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1 Introduction

The development of the microarray technology provides us a huge amount of gene expression profiles.
The estimation of a gene network has received considerable attention in the field of bioinformatics
and several methodologies have been proposed such as the Boolean network [1], the Bayesian network
[3, 4, 5] and so on. In this paper, we propose the method for measuring the reliability of the estimated
gene network by using the bootstrap method [2].

2 Method

2.1 Nonlinear Bayesian Network Model

In the estimation of a gene network, Imoto et al. [4, 5] proposed the nonlinear Bayesian network
model for capturing even nonlinear relationship among genes by using the nonparametric regression
model. The criterion, BNRC, was newly introduced for evaluating the estimated gene network from
Bayes approach. The details of the nonlinear Bayesian network model are described in [5].

2.2 Bootstrap Edge Intensity and Degree of Confidence of Bayes Causality

We measure the intensity of the edge and the degree of confidence of the direction of the Bayes
causality by the bootstrap method. The algorithm can be expressed as follows:
Step1: Make the bootstrap gene expression matrix X

∗

n = (x∗

1
, ...,x∗

n)T by randomly sampling n times,
with replacement, from the original gene expression data {x1, ...,xn} of n microarrays.
Step2: Estimate the gene network from X

∗

n.
Step3: Repeat Step1 and Step2 T times.

From this algorithm, we obtain T gene networks. We define the bootstrap intensity of edge and
direction of Bayes causality as follows: Edge intensity : If the edges genei → genej and genej → genei

exist t1 and t2 times in the T networks, respectively, we then define the bootstrap edge intensity
between genei and genej as (t1 + t2)/T . Degree of confidence of the Bayes causality : If t1 > t2, we
adopt the direction genei → genej and define that the degree of confidence of causality is t1/(t1 + t2).
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We superpose the bootstrap networks and original network. The superposed network contains
edges which have small intensities. Therefore, we can set a certain threshold value and remove the
edges whose intensities are under the threshold. We note that the superposed network possibly does
not hold the acyclic assumption, but much effective information are in this network.

3 Result

We applied the proposed method to the S. cerevisiae gene expression data. We focused on 521 genes
and used 100 gene disruption microarrays. The bootstrap algorithm was repeated 100 times. Figure
1 is the resulting partial network. The edge intensity is shown by the line width, and the number
next to the line is the degree of confidence of the direction. Table 1 shows the gene pairs with high
bootstrap intensities.
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Figure 1: The resulting partial network.

Parent Child Inte. Dire. Biological knowledge
CUP1A CUP1B 1.00 0.86 Related Proteins(100%)
GLK1 TPS1 1.00 0.78 No data
HHF1 HHF2 1.00 0.73 Related Proteins(100%)
HSC82 HSP82 1.00 0.61 Related Proteins(97%)
PHO11 PHO12 1.00 0.57 Related Proteins(100%)
ARO10 ARO9 1.00 0.57 Both ARO9 and ARO10 are

transcriptionally
regulated by Aro80p (34415)

ASP3A ASP3C 1.00 0.52 Related Proteins(100%)
PHO5 PHO3 0.99 0.98 Related Proteins(87%)
HSP104 PMC1 0.99 0.91 Related Proteins(93%)
GAL11 SSN6 0.99 0.85 GAL11: polyglutamine and

poly-glutamine-alanine domain are
similar to those found in Ssn6p

FBA1 GPM1 0.99 0.83 Functional genomics
YOL002C OLE1 0.99 0.59 Functional genomics
ADE3 ADE6 0.99 0.56 Functional genomics
IDH1 IDH2 0.99 0.54 Related Proteins(42%)

: Protein-protein interaction
HAP1 TRK2 0.98 0.56 No data
HHF2 HTB1 0.97 0.89 Both relates to Histone
YDR516C PPR1 0.97 0.78 No data
DBF4 CRZ1 0.97 0.60 No data
YNL134C GRE2 0.97 0.56 Functional genomics
SME1 REG2 0.97 0.55 No data
PDR5 PDR15 0.97 0.55 Related Proteins(75%)
TPS2 HSP78 0.97 0.52 Functional genomics

Table 1: Gene pairs with high bootstrap intensities.
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