδ g̃γ , gq. Given that the verification check outputs 1 for π, there is a

negligible probability that the values k, P,Q˚,W ˚ satisfy W ˚ps, tq “ P ps,tq´Q˚ptq
ps´kq under d1 ´ SDH

assumption with respect to the bilinear group gk, where d1 “ maxtd, `u.

Proof. Consider the adversary BSDH against d1 ´ SDH assumption, having as auxiliary input
z “ pk,∆, ω, δ, γq. Using its challenge pg, gs, . . . , gs

d
, ĝs, . . . , ĝs

d
;h, hs, ĥ; pg, gsqq it picks random

scalars α, tÐ$Zq and computes gij :“ gs
itj , gij :“ gs

itj for i “ 0, . . . , d and j “ 0, . . . , `, ĝ :“ gα,

and computes a commitment key ck “
 

gk, pgijq
d,`
i,j“0, pĝijq

d,`
i,j“0; ph, ĥq; pg, ĝq

(

. It further sends

the following crs corresponding to the relation Rck to A˚: crs “
 

ck, ph1, g1q,Hashp¨, ¨, ¨q
(

. Note
that h1 and g1 are in the initial challenge.

From the output of the aggregated machine A˚, BSDH gets the values u “ pk,C,C 1, D, e, σ, τq
and pρ, P, ρ1, Q˚, ω,W ˚, δ, γq. The verification check of the Schnorr proof implies

A “ epd, g1{g
kq ¨ epc{c1, gq´1 “ ephωgW

˚ps,tq, gs´kq ¨ eph´∆gP ps,tq´Q
˚ptq, gq´1

“ eph∆hps´kqω, gq ¨ epg´pP ps,tq´Q
˚ptqqgps´kqW

˚ps,tq, gq “ eph∆g̃ω, gq.

The outputs δ, γ from the extended adversary machine are such that A “ ephδ g̃γ , gq (from
the soundness of the Schnorr’s proof). This, together with the previous equation leads to the
conclusion ephδ g̃γ , gq “ eph∆g̃ω, gq and so eph∆´δ g̃ω´γ , gq “ 1. The adversary BSDH is able
to produce a solution to the equation ps ´ kqpω ´ γq ` ∆ ´ δ “ 0 mod q and though to find
s “ k ` δ´∆

ω´γ mod q, unless γ “ ω and δ “ ∆.
In the former case, from the value s, one can easily break any SDH problem. In the

latter case, the two writings for A, and the non-degeneracy of the pairing map lead to
gps´kqW

˚ps,tq´P ps,tq`Q˚ptq “ 1.
Using P P ZqrX,Y s, compute QpY q :“ P pk, Y q and define the polyomial W “

P pX,Y q´QpY q
pX´kq P

ZqrX,Y s. We have also that gps´kqW ps,tq “ gP ps,tq´Qptq, then Bd1´SDH computes gQptq´Q
˚ptq “

gps´kqpW
˚ps,tq´W ps,tqq. Define the polynomial in ZqrX,Y s : W 1pX,Y q “ pX ´ Y qpW pX,Y q ´

W ˚pX,Y qq ´QpY q `Q˚pY q, we have that gW
1ps,tq “ 1. This splits in two cases:

1. If W 1pX, tq “
ř

ip
ř

j w
1
ijt

jqXi is the zero polynomial in X, meaning that all the coefficients

w̃i “
ř

j w
1
ijt

j are zero @i P t0, ¨ ¨ ¨ , du, then by choosing an index i0 P t0, . . . du with a
non-zero element w1i0j (unless W 1 “ 0 which contradicts the hypothesis of the Lemma) we

have that t is a root of the polynomial
ř

j w
1
i0j
Y j .

2. If there exists at least one index ı̃, such that w̃ı “
ř

j w
1
ı̃jt

j ‰ 0, then we have that s is a

root of the polynomial defined by fixing t: W 1pX, tq “
ř

i w̃iX
i.

If the first case happens with non-negligible probability, algorithm BSDH
1 receives an `´ SDH

instance in t, and choosing s, can complete the input for the aggregate machine A˚. Knowing
that

ř

j w
1
i0j
tj “ 0, the adversary BSDH

1 is able to compute g
1
t in the following way: Consider

w1i0j0 the first non-zero coefficient of the polynomial
ř

j w
1
i0j
Y j : g

w1i0j0
tj0
“ gt

j0`1W 2ptq for some
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polynomial W 2 of lower degree, and so g
w1i0j0 “ gtW

2ptq, or equivalently g1{t “ pgW
2ptqq

1{w1i0j0 .
BSDH
1 is then able to solve the ` ´ SDH problem, as gW

2ptq can be computed from the initial
instance.

If the second case happens with non-negligible probability, the algorithm BSDH
2 receives a

d´ SDH instance in s, and can complete it as an input for A˚ by choosing t. Doing as above,
with a polynomial that has s as a root, it can compute g1{s. This solves the `´SDH instance. [\
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[CFQ19] Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design and composition
of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 3–33. Springer, Heidelberg, December 2016.



29

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 377–408. Springer, Heidelberg,
December 2017.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with
streaming interactive proofs. In Shafi Goldwasser, editor, ITCS 2012, pages 90–112. ACM, January
2012.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks. In
Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer, Heidelberg,
August 1992.
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