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Abstract One of the major interests in extreme-value statistics is to infer the
tail properties of the distribution functions in the domain of attraction of an
extreme-value distribution and to predict rare events. In recent years, much
effort in developing new methodologies has been made by many researchers
in this area so as to diminish the impact of the bias in the estimation and
achieve some asymptotic optimality in inference problems such as estimating
the optimal sample fractions and constructing confidence intervals of various
quantities. In particular, bootstrap and empirical likelihood methods, which
have been widely used in many areas of statistics, have drawn attention. This
paper reviews some novel applications of the bootstrap and the empirical
likelihood techniques in extreme-value statistics.
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1 Introduction
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Let F be a distribution function. If there exist constants an > 0 and bn ∈ R
and a non-degenerate distribution function G such that

lim
n→∞ Fn(anx + bn) = G(x) (1.1)

for all continuity points x of G, then we say that F is in the domain of attraction
of the distribution G and denote F ∈ D(G). It is well known that the limiting
distribution G must be of the type of one of the so-called extreme-value
distributions:

Gγ (x) = exp{−(1 + γ x)−1/γ } for 1 + γ x > 0,

where (1 + γ x)−1/γ is interpreted as e−x for γ = 0, and γ is called the tail index
of F or the extreme-value index. For details, see, e.g., Galambos (1978), or
de Haan and Ferreira (2006).

In extreme-value statistics, many important characteristics of the underlying
distribution F such as the tail index, high quantiles and endpoint are related to
the tail behavior of the distribution. The estimation of these characteristics is
very important in extreme value statistics, and it plays a central role in predict-
ing rare events. Based on a few very large observations, various estimators for
the extreme-value index, high quantiles and the endpoint have been proposed
in the literature, and their asymptotic behaviors have been investigated; see,
e.g., the Hill estimator (Hill 1975) for the case γ > 0, Pickands estimator
(Pickands 1975; Pereira 1993) and moment estimator (Dekkers et al. 1989) for
general γ ∈ R, and moment-based estimators for high quantiles and the end-
point (Danielsson and Vries 1997; Ferreira et al. 2003), to just mention a few.

In this paper we review some recent developments of bootstrap techniques
and empirical likelihood methods in extreme-value statistics. The rest of the
paper is organized as follows. In Section 2, we introduce some applications
of bootstrap techniques in estimating optimal sample fractions in estimation
problems (which is largely due to the contribution of Laurens de Haan and his
collaborators) and in constructing confidence intervals for the extreme value
indices. In particular, we will present bootstrap procedures for the Hill esti-
mator and the moment estimator with some technical details. In Section 3 we
demonstrate how to use empirical likelihood methods to construct confidence
intervals for the tail index and high quantiles of a heavy-tailed distribution.

This review paper aims to give a clear picture about the applications of the
aforementioned methods in extremes. It is not the author’s intention if any
contributions in these areas are omitted due to limited reference resources.

2 Bootstrap Methods

The bootstrap is a data-driven method that has a very wide range of applica-
tions in statistics. Initiated by Efron (1979), the classic bootstrap approach uses
Monte Carlo simulations to generate an empirical estimate for the sampling
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distribution of a statistic by randomly drawing a large number of samples
of the same size n from the data, where n is the size of the sample under
consideration.

Although the bootstrap has been widely used in many areas, the method
has its limitation in extremes. It is well known that a full-sample bootstrap
does not work for the extremes. As Hall (1990) pointed out, the full-sample
bootstrap statistics have a zero bias if the statistics are linear in data. Hence,
in extreme-value statistics, a full-sample bootstrap approach can be invalid if
the original statistics have a non-negligible bias. Angus (1993) showed that the
bootstrapping distribution for the extremes does not converge to an extreme-
value distribution. In fact, its limit is a random probability measure. As was
illustrated by Shao and Tu (1995, Ex. 4, p. 123), a sub-sample bootstrap is still
valid in this case. Further, Geluk and de Haan (2002) showed that only the
sub-sample bootstrap can estimate the limiting distribution for intermediate
order statistics.

Throughout let F−(u) = inf{x : F(x) ≥ u} be the generalized inverse func-
tion of F and U be the inverse function of 1

1−F , ie., U(x) = F−(1 − 1
x ). Define

the (1 − p)-th quantile of F by xp = F−(1 − p) = inf{x : F(x) ≥ 1 − p} for
0 < p < 1 and the (right) endpoint by ωF = sup{x : F(x) < 1}.

Assume that {X j, j ≥ 1} is a sequence of independent and identically distrib-
uted (iid) random variables with distribution function F(x) satisfying Eq. 1.1,
and only a finite sample {X j, 1 ≤ j ≤ n} is observed. Let Xn,1 ≤ · · · ≤ Xn,n

be the order statistics of X1, · · · , Xn, and Fn(x) = 1
n

∑n
i=1 I(Xi ≤ x) be the

empirical distribution.
Assume {X∗

j , j ≥ 1} is a sequence of iid random variables with the dis-
tribution function Fn. For each integer m ≥ 1, let X∗

m,1 ≤ · · · ≤ X∗
m,m be the

order statistics of (X∗
1 , · · · , X∗

m) which is a bootstrap sample of size m from
{X j, 1 ≤ j ≤ n}. A full-sample bootstrap is the case when m = n. In contrast,
a sub-sample bootstrap is the case when m < n and usually the conditions
m = m(n) = o(n) and m → ∞ are also required.

One of the common properties for the estimators of the tail index and the
high quantiles is that their asymptotic biases are dependent on the fraction
of the sample that is used in the estimation. The asymptotic biases increase
with the increase of the sample fraction. However, when the sample fraction
is small, the variances of the estimators are large. As long as accuracy of the
estimation is concerned, one has to decide how to choose a sample fraction in
order to achieve certain asymptotic optimality such as the minimal asymptotic
mean squared error.

2.1 Optimal Sample Fractions in Estimation

1. Hill estimator In order to demonstrate how to bootstrap the optimal
sample fraction in extreme-value statistics, we first consider estimation of the
tail index in a special case when γ > 0. It is known that in this case, Eq. 1.1 is
equivalent to

1 − F(x) = x−1/γ �(x), for x > 0, (2.1)
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where �(x) is a slowly varying function with limt→∞ �(tx)/�(t) = 1 for all x > 0.
For i ≥ 1 define

M(i)(n, k) = 1

k

k∑

i=1

(log Xn,n−i+1 − log Xn,n−k)
i.

Then

γ̂ (1)(n, k) := M(1)(n, k) = 1

k

k∑

i=1

log Xn,n−i+1 − log Xn,n−k

is the well-known Hill estimator for γ proposed by Hill (1975), where k = k(n)

satisfies

k → ∞ and k/n → 0 as n → ∞. (2.2)

Mason (1982) showed that γ̂ (1)(n, k) is a consistent estimator of γ .
In the study of the asymptotic distribution of γ̂ (1)(n, k), a popular second

order condition stronger than Eq. 2.1 has been used in many papers. Assume
that there exists a function A(t) not changing sign at infinity such that

lim
t→∞

U(tx)/U(t) − xγ

A(t)
= xγ xρ − 1

ρ
(2.3)

for all x > 0, where ρ < 0. In this case, |A| is a regularly varying function
with index ρ (write |A| ∈ Rρ); for details see de Haan and Stadtmüller (1996).
Under Eq. 2.3, one can write

γ̂ (1)(n, k) − γ = γ√
k

P(1)
n + 1

1 − ρ

(
n
k

)

+ op

(

A
(

n
k

))

, (2.4)

where P(1)
n is a random variable which converges in distribution to a standard

normal distribution; see, e.g., de Haan and Peng (1998). Therefore, the as-
ymptotic mean squared error of γ̂ (1)(n, k), denoted by AMSE(γ̂ (1)(n, k)), is
given by

AMSE(γ̂ (1)(n, k)) = γ 2

k
+ 1

(1 − ρ)2
A2

(
n
k

)

. (2.5)

The optimal sample fraction for Hill’s estimator is denoted by

k1(n) = arg min
k

AMSE(γ̂ (1)(n, k)).

Our objective is to provide a consistent estimator for k1(n).
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In Eq. 2.4, the Hill estimator is expanded after centered at γ . Since γ is
unknown, a more suitable statistic for the bootstrap is M(n, k) := M(2)(n, k) −
2(M(1)(n, k))2, which has a similar expansion:

M(n, k) = 2γ 2

√
k

P(2)
n + 2γρ

(1 − ρ)2
A

(
n
k

)

(1 + op(1)), (2.6)

where P(2)
n is a random variable converging in distribution to a standard normal

distribution. Therefore, the asymptotic mean squared error for M(n, k) is

AMSE(M(n, k)) = 4γ 4

k
+ 4γ 2ρ2

(1 − ρ)4
A2

(
n
k

)

. (2.7)

Set

k̄1(n) = arg min
k

AMSE(M(n, k)).

Then k̄1(n) and k1(n) are of the same order.
In order to determine the optimal sample fractions, we summarize a theo-

rem from the proofs in de Haan and Peng (1998) or Danielsson et al. (2001).

Theorem 2.1 For |A| ∈ Rρ (ρ < 0), constants σ > 0 and d 	= 0, define

k0(n) = arg min
k

(
σ 2

k
+ d2 A2

(
n
k

))

.

Then

k0(n) = n
s−(σ 2/(nd2))

(1 + o(1)) ∈ R−2ρ/(1−2ρ), as n → ∞,

where s− is the inverse function of s, with s given by

A2(t) =
∫ ∞

t
s(u)du(1 + o(1)) as t → ∞.

From Eqs. 2.5 and 2.7 and Theorem 2.1 one can conclude the following
theorem.

Theorem 2.2 (Danielsson et al. 2001) Suppose Eq. 2.3 holds. Then

k1(n) = n
s−(γ 2(1 − ρ)2/n)

(1 + o(1)),

k̄1(n) = n
s−(γ 2(1 − ρ)4/(nρ2))

(1 + o(1)),

and therefore

k̄1(n)

k1(n)
∼

(

1 − 1

ρ

)1/(1−2ρ)

. (2.8)
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Equation 2.8 indicates that estimating k1(n) is equivalent to estimating k̄1(n)

if a consistent estimator for the second order parameter ρ is available.
Set Xn = (X1, · · · , Xn). For a bootstrap sample (X∗

1 , · · · , X∗
m), define the

following bootstrap statistics

M(i)
∗ (m, r) = 1

r

r∑

i=1

(
log X∗

m,m−i+1 − log X∗
m,m−r

)i
, i = 1, 2 (2.9)

and M∗(m, r) = M(2)∗ (m, r) − 2(M(1)∗ (m, r))2, where r → ∞ and r/m → 0, and
m = O(n1−ε) for some 0 < ε < 1.

Conditional on Xn, an expansion for M∗(m, r), similar to Eq. 2.6, can be
obtained. Let r∗(m) be the integer such that the conditional second moment
E((M∗(m, r))2|Xn) is minimal with respect to r. Then r∗(m) can obtained by
minimizing the estimated second moment E((M∗(m, r))2|Xn) via taking a large
number of bootstrap samples. In fact, r∗(m) has the following asymptotic
property.

Theorem 2.3 (Danielsson et al. 2001) Assume Eq. 2.3 holds. Then

r∗(m)s−(γ 2(1 − ρ)4/(mρ2))

m
p→ 1 as n → ∞.

The above two theorems play an important role in constructing a consistent
bootstrap estimator for k̄1(n). Now assume Eq. 2.3 holds with A(t) = ctρ . Then
one can choose s(t) = −2ρc2t2ρ−1, and thus s−(u) = (2ρc2)1/(1−2ρ)u−1/(1−2ρ). It
follows from Theorems 2.2 and 2.3 that

(
m
n

)2ρ/(1−2ρ) r∗(m)

k̄1(n)

p→ 1 as n → ∞. (2.10)

Although the second order parameter ρ can be estimated consistently by
some estimator, say ρ̂n, it is not a good idea to use Eq. 2.10 directly to estimate
k̄1(n). This is due to the fact that it requires a faster convergence rate than
(log n)−1 for ρ̂n so that

(
m
n

)2ρ̂n/(1−2ρ̂n)/(
m
n

)2ρ/(1−2ρ)
p→ 1.

Fortunately, this obstacle can be overcome by obtaining two sub-sample
bootstrap estimators, and the procedure is described as follows.

Step 1. Set m = m1 = [n1−ε] for some ε ∈ (0, 1/2), where [x] denotes the
integer part of x. Draw a large number of bootstrap samples of
size m from the empirical distribution Fn so that E(M∗(m1, r))2|Xn)

is well estimated and determine r∗(m1) such that the estimated
E(M∗(m1, r))2|Xn) is minimal at r = r∗(m1).
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Step 2. Set m = m2 = [m2
1/n], and repeat Step 1 to get r∗(m2) such that

E(M∗(m2, r))2|Xn) is minimal at r = r∗(m2).
Step 3. Estimate ρ by ρ̂n = log r∗(m1)/(−2 log m1 + 2 log r∗(m1)), which is

consistent.
Step 4. Define an estimator for k1(n) by

k̂1(n) := (r∗(m1))
2

r∗(m2)

(

1 − 1

ρ̂n

)1/(2ρ̂n−1)

.

The consistency of the estimator follows from Eqs. 2.8 and 2.10.

Remark 1 Note that in the above procedure m1 = [n1−ε] is an appropriate
choice for any ε ∈ (0, 1/2). A fully automatic procedure for the determination
of m1 is given in Danielsson et al. (2001); namely, choose m1 such that the ratio

R(m1) :=
(
E(M∗(m1, r∗(m1)))

2|Xn)
)2

E(M∗(m2, r∗(m2)))2|Xn)

is minimal.

Remark 2 We have seen that the validity of the sub-sample bootstrap proce-
dure requires that mi → ∞ and mi/n → 0 for i = 1, 2 as n → ∞. For a very
large sample size n, this shouldn’t be a problem. For a small or moderate
sample, it might cause a problem since m2 may be too small. For example,
assume n = 500. If m1 = 100, then m2 = [1002/500] = 20, and the number of
observations used to construct the bootstrap statistics from a bootstrap sample
is very small. Noting that the second bootstrap sample size m2 = [m2

1/n] is
selected in a way that one can cancel the factor in Eq. 2.10, a possible solution
is to use the following formula m2 = [m1(m1/n)a] for some fixed a ∈ (0, 1].
If a is small, this results in a larger m2. Consequently, we have the following
consistent estimator for k1(n):

k̂(a)
1 (n) := (r∗(m1))

(a+1)/a

(r∗(m2))1/a

(

1 − 1

ρ̂n

)1/(2ρ̂n−1)

.

In particular, when a = 1, k̂(1)
1 (n) = k̂1(n).

2. Moment estimator Let F ∈ D(Gγ ) for some γ ∈ R. The moment estimator
for γ , proposed by Dekkers et al. (1989), is defined as

γ̂ (2)(n, k) = M(1)(n, k) + 1 − 1

2

(

1 − (M(1)(n, k))2

M(2)(n, k)

)−1

.

Set γ+ = max(γ, 0) and γ− = min(γ, 0). The assumption F ∈ D(Gγ ) is equiv-
alent to the condition that there is a positive function a(t) such that

lim
t→∞

U(at) − U(t)
a(t)

= xγ − 1

γ
for x > 0,
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which implies

lim
t→∞

log U(at) − log U(t)
a(t)/U(t)

= xγ− − 1

γ−
for x > 0.

We need the following second order condition: there exists a function A(t) not
changing sign at infinity such that

lim
t→∞

log U(at)−log U(t)
a(t)/U(t) − xγ−−1

γ−

A(t)
= H(x), (2.11)

where

H(x) = 1

ρ

(
xρ+γ− − 1

ρ + γ−
− xγ− − 1

γ−

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(log x)2/2 if ρ = 0, γ ≥ 0,

1

γ

(

xγ log x − xγ − 1

γ

)

if ρ = 0, γ < 0,

1

ρ

(
xρ+γ− − 1

ρ + γ−
− xγ− − 1

γ−

)

if ρ < 0.

Similarly to the Hill estimator, γ̂ (2)(n, k) − γ can be decomposed into two
parts, a non-degenerate term with an asymptotic normal distribution and a
degenerate bias term, and the asymptotic mean squared error of γ̂ (2)(n, k) is
given by

AMSE(γ̂ (2)(n, k)) = V2(γ )

k
+ b2(γ, ρ)A2

0

(
n
k

)

,

where

V2(γ ) =
⎧
⎨

⎩

γ 2 + 1 if γ > 0,

(1 − γ )2(1 − 2γ )(6γ 2 − γ + 1)

(1 − 3γ )(1 − 4γ )
if γ < 0,

b(γ, ρ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ

ρ(1 − ρ)
+ 1

(1 − ρ)2
if γ > 0,

1

1 − γ
if ρ < γ < 0,

(1 − γ )(1 − 2γ )

(1 − ρ − γ )(1 − ρ − 2γ )
if γ < ρ

and

A0(t) =

⎧
⎪⎪⎨

⎪⎪⎩

A(t) if γ > 0,

a(t)
U(t)

ifρ < γ < 0,

A(t) if γ < ρ.
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Theorem 2.4 (Draisma et al. 1999) Suppose that F ∈ D(Gγ ) and that Eq. 2.11
holds for ρ < 0, γ 	= ρ and γ 	= 0. Set k2(n) = arg mink AMSE(γ̂ (2)(n, k)). Then

k2(n) ∼
(

V2(γ )

b2(γ, ρ)

)1/(1−2ρ∗) n

s−(
1
n

)

as n → ∞, where s− is the inverse function of the decreasing function s satisfying

A2
0(t) =

∫ ∞

t
s(u)du(1 + o(1)).

Define an alternative estimator for γ by

γ̂ (3)(n, k) =
√

M(2)(n, k)/2 + 1 − 2

3

(

1 − M(1)(n, k)M(2)(n, k)

M(3)(n, k)

)−1

.

Then the auxiliary statistic γ̂ (2)(n, k) − γ̂ (3)(n, k) has a similar asymptotic
behavior to that of γ̂ (2)(n, k) − γ .

Theorem 2.5 (Draisma et al. 1999) Assume that the conditions of Theorem 2.4
hold. Set

k̄2(n) = arg min
k

AMSE(γ̂ (2)(n, k) − γ̂ (3)(n, k)).

Then

k̄2(n) ∼
(

V̄2(γ )

b̄2(γ, ρ)

)1/(1−2ρ∗)
n

s− (
1
n

) as n → ∞,

where

V̄2(γ ) =

⎧
⎪⎨

⎪⎩

1

4
(γ 2+1) if γ > 0,

1

4

(1−γ )2(1−8γ +48γ 2−154γ 3+263γ 4−222γ 5+72γ 6)

(1−2γ )(1−3γ )(1−4γ )(1−5γ )(1−6γ )
if γ < 0,

b̄(γ, ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−γ (1 − ρ) + ρ

2(1 − ρ)3
if γ > 0,

(1 − 2ρ) − √
(1 − ρ)(1 − 2ρ)

(1 − ρ)(1 − 2ρ)
if ρ < γ < 0,

1

2

−ρ(1 − γ )2

(1 − ρ − γ )(1 − ρ − 2γ )(1 − ρ − 3γ )
if γ < ρ.

For a bootstrap sample of size m, (X∗
1 , · · · , X∗

m), define M(i)∗ (m, r) as in
Eq. 2.9 and set

γ̂ (2)
∗ (m, r) = M(1)

∗ (m, r) + 1 − 1

2

(

1 − (M(1)∗ (m, r))2

M(2)∗ (m, r)

)−1

,
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and

γ̂ (3)
∗ (m, r) =

√

M(2)∗ (m, r)/2 + 1 − 2

3

(

1 − M(1)∗ (m, r)M(2)∗ (m, r)

M(3)∗ (m, r)

)−1

,

where r → ∞ and r/m → 0, and m = O(n1−ε) for some 0 < ε < 1. Further, set
for some δ > 0

γ̂ (4)
∗ (m, r) =

(
γ̂ (2)

∗ (m, r) − γ̂ (3)
∗ (m, r)

)
I
(
|γ̂ (2)

∗ (m, r) − γ̂ (3)
∗ (m, r)| < rδ−1/2

)
.

Theorem 2.6 (Draisma et al. 1999) Suppose the conditions of Theorem
2.4 hold and m = O(n1−ε) for some 0 < ε < 1/2. Define r∗

3(m) =
arg min

r
E((γ̂ (4)

∗ (m, r))2|Xn). Then

r∗
3(m)

/
⎧
⎨

⎩

(
V̄2(γ )

b̄ 2(γ, ρ)

)1/(1−2ρ∗)
m

s−( 1
m )

⎫
⎬

⎭

p→ 1 as n → ∞.

Suppose the conditions of Theorem 2.6 hold and A0(t) = ctρ
∗
. Then from

Theorems 2.5 and 2.6 we have

k̄2(n)

r∗
3(m)

(m
n

) −2ρ∗
1−2ρ∗ p→ 1.

Using the same procedure for Hill’s estimator, we obtain r∗
3(m1) and r∗

3(m2),
where m2 = [m2

1/n]. Define

k̂2(n) = (k∗
3(m1))

2

k∗
3(m2)

(
V2(γ̂n)b̄ 2(γ̂n, ρ̂

∗
n)

V̄2(γ̂n)b 2(γ̂n, ρ̂∗
n)

) 1
1−ρ̂∗

n

,

where γ̂n and ρ̂∗
n are any consistent estimators of γ and ρ∗, respectively. Then

k̂2(n)

k2(n)

p→ 1.

3. More applications We have introduced two novel applications of the
bootstrap method. In fact, under certain technical conditions, the bootstrap
approach has proved to be valid in estimating the optimal sample fractions
for Pickands-type estimators of the tail index (Draisma et al. 1999), estimators
of high quantiles and endpoints (Ferreira et al. 2003), and estimators of small
exceedances probability (Ferreira 2002). The bootstrap procedures for these
estimators are the same. Below is a summary of the fundamental steps used to
estimate the optimal sample fraction, say k0(n), that minimizes the asymptotic
mean squared error of an estimator of the aforementioned characteristics.

• Construct an auxiliary statistic in a way that k̄0(n)/k0(n) ∼ C, where k̄0(n)

is the sample fraction that minimizes the asymptotic second moment of
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the auxiliary statistic, and C is a constant depending on some unknown
parameters and can be consistently estimated by a statistic, say Ĉ.

• Use Step 1 and Step 2 introduced for Hill’s estimator to estimate two
optimal sample fractions that minimize the second moments of the two
bootstrap versions of the auxiliary statistic based on two bootstrap samples
of sizes m1 and m2, and denote them as r∗(m1) and r∗(m2) accordingly.

• Define k̂0(n) = (r∗(m1))
2

Ĉr∗(m2)
. Then k̂0(n) is a consistent estimator of k0(n),

that is,
k̂0(n)

k0(n)

p→ 1.

For a class of kernel estimators of the tail index, the selection of the
bandwidth is parallel to the selection of the sample fraction in the above
estimators. A similar bootstrap procedure for optimal bandwidth choice for
kernel estimators can be found in Groeneboom et al. (2003).

Pictet et al. (1998) derived an algorithm to reduce the bias of the Hill
estimator. The algorithm is based on a subsample bootstrap combined with
the jackknife method.

It is worth mentioning that some methods other than the bootstrap can
be found in the literature. For example, Drees and Kaufmann (1998) and
Matthys and Beirlant (2000) proposed some automatic methods for moment-
type estimators of the tail index, and Fraga Alves (2001) gave an algorithm for
estimation of the optimal sample fraction in the location invariant Hill-type
estimators.

2.2 Bootstrap Confidence Intervals

The bootstrap method has been commonly used to estimate the sampling
distribution of a statistic which allows us to build confidence intervals of a pop-
ulation characteristic. The bootstrap approach avoids estimating the unknown
parameters in the limiting distribution of the statistic, and it is extremely useful
when the limiting distribution of the statistic is unknown or too complicated to
calculate. In many situations such an approach is satisfactory in the sense that
the bootstrap confidence intervals have a good coverage accuracy.

Guillou (2000) assessed the accuracy of the sub-sample bootstrap method
for the tail index of a heavy-tailed distribution and found out that the accuracy
of the sub-sample bootstrap approach is often worse than that of the asymp-
totic approximation of the statistic. Bacro and Brito (1998) proposed a dif-
ferent bootstrap procedure for the tail index of a heavy-tailed distribution by
resampling directly from k = kn log-spacings, i(log Xn,n−i+1 − log Xn,n−i), i =
1, . . . , k. They didn’t consider the accuracy of the coverage for the approach.
Nevertheless, this procedure is valid if the Hill estimator is asymptotically
unbiased.

When applying the sub-sample bootstrap procedure, one has to decide how
to choose the size of the sub-samples. Caers and Van Dyck (1998) and Guillou
(2000) discussed this issue. Caers and Van Dyck (1998) even proposed a double
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bootstrap method that estimates the optimal sample fraction based on a sub-
sample bootstrap in the first stage and then constructs the confidence intervals
based on a sub-sample bootstrap from the original data in the second stage.

On the other hand, a full-sample bootstrap still works when the sample
fraction in the estimation is in the range that the estimator is asymptotically
unbiased. El-Nouty and Guillou (2000) examined an estimator for the tail
index of a heavy-tailed distribution and proved the validity of the full-sample
bootstrap. Peng and Qi (2007) applied a full-sample bootstrap method to
obtain the confidence band for the tail dependence function in bivariate
extremes. Both papers obtained the accuracy of the bootstrap method by using
an approach proposed by Chen and Lo (1997). In Chen and Lo’s approach, the
key is to construct a statistic such that it is identically distributed as the statistic
of interest and it is also very close to the bootstrapped statistic.

3 Empirical Likelihood Methods

Empirical likelihood was introduced by Owen (1988, 1990) for a mean vector
for iid observations. It is a nonparametric method that allows one to em-
ploy likelihood methods to construct confidence intervals without assuming
a parametric family for the data. It produces confidence regions whose shape
and orientation are determined entirely by the data. Just like the parametric
likelihood method, the method involves only a maximization procedure, and
the estimation of any nuisance parameter is not necessary. Therefore, the em-
pirical likelihood method possesses some advantages of the likelihood method.

There is a large and growing literature extending empirical likelihood
methods to many statistical problems. For recent references and development
we refer to the book by Owen (2001).

The empirical likelihood method was first adopted by Lu and Peng (2002) to
construct confidence intervals for the tail index of a heavy-tailed distribution.
Peng and Lu applied both the empirical likelihood method and the (pseudo)
parametric likelihood method to obtain confidence intervals for the tail index
of a heavy-tailed distribution. Later, Peng and Qi (2006a) proposed a new
calibration method to overcome the undercoverage problem in constructing
confidence intervals. Peng (2004) applied the empirical likelihood method
to construct the confidence intervals for a mean from a heavy-tailed distri-
bution. Peng and Qi (2006b) employed a data tilting method to construct
the confidence intervals (or regions) for the high quantiles of a heavy-tailed
distribution. The data tilting method is a general method and is more flexible
compared with the empirical likelihood method. It has been demonstrated in
Peng and Qi (2006a, b) that the empirical likelihood method and the data
tilting method outperform the normal approximation method in that both the
empirical likelihood method and the data tilting method result in confidence
intervals with shorter average length and more accurate coverage probability.

Here we assume that F is a heavy-tailed distribution satisfying the second-
order condition (2.3).
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3.1 Index of a Heavy-Tailed Distribution

Define Yi = i(log Xn,n−i+1 − log Xn,n−i) for i = 1, . . . , k. Then {Yi, 1 ≤ i ≤ k}
are asymptotically independent with a common exponential limiting distrib-
ution with mean γ for fixed k (see e.g., Weissman 1978). Lu and Peng (2002)
applied Owen’s empirical likelihood method to construct confidence interval
for the index γ . The procedure is as follows.

Let p = (p1, · · · , pk) be a probability vector satisfying
∑k

i=1 pi = 1 and pi ≥
0 for i = 1, . . . , k. Then the empirical likelihood, evaluated at true value γ0 for
the tail index γ , is defined by

L(γ0) = sup

{
k∏

i=1

pi :
k∑

i=1

piYi = γ0

}

.

Then, by the method of Lagrange multipliers, one can show that

pi = 1

k
{1 + λ(Yi − γ0)}−1, i = 1, . . . , k,

where λ is the solution to the equation

1

k

k∑

i=1

Yi − γ0

1 + λ(Yi − γ0)
= 0. (3.1)

Note that
∏k

i=1 pi, subject to
∑k

i=1 pi = 1, achieves its maximum k−k at pi =
k−1. Thus, the empirical likelihood ratio at γ0 is given by

l(γ0) =
k∏

i=1

(kpi) =
k∏

i=1

{1 + λ(Yi − γ0)}−1,

and the corresponding empirical log-likelihood ratio statistic is defined as

L(γ0) = −2 log l(γ0) = 2
k∑

i=1

log{1 + λ(Yi − γ0)},

where λ is the solution of Eq. 3.1.

Theorem 3.1 (Lu and Peng 2002) Under condition Eq. 2.3, if

k = kn → ∞,
k
n

→ 0 and
√

kA(n/k) → 0 as n → ∞,

then

L(γ0)
d→χ2

1 ,

where χ2
1 denotes a chi-squared random variable with one degree of freedom,

and γ0 is the true value of the tail index γ .
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According to Theorem 3.1, a 100(1 − α)% confidence interval for γ based
on the empirical likelihood ratio statistic is determined by

IE(1 − α) = {γ > 0 : L(γ ) ≤ c(α)},
where c(α) is the α level critical value of a chi-squared distribution with one
degree of freedom.

For a small sample size, the asymptotic χ2 calibrated empirical likelihood-
based confidence regions for iid observations may have a lower coverage
probability than the nominal level, as indicated by numerical evidence in the
literature; see, e.g., Owen (1988), Hall and La Scala (1990), and Qin and
Lawless (1994). The reason for the undercoverage was explained in Tsao
(2004), that is, the distribution of the empirical likelihood ratio has an atom
at infinity, and the atom can be substantial if the sample size is not large.
For the empirical likelihood-based confidence interval for the tail index the
same problem occurs since only a few upper order statistics are employed in
the inference. As a remedy for the empirical likelihood method, Peng and
Qi (2006a) proposed the following new calibration method to improve the
coverage accuracy.

Since Yi/γ in L(γ ) has an approximate exponential distribution with mean
one, we replace Y1/γ, . . . , Yk/γ by i.i.d. random variables E1, . . . , Ek with an
exponential distribution with mean one. Define

ELR(k) = 2
k∑

i=1

log(1 + λ′(Ei − 1)),

where λ′ is the solution to
k∑

i=1

Ei − 1

1 + λ′(Ei − 1)
= 0.

Then approximate the distribution of L(γ ) by the distribution of ELR(k)
instead of χ2

1 . Therefore, the following confidence interval with nominal level
100(1 − α)% can be defined:

I∗
E(1 − α) = {γ : L(γ ) ≤ c(k, α)},

where c(k, α) is the upper α-level critical value of the distribution of ELR(k).
Note that the exact distribution of ELR(k) is not available. The critical value

c(k, α) can be estimated via Monte Carlo simulation. Peng and Qi (2006a)
obtained the critical values c(k, α) for α = 10%, 5% and 1% for all k between
10 and 200 based on 1 000 000 random samples. These critical values for 10 ≤
k ≤ 29 were listed in Table 1 in Peng and Qi (2006a), and for 30 ≤ k ≤ 200,
three linear regression equations are fitted by

c(k, 0.10) = 2.7055 − 0.51269√
k

+ 18.14242

k
,

c(k, 0.05) = 3.8415 − 1.12486√
k

+ 32.90613

k
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and

c(k, 0.01) = 6.6349 − 4.56941√
k

+ 98.98899

k
.

The three intercepts in the equations are the 10%, 5% and 1% critical values
of the χ2

1 distribution.
The simulation study in Peng and Qi (2006a) indicates that this new cali-

bration method greatly improves the accuracy of the coverage probability for
empirical likelihood-based confidence intervals for small sample proportion
k. Numerically it also demonstrates that the empirical likelihood method
outperforms both the normal approximation (cf., de Haan and Peng 1998) and
the gamma approximation (cf., Cheng and de Haan 2001) of Hill’s estimators
in terms of coverage probability and length of confidence intervals.

3.2 High Quantile

Recall that xp is called a high quantile if p = pn ∈ (0, 1) is very small in the
sense that npn → d ∈ [0, ∞). Peng and Qi (2006b) employed a data tilting
method to construct a confidence interval for xp.

To introduce the methodology, we assume temporarily that 1 − F(x) =
cx−1/γ for x > T, where T > 0 is a large number. Set δi = I(Xi > T).
Then the likelihood function for the censored data {(δi, max(Xi, T))}n

i=1 is
�n

i=1(cγ
−1 X−1/γ−1

i )δi(1 − cT−1/γ )1−δi . Below we take T = Xn,n−k.
First, for any fixed weights q = (q1, · · · , qn) such that qi ≥ 0 and

∑n
i=1 qi = 1,

define a weighted log-likelihood function by

L(γ, c) =
n∑

i=1

qi log
((

cγ −1 X−1/γ−1
i

)δi
(
1 − cX−1/γ

n,n−k

)1−δi
)
.

We solve (γ̂ (q), ĉ(q)) = arg max(γ,c) L(γ, c) and obtain
⎧
⎪⎨

⎪⎩

γ̂ (q) =
∑n

i=1 qiδi(log Xi − log Xn,n−k)
∑n

i=1 qiδi

ĉ(q) = X1/γ̂ (q)

n,n−k

∑ n
i=1qiδi.

Define D(q) = ∑n
i=1 qi log(nqi), which is a measure of distance between q and

the uniform distribution, i.e. qi = 1/n. Next, we shall choose q to minimize
this distance. More specifically, solve (2n)−1L(xp) = minq D(q) subject to the
constraints

qi ≥ 0,

n∑

i=1

qi = 1, log
xp

Xn,n−k
= γ̂ (q) log

∑n
i=1 qiδi

pn
. (3.2)

Put

A1(λ1) = 1 − n − k
n

e−1−λ1 and A2(λ1) = A1(λ1)
log(xp/Xn,n−k)

log
(

A1(λ1)/pn
) .
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Then, by the standard method of Lagrange multipliers, we have

qi = qi(λ1, λ2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

n
e−1−λ1, if δi = 0,

1

n
exp

{

− 1 − λ1 + λ2

(
log(xp/Xn,n−k)

A2(λ1)
− 1

A1(λ1)

− A1(λ1) log(Xi/Xn,n−k) log(xp/Xn,n−k))

A2
2(λ1)

)}

, if δi = 1,

where λ1 and λ2 satisfy Eq. 3.2.

Theorem 3.2 (Peng and Qi 2006b) Assume Eqs. 2.3 and 2.2 hold. If√
kA(n/k) → 0, npn = O(k) and log

(
k

npn

)
/
√

k → 0 as n → ∞, then, with

probability tending to one, there exists a solution to Eq. 3.2, and L(xp,0)
d→ χ2

1 ,
where xp,0 is the true value of xp.

According to the above theorem, a confidence region at level 1 − α for xp is
given by

IT(1 − α) = {xp : L(xp) ≤ c(α)},
where c(α) is the α-level critical value of χ2

1 . This confidence interval has
asymptotically correct coverage probability α, i.e., P(xp ∈ IT(1 − α)) → α as
n → ∞.
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