
This document is published in:

Journal of Heuristics, August 2011, 17 (4), pp 415-440.

DOI: 10.1007/s10732-010-9140-4

© 2010 Springer Science+Business Media

http://dx.doi.org/10.1007/s10732-010-9140-4

Boosting video tracking performance by means of Tabu
Search in intelligent visual surveillance systems

Ivan Dotu · Miguel A. Patricio · A. Berlanga ·
J. García · José M. Molina

Abstract In this paper, we present a fast and efficient technique for the data associa-
tion problem applied to visual tracking systems. Visual tracking process is formulated
as a combinatorial hypotheses search with a heuristic evaluation function taking into
account structural and specific information such as distance, shape, color, etc.

We introduce a Tabu Search algorithm which performs a search on an indirect
space. A novel problem formulation allows us to transform any solution into the
real search space, which is needed for fitness calculation, in linear time. This new
formulation and the use of auxiliary structures yields a fast transformation from a
blob-to-track assignment space to the real shape and position of tracks space (while
calculating fitness in an incremental fashion), which is key in order to produce effi-
cient and fast results. Other previous approaches are based on statistical techniques or
on evolutionary algorithms. These techniques are quite efficient and robust although
they cannot converge as fast as our approach.

This work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT
TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02.

I. Dotu
Brown University, Box 1910, Providence, RI 02912, USA
e-mail: idotu@cs.brown.edu

M.A. Patricio (�) · A. Berlanga · J. García · J.M. Molina
Universidad Carlos III de Madrid Avda. Universidad Carlos III, 22, 28270 Colmenarejo, Madrid,
Spain
e-mail: mpatrici@inf.uc3m.es

A. Berlanga
e-mail: aberlan@ia.uc3m.es

J. García
e-mail: jgherrer@inf.uc3m.es

J.M. Molina
e-mail: molina@ia.uc3m.es

1

mailto:idotu@cs.brown.edu
mailto:idotu@cs.brown.edu
mailto:mpatrici@inf.uc3m.es
mailto:mpatrici@inf.uc3m.es
mailto:aberlan@ia.uc3m.es
mailto:aberlan@ia.uc3m.es
mailto:jgherrer@inf.uc3m.es
mailto:jgherrer@inf.uc3m.es
mailto:molina@ia.uc3m.es
mailto:molina@ia.uc3m.es

Keywords Video-tracking · Tabu search · Data association

1 Introduction

Intelligent Visual Surveillance (IVS) systems are becoming a key component in en-
suring security in buildings, commercial areas, public transportation, parking areas,
etc. (Regazzoni et al. 1998a, 1998b; Ferryman et al. 2000). The primary aims of
these systems are the real-time monitoring of persistent and transient objects and the
understanding of their activity within a specific environment.

Intelligent Visual Surveillance Systems track all the targets moving within their
local field of view (Castanedo et al. 2006; Patricio et al. 2007a). The real-world
video object trackers often face the Multi-target Joint Estimation (MTJE) problem.
MTJE is concerned with the estimation of the number of objects in a scene, together
with their instantaneous locations, kinematic states, and any other characteristics
required. These entities, which characterize the target, are referred to as a track state.
Track-state vectors with position and kinematic estimates (which can be referred to
the camera plane) are used for tracking, and are typically complemented with
attributes defining the target’s extension, shape, color, and identification. A
frequently used representation of the target state x corresponding to the i-th object is
(Han et al. 2004) xi ∈ � d , xi = [x, y, ˙x, ˙y, w, h, s], which correspond to the
centroid (x, y), velocity (˙x, y˙), extent (w—width and h—height) and scale (s) of
the object, respectively. The state dimension, d is set to 7, in this case.

The inference of the real state of a certain environment, based on the informa-
tion available in the sequence of images, can be addressed as an estimation problem
with statistical techniques. The multi-target tracking problem consists in estimating
the number of objects in a scene, together with their dynamic state (location, speed,
attitude, size, etc.). For each time instant, t[k], there exists as a set of N [k] objects,
E[k] = {O1[k], . . .ON [k][k]}, where each object is defined by a set of characteristics
at this instant. The description of the individual objects is expressed in a vector state
space, xi[k] ∈ �d,1 ≤ i ≤ N [k].

In video processing, each detected object is observed through a set of compact
regions (blobs), formed by adjacent detected binary pixels at this instant:

Zi[k] = {bi,1[k], . . . bi,Mi
[k]}

where Mi is the number of blobs that are due to i-th object. The problem is that both
N [k] and the correspondences among blocks and objects (i subindex) are unknown,
they must be estimated from the observed data. The global estimator in the multitarget
case is denoted as X̂[k], which includes both the number of targets and their state in
the scene at time instant t[k], X̂[k] = {x̂1[k], . . . x̂Nk

[k]}, where x̂i[k] ∈ �d .
We can characterize a combinatorial method as the “hard” association of the se-

quence of measurements to all the tracks, based on certain cost criterion. The data
association process determines which observations correspond to which objects, so
that each measurement is used to update the appropriate track.

In the simplest case, a Nearest Neighbor (NN) strategy determines blob-to-track
correspondence, heuristically assigning tracks to the closest observations, without

2

Fig. 1 (a) Four tracks (from 0 to 3) and their current state (position, size and velocity) at frame k − 1;
(b) Observation/detection of moving objects at frame k, we call blob to each connected group of detected
pixels; (c) Association output at frame k

dealing with ambiguous correspondences among different tracks, or considering the
subsequent frames. However, in real-world environments, the tracking system should
be able to handle complex movements and interactions among targets. Therefore, the
one-to-one constraint is normally removed, and the correspondence of multiple blobs
to multiple tracks is evaluated, accounting for fragmented or merged blobs which can
contribute to each track. In order to assess such correspondence, an evaluation func-
tion, which takes into account not only residuals between centroids but also structural
information about objects, has to be defined.

In Fig. 1, four targets are represented by their track-state vector (position, size
and velocity) at frame k − 1. At time k, a new frame is captured from the camera.
First, a detector of moving objects must generate a list of blobs that are found in the
frame; this list must contain information about the position and size of each blob. A
blob is a connected set of pixels in an image. The pixels contained in a blob must be
locally distinguishable from pixels which are not part of the blob (see Fig. 1b). Next,
the association process will solve the problem of blob-to-track multi-assignment,
where several (or no) blobs may be assigned to the same track and where,
simultaneously, several tracks can overlap and share common blobs. Thus, the
association problem we must solve corresponds to the decision regarding the most
proper grouping of

3

blobs and their assignment to each track for every processed frame. The blob deleting
process eliminates those blobs which have not been associated to any track, since they
are considered to be noise. Finally, the track updating process, updates the track-state
vectors with the information obtained from the association output (Fig. 1c).

The Kalman filter is the most popular estimation technique to compute track state
vectors at frame k, combining the information in the current observation with the
prediction from a previous frame at k − 1. However, the Kalman filter solves the par-
ticular problem of a single state vector updated with a single measurement at each
frame; that is, the state of a single object is estimated. Unfortunately, tracking mul-
tiple objects is a much more difficult problem. It deals with an unknown number
of active objects as sources of measurements (blobs), and the statistical model re-
quires both continuous variables to describe each target state and discrete variables
to describe the correspondences between objects and observations. The strategy of
converting a N -multi-target problem into a collection of N single-target problems
(and then applying a Kalman-type estimation solution) requires decisions interleaved
with the state estimation processes from a joint solution of data association.

Recently, Patricio et al. (2007b) have shown how to formulate the association
process as a search problem. This new approach consists of a search across the
hypothesis space defined by the possible associations among tracks and detections
(blobs), carried out for each frame of a video sequence. The full data association
problem in visual tracking is formulated as a combinatorial hypothesis search with a
heuristic evaluation function taking into account structural and specific information
estimated by a filter method, usually a Kalman filter. Obviously, since the process
must guarantee real time performance, the search must have a time limit. They pro-
posed several evolutionary computation techniques, which proved efficient when
searching in this hypothesis space (Patricio et al. 2007b).

In this work, we propose the use of a metaheuristic named Tabu Search (Glover
and Laguna 1993) for carrying out the data association problem. This method intro-
duces a novel approach to achieve the necessary incrementality1 in this particular
problem. Metaheuristics and Local Search techniques have been widely used to solve
real-life problems, especially scheduling problems (it would be impossible to name
these works so we refer the reader to this review (Grunert et al. 2005)). These tech-
niques, have been applied to other real-life engineering problems, however, there are
a few works related to video-tracking problem. The most frequently reported applica-
tions of Tabu Search or local search we are aware of are: Kincaid and Laba
(1998) f o r acoustic control, Pisinger et al. (2003) for VLSI design, Cordon and
Damas (2006) for image registration, and Huwer and Niemann (1998) for second
object tracking. This last reference presents a similar problem to that shown in this
paper, although it focuses on different issues, and it does not even describe the
implemented local search algorithm. In order to assess the performance of Tabu
Search, the authors have modeled the problem of video-tracking to be solved by
other algorithms and have made a comparative analysis, as can be seen in the
experimental section.

1Incrementality is the ability to evaluate quickly (in constant or linear time) a function using a previous
calculation as a starting point.

4

2 Related work

The performance of a video tracking system implementation depends on two strictly
coupled subtasks: the data association method used for assigning observations to
tracks and the model selected to estimate the movement of an object (Patricio et al.
2008). Tracking algorithms can be formulated as the correspondence of detected ob-
jects represented by tracks across frames. The correspondence methods can be di-
vided into heuristic and probabilistic methods. Probabilistic methods consider the ob-
ject measurement and the uncertainties to establish the correspondence, while heuris-
tic methods use qualitative motion heuristics to constrain the problem.

2.1 Probabilistic methods

In the case of probabilistic methods, the target-tracking community has usually for-
mulated the total process as an optimal state estimation and a data association prob-
lem, with a Bayesian approach to recursively filter the observations coming from the
sensors. Only in the case that a single target appears, with no false alarms, is there
no association problem and optimal Bayesian filters can be applied, such as Kalman
filters under ideal conditions, or suboptimal Bayesian filters like Multiple Models
(IMM) (Yeddanapudi et al. 1997) for realistic maneuvering situations and Particle
Filters (PF) (Arulampalam et al. 2002; Djuric et al. 2003) in non-Gaussian condi-
tions.

In general, the tracking system should handle complex motions and interactions
such as passing, occlusions and stopping. Each real object may generate multiple
observations and the problem of searching for an optimal or near-optimal hypoth-
esis requires a deeper analysis. A number of statistical data association techniques
have been developed for this purpose. The problem can also be extended across
multiple scans (frames) to search for the best hypothesis for the associations, us-
ing a tree of open hypotheses to delay assignment decisions until more evidence
is available. Multi-scan, multiple-target algorithms commonly used include Multi-
Hypothesis Trackers (MHT) and Joint Probabilistic Data Association (JPDA) (Black-
man and Popoli 1999). The Probabilistic Multiple Hypotheses Tracking algorithm
(Ruan and Willett 2004), and also artificial neural networks (Shams 1996) have been
developed in order to reduce the computational complexity of JPDA and MHT.

Recently, data association algorithms have also received wider attention by the
computer vision community. For instance, the JPDA filter has been applied to vision
3-D reconstruction (Chang and Aggarwal 1991). However, the direct formulation of
these algorithms (JPDA and MHT) presents important limitations. The first one is that
they assume that a target can generate, at most, one measurement per scan and, con-
versely, a measurement could have originated from, at most, one target. For instance,
Cox (Cox and Hingorani 1996) proposes an implementation of the MHT algorithm
with visual sensors (although objects are simplified to points), not considering the
problem of data complexity. The full problem of data association in the visual con-
text is a correspondence of multiple blobs to multiple tracks. It is needed to remove
the one-to-one constraint (when we have only a single measurement for a target) and
extend the algorithms to consider multiple fragmented or merged blobs updating each

5

track. Besides, the evaluation function, such as a distance considering only residuals
between centroids disregards structural information about the objects. Thus, it is nec-
essary to build an extended function to evaluate the assignment hypotheses consid-
ering structural information as well. In the second place, the required computational
burden may be too heavy with large numbers of targets and observations.

2.1.1 Mean-shift and particle filtering

In this section, we describe the probabilistic method based on an implementation of
the Mean-Shift algorithm together with a Particle Filtering algorithm, which is one
of the most powerful tracking system in the vision community (Chen et al. 2005).
The Mean-Shift algorithm was proposed by Comaniciu and Meer
(2002) a s a n i m - age segmentation technique. The algorithm finds clusters in the
joint spatial & color space. It is initialized with a large number of hypothesized
cluster centers, which are chosen, randomly, from a particular image. Then, each
cluster center is moved to the mean of the data lying inside the multidimensional
ellipsoid centered on the cluster center. Several iterations where clusters may get
merged exist. Mean-shift clustering has been used in various applications, such as
edge detection, image regularization (Comaniciu and Meer 2002), and tracking
(Comaniciu et al. 2003).

The

Kalman

filter

(Xiao-Rong

and

Bar-Shalom

1995)

is

the

most

extended

prob-

abilistic

approach

within

the

vision

community

for

video

tracking

processes.

It

states

 that

measurements

obtained

from

video

cameras

invariably

contain

noise.

Moreover,

 the

object

motions

can

undergo

random

perturbations,

for

instance,

maneuvering

ve-

hicles.

The

Kalman

filter

performs

the

tracking

by

taking

the

measurement

and

the

 model

uncertainties

into

account

during

the

object

state

estimation.

It

uses

the

state

 space

approach

to

model

several

mobile

object

properties

such

as

position,

velocity,

 and

acceleration.

Broida

and

Chellappa

(1986)

use

the

Kalman

filter

to

track

a

point

 in

noisy

images.

Beymer

et

al.

(1999)

use

a

Kalman

filter

for

predicting

the

object’s

 position

and

speed

in

a

3D

space.

One

limitation

of

the

Kalman

filter

is

the

assump-

tion

that

the

state

variables

are

regularly

distributed.

Kitagawa

(1987)

proposed

the

 Particle

Filtering

algorithm

in

order

to

overcome

this

limitation.

The

Particle

Filter-

ing

algorithm

is

a

powerful

tool

for

approximating

non-Gaussian probability distrib-

utions,

and

it

has

been

applied in video tracking as well.

2.2 Heuristic methods

On the other hand, heuristic algorithms define a cost of associating each object in
frame k − 1 to a single object in frame k using a set of motion constraints. Mini-
mization of the correspondence cost is formulated as a combinatorial optimization
problem.

Genetic Algorithms (Gas) have been previously applied to the data association
problem in the radar context by Angus et al. (1993) (on a single scan scenario), and
by Hillis (1997) to deal with the multi-scan data association problem. In Patricio et
al. (2007b), in order to achieve a fast video process, the performance of a family of
very efficient evolutionary computation algorithms is analyzed. This novel approach
is called Estimation of Distribution Algorithms (EDAs) (Larraaga and Lozano 2001).

6

EDAs are a class of Evolutionary Algorithms (EA) which do not implement
crossover or mutation operators. The new population is generated by sampling the
probability distribution, which is estimated using information from several selected
individuals from previous generations. The estimation of the joint probability dis-
tribution associated to the selected individuals is the most complex task, and there
is a wide range of different attempts to approach this issue. For instance, UMDA
(Mühlenbein 1997) assumes linear problems with independent variables; PBIL
(Cestnik 1990) uses a vector of probabilities instead of a population, also with in-
dependent variables, MIMIC (de Bonet et al. 1997) searches for permutations of
variables in each generation in order to find t he p robability d istribution u sing the
Kullback-Leibler distance (two-order dependencies); FDA (Mühlenbein and Mahnig
1999) factorizes the joint probability distribution by combining an evolutionary algo-
rithm and simulated annealing, etc.

In the following, we briefly describe some aspects of these algorithms.

2.2.1 Estimation of distribution algorithms

EDAs (Larraaga and Lozano 2001) present several features which appear to be suit-
able for dealing with problems that require a very efficient search. They usually use
small population samples and carry a small number of iterations (compared to other
more classical approaches within the Evolutionary Computation field). The main dif-
ference between EDAs and a classic EA is that the former perform a search for the
probability distribution describing the optimal solutions, while the latter implements
a search procedure which, through selection, crossover and mutation, provides a so-
lution to the problem itself. However, they share the necessity for codification of
the solutions by means of (usually) binary chains (‘individuals’, in the EA termi-
nology) and the definition of a merit measurement that allows for search guidance:
the so called ‘fitness function’. The EDAs do not need to implement any operators
to manipulate the individuals (such as mutation, selection, crossover, etc.), since the
search is performed directly on the distribution which describes all possible individu-
als. EDA algorithms replace an evolving population by a vector that codifies the joint
probability distribution corresponding to the best solutions. The crossover and mu-
tation operators are replaced by rules that update the probability distribution. Also,
EDAs have a great advantage over the evolutionary algorithms: they can express the
interactions between variables by means of the associated joint probability distribu-
tion.

In our work, we have implemented three different EDA approaches in order to
compare our Tabu Search approach: Univariate Marginal Distribution Algorithm
(UMDA), Population-Based Incremental Learning (PBIL) and Compact Genetic Al-
gorithm (CGA). In the UMDA algorithm (Mühlenbein 1997) the joint probability
distribution is estimated as the relative frequencies of the variables’ values stored
in a data set. Independence between the variables is assumed, and theoretically it
has been demonstrated that UMDA works almost perfectly with linear problems and
rather well when the dependencies are not very significant. PBIL (Population-Based
Incremental Learning) (Baluja 1994) mixes the search applied by genetic algorithms
with competitive learning. It applies a Hebbian rule to update the vector of probabil-
ities. The CGA (Harik et al. 1999) simulates the performance of a canonical genetic

7

algorithm with uniform crossover. It is the simplest EDA, and it only needs one para-
meter: the population size.

3 Formulation of the association process as a search problem based
on a probabilistic approach

A Bayesian framework to compute the best estimation, X[k], inferable from avail-
able measurements, Z[k], is the one targeted at obtaining the maximum a posteriori
probability of state conditioned to the whole set of observations:

X̂[k] = arg max
X[k]

P(X[k]|Z[k],Z[k − 1], . . . ,Z[0]) (1)

The classic inference formulation applies the Bayes theorem to formulate the prob-
lem of updating the conditional pdf (probability density function) in a recursive way,
depending on the pdf computed at frame k − 1:

P(X[k]|Z[k],Z[k − 1], . . . ,Z[0])
= 1

c
P (Z[k]|X[k])P (X[k]|Z[k − 1], . . . ,Z[0])

= 1

c
P (Z[k]|X[k])

×
∫

[P(X[k]|X[k − 1])P (X[k − 1]|Z[k − 1], . . . ,Z[0])]dX[k − 1] (2)

where the integral in the joint problem would extend over the whole space of pre-
dicted states, P(X[k]|X[k−1]), using the recursively estimated pdf at last time k−1,
P(X[k − 1]|Z[k − 1], . . . , [Z[0]), and c is a normalization term independent of X.

The multi-target tracking problem is usually divided into two related problems:
data association and state estimation. Data association decides the correspondences to
match objects and observations. Then, once the association is decided, one applies the
Kalman filter to estimate each target’s state as conditioned to this decision. Only when
there is an unambiguous way of matching observations to objects, can the N multi-
target problem be decomposed into N independent single-target tracking problems
solvable with the Kalman filter.

In order to include the association variables in the problem, we can assume that
each track is estimated with a Kalman filter, so that the global estimator at a certain
time is totally equivalent to the chain of association decisions taken with the sequence
of observations:

X̂[k] = KF([A[k],A[k − 1], . . . ,A[0],Z[k],Z[k − 1], . . . ,Z[0]])
where the assignment matrix A[k] = {ai,j [k]} is defined as ai,j [k] = 1 if blob bi [k]
is assigned to track x̂j [k]; and ai,j [k] = 0 otherwise. The special case, where j = 0,
represents the assignment of blobs to the ‘null track’ at the current time. This is used
to discard or initialize objects (see Fig. 2).

8

Fig. 2 Assignment matrix
representation. Note that its
dimension is
M[k] × (1 + N [k]). First
column is added, for the special
case where a blob is not
assigned to any track (‘null
track’)

Under these conditions, the pdf of the posterior estimator is determined by the pdf
of the sequence of association matrices P(X[k]|Z[k]) = P(A[k],
A[k − 1], . . . ,A[0]|Z[k],Z[k − 1], . . . ,Z[0]).

So, the optimal estimation under this formulation is equivalent to finding the se-
quence of association matrices, gA[k], which maximizes the posterior probability
P(X|Z).

Now, the Bayes theorem can be applied to get a recursive formulation of the data
association problem and to compute a recursive expression of the function to opti-
mize:

gA[k] = P(A[k],A[k − 1], . . . ,A[0]|Z[k],Z[k − 1], . . . ,Z[0])
= P (Z[k]|A[k],A[k − 1], . . . ,A[0],Z[k − 1], . . . ,Z[0])P (A[k]|A[k − 1], . . . ,A[0],Z[k − 1], . . . ,Z[0])

P (Z[k]|Z[k − 1], . . . ,Z[0])
× gA[k − 1]

= cP (Z[k]|A[k],X[k − 1])P (A[k]|X[k − 1])gA[k − 1] (3)

If we assume a uniform distribution for prior probability of association
P(A[k]|X[k − 1]) (all tracks have the same probability of being updated), the op-
timization problem would consist in finding the optimum sequence of associations to
maximize all detection likelihoods:

X̂[k] = arg max
A[k],...,A[1]

[P(Z[k]|A[k],X[k − 1])P (Z[k − 1]|A[k − 1],X[k − 2]), . . . ,

P (Z[1]|A[1],X[0])] (4)

However, this joint optimization of the whole sequence of association matrices is
not possible; its complexity increases at an exponential rate with time. A practical
approach (single hypothesis optimization) is the sequential optimization of associa-
tion decisions, where decision at frame k − 1 is propagated for time k, and the search
space reduces to the size of matrix A[k] for each processed frame:

X̂[k] = arg max
A[k]

[
P(Z[k]|A[k], X̂[k − 1])] (5)

The data association requires from a discrete optimization at each frame over
the likelihood of current observations conditioned to all previous assignments, sum-

9

Fig. 3 Optimal assignment in a
hypothetical situation with
conflicting blobs (i.e., there are
blobs that belong to two or more
tracks). The three bounding
boxes with dotted lines represent
the prediction of the three tracks
according to the Kalman filter

marized by system state at previous time k − 1, X̂[k − 1]. This state represents
the estimated number of targets and vector states at the time X̂[k − 1] = {x̂1[k −
1], . . . , x̂N [k−1][k − 1]}, x̂i[k − 1] ∈ �d .

The optimal resolution of binary values for A[k] can be represented as a search
along the association hypotheses. Generally, the number of hypotheses is given by
the expression:

NH = 2M[k]×(1+N [k]) (6)

where N [k] and M[k] are the number of tracks and blobs at frame k, respectively.
NH includes the possibility of labelling each blob as not belonging to any track, the
‘null track’. In the case of a severe overlap where all blobs can be assigned to all
tracks, the expression takes on the following form: NH = (1 + N [k])M[k].

Consequently, the assignment problem may require the evaluation of a very large
number of combinations to determine the optimal solution, implying the need for
efficient search methods.

Figure 3 illustrates an optimal assignment in a hypothetical situation with three
tracks and 13 blobs. The three bounding boxes with dotted lines represent the pre-
diction of the three tracks according to the Kalman filter. In this case, there are three
moving objects (in the association problems objects are considered as tracks, thus,
from now on, we will use both terms interchangeably). Objects labeled as ‘Track 2’
and ‘Track 3’ overlap and, therefore, they share the blobs labeled as ‘b7’ , ‘b8’ and
‘b9’. In this toy, scenario we can observe that some blobs clearly belong to a certain
track (or object), but some others are conflicting, meaning that they could belong to
one or more tracks. The representation provided in Fig. 3 shows an occlusion between
tracks 1 and 2, thus, conflicting b lobs must belong t o both t racks a t t he same time,
which is why we define this is an optimal assignment.

In Fig. 4, we see the same scenario but in this case we assume that tracks 1 and 2
are farther away and there is no occlusion. Also, that if track 1 corresponds to a larger
object, all previously conflicting blobs belong to it.

10

Fig. 4 Optimal assignment in a
hypothetical situation without
conflicting blobs

3.1 A constraint-based local search formalization of the problem

Let us now formalize the specific problem we will be dealing with from the
constraint-based local search standpoint: Given a set of blobs with information about
their width, length and centroid (measured in a 2-D grid of pixels) and a set of tracks
with the same predicted information, assign blobs to tracks in such a way that the
distance to the prediction for each track is minimized. Additionally, we can access a
hypothesis matrix that discards some blob-to-track combinations, reducing, thus, the
search space.

The association problem is thus defined as:

– Given a set of blobs B = b1, b2, . . . , bn where every blob bi is defined by its width
bi.w, its length bi.l and its centroid (bi .x, bi .y) (measured in a 2-D grid of pixels).

– Given a set of tracks T = t1, t2, . . . , bm where every track ti is defined by its width
ti .w, its length ti .l and its centroid (ti .x, ti .y) as well.

– An assignment matrix X where there is a Xb,t for each blob and track representing
whether blob b is considered to belong to track t or not.

– A set of constraints represented by a hypothesis matrix H where Hb,t is a boolean
value allowing or disallowing the possibility of blob b to belong to track t .

– A cost function f which represents the similarity between the potential assignment
explored by the search algorithm and the prediction of every target j according to
the Kalman filter in every frame k, x̂j [k|k − 1]. The cost function also considers
those assignments that leave confirmed tracks with no updating blobs.

The cost function Let Oj [k] be the set of blobs assigned to track j by a search
algorithm for frame k. These blobs are represented by their bounding boxes, specifi-
cally by their centroid pixel coordinates, width and height (xe

j , ye
j , we

j and he
j). They

correspond to those blobs with index i such that Ak[ij] = 1. Track j contains the pre-
diction provided by the Kalman filter, x̂j [k|k − 1] represented by its centroid pixel
coordinates, width and height (xu

j , yu
j , wu

j and hu
j).

11

Let dj be the normalized distance between the proposal and predicted track j :

dj = |xu
j − xe

j |
wu

j

+ |yu
j − ye

j |
hu

j

(7)

Let sj be the normalized size similarity between the proposal and predicted
track j :

sj = |wu
j − we

j |
wu

j

+ |hu
j − he

j |
hu

j

(8)

Let I be the foreground image that we are processing. We define I (x, y) as true,
if and only if the pixel (x, y) is in the bounding box of the proposal for track j . We
define the Density Ratio, drj , of track j as:

drj = Cardinality{I (x, y)}
we

j × he
j

(9)

this measurement informs us on how many detected pixels are in the bounding box
of proposal for track j . This measurement is better the greater its value.

We also incorporate two penalty ratios to the cost function, corresponding to the
probabilities of false positive detection (PFA), and to the probabilities of true positive
missing (PD):

– ap (assignment penalty). A penalty value is added to the cost function every time
a blob is assigned to a distant track.2

– lt (lost track). A high value is added every time no blob is assigned to one track.

The cost function, fi , of an assignment i is:

fi =
Nk−1∑
j=1

(dj + sj − drj) + ap + lt (10)

where, Nk−1 represents the number of tracks in the frame k − 1.
Our objective is thus:

– to determine an assignment matrix X which, satisfying all the constraints in H ,
minimizes the cost function f .

Note that the problem which arises here is that the cost function is not calculated
directly. We first need to assign blobs to tracks; then we have to calculate the shape
of every track and, finally, we must find the distance from the produced tracks to their
prediction. The cost function is the addition (sum) of the distances from all the tracks
to their predictions.

2By “distant track” we mean when the Euclidean distance between the centroids of the track and the blob
exceeds a threshold U .

12

4 The algorithm: Tabu Search

In this section, we will review all the aspects related to the Tabu Search algorithm,
namely the modeling, incrementality issues, neighborhood, memory structure, and,
finally, the sketch of the algorithm.

4.1 Modeling

Modeling is a key feature of any algorithm, and especially within the local search
framework. Different representations of the same problem define different search
spaces as well. In this paper, we use a modeling approach which associates a variable
x[b, t] for each pair of blob b and track t . The value of x[b, t] in a given solution,
denoted as σ(x[b, t]) will be 1 if blob b is considered to belong to track t and 0 if it
is not.

This is to allow the possibility of a blob belonging to two different tracks. At this
level of information, when two tracks collide, we are unable to decide whether the
blob belongs to one track or another. Also, forcing a blob to belong to one single
track in these situations, could result in the disappearance of one of the objects in the
collision. This is obviously not desirable.

In our specific problem there are no constraints on track membership; all combi-
nations are allowed, and thus, we only need to consider the optimization function. As
previously stated, the optimization criteria is to minimize the distance to a prediction.
However, the prediction is defined in terms of track characteristics. In a straightfor-
ward approach, we would need to:

1. Determine which blobs belong to which tracks from the set of x[b, t] variables.
2. Calculate the characteristics of each potential track enclosing the assigned blobs.
3. Calculate the distance from each potential track to its prediction.
4. Add all the distances to compute total distance to prediction.

However, in order to implement a metaheuristic which uses local search on its core
for this problem, we need a procedure to calculate the cost of a solution (distance to
prediction) in constant time, i.e., achieve incrementality.

4.2 Achieving incrementality

An assignment σ to all the variables has an associated cost f (σ) which corresponds
to the distance to its prediction. The problem consists of finding the solution σ which
minimizes this distance. This is computed in terms of shape and position. We have
just seen that this is a process with many steps, which is not suitable for a local search
algorithm. However, we can overcome this obstacle by introducing several additional
structures:

4.2.1 Track information

The first auxiliary structure is one that captures the information related to the tracks.
For each track, we maintain several characteristics:

13

– Number of blobs currently assigned to it.
– Centroid of the track in a 2-D matrix of pixels.3

– Height in pixels.
– Width in pixels.

Note, that a track can have 0 blobs assigned to it. In this case, height and width
will be set to 0 and centroid to the (0,0) position. This will penalize the scenario
where a track has no associated blobs, but will not forbid it, since it is possible for a
track to have disappeared from the scene.

Moreover, this very same information for each blob is available to the algorithm.
This information is provided by other modules of the complete system introduced in
Sect. 1.

4.2.2 Distance information

We also maintain information regarding the distance from each track to its prediction.
Centroid, length, and width relative distance to the prediction is held for each track,
along with the total distance (addition of the distances of all tracks). This is standard
information in any local search algorithm. Taking this information into account, we
can compare it to the new information (after a local move) and quickly find the actual
gain in the cost function. Nevertheless, centroid and shape information cannot be
calculated directly from a x[b, t] set of variables. This is the key modeling feature
which is captured in the following additional structures.

In the following subsections we introduce the auxiliary structures and procedures
that allow us to recalculate the centroid, length and width of track after a local move
is attempted. Note that for a given track whose distance to the prediction is known (as
detailed in Sect. 3.1) ft , we can easily calculate the new value of the fitness function:

f = f + (f ′
t − ft)

where f ′
t is the new distance to the prediction calculated using precisely the new

centroid, length and width of the track.

4.2.3 Blobs information

For each blob b, we maintain several features related to each track t :

– North: This represents how many pixels blob b adds to track t from the centroid
toward a virtual north coordinate.

– South: This represents how many pixels blob b adds to track t from the centroid
toward a virtual south coordinate.

– East: This represents how many pixels blob b adds to track t from the centroid
toward a virtual east coordinate.

– West: This represents how many pixels blob b adds to track t from the centroid
toward a virtual west coordinate.

3(0,0) position is assumed to be at the upper-left corner of the axis.

14

Fig. 5 Information necessary
for each blob in order to achieve
incrementality

This information corresponds to how many pixels the track would lose if the blob
was missing in each coordinate’s direction respectively. Figure 5 depicts a scenario
where all those features are shown.

This information is calculated initially and then updated after each move. The
important feature is its use when calculating the future cost of performing a tentative
move. Let us now detail how we can use this information to calculate potentially new
characteristics of a track (position and shape) after a tentative move in constant time:

The neighborhood will be formally introduced in the following subsection, but, at
a more abstract level, we can distinguish between two different moves: (1) removing
a blob from a track, or (2) adding a blob to a track.

4.2.4 Removing a blob from a track

When removing a blob b from a track t , we need to subtract its added shape and
position from that track. If that blob is the only blob within the track, then the track
becomes empty, and thus, all track characteristics are set to 0.

However, if other blobs still belong to the track, we can recalculate the cost in the
following manner:

1. Recalculate x axis coordinate:

tx′ = tx + 0.5 ∗ (b, t)west − 0.5 ∗ (b, t)east

2. Recalculate y axis coordinate:

ty′ = ty + 0.5 ∗ (b, t)north − 0.5 ∗ (b, t)south

15

3. Recalculate width:

tw′ = tw − (b, t)west − (b, t)east

4. Recalculate height:

th′ = tx − (b, t)north − (b, t)south

5. Recalculate distance using the structures mentioned in Sect. 4.2.2.

Where we use t∗ to denote characteristic ∗ of track t (and t∗′ potential characteristic
∗ of track t) and (b, t)λ to denote coordinate λ of blob b with respect to track t .

4.2.5 Adding a blob to a track

When adding a blob b to a track t we have to add its information to the track unless
it is already contained in the current shape of the track. If the track is empty then its
information will be set to that of the blob we are adding.

However, if track t is not empty, its new information after potential adding blob b

is calculated as follows:

1. Recalculate width:

tw′ = tw + max(0, bright − (tx + 0.5 ∗ tw)) + max(0, (tx − 0.5 ∗ tw) − bleft)

2. Recalculate height:

th′ = th + max(0, bbottom − (ty + 0.5 ∗ th)) + max(0, (ty − 0.5 ∗ th) − btop)

3. Recalculate x axis coordinate:

tx′ = min(bleft, tx − 0.5 ∗ tw) + 0.5 ∗ tw′

4. Recalculate y axis coordinate:

ty′ = min(btop, ty − 0.5 ∗ ty) + 0.5 ∗ ty′

5. Recalculate distance using the structures mentioned in Sect. 4.2.2.

In these calculations, we use min(a, b) and max(a, b) to denote the minimum and
the maximum (respectively) out of two real numbers: a and b, and:

– btop to denote y axis coordinate value for the upper extreme of the blob (by −
0.5 ∗ bh)

– bbottom to denote y axis coordinate value for the lower extreme of the blob (by +
0.5 ∗ bh)

– bleft to denote x axis coordinate value for the leftmost position of the blob (bx −
0.5 ∗ bw)

– bright to denote x axis coordinate value for the rightmost position of the blob (bx +
0.5 ∗ bw)

16

4.3 The initialization phase

The initialization phase is known to have a significant impact on the efficiency of a
Tabu Search algorithm (see Dotu and Van Hentenryck 2005; Harvey and
Winterer 2005). In this case, we implemented two different initialization methods:

– Randomly assign 0 or 1 to the x[b, t] variables. This is equivalent to randomly
assigning blobs to tracks. Whenever a blob is not allowed to belong to a certain
track (given by the hypothesis matrix mentioned in Sect. 3.1), the corresponding
x[b, t] variable is set to 0.

– Copy the hypothesis matrix, i.e., set to 1 all the allowed blob-to-track combina-
tions.

The former method is used when the problem presents a low blob-track ratio, i.e.,
when there will not be many blobs belonging to each track. On the other hand, the
second method will be more efficient in scenarios where there is a high blob-track
ratio, i.e., when each track is composed of many different blobs.

4.4 The neighborhood

The neighborhood used consists of flipping the value of a x[b, t] variable. Notice that
we can always flip a variable when it is set to 1. However, we can only flip a variable
set to 0 if the corresponding blob-to-track combination is allowed by the hypothesis
matrix.

The set of swaps is thus defined as

S(σ) = {〈b, t〉 | σ(x[b, t]) = 1 or σ(x[b, t]) = 0 and b ∈ h[t]}

where we consider h[t] to be the set of blobs allowed to belong to track t .

4.5 The memory structure

The Memory structure consists of an array Tabu which maintains a tuple 〈b, t〉, where
b is the blob, t is the track and the value stored in Tabu(〈b, t〉) = i represents the first
iteration where the assignment of blob b to track t can be flipped again.

The Tabu tenure, i.e., the time τ a pair of blob and track 〈b, t〉 stays in the list, is
dynamic: It is randomly generated in the interval [4,100]. In other words, each time a
blob in a track 〈b, t〉 is flipped, a random value τ is drawn uniformly from the interval
[4,100] and the pair 〈b, t〉 is Tabu for the next τ iterations (Tabu(〈b, t〉) = τ).

At iteration k, flipping the value of a pair 〈b, t〉 is Tabu, which is denoted by
Tabu〈b, t〉) if the Boolean expression 〈b, t〉 ∈ Tabu & 〈b, t〉 ≤ k holds. As a conse-
quence, for the complete assignment σ and iteration k, the neighborhood consists of
the set of moves S t (σ, k) defined as

S t (σ, k) = {〈b, t〉 ∈ S(σ) | Tabu(〈b, t〉) ≤ k}

17

4.5.1 Aspiration criteria

Tabu Search usually introduces a mechanism called aspiration criteria by which a
move which is Tabu can be perform if and only if the resulting cost function is bet-
ter than the best solution found so far. Thus, the actual neighborhood is defined as
follows:

S t∗(σ, k) = {〈b, t〉 ∈ S(σ) | Tabu(〈b, t〉) ≤ k or f ({〈b, t〉) < f ∗}
where f (〈b, t〉) denotes the cost of the tentative solution after the move and f ∗ is the
cost of the best solution found so far.

4.6 The Tabu Search algorithm

We are now ready to present our metaheuristic. The algorithm, depicted in Fig. 6, is
a Tabu Search with a restarting component. Lines 2–5 perform the initializations. In
particular, the initial solution is generated randomly (or copied from the hypoth-esis)
in line 2, while lines 4 and 5 initialize the iteration counter k, and the stability
counter s. The best solution found so far σ ∗ is initialized to σ .

The core of the algorithm is given in lines 6–19. They repeatedly select a local
move to perform until a maximum number of iterations is reached. The key idea is
to select the best move in the neighborhood S t (σ, k), i.e., the one that minimizes
the optimization function. If there are several moves minimizing the optimization
function one is randomly chosen. Observe that the expression f (σ [move]) represents
the value of the optimization function obtained after a move (where a move is defined

1. Tabu()

2. σ ← random (or copied) configuration;
3. σ ∗ ← σ ;
4. k ← 0;
5. s ← 0;
6. while k ≤ maxIt
7. select move = arg min{f (σ [move]) | move ∈ S t (σ, k)};
8. τ ← RANDOM([4,100]);
9. TabuN ← TabuN ∪ {〈move, k + τ 〉};
10. σ ← σ [move];
11. if f (σ) < f (σ ∗) then
12. σ ∗ ← σ ;
13. s ← 0;
14. else if s > maxStable then
15. σ ← random (or copied) configuration;
16. s ← 0;
17. else
18. s++;
19. k++;

Fig. 6 Tabu Search for blobs-to-tracks assignment problem

18

by the pair 〈b, t〉 to flip). The corresponding Tabu list is updated in line 9, and the
new solution is computed in line 10, where we consider σ [move] to be the effect of
performing the move in the current solution. Lines 11–13 update the best solution,
while lines 14–16 specify the restarting component.

The restarting component simply reinitializes the search from a random (or
copied) configuration whenever the best solution found so far has not been improved
upon for maxStable iterations. Note that the stability counter s is incremented in
line 18 and reset to zero in line 13 (when a new best solution is found) and in line 16
(when the search is restarted).

Notice that choosing a copied initialization will not necessarily yield the same
local moves after each restart. This is due to the random component included both in
the Tabu list and in the selection of the best move.

5 Several real life scenarios

The evaluation of our algorithm is tested against three different scenes (see Fig. 7).
These datasets are from two different sources: the publicly available CVBASE dataset
(University of Ljubljana Machine Vision Group 2001) and a DV camcorder. The
datasets are quite diverse in their technical aspects, and the quality of the image se-
quences differs radically from poor to excellent along with their pixel resolutions.

5.1 Maritime scenes (BOAT)

The videos were recorded in an outdoor scenario using a DV video-recorder. The
videos have a high quality, with a resolution of 720 × 480 pixels with 15 fps. The
videos feature several boats in an outdoor environment lit by the sun. The videos are
very interesting due to the complex segmentation of maritime scenes. The sea has
continuous movement, which contributes to the creation of a great number of noisy
blobs.

5.2 Squash tournament (SQUASH)

These videos are from the CVBASE dataset and were filmed during a tournament
of amateur players. The videos were recorded using a S-VHS video-recorder, from a
birds-eye view with wide angle lens. The videos were digitized to digital video format
with 25 fps, with a resolution of 384 × 576 and M-JPEG compression. The selected
video is a zenithal record of two players playing squash. They are in close proximity
to each other, wear similar clothing, carry faster movements, and constantly cross in
front of each other, all making for a challenging sequence.

5.3 Handball match (HANDBALL)

This video is also from the CVBASE dataset and it has the same characteristics as the
squash tournament sequences. The players do not leave the court during the match,
they constantly cross in front of each other, with occlusions and disocclusions, and
the number of objects (players) per track is quite high. These conditions also make
for a challenging sequence.

19

Fig. 7 Three scenes used in the
evaluation process. Original
images are depicted in the first
column and their corresponding
segmented images in the second
column. Segmented images are
the input of the tracking
algorithms

6 Evaluation of algorithms

6.1 Evaluation metrics

Tracking methods can be evaluated on the basis of whether they generate correct
mobile object trajectories. A qualitative comparison of tracking algorithms can be
based on the ability to maintain the number of targets during the video sequence and
to provide an optimal solution to the cost function minimization problem used for
establishing correspondence (Yilmaz et al. 2006). Therefore, the metrics that allow
us to provide formal comparisons among the algorithms tested are:

Tracks per Frame (TPF). It is used to compare the behavior of the tracking algo-
rithms in terms of continuity of the tracks. An optimal tracker would have to obtain
the value referred as ‘ideal’. When the obtained value is below this ‘ideal’ value,
it means that the tracker lost the continuity of the tracks (merge effect) and, con-
versely, when it is over the ‘ideal’ value, the tracker had an excess of tracks (split
effect). The standard deviation of TPF allows for discriminating between behaviors
with very similar averages but worse quality (greater deviation).

20

Frames per Second (FPS). This is the rate of processed images by the tracking algo-
rithms; high values imply a greater capacity of processing.

Lost Track Probability (LTP). This determines the probability of losing a track on a
given frame. Note that this measure has also been used in other frameworks (Kan
and Krogmeier 1996).

6.2 Results

The system described here has been implemented in C++ under Microsoft Visual
Studio, using the ‘visual surveillance’ algorithms incorporated in the Open Source
Computer Vision Library (OpenCV). The system was tested on an AMD Athlon
64 Processor 3200+ with 2.01 GHz and 1 Gb of RAM. The OpenCV ‘visual sur-
veillance’ algorithms use the pipeline structure depicted in Fig. 8. The input data
for the pipeline is the image of the current frame and the output data is the infor-
mation regarding track position and size. The ‘FG/BG Detection’ module performs
foreground/background segmentation for each pixel; the ‘Blob Entering Detection’
module uses the result of ‘the FG/BG Detection’ module to detect new blob objects
which entered the scene on each frame; and the ‘Blob Tracking’ module is initialized
by the ‘Blob Entering Detection’ results and tracks each new blob that enters. This
pipeline structure allows us to exchange different algorithms for the ‘Blob Tracking’
module, and to maintain the same execution conditions, i.e. using the same ‘FG/BG
Detection’ and ‘Blob Entering Detection’ modules.

In Table 1, we show the six ‘Blob Tracking’ modules implemented in this work.
Our intention is to compare the performance of our approximation with other ‘Blob
Tracking’ modules, so we have fixed the same ‘FG/BD Detection’ and ‘Blob Entering
Detection’ modules for every evaluation. This way, we can compare the results of the
six different tracking modules. Regarding the ‘FG/BD Detection’ module, we have
selected the OpenCV implementation of the adaptive background mixture models for
real-time tracking (Stauffer and Grimson 1999). These five methods are described in

Fig. 8 The OpenCV ‘visual surveillance’ algorithms

Table 1 ‘Blob Tracking’ algorithms used in the evaluation section

Algorithm Description

CGA

UMDA

PBIL

MSPF

GA

Tabu

Compact Genetic Algorithm (Harik et al. 1999)

Univariate Marginal Distribution Algorithm (Mühlenbein 1997)

Population-Based Incremental Learning (Cestnik 1990)

Particle Filtering based on Mean-Shift weight (Chen et al. 2005; Comaniciu and Meer 2002;
OpenCV)

Genetic Algorithm (Goldberg 1989)

Tabu Search Algorithm (Glover and Laguna 1993)

21

Table 2 Parameters of ‘Blob Tracking’ algorithms used in the evaluation section

Algorithm Parameters

CGA Learning Rate = 2000, Maximum number of generations = 10000

UMDA Population = 8(μ) + 100(λ), Maximum number of generations = 1000

PBIL Learning Rate = 0.25, Maximum number of generations = 5000

MSPF Number of particles = 100, Percent of particles which use velocity feature = 0.8, Size
variation = 0.01, Position variation = 0.8

GA Population = 100, Crossover Prob. = 0.8, Mutation Prob. = 0.01, Elitism = 0.2, Maximum
number of generations = 5000

Table 3 Measures of quality of
the algorithms applied to
SQUASH

Mean TPF sd TPF FPS LTP

(ideal = 2)

Tabu 1.90 0.25 14.56 0.003

UMDA 1.87 0.25 14.40 0.003

CGA 1.88 0.24 14.22 0.003

PBIL 1.89 0.23 12.31 0.002

GA 1.87 0.26 6.64 0.004

MSPF 1.90 0.24 5.74 0.005

the related work section and all of them, except the Particle Filtering—Mean Shift
algorithm (MSPF), have been implemented in this work following their references.
Finally, we have used the MSPF algorithm implemented in the OpenCV library.

In this work, we have implemented several Evolutionary Computation algorithms.
Specifically, we have modeled the video-tracking problem using two families of evo-
lutionary algorithms: Genetic Algorithm and Estimation of Distribution Algorithms
(CGA, UMDA and PBIL). All of them have been implemented similarly to the Tabu
Search algorithm, where the association consists of finding the appropriate values
for the assignment matrix (see Fig. 2). To be able to use the evolutionary algorithm
techniques, the assignment matrix is codified as a string of bits. The initial individ-
uals are not randomly generated, but are fixed to solutions in which each blob is
assigned to the closest object to assure an effective search. So, the search is per-
formed over combinations starting from this solution to optimize the heuristic (sim-
ilar to cost function, see Sect. 3.1) after any of this initial configuration is changed.
The four algorithms have been implemented following the cited references: canoni-
cal GA (Goldberg 1989), CGA (Harik et al. 1999), UMDA (Mühlenbein 1997), and
PBIL (Cestnik 1990). The parameter of the algorithms used in the experimentation
are shown in Table 2.

In the following tables, we present the quality measurements of the EDAS, GAs,
Particle Filtering and Tabu Search applied to the SQUASH (Table 3), BOAT (Table
4) and HANDBALL (Table 5) sequences.

22

Table 4 Measures of quality of
the algorithms applied to BOAT Mean TPF sd TPF FPS LTP

(ideal = 3)

Tabu 2.983 0.067 4.88 0.000

CGA 2.983 0.067 4.29 0.002

UMDA 2.934 0.167 4.26 0.020

PBIL 2.983 0.067 4.04 0.019

MSPF 2.983 0.067 2.33 0.000

GA 2.932 0.166 2.21 0.024

Table 5 Measures of quality of
the algorithms applied to
HANDBALL

Mean TPF sd TPF FPS LTP

(ideal = 14)

Tabu 12.321 1.684 7.40 0.10

CGA 10.769 1.095 0.81 0.20

PBIL 11.639 1.220 0.66 0.20

MSPF 12.920 0.523 0.56 0.22

UMDA 7.353 1.014 0.31 0.71

GA 12.403 1.821 0.04 0.43

All of the tables above show results ordered by a decreasing number of FPS. When
all approaches are similar in terms of efficiency, the most important measure is the
FPS, since it corresponds to the real time constraints.4

The first two tables show results for easy problems, and we can see that they are
all comparable in terms of efficiency. It is hard to reproduce the actual behavior of
the algorithms without watching the video scene itself; however, the measures used
in this paper can give us an approximate idea of their quality. TPF shows how many
tracks appear on every frame, which should be close to the actual number of tracks.
However, this does not mean that these tracks are the real tracks we would like to
target (noise instead of objects). Thus, this measure should be taken into account
along with the LTP measure. This measure tells us how likely it is that we will lose a
track using a given algorithm.

Turning to the third table, which corresponds to the most complicated scene, we
can see that all of the algorithms perform similarly in most of the performance mea-
sures, although the differences are now more significant than in the other scenarios. In
particular, we can clearly see how Tabu Search outperforms the rest of the approaches
in terms of FPS while it compares with the best algorithms in terms of efficiency. This
is very important because it means that now, with Tabu Search, we are able to per-
form video tracking for complicated scenes (namely more than 10 tracks and around
70 blobs) in real time. Note that all the previous approaches were able to process less
than 1 frame per second, while Tabu Search is capable of processing more than 7.

4Real time is achieved when FPS is more than 5.

23

It is worth further examining the results in this last table. It might be surprising
to see how Tabu Search outperforms the rest of the techniques, but it can be eas-
ily explained. Tabu Search can handle many more frames per second than the other
approaches, which was not the case in the other examples (there were not many ob-
jects). The reason is that this last scenario contains a much larger number of blobs
and tracks. Finding the optimal assignment matrix for the first scenarios was not very
computationally demanding, while in this last case, more computation power is re-
quired. This is due to the explosion in the size of the search space. Thus, in this last
case, Tabu Search is a much powerful technique (it has a greater greedy component)
and given the auxiliary structures that allow incremental calculation of the fitness
function, Tabu Search can solve the association problem much faster. This yields a
better ratio of frames per second. The larger the search space, the larger the difference
in performance.

7 Conclusions and future work

We have presented a Tabu Search algorithm, along with a novel technique for achiev-
ing incrementality, in order to solve the association problem in video tracking. The
main contributions of our work are:

– Showing that local search techniques can be very useful for solving real life prob-
lems, especially when real time is a hard constraint.

– Introducing a novel technique for achieving incrementality when the search space
is not the same as the solution space, i.e., the space needed to calculate the fitness
of a candidate solution.

– Solving the association problem in video tracking more efficiently and much faster
than with previous approaches. Real time is now possible for complicated video
scenes.

Nevertheless, we are interested in doing further research on this problem. The
main features we would like to address in the near future are:

– Improving the fitness function by adding other components such as color, texture,
etc.

– Developing a self-tuning version of the algorithm so it can choose the right parame-
ters for every instance of a problem. For example, increase the maximum number
of iterations depending on the number of blobs and tracks, or switch to a different
initialization depending on the blobs-to-tracks ratio.

– Trying a different strategy where Tabu Search is applied to each track separately.
This would need several Tabu Search runs for each problem (as many as the num-
ber of tracks), but we could focus our efforts on the most problematic tracks (by
increasing the allowed number of iterations in these cases) while relaxing the com-
putation time spent on the easiest ones.

– Developing a hybrid evolutionary strategy where Tabu Search can be used as mu-
tation operator.

Acknowledgements We would like to thank Pascal Van Hentenryck for his help and encouragement.
We would also like to thank the reviewers for their useful comments.

24

References

Angus, J., Zhou, H., Bea, C., Becket-Lemus, L., Klose, J., Tubbs, S.: Genetic algorithms in passive track-
ing. Technical report, Claremont Graduate School, Math. Clinic Report (1993)

Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002) [see
also IEEE Transactions on Acoustics, Speech, and Signal Processing]

Baluja, S.: Population-based incremental learning: a method for integrating genetic search based function
optimization and competitive learning. Technical Report CMU-CS-94-163, CMU-CS, Pittsburgh, PA
(1994)

Beymer, D., Konolige, K.: Real-time tracking of multiple people using continuous detection (1999)
Blackman, S.S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Norwood

(1999)
Broida, T.J., Chellappa, R.: Estimation of object motion parameters from noisy images. IEEE Trans. Pat-

tern Anal. Mach. Intell. 8(1), 90–99 (1986)
Castanedo, F., Patricio, M.A., Garcia, J., Molina, J.M.: Extending surveillance systems capabilities using

bdi cooperative sensor agents. In: VSSN ’06: Proceedings of the 4th ACM International Workshop
on Video Surveillance and Sensor Networks, pp. 131–138. Assoc. Comput. Mach., New York (2006)

Cestnik, B.: Estimating probabilities: a crucial task in machine learning. In: ECAI, pp. 147–149 (1990)
Chang, Y.L., Aggarwal, J.K.: Neural network optimization for multi-target multi-sensor passive tracking.

In: Proc. IEEE Workshop on Visual Motion, pp. 268–273 (1991)
Chen, T.P., Haussecker, H., Bovyrin, A., Belenov, R., Rodyushkin, K., Kuranov, A., Eruhimov, V.: Com-

puter vision workload analysis: case study of video surveillance systems. Intel Technol. J. 9(2), 109–
118 (2005)

Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 24(5), 603–619 (2002)

Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach.
Intell. 25(5), 564–575 (2003)

Cordon, O., Damas, S.: Image registration with iterated local search. J. Heuristics 12(1–2), 73–94 (2006)
Cox, I.J., Hingorani, S.L.: An efficient implementation of Reid’s multiple hypothesis tracking algorithm

and its evaluation for the purpose of visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 18(2),
138–150 (1996)

de Bonet, J.S., Isbell, C.L., Jr., Viola, P.: MIMIC: Finding optima by estimating probability densities. In:
Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems,
vol. 9, p. 424. MIT Press, Cambridge (1997)

Djuric, P.M., Kotecha, J.H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M.F., Miguez, J.: Particle filtering.
IEEE Signal Process. Mag. 19–38 (2003)

Dotu, I., Van Hentenryck, P.: Scheduling social golfers locally. In: CP-AIOR-05 (2005)
Ferryman, J.M., Maybank, S.J., Worrall, A.D.: Visual surveillance for moving vehicles. Int. J. Comput.

Vis. 37(2), 187–197 (2000)
Glover, F., Laguna, M.: Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific,

Oxford (1993)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison–Wesley,

Reading (1989)
Grunert, F., Funke, B., Irnich, S.: Local search for vehicle routing and scheduling problems: review and

conceptual integration. J. Heuristics 11(4), 267–306 (2005)
Han, M., Xu, W., Tao, H., Gong, Y.: An algorithm for multiple object trajectory tracking. In: CVPR 2004:

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 01, pp. 864–871 (2004)

Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4),
287 (1999)

Harvey, W., Winterer, T.: Solving the MOLR and social golfers problems. In: CP-05 (2005)
Hillis, D.B.: Using a genetic algorithm for multi-hypothesis tracking. In: ICTAI ’97: Proceedings of the

9th International Conference on Tools with Artificial Intelligence, p. 112. IEEE Computer Society,
Washington (1997)

Huwer, S., Niemann, H.: 2d-object tracking based on projection-histograms. In: 5th European Conference
on Computer Vision, pp. 861–876 (1998)

Kan, W.Y., Krogmeier, J.V.: A generalization of the pda target tracking algorithm using hypothesis clus-
tering. Sign. Syst. Comput. 2, 878–882 (1996)

25

Kincaid, R.K., Laba, K.E.: Reactive Tabu Search and sensor selection in active structural acoustic control
problems. J. Heuristics 4(3), 199–220 (1998)

Kitagawa, G.: Non-Gaussian state-space modeling of nonstationary time series. J. Am. Stat. Assoc. 82,
1032–1063 (1987)

Larraaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Compu-
tation. Kluwer Academic, Norwell (2001)

Mühlenbein, H.: The equation for response to selection and its use for prediction. Evol. Comput. 5(3),
303–346 (1997)

Mühlenbein, H., Mahnig, T.: The factorized distribution algorithm for additively decompressed functions.
In: 1999 Congress on Evolutionary Computation, pp. 752–759. IEEE Service Center, Piscataway
(1999)

OpenCV. intel.com/technology/computing/opencv/index.htm
Patricio, M.A., Carbó, J., Pérez, O., García, J., Molina, J.M.: Multi-agent framework in visual sensor

networks. EURASIP J. Adv. Signal Process. 2007, 98639 (2007a). doi:10.1155/2007/98639, 21 pp.
Patricio, M.A., García, J., Berlanga, A., Molina, J.M.: Video tracking association problem using estima-

tion of distribution algorithms in complex scenes. In: Artificial Intelligence and Knowledge Engi-
neering Applications: A Bioinspired Approach: First International Work-Conference on the Interplay
Between Natural and Artificial Computation. Lecture Notes in Computer Science. Springer, Berlin
(2007b)

Patricio, M.A., Castanedo, F., Berlanga, A., Perez, O., Garcia, J., Molina, J.M.: Computational intelligence
in visual sensor networks: improving video processing systems. In: Computational Intelligence in
Multimedia Processing: Recent Advances. Studies in Computational Intelligence, vol. 96, pp. 351–
377. Springer, Berlin (2008)

Pisinger, D., Faroe, O., Zachariasen, M.: Guided local search for final placement VLSI design. J. Heuristics
9(3), 269–295 (2003)

Regazzoni, C.S., Vernazza, G., Fabri, G. (eds.): Highway Traffic Monitoring. Kluwer Academic, Norwell
(1998a)

Regazzoni, C.S., Vernazza, G., Fabri, G. (eds.): Security in Ports: the User Requirements for Surveillance
System. Kluwer Academic, Norwell (1998b)

Ruan, Y., Willett, P.: Multiple model pmht and its application to the benchmark radar tracking problem.
IEEE Trans. Aerosp. Electron. Syst. 40(4), 1337–1350 (2004)

Shams, S.: Neural network optimization for multi-target multi-sensor passive tracking. In: Proceedings of
the IEEE, vol. 84, pp. 1442–1457 (1996)

Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE Computer So-
ciety, Los Alamitos (1999)

University of Ljubljana Machine Vision Group. Cvbase ’06 workshop on computer vision based analysis
in sport environments, found at url: http://vision.fe.uni-lj.si/cvbase06/ (2001)

Xiao-Rong, L., Bar-Shalom, Y.: Multitarget-Multisensor Tracking. Principles and Techniques (1995)
Yeddanapudi, M., Bar-Shalom, Y., Pattipati, K.: IMM estimation for multitarget-multisensor air traffic

surveillance. In: Proceedings of the IEEE, vol. 85, pp. 80–96 (1997)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)

26

	Página en blanco

