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Abstract. Recent studies show that aggregating local descriptors into
super vector yields effective representation for retrieval and classification
tasks. A popular method along this line is vector of locally aggregated de-
scriptors (VLAD), which aggregates the residuals between descriptors and
visual words. However, original VLAD ignores high-order statistics of local
descriptors and its dictionary may not be optimal for classification tasks.
In this paper, we address these problems by utilizing high-order statis-
tics of local descriptors and peforming supervised dictionary learning. The
main contributions are twofold. Firstly, we propose a high-order VLAD
(H-VLAD) for visual recognition, which leverages two kinds of high-order
statistics in the VLAD-like framework, namely diagonal covariance and
skewness. These high-order statistics provide complementary information
for VLAD and allow for efficient computation. Secondly, to further boost
the performance of H-VLAD, we design a supervised dictionary learning
algorithm to discriminatively refine the dictionary, which can be also ex-
tended for other super vector based encodingmethods.We examine the ef-
fectiveness of ourmethods in image-based object categorization and video-
based action recognition. Extensive experiments on PASCAL VOC 2007,
HMDB51, and UCF101 datasets exhibit that our method achieves the
state-of-the-art performance on both tasks.

1 Introduction

Effective representation of image and video is crucial for visual recognition such
as object recognition and action recognition. One popular representation is Bag
of Visual Words (BoVW) model with local descriptors [5,36,22]. Approaches
along this line include vector quantization (VQ) [27], sparse coding (SC) [39],
soft-assignment (SA) [19], locality-constrained linear coding (LLC) [34], Fisher
vector (FV) [23], and vector of locally aggregated descriptors (VLAD) [12]. These
methods start from extracting local low-level descriptors (e.g., SIFT [20] or HOG,
HOF, MBH [32]), then learn a codebook or dictionary from training set, encode
descriptors to new vectors, and finally aggregate them to a global vector. After
normalization, these vectors are used to train a classifier for visual classification.

� Indicates equal contribution.
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(a) (b)

Fig. 1. The illustration of VLAD problem and dictionary refining process. (a) The
descriptors (“+”) assigned to word di in the n1-th and n2-th samples from different
classes share the same mean. It results in two similar VLAD representations. However,
the discrimination is preserved when incorporating high-order statistics of the assigned
descriptors. (b) For the dictionary, our supervised learning method tunes the dictionary
to minimize the classification error E and achieves better cosine-like similarity measure.

Recent study works show that super vector based encoding methods provide
successful representations for visual recognition [5,36,22]. VLAD [12] is a kind
of efficient super vector encoding method. For VLAD, it trains a codebook in
the feature space using K-means. Each block of VLAD can be viewed as the
difference between the mean of the descriptors assigned to the visual word and
the word itself. VLAD can be efficiently computed and its effectiveness has been
verified in several tasks, such as instance retrieval [12,1], scene recognition [8],
and action recognition [11]. However, there are still two main issues about VLAD
representation:

– It ignores the high order information of the descriptor distribution. As il-
lustrated in Fig. 1 (a), the descriptors assigned to word di in the n1-th and
n2-th samples share the same means. This results in two similar aggregated
vectors by original VLAD method. However, the distributions of the two sets
of descriptors are obviously different.

– The dictionary is another important issue for VLAD [1]. The similarity be-
tween two VLAD vectors is more sensitive to the visual words. As illustrated
in the Fig. 1 (b), the two VLAD blocks, generated by di for the n1-th and
n2-th samples are deemed to be similar due to the acute angle between
them. But in practice, the two sets of descriptors may come from different
categories, and their similarity is desired to be not large.

To address this issues, we introduce two important methods to boost the repre-
sentation capacity of VLAD. Firstly, we leverage two high-order statistics in the
VLAD-like framework, including diagonal covariance and skewness, to construct
a high-order version of VLAD (H-VLAD). The covariance of descriptors reflects
the distribution shape which is beneficial for classification.We utilize the residuals
between the diagonal covariance from clusters and that from assigned descriptors
to enhance the original VLAD. Mean and covariance are sufficient to describe a
pure Gaussion distribution [9]. However, as shown in [13], there always exist heavy
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tails for the distributions of gradient-based features. Therefore, we also test the
third-order statistics, namely skewness, which capture the asymmetry of the de-
scriptors around the mean.

Secondly, in order to enhance the discriminative power of VLAD, we propose
a supervised dictionary learning (SDL) method. The VLAD with supervised
dictionary are called S-VLAD. Our novel SDL method jointly optimizes the dic-
tionary and classifier, which is solved by updating the visual words and learning
model alternately. A slight update of the visual word will revise the similarity
at the desired direction as shown in Fig. 1 (b). It is worth noting that there
are plenty of research works on SDL for traditional encoding methods [3,30], but
to our best knowledge, we are the first to introduce SDL for VLAD encoding,
which is independent with the recent work of Deep Fisher Kernel [29], where the
GMM parameters are discriminatively tuned in Fisher Vector framework.

The main contributions of this paper can be summarized as follows: (i) we
extend VLAD with high-order statistics while keeping both high performance
and high extraction speed (Section 3). (ii) we are the first to explore supervised
dictionary learning for VLAD and verify its effectiveness (Section 4). (iii) Our
method obtains the state-of-the-art performance on several challenging bench-
marks including PASCAL VOC 2007, HMDB51 and UCF101 datasets for object
and action recognition (Section 5).

2 Related Works

Super Vector Based Encoding Method. Bag of Visual Words (BoVW)
[5,36] model with local descriptors has become a popular method for visual
recognition and super vector based encoding methods [40,12,23] have obtained
the state-of-the-art performance in several tasks. Super vector based encoding
methods yield very high dimensional representations by aggregating high order
statistics and typical methods include Super Vector Coding (SVC) [40], Vector
of Locally Aggregated Descriptors [12], and Fisher Vector [23]. SVC assumed
to learn a smooth nonlinear function f(x) defined on a high dimensional space
and derive a good coding scheme φ(x) to approximate f(x) in a linear form
ω�φ(x). The resulting super vector coding φ(x) can be viewed as a super vector
aggregating zero order and first order statistics. FV [23] was derived from Fisher
Kernel [10] by representing the sample using the parameter gradient vector of
log likelihood. In practice, FV aggregates not only the first order statistics, but
also the second order statistics. Thus, its performance is usually better than
VLAD, where only the first order statistics is kept. The idea of augmenting
VLAD with high order information is inspired by these super vector encoding
methods. However, this augmenting method shares two advantages: (i) it is able
to bridge the performance gap between VLAD and FV; (ii) it also shares the
high speed of VLAD.

Supervised Feature Learning. Feature learning (or deep learning) [2] has
become more popular in computer vision community. Among them, the discrim-
inatively trained deep convolutional neural networks (CNN) [18] have recently
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achieved impressive state-of-the-art results over a number of areas, including
object recognition [16] and action recognition [26]. One of the main advantages
of CNN is that it is able to supervised learn the network parameters according
to specific task from a large dataset. The idea of supervised learning has been
extended to traditional methods, such as sparse coding [3], soft assignment [30].
These methods mainly resorted to jointly optimize the dictionary and classifiers.
However, they did not deal with super vector based encoding methods. The latest
paper [29] designed an end-to-end learning method to discriminatively tune the
GMM parameters for Fisher vector. Our work of supervised dictionary learning
for VLAD is independent with them and we obtains much better results on the
PASCAL VOC 2007 dataset.

3 Augmenting VLAD with High Order Statistics

In this section, we first review the original VLAD computation and its corre-
sponding normalization operation. We then introduce adding high-order statis-
tics in VLAD computation framework.

3.1 VLAD Review

VLAD is proposed by Jégou et al. in [12]. Similar to standard BoVW, a dictio-
nary D = [d1,d2, · · · ,dK ] ∈ Rd×K is first learned by K-means from training
samples. Let X = [x1, ...xN ] ∈ Rd×N denote a set of local descriptors from
a video V . For each codeword dk, a vector vk is yielded by aggregating the
differences between the assigned descriptors and codeword dk:

vk =
∑

xj :NN(xj)=k

(xj − dk), (1)

where NN(xj) denotes that the nearest neighborhood of xj in D. The VLAD
representation is the concatenation of all the d-dimensional vectors vk and is
therefore a Kd-dimensional vector. The representative capacity of VLAD can be
enhanced by pre-processing the local features with PCA-Whitening [6,22], and
performing intra-normalization on the final representation [1]. Thus, the final
representation of VLAD is expressed as follows:

ψ(X,D) =

[
v1

||v1||2 ; ...;
vi

||vi||2 ; ...;
vK

||vK ||2

]
. (2)

3.2 High-Order VLAD

This section introduce a simple yet effective method to augment original VLAD,
which is motivated by the fact that VLAD will lose discriminative capacity in
two cases. The first case is as shown in Fig. 1(a) that it would yield the same
VLAD representation when the two sets of assigned descriptors share the same
mean. We call this problem as “share-means”. Another one is that those zero
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aggregated vectors are ambiguous, because of both the facts that no descriptor
is assigned to the codeword and that the mean of assigned features is equal
to the codeword. We call this problem as “evil-zeros”. In order to solve these
problems, we propose a higher-order VLAD (H-VLAD), which makes use of two
high-order statistics in the VLAD-like framework, including diagonal covariance
and skewness. The technical details are as follows.

The original version of VLAD defined in Equation (1) can be rewritten as:

vk = Nk(
1

Nk

Nk∑

j=1

xj − dk) = Nk(mk − dk), (3)

where Nk is the number of descriptors assigned to codeword dk, which can
be omitted when the intra-normalization is used, and mk is the mean of these
descriptors assigned to codeword dk. Thus, the original VLAD can be interpreted
as the difference between the mean of descriptors and codeword. Similarly, using
covariance, we formulate the second-order super vector as follows:

vc
k = σ̂2

k − σ2
k =

1

Nk

Nk∑

j=1

(xj −mk)
2 − σ2

k, (4)

where the square of a vector is element-wise one and σ2
k is the diagonal elements

of covariance matrix of the k-th cluster.
As for standard Gaussian distribution, the first and second statistical infor-

mation is sufficient to determine the distribution. However, low-level descriptors
(e.g., SIFT) are not usually Gaussian distribution in reality [13]. Therefore, we
also employ the third-order statistics (skewness) to exploit extra complementary
information. Skewness is a measure of the asymmetry of the data around the
sample mean. We formulate third-order super vector as follows,

vs
k = γ̂k − γk =

1
Nk

∑Nk

j=1(xj −mk)
3

( 1
Nk

∑Nk

j=1(xj −mk)2)
3
2

− γk, (5)

where the power of a vector is also the element-wise one. The γk is the skewness
of k-th cluster.

After intra-normalization separately, these two extra vectors are concatenated
to the original VLAD to form a longer representation which is the final repre-
sentation of our H-VLAD. Note that the statistics in Equation (3,4,5) can be
quickly computed using Matlab toolbox. The H-VLAD requires no soft weight
computation and contains higher statistical information compared with FV.

4 Supervised Dictionary Learning for VLAD

In this section, we first discuss the importance of dictionary for VLAD. Then,
we formulate the supervised dictionary learning method for VLAD, and finally
extend it to the spatial pyramid situation.
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(a) Mean values: {mc1
i } and {mc2

i } (b) The normalized {mi}

(c) The normalized {mi- di} (d) The normalized {mi- d̂i}

Fig. 2. Graphical interpretation of the importance of subtraction operation and a good
dictionary. Two sets of mean values {mc1

i } and {mc2
i } from class c1 and c2 (a) are

normalized by L2-norm and distribute in the 1st quadrant of a standard circle (b).
After minus a particular anchor di (e.g., learned by K-means), they embed in the
whole circle (c). An optimized anchor make the two sets of mi more separate (d). Note
that we make a micro shift to the points in (b), (c) and (d) for better visualization.

4.1 Importance of Dictionary

The dictionary plays an important role of subtractor in original VLAD. As illus-
trated in Fig. 2(a), two sets of VLAD blocks mc1

i and mc2
i defined in Equation

(3) are from class c1 and c2 and scattered in a high-dimensional space. The sep-
arability of {mc1

i } and {mc2
i } determines the performance of final discriminative

classifier. After normalization, all the vectors are projected to the 1st quadrant
of a unit circle due to the positive property of descriptors (e.g., SIFT, HOG, etc)
as shown in Fig.2(b). A linear classifier will produce a large error since almost
half of samples overlap in this case. As for original VLAD, both sets of mc1

i

and mc2
i will subtract an anchor vector di (the cluster center from K-means),

then the normalized vectors will project to the whole unit circle, which make the
samples more easily be separated (Fig. 2(c)). Since di affects the distribution of
normalized vectors, we may find an optimized one to minimize the classification
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error. When we update the di according to the negative gradient direction of the
cost function as shown in Fig. 2(a), the normalized vectors will become much
more easily to be separated using the discriminative dictionary (Fig. 2(d)).

4.2 Algorithm and Formulation

The original VLAD makes use of K-means to learn the dictionary. As discussed
in the previous subsection, this may not be optimal for classification tasks. In this
subsection, we formulate the dictionary learning and classification in a unified
framework.

Due to its good performance, we consider the intra-normalization version of
original VLAD [1]. The VLAD representation for the n-th training image or
video is given by:

φn = ψ(Xn,D) = [φn1, · · · , φnK ] , (6)

where φni denotes the super vector of codeword di as defined in Equation (2).
We aim to learn the dictionary D and classifier parameters w given N training
samples by minimizing the following objective function:

E(w,D) =

N∑

n=1

�(yn, f(ψ(Xn,D),w)) + λ||w||22 (7)

where yn denotes the label of the n-th sample, f(ψ(Xn,D),w) is the predic-
tion model, � denotes the loss function, and λ is a regularization parameter.
Minimizing E(w,D) can be approached by optimizing alternately over w and
D. We utilize logistic regression and softmax activation function for binary and
multi-class classification, respectively. This is because the performance of them
are similar to that of linear SVMs but their cost functions are differentiable [3].

Consider the binary classification problem first, where yn ∈ {0, 1} and fn =
σ(wTφn). The σ denotes the sigmoid function σ(x) = 1/(1 + exp(−x)). With
cross-entropy loss, the cost function E is given by:

E = −
N∑

n=1

{ynInfn + (1− yn)In(1 − fn)} + λ||w||22. (8)

The gradient of E over w is:

∇wE =

N∑

n=1

(fn − yn)φn + 2λw. (9)

Given dictionary D, we can use gradient descent method to find optimal w.
Given the model w, in order to optimize E over D, we apply the chain rule to
compute the gradient as follows:

∇diE =

N∑

n=1

∂�

∂fn

∂fn
∂φn

∂φn
∂di

. (10)
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The computational processes of the first two gradients in the right side are
similar with that of ∇wE. The key problem is reduced to compute the gradient
of the VLAD representation φn over di. Ignoring the effect of mi (we set a small
learning rate to meet this condition in practice), we can compute the gradient
as follows:

∂φn
∂di

=

[
0, · · · , ∂φni

∂di
, · · · ,0

]
, (11)

∂φni
∂vni

=
1

‖vni‖2 (I− φniφ
�
ni), (12)

∂vni

∂di
= −NniI, (13)

where I ∈ Rd×d is a unit matrix. Therefore, the gradient of E over di is given
by:

∇diE = −
N∑

n=1

(fn − yn)
Nni(I− φniφ

�
ni)

||vni||2 w(i), (14)

where w(i) is the i-th block of w with the same size of di.
As for multi-class problem, yn and fn are C dimensional vectors and the

activation function is fnc = exp(wcφn)/Σ
C
j=1 exp(wjφn). Using cross-entropy

loss, the cost function with regularization is defined by:

E = −
N∑

n=1

C∑

c=1

yncInfnc + λ||w||22. (15)

Applying the chain rule to compute the gradient of E over di, we obtain:

∇diE =

N∑

n=1

C∑

c=1

∂�

∂fnc

∂fnc
∂φn

∂φn
∂di

(16)

= −
N∑

n=1

Nni(I− φniφ
�
ni)

||vni||2
C∑

c=1

(fnc − ync)w(i)c.

We summarize our supervised dictionary learning method for both binary and
multi-class classification in Algorithm 1. The dictionary D is usually initialized
by K-means from a subset of local descriptors.

Supervised Dictionary Learning with Spatial Pyramid. Spatial pyramid
(SPM) is usually beneficial to image classification. Here we present the super-
vised dictionary learning method with spatial pyramid. Suppose M cells are
used for the n-th sample, then the final VLAD representation with SPM is Φn =
[φ1n, ..., φ

M
n ]. The predict model is then changed to f(Φn,w) = σ(

∑
m wmφmn ).

Then, for the binary case, the gradient of E over D can be written as follows:
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Algorithm 1. Supervised Dictionary Learning Algorithm for VLAD

Input : Local descriptors and labels in training data: {(Xn, yn)}. Parameters:
K, λ, λd, λw

Output: Dictionary: D, Predict Model: w

Initialization: D0 ← init by K-means, w← randomly select from normal
distribution;
0. Compute VLAD using D0

while t < T and δ > ε do
1. Update D fix w: Dt ← Dt−1 − λd∇diE;
2. Recompute VLAD using Dt ;
3. Optimize w fix D: argminw E ;
4. δ ← error(t) - error(t-1);

end

∇diE =

N∑

n=1

∂�

∂fn

M∑

m=1

∂fn
∂φmn

∂φmn
∂di

. (17)

= −
N∑

n=1

(fn − yn)

M∑

m=1

Nm
ni(I− φmniφ

m�
ni )

||vm
ni||2

wm
(i),

where Nm
ni denotes the number of descriptors assigned to word di at the m-th

cell in n-th sample. Similar with Algorithm 1, the desired dictionary and the
model with spatial pyramid can be optimized alternately.

5 Experiments

We verify the effectiveness of our proposed method on two recognition tasks,
namely visual object categorization (PASCAL VOC2007 [7]) and human action
recognition (HMDB51 [17] and UCF101 [28]). In this section, we first conduct
extensive experiments on PASCAL VOC 2007 to evaluate the performance of
our H-VLAD and S-VLAD. And then we apply them to video-based action
recognition with a large number of classes.

5.1 Evaluation on Object Classification

Our first and most extensive experiments are conducted on the well-known PAS-
CAL VOC2007 dataset [7]. This challenge is known as one of the most difficult
image classification tasks due to significant variations both in appearances and
poses even with occlusions. It consists of about 10,000 images with 20 different
object categories. There are 5,011 training images (train+val sets) and 4,952
test images. The performance is evaluated by the standard PASCAL protocol
which computes average precision (AP) based on the precision-recall curve. We
also report the mean of AP (mAP) over 20 categories.
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Fig. 3. (a) Performance of the VLAD and our H-VLAD with various local feature
dimensionality on PASCAL VOC2007 without SPM. (b) The training cost curve for
the supervised learning process. (c) The test accuracy curve of class aeroplane in the
supervised learning process.

Implementation Details. We densely extract local SIFT descriptors with a
spatial stride of 4 pixels at 9 scales, and the width of SIFT spatial bins is fixed
as 8 pixels, which are the default parameters setting in the VLFeat toolbox [31],
version 0.9.17. We learn dictionary from a subset of 256k SIFT descriptors. All
descriptors are whitened after PCA processing. The regularized factor λ is fixed
to 0.01, and the learning rates forD and w (λd and λw) are set to 0.001 and 0.01,
respectively. To ensure the effective estimation, we compute high-order statistics
only when Ni is larger than a threshold which is set to d (the same size as the
dimension of feature) empirically. For all the encoding methods, the long vectors
are post-processed by “power+intra” normalization. Note that during supervised
dictionary learning process, no power-normalization is performed due to the gra-
dient computation. As for SPM, we divide the image in 1× 1, 2× 2, 3× 1 grids.

H–VLAD. Fig.3(a) illustrates the mAPs of VLAD, VLAD with the 2nd-order
statistics, and H-VLAD (VLAD with 2nd and 3rd order statistics). The dictio-
nary size are all fixed to 256 as common setting. All the approaches perform
better when feature dimensionality increases, while reach the upper bounds at
the dimension of 80. Adding the 2nd-order statistics boosts the performance (by
2.4%–3.8%) of original VLAD as expected. We find the result obtained by the
single 2nd-order statistics (vc) is inferior to that of VLAD by 1.5%–3.5% when
testing them separately. We argue that the locations of the means from local
descriptors are more discriminative than the distribution shapes of descriptors,
and the distribution shapes contain complementary information to the mean of
distribution, which is beneficial for classification. We also find the result from
only usage of 3rd-order statistics is inferior to that of 2nd-order. Our H-VLAD is
superior to the others when the dimensions are larger than 80. This indicates the
skewness can provide complementary information to the 1st and 2nd statistics.

For fair comparison, we extend the dimension of VLAD to the same as that
of H-VLAD by increasing dictionary size. The first three columns in Table 1
show the detailed results for each category in VOC2007 dataset. From the 2nd
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Table 1. Detailed results of VLAD and our H-VLAD with and without supervised
dictionary. The number in the brackets of the 2nd and 3rd columns denote dictionary
size.

category VLAD(256) VLAD(768) H–VLAD S–VLAD SH–VLAD SH–VLAD(SPM)

aeroplane 75.9 76.5 80.3 79.7 84.0 85.1
bicycle 65.8 67.6 69.7 68.7 69.7 70.5
bird 51.1 48.9 55.9 50.6 55.6 61.5
boat 73.6 74.5 74.2 74.7 74.3 79.9
bottle 28.9 29.3 32.1 32.8 31.1 32.1
bus 63.6 62.3 64.8 68.0 72.4 74.0
car 80.3 79.9 82.0 82.2 82.1 83.0
cat 59.3 59.7 61.5 60.3 62.9 66.6
chair 52.1 55.6 53.6 53.2 54.5 57.9
cow 44.0 46.7 49.4 47.9 50.7 53.6
diningtable 50.5 49.2 55.5 53.2 59.5 61.1
dog 42.9 45.9 44.4 45.3 44.3 48.3
horse 78.8 79.6 81.0 81.3 81.9 83.7
motorbike 62.4 62.3 65.4 67.7 68.9 69.4
person 85.0 84.8 86.6 86.4 86.7 87.3
pottedplant 26.1 26.8 32.1 31.2 33.1 36.6
sheep 46.1 46.0 46.2 48.2 49.2 51.8
sofa 49.6 51.1 53.6 54.2 57.8 57.9
train 76.3 74.9 80.2 78.8 84.6 85.3
tvmonitor 52.8 54.2 55.2 54.3 57.9 58.9

mAP 58.3 58.8 61.2 60.9 63.1 65.2

column of Table 1, it is clear that the performance improvement is very limited
from increasing dictionary size and our H-VLAD is also superior to VLAD with
the same dimension.

Supervised Dictionary. We evaluate the impact of dictionary on VLAD and
our S-VLAD algorithm by fixing the PCA dimensionality as 80. First, we test the
performance of three random dictionaries (randomly selected SIFT descriptors)
and the mAPs are [51.0%, 50.9%, 50.0%]. This result verifies the importance
of a good dictionary. Then, we initialize the supervised dictionary by K-means
with the size fixed to 256 and learn a supervised dictionary with logistic func-
tion. Fig. 3(b) and (c) illustrates the optimization process of S-VLAD for class
“aeroplane”. We plot the cost function value and AP for each iteration. As ex-
pected, the AP increases and the cost function value decreases during iteration.
The improvement is limited when the iteration reaches 8. Therefore, we fix the
iterations to 8 for all the categories.

The last three columns in Table 1 show the results of all the categories by using
supervised dictionary for VLAD. The notation “SH-VLAD” denotes the combi-
nation of H-VLAD and S-VLAD. We only conduct supervised dictionary learning
for VLAD in current implementation. The supervised dictionary for both VLAD
and H-VLAD can improve the performance, and the improvements are 2.6%
and 1.9% for VLAD and H-VLAD, respectively. The performance becomes even
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better when performing the proposed SH-VLAD with spatial pyramid scheme
(the last column).

5.2 Application to Action Recognition

With the observation in VOC2007, we also perform experiments on the HMDB51
and UCF101 action datasets. The HMDB51 dataset [17] consists 51 action cat-
egories with 6,766 manually annotated clips which are extracted from a variety
of sources ranging from digitized movies to YouTube. We follow the experi-
mental settings in [17] and report the mean average accuracy over all classes.
The UCF101 dataset [28] has been the largest action recognition dataset so
far, and exhibits the highest diversity in terms of actions, with the presence of
large variations in camera motion, object appearance and pose, object scale,
viewpoint, cluttered background, illumination conditions and so on. It contains
13,320 videos collected from YouTube and includes total number of 101 action
classes. We perform evaluation on three train/test splits 1 and report the mean
average accuracy over all classes.

For both datasets, we densely extract improved trajectories using the code
from Wang [33]. Each trajectory is described by HOG, HOF, and MBH descrip-
tors. We reduce the descriptor dimensions by a factor of two using PCA+Whiten
pre-processing. We use soft-max function in Algorithm 1 to learn dictionaries for
each type of descriptor. All the super vectors are consistently normalized using
the same strategy as VOC2007. To combine different features, we concatenate
their final representations. A linear one-vs-all SVM with C=100 is used for
classification.

Table 2 compares our methods with VLAD and the improved FV [23] on
HMDB51 and UCF101 action datasets. For each individual type of features,
our H–VLAD outperforms VLAD with a large margin on both datasets, and
achieves very similar results as FV. This indicates the importance of high-order
information. Supervised dictionaries are beneficial to recognition for all types of
feature. Our SH–VLAD obtains best results on both datasets with a slight better
than that of FV. Besides, we also present the time costs of VLAD, H–VLAD, and
FV in Table 2. We implement these encoding methods in Matlab without any
parallel processing and use KD-Tree to search the nearest neighbor for VLAD
and H–VALD. We randomly select 10 videos, and compute the average cost per
video for encoding all types of feature. Note that the dictionary does not affect
the time cost in test phase. From Table 2, it is clear that the cost of our H–VLAD
is very close to that of original VLAD, but largely lower than that of FV.

5.3 Comparison and Discussion

Table 3 compares our best results to several recently published results in the
literature on each dataset. Our method outperforms these previously reported
results on all datasets. As for VOC2007 dataset, the most similar performance

1 http://crcv.ucf.edu/ICCV13-Action-Workshop/

http://crcv.ucf.edu/ICCV13-Action-Workshop/
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Table 2. Performance and computational cost of VLAD, S–VLAD, H–VLAD, SH–
VLAD, and FV on HMDB51 and UCF101 action datasets. Note that the time costs of
VLAD and H–VLAD are largely less than that of FV.

HMDB51 UCF101
VLAD H–VLAD S–VLAD SH–VLAD FV VLAD H–VLAD S–VLAD SH–VLAD FV

HOG 35.9 42.1 37.5 45.1 42.7 67.5 73.3 68.9 74.1 73.1
HOF 46.7 49.0 47.9 50.7 50.8 75.2 76.8 76.4 78.3 77.3
MBHx 38.4 43.0 44.4 44.1 44.3 70.2 76.0 74.6 76.6 75.1
MBHy 43.2 47.9 48.5 50.0 49.0 73.6 78.1 76.9 78.6 77.6

Combined 55.5 58.3 57.1 59.8 58.5 84.8 86.5 85.9 87.7 86.7
Time (s) 2.63 3.38 – – 57.21 – – – – –

Table 3. Comparison of our results to the state of the arts

VOC 2007 HMDB51 UCF101
Methods mAP Methods Accuracy Methods Accuracy

winner (2007) 59.4% iDT+FV[33] (2013) 57.2% winner [14] (2013) 85.9%
[5] (2011) 61.7% [35] (2013) 42.1% [4] (2014) 83.5%
[24] (2012) 57.2% [32] (2013) 46.6% [37] (2014) 84.2%
[15] (2013) 62.2% [25] (2013) 47.6%
[38] (2013) 64.1% [21] (2013) 52.1%

Our result 65.2% Our result 59.8% Our result 87.7%

with ours comes from [38]. They applied a layered model to PHOG and SIFT
features to obtain a desired mid-level representation, and learned this represen-
tation in a supervised way. Compared with [38], our approach only use SIFT
descriptors and is simpler, but achieves better performance. This should be
partly ascribed to high-dimensional representations we used. For the HMDB51
and UCF101 datasets, our approach improve the state-of-the-art performance
(57.2% and 85.9%) [33] by 2.6% and 1.8%, respectively, which may be because
of the supervised dictionary.

6 Conclusion

This paper first proposes to enhance the VLAD representation by aggregating
high-order information of local descriptors, which is called H–VLAD. The co-
variance and skewness are demonstrated to be complementary with the original
VLAD in our experiments. We then discuss the importance of a good dictionary
and propose the supervised dictionary learning method for VLAD, which we re-
fer to S–VLAD. Adding supervised dictionary can further boost the performance
of VLAD. Theoretically, our supervised dictionary learning method can be easily
extended for other super vector based methods. We verify the effectiveness of our
method for the tasks of object and action recognition. We conduct experiments
on three challenging benchmarks: PASCAL 2007, HMDB51, and UCF101, and
conclude that our method achieves the state-of-the-art performance.
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