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1 Introduction

Microeconometrics researchers have increasingly realized the essential need

to account for any within-group dependence in estimating standard errors of

regression parameter estimates. In many settings the default OLS standard

errors that ignore such clustering can greatly underestimate the true OLS

standard errors, as emphasized by Moulton (1986, 1990).

A common correction is to compute cluster-robust standard errors that

generalize the White (1980) heteroskedastic-consistent estimate of OLS stan-

dard errors to the clustered setting. This permits both error heteroskedas-

ticity and quite flexible error correlation within cluster, unlike a much more

restrictive random effects or error components model. In econometrics this

adjustment was proposed by White (1984) and Arellano (1987), and it is im-

plemented in STATA, for example, using the cluster option. In the statistics

literature these are called sandwich standard errors, proposed by Liang and

Zeger (1986) for generalized estimating equations, and they are implemented

in SAS, for example, within the GENMOD procedure. A recent brief survey

is given in Wooldridge (2003).

Not all empirical studies use appropriate corrections for clustering. In

particular, for fixed effects panel models the errors are usually correlated
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even after control for fixed effects, yet many studies either provide no control

for serial correlation or erroneously cluster at too fine a level. Kézdi (2004)

demonstrated the usefulness of cluster robust standard errors in this setting

and contrasted these with other standard errors based on stronger distribu-

tional assumptions. Bertrand, Duflo, and Mullainathan (2004), henceforth

BDM (2004), focused on implications for difference-in-difference (DID) stud-

ies using variation across states and years. Then the regressor of interest is

an indicator variable that is highly correlated within cluster (state) so there

is great need to correct standard errors for clustering. The clustering should

be on state, rather than on state-year.

A practical limitation of inference with cluster-robust standard errors is

that the asymptotic justification assumes that the number of clusters goes

to infinity. Yet in some applications there may be few clusters. For example,

this happens if clustering is on region and there are few regions. With a

small number of clusters the cluster-robust standard errors are downwards

biased. Bias corrections have been proposed in the statistics literature; see

Kauermann and Carroll (2001), Mancl and DeRouen (2001), and Bell and

McCaffrey (2002). Angrist and Lavy (2002) in an applied study find that bias

adjustment of cluster-robust standard errors can make quite a difference. But
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even after appropriate bias correction, with few clusters the usual Wald sta-

tistics for hypothesis testing with asymptotic standard normal or chi-square

critical values over-reject. BDM (2004) demonstrate through a Monte Carlo

experiment that the Wald test based on (unadjusted) cluster-robust standard

errors over-rejects if standard normal critical values are used. Donald and

Lang (2007) also demonstrate this and propose, for DID studies with policy

invariant within state, an alternative two-step GLS estimator that leads to T-

distributed Wald tests in some special circumstances. Ibragimov and Muller

(2007) propose an alternate approach based on separate estimation within

each group. They separate the data into independent groups, estimate the

model within each group, average the separate estimates and divide by the

sample standard deviation of these estimates, and then compare against crit-

ical values from a T-distribution. This approach holds promise for settings

with few groups and where model identification and a central limit theorem

holds within each group. Our proposed method does not require the latter

two conditions, can be used to test multiple hypotheses, and is based on the

parameter estimator commonly used in practice.

In this paper we investigate whether bootstrapping to obtain asymp-

totic refinement leads to improved inference for OLS estimation with cluster-
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robust standard errors when there are few clusters. We focus on cluster

bootstrap-t procedures that are generalizations of those proposed for regres-

sion with heteroskedastic errors in the nonclustered case.

Several features of our bootstraps are worth emphasizing. First, the boot-

straps involve resampling entire clusters. Second, our goal is to use variants

of the bootstrap that provide asymptotic refinement, whereas many empiri-

cal studies use the bootstrap only to obtain consistent estimates of standard

errors. Third, we consider several different cluster resampling schemes: pairs

bootstrap, residuals bootstrap and wild bootstrap. Fourth, we consider ex-

amples with as few as five clusters. Fifth, we evaluate our bootstrap proce-

dures in a number of settings including examples of others that were used to

demonstrate the deficiencies of standard cluster-robust methods.

The paper is organized as follows. Section 2 provides a summary of

standard asymptotic methods of inference for OLS with clustered data, and

presents small-sample corrections to cluster-robust standard errors that have

been recently proposed in the statistics literature. Section 3 presents various

possible bootstraps for clustered data, with additional details relegated to

an Appendix. Sections 4 to 6 present, respectively, a Monte Carlo experi-

ment using generated data, a Monte Carlo experiment using data from BDM
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(2004), and an application using data from Gruber and Poterba (1994).

The primary contribution of this paper is to offer methods for more accu-

rate cluster-robust inference. These methods are fairly simple to implement

and matter substantively in both our Monte Carlo experiments and our repli-

cations.

A second important contribution of this paper is to offer a careful and

precise description of the various bootstraps a researcher might perform, and

the similarities and differences between our proposed methods and several

commonly-applied methods. Our primary motivation for presenting this de-

scription is to be precise about our methods. It also offers empiricists a clearer

understanding of the menu of bootstrap choices and their consequences.

2 Cluster-Robust Inference

Before considering the bootstrap we present results on inference with clus-

tered errors.1

2.1 OLS with Clustered Errors

The model we consider is one withG clusters (subscripted by g), and withNg

observations (subscripted by i) within each cluster. Errors are independent
1For this and subsequent sections, additional details and explanation are provided in

(Cameron, Gelbach, and Miller 2006).
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across clusters but correlated within clusters. The model can be written at

various levels of aggregation as

yig = x0igβ + uig, i = 1, ..., Ng, g = 1, ..., G,
yg = Xgβ + ug, g = 1, ..., G,
y = Xβ + u,

(1)

where β is k× 1, xig is k× 1, Xg is Ng × k, X is N × k, N =
P

gNg, yig and

uig are scalar, yg and ug are Ng × 1 vectors and y and u are N × 1 vectors.

Interest lies in inference for the OLS estimator bβ = (X0X)−1X0y. Under

the assumptions that data are independent over g but errors are correlated

within cluster, with E[ug] = 0, E[ugu0g] = Σg, and E[ugu0h] = 0 for cluster

h 6= g, we have
√
N
³bβ − β´ a∼ N [0, N V[bβ]] where

V[bβ] = (X0X)−1
³XG

g=1
XgΣgX

0
g

´
(X0X)−1. (2)

This differs from and is usually larger than the specialization V[bβ] =
σ2u(X

0X)−1 that is based on the assumption of iid errors and leads to the

default OLS variance estimate when σ2u is estimated by s
2 = bu0bu/(N − k).

The underestimation bias is typically increasing in (1) cluster size; (2) within-

cluster correlation of the regressor; and (3) within-cluster correlation of the

error; see Kloek (1981). The bias can be very large (Moulton 1986, 1990,

BDM 2004).

One approach to correcting this bias is to modelΣg to depend on unknown
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parameters, say Σg = Σg(γ), and then use estimate bΣg = Σg(bγ). The
random effects (RE) model assumes that there are cluster-specific iid random

effects, estimates the variance of these effects and of the iid individual shocks,

and uses these for bΣg. We call the resulting standard errors Moulton-type

standard errors.

2.2 Cluster-Robust Variance Estimates

The RE model places restrictions of homoskedasticity and equicorrelation

within cluster, and assumes knowledge of the functional form Σg(γ). A

less parametrically restrictive approach is to use the cluster-robust variance

estimator (CRVE)

bVCR[bβ] = (X0X)−1
³XG

g=1
Xgeugeu0gX0

g

´
(X0X)−1. (3)

In the simplest case OLS residuals are used, so eug = bug = yg −Xg
bβ.

The CRVE controls for both error heteroskedasticity across clusters and

quite general correlation and heteroskedasticity within cluster, at the expense

of requiring that the number of clusters G→∞. It is implemented for many

STATA regression commands using the cluster option (which uses eug = √cbug
where c = G

G−1
N−1
N−k '

G
G−1 with largeN), and is used in SAS in the GENMOD

procedure (which uses eug = bug).
9



A weakness of the standard CRVE with eug = bug is that it is biased,
since E[bugbu0g] 6= Σg = E[ugu0g]. The bias depends on the form of Σg but

will usually be downwards.2 Several corrected residuals eug for (3) have been
proposed by Kauermann and Carroll (2001) and Bell and McCaffrey (2002).

In our simulations we examine a correction proposed by Bell and McCaffrey

(2002) which is equivalent to the jackknife estimate of the variance of the

OLS estimator. This correction generalizes the HC3 measure (jackknife)

of MacKinnon and White (1985), and so we refer to this correction as the

CR3 variance estimator.3 For a more detailed discussion of the computation

of this estimator, see Cameron, Gelbach, and Miller, (2006). Angrist and

Lavy (2002) apply a related (but distinct) correction (which is a cluster

generalization of the HC2 measure of MacKinnon and White (1985)) in an

application with G = 30 to 40 and find that the correction increases cluster-

robust standard errors by between 10 and 50 percent.
2For example, Kezdi (2004) uses eug = bug and finds in his simulations that with G = 10

the donwards bias is between 9 and 16 percent.
3The jackknife drops in turn each observation, here a cluster, computes the leave-one-

out estimate bβ(g), g = 1, ..., G, and then uses variance estimate G−1
G

P
g(
bβ(g) − bβ). The

CR3 measure for OLS is a multiple of the related measure proposed by Mancl and DeRouen
(2001) in the more general setting of GEE.
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2.3 Cluster-Robust Wald Tests

We consider two-sided Wald tests of H0 : β1 = β01 against Ha : β1 6= β01 where

β1 is a scalar component of β.
4 We use the Wald test statistic

w =
³bβ1 − β01

´
/sbβ1 , (4)

where sbβ1 is the square root of the appropriate diagonal entry in bVCR[bβ].
This “t” test statistic is asymptotically normal under H0, and we reject H0

at significance level α if |w| > zα/2, where zα/2 is a standard normal critical

value.

Under standard assumptions the Wald test is of correct size as the num-

ber of clusters G→∞. The problem we focus on in this paper is that with

few clusters the asymptotic normal critical values can provide a poor ap-

proximation to the correct, finite-G critical values for w, even if an unbiased

variance matrix estimator is used in calculating sbβ.
General small sample results are not possible even if the (clustered) errors

are normally distributed. In practice, as a small sample correction some pro-

grams use a T distribution to form critical values and p-values. STATA uses
4The generalization to single hypothesis c0β− r = 0 where c is a k× 1 vector is trivial.

For multiple hypotheses Cβ − r = 0 the Wald asympototic chisquare test would be used.
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the T(G − 1) distribution, which may be better than the standard normal,

but may still not be conservative enough to avoid over-rejection. Bell and

McCaffrey (2002) and Pan and Wall (2002) propose instead using a T distri-

bution with degrees of freedom determined using an approximation method

due to Satterthwaite (1941). Rather than use OLS, Donald and Lang (2007)

propose an alternative two-step estimator that leads to a Wald test that in

some special cases is T(G−k1) distributed where k1 is the number of regres-

sors that are invariant within cluster and often k1 = 2 (the intercept and the

clustered regressor of interest).

We instead continue to use the standard OLS estimator with CRVE,

and bootstrap to obtain bootstrap critical values that provide an asymptotic

refinement and may work better than other inference methods for OLS when

there are few clusters.

3 Cluster Bootstraps

Bootstrap methods generate a number of pseudo-samples from the original

sample, for each pseudo-sample calculate the statistic of interest, and use the

distribution of this statistic across pseudo-samples to infer the distribution
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of the original sample statistic.5

There is no single bootstrap as there are different statistics that we may

be interested in, different ways to form pseudo-samples, and different ways to

use results for statistical inference. In this section we discuss several different

bootstraps that are examined in our simulations. We provide greater detail

on the bootstrap algorithms in Appendix A.2, and in (Cameron, Gelbach,

and Miller, 2006).

Choices that need to be made when bootstrapping include the following:

what observational units to sample (individual observations or clusters); what

objects to sample in generating bootstrap samples ((y,X) pairs, residuals

drawn from the sample residuals, or residuals based on transformations of

sample residuals); what statistics to calculate in each bootstrap replication;

how to use the resulting bootstrap distribution of the statistics; and whether

or not to impose the null hypothesis in generating the bootstrap samples.

Some combinations of these choices provide asymptotic refinement; others

do not. Some choices in principle provide valid tests, but in fact perform

poorly with few clusters and commonly occuring empirical settings.
5The bootstrap was introduced by Efron (1979). Standard book treatments are Hall

(1992), Efron and Tibsharani (1993), and Davison and Hinkley (1997). In econometrics see
Horowitz (2001), MacKinnon (2002), and the texts by Davidson and MacKinnon (2004)
and Cameron and Trivedi (2005).
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The statistic considered is the Wald test statistic w defined above. The

data are clustered into G independent groups, so the resampling method

should be one that assumes independence across clusters but preserves cor-

relation within clusters.

3.1 Pairs Cluster Bootstrap-se and Bootstrap-t

The obvious method is to resample the clusters with replacement from the

original sample {(y1,X1), ..., (yG,XG)}. This resampling method is called

a pairs cluster bootstrap6. A commonly used bootstrap in the empirical lit-

erature is to use a pairs bootstrap with the bootstrap-se procedure. The

bootstrap-se procedure uses the bootstrap estimates of bβ1, denoted bβ∗1b, to
form the bootstrap estimate of standard error

sbβ1,B =
Ã

1

B − 1

BX
b=1

(bβ∗1b − bβ∗1)2
!1/2

, (5)

where bβ∗1 = 1
B

PB
b=1
bβ∗1b. This estimated standard error is then used in a

typical wald test. This is popular in the applied literature as it enables an

estimate of the standard error when the analytic formula for the standard

error is difficult to compute. However, in contrast to the bootstrap-t pro-

cedure, it does not offer asymptotic refinement, and so may perform worse
6Alternative names used in the literature include cluster bootstrap, case bootstrap, non-

parametric bootstrap, and nonoverlapping block bootstrap.
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with few clusters.

The bootstrap-t procedure, proposed by Efron (1981) for confidence inter-

vals, computes the following Wald statistic for each bootstrap replication

w∗b = (
bβ∗1,b − bβ1)/sbβ∗1,b, b = 1, ..., B,

where sbβ∗1,b is a cluster-robust standard error for bβ∗1,b. Note that w∗b is centered
on bβ1. This centering is changed to β01 if the resampling method imposes H0.
The resulting distribution of w∗1, ..., w

∗
B is then used to form inference on the

original Wald statistic in (4).7 We offer more details in the appendix A.2.

Both bootstrap-se and bootstrap-t procedures are asymptotically valid.

For small number of clusters G, however, the true size will differ from the

nominal significance level α. Furthermore, the true size will also differ across

the two procedures. An asymptotic approximation yields an actual rejection

rate or true size α + O(G−j/2). Then the true size goes to α as G → ∞,

provided j > 0. Larger j is preferred, however, as then convergence to α

is faster. A bootstrap provides asymptotic refinement if it leads to j larger

than that for conventional (first-order) asymptotic methods. Bootstrap-t
7The bootstrap-t procedure is also called a percentile-t procedure, because the “t” test

statistic w is bootstrapped, and a studentized bootstrap, since the Wald test statistic is a
studentized statistic.
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procedures provide an asymptotic refinement, while bootstrap-se procedures

do not. Further, as we show in our simulations below, this can matter in

actual data settings with few clusters.

Asymptotic refinement is more likely to occur if the bootstrap is applied

to an asymptotically pivotal statistic, meaning one with asymptotic distribu-

tion that does not depend on unknown parameters; see Appendix A.1 for a

more complete discussion. The bootstrap-t procedure directly bootstraps w

which is asymptotically pivotal since the standard normal has no unknown

parameters.

An alternative method with asymptotic refinement is the bias-corrected

accelerated (BCA) procedure, defined in Efron (1987), Hall (1992, pp. 128-

141), and in (Cameron, Gelbach, and Miller, 2006). This bootstraps bβ1
which is asymptotically nonpivotal as its asymptotic distribution depends on

unknown σ2bβ1, but then provides adjustment for bias and asymmetry. This
is a popular method for confidence intervals — STATA reports BCA rather

than percentile-t confidence intervals. We adapt BCA to testing by rejecting

H0 if w is outside the confidence interval, and include a cluster version of

BCA in our simulations.

There are just a few studies that we are aware of that consider asymptotic
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refinement. Sherman and le Cessie (1997) conduct simulations for OLS with

as few as ten clusters. For 90 percent confidence intervals, they find that the

pairs cluster bootstrap-t undercovers by considerably less than confidence in-

tervals based on CRVE. Flynn and Peters (2004) consider cluster randomized

trials where a pairs cluster bootstrap draws G clusters by separately resam-

pling from the G/2 treatment clusters and the G/2 control clusters. For

skewed data and few clusters they find that pairs cluster BCA confidence in-

tervals have considerable undercoverage, even more than conventional robust

confidence intervals, though in their Monte Carlo design the robust intervals

do remarkably well. The authors also consider a second-stage of resampling

within each cluster, using a method for hierarchical data given in Davison

and Hinkley (1997) that is applicable if the random effects model is assumed.

In the econometrics literature, BDM (2004) apply a pairs cluster boot-

strap using the bootstrap-t procedure. BDM use default OLS standard er-

rors, however, rather than cluster-robust standard errors, in computing both

the original data and the resampled dataWald statistics. Because of this their

method may not yield asymptotic refinement. The authors find that their

bootstrap does better than using default OLS standard errors and standard

normal critical values, yet surprisingly does worse than using cluster robust
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standard errors with standard normal critical values.

3.2 Residual and Wild Cluster Bootstrap-t

For a regression model with additive error, resampling methods other than

pairs cluster can be used. In particular, one can hold regressors X constant

throughout the pseudo-samples, while resampling the residuals which can be

then used to construct new values of the dependent variable y.

The obvious method is a residual cluster bootstrap that resamples with re-

placement from the original sample residual vectors to give residuals {bu∗1, ..., bu∗G}
and hence pseudo-sample {(by∗1,X1), ..., (by∗G,Xg)} where by∗g = X0

g
bβ + bu∗g.

This resampling scheme has two weaknesses. First, it assumes that the

regression error vectors ug are iid, whereas in Section 2 we were specifically

concerned that the variance matrix Σg will differ across clusters. Second, it

presumes a balanced data set where all clusters are the same size.

The wild bootstrap relaxes both these restrictions. This procedure cre-

ates pseudo-samples based on bu∗g = bug with probability 0.5 and bu∗g = −bug
with probability 0.5, with this assignment at the cluster level. The wild boot-

strap was proposed for regression in the nonclustered case (and with different

weights) by Wu (1986). Its asymptotic validity and asymptotic refinement

were proven by Liu (1988) and Mammen (1993). Horowitz (1997, 2001) pro-

18



vides a Monte Carlo demonstrating good size properties. The weights we use

(+1 with probability 0.5 and −1 with probability 0.5) are called Rademacher

weights8. Here we have extended the wild bootstrap to the clustered setting.

The only other study to do so that we are aware of is the brief application

by Brownstone and Valletta (2001).

Several authors, particularly Davidson and MacKinnon (1999), advocate

use of bootstrap resampling methods that impose the null hypothesis. This

is possible using both residual and Wild bootstraps. Thus we present results

based on bootstraps that impose the null, in which case the bootstrap Wald

statistics are centered on β01 rather than bβ1, and the residuals bootstrapped
are those from the restricted OLS estimator eβ that imposes H0 : β1 = β01.

For details see Appendix A.2.

3.3 Bootstraps with Few Clusters

With few clusters the bootstrap resampling methods produce a distinctly fi-

nite number of possible pseudo-samples, so the bootstrap distributionw∗1, ..., w
∗
q

will not be smooth even with many bootstrap replications. Furthermore, in
8These weights lead to asymptotic refinement if bβ is symmetrically distributed, which

is the case if errors are symmetric. If bβ is asymmetrically distributed, our version is still
asymptotically valid, but different weights provide asymptotic refinement. Davidson and
Flachaire (2001) provide theory and simulation to nonetheless support using Rademacher
weights even in the asymmetric case.
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some pseudo-samples bβ1 or sbβ1 may be inestimable. This is likely to be a
problem with pairs cluster bootstrap when there is a binary regressor that

is invariant within cluster (so always 0 or always 1 for given g). Then if

there are few clusters some bootstrap resamples may have all clusters with

the regressor taking only value 0 (or value 1), so that bβk is inestimable.
This issue does not arise when regressors and dependent variables take sev-

eral different values, such as in the Section 4 Monte Carlos. But it does

arise in our application to the BDM (2004) and Gruber and Poterba (1994)

differences-in-differences examples, because the regressors of interest in those

cases are indicator variables. The residual or wild cluster bootstraps do not

encounter these problems, as we are not resampling the regressors. In our

BDM simulations below we see this issue is problematic for G ≤ 10.

3.4 Test Methods used in this Paper

In the remainder of the paper we implement the Wald test using nine boot-

strap procedures, as well as four non-bootstrap procedures. Table 1 provides

a summary.

Our first four methods do not use the bootstrap and differ only in the

method from section 2 used to calculate bV[bβ]. They use, respectively, the
default variance estimate, the Moulton-type estimate, the cluster-robust es-
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timate (3), and the cluster-robust estimate with jackknife corrected resid-

uals. Method 1 is invalid if there is clustering, method 2 is invalid unless

the clustering follows a random effects model, while methods 3 and 4 are

asymptotically valid provided clusters are independent.

Methods 5 to 7 use the bootstrap-se procedure. We use three different

cluster bootstrap resampling methods, respectively, the pairs cluster boot-

strap, the residual clusters bootstrap with H0 imposed, and the wild boot-

strap with H0 imposed. For details see Appendix A.2.3. Methods 5-7 do not

provide asymptotic refinement, and method 6 is valid only if cluster error

vectors are iid.

Method 8 uses the BCA bootstrap with pairs cluster resampling.

Methods 9 to 13 use the bootstrap-t procedure. The first three of these

methods use pairs cluster resampling with different standard error estimates.

Method 9 is the already discussed method of BDM that uses default standard

errors rather than CRVE standard errors. Methods 10 and 11 use different

variants of the CRVE defined in (3), respectively, the standard CRVE and the

CR3 correction. In each case the same variance matrix estimation method is

used for both the original sample and bootstrap resamples. Methods 12 and

13 use, respectively, residual and wild bootstraps, and both use the standard
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CRVE estimate and impose H0. Method 12 is valid only if cluster error

vectors are iid. For details see Appendix A.2.1.

4 Monte Carlo Simulations

To examine the finite-sample properties of our methods we conducted sev-

eral Monte Carlo exercises for dgp a linear model with intercept and single

regressor. The error is clustered according to a random effects model, with

either constant correlation within cluster or departures from this induced by

heteroskedasticity. This design is relevant to a cross-section study of indi-

viduals with clustering at the state level, for example. The regressor and

dependent variable are continuous and take distinct values across clusters

and (usually) within clusters, so that even with few clusters it is unlikely

that a pairs cluster bootstrap sample will be inestimable.

Then

yig = β0 + β1xig + uig, (6)

with different generating processes for xig and uig used in subsequent subsec-

tions. Since β1 = 1 in the dgp, the Wald test statistic is w = (bβ1 − 1)/sbβ1.
We perform R replications, where each replication yields a new draw of

data from the dgp, and leads to rejection or nonrejection of H0. In each repli-
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cation there are G groups (g = 1, ..., G), with NG individuals (i = 1, ..., NG)

in each group. We varied the number of groups G from 5 to 30 and usually

set NG = 30. The various methods given in each row of Tables 2-4 are then

applied to the same generated data. For bootstraps we used B = 399 boot-

straps rather than the recommended B = 999 or higher. This lower value

is fine for a Monte Carlo exercise, since the bootstrap simulation error will

cancel out across Monte Carlo replications.

We estimate the actual rejection rate a, by ba, the fraction of the R replica-
tions for which H0 is rejected. This is an estimate of the true size of the test.

With a finite number of replications a may be differ from the true size due to

simulation error. The simulation standard error is sba =pba(1− ba)/(R− 1).
For example, sba = 0.007 for ba = 0.05 and R = 1000.
4.1 Simulations with Homoskedastic Clustered Errors

In the first simulation exercise both regressors and errors are correlated

within group, with errors homoskedastic. Data were generated according

to:

yig = β0 + β1xig + uig = β0 + β1 (zg + zig) + (εg + εig), (7)
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with zg, zig, εg, and εig each an independent N [0, 1] draw, and β0 = 0 and

β1 = 1. Here the components zg and εg that are common to individuals

within a group induce within group correlation of both regressors and errors.

The simulation is based on R = 1000 Monte Carlo replications.

Our first results appear in Table 2. Each column gives results for the

various number of groups (G = 5, 10, 15, 20, 25, 30) and throughout NG =

30. The first entry is the estimated true size of the test. The Monte Carlo

standard error is given in parentheses. Each row presents a different method,

detailed in section 3.4. For comparison, we also show the rejection rate that

would hold if we used the asymptotic normal critical value of 1.96, but the

Wald statistic actually had a T distribution with G− 2 degrees of freedom,

Pr[|T | > 1.96|T ∼ TG−2].

We begin with conventional (nonbootstrap) Wald tests using different

estimators of standard errors. The default OLS standard errors that as-

sume iid errors do poorly here, with rejection rates given in row 1 of 0.43 to

0.50. This illustrates the need to correct standard errors for clustering. The

Moulton-type estimate for standard errors should work well here since this

takes advantage of correct knowledge of the dgp. The rejection rates in row 2

are considerably higher than 0.05, especially for low G, though are similar to
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those expected if the Wald test statistic is actually T(G−2) distributed. The

CRVE is much better than default standard errors, though still over-rejects

compared to Moulton-type standard errors. The CR3 correction leads to

rejection rates much closer to (but significantly different from) 0.05.

The pairs cluster bootstrap-se method yields rejection rates in row 5

that are very similar to the CRVE, except for G = 5. The residual cluster

bootstrap-se method leads to rejection rates in row 6 that are close to 0.05.

From row 7, the wild cluster bootstrap-se method under-rejects for G ≤ 10,

and rejects at level close to 0.05 for G > 10. The closeness to 0.05 of the

latter two bootstrap methods is surprising given that they do not offer an

asymptotic refinement. The BCA bootstrap with pairs cluster resampling

should provide an asymptotic refinement, yet from row 8 it has rejection

rates similar to those using CRVE.

The remainder of Table 2 uses the theoretically preferred bootstrap-t

procedure with various resampling methods. Even though it uses default

standard errors, the BDM bootstrap (row 9) does better than CRVE and

is a great improvement compared to not bootstrapping (row 1). The pairs

cluster bootstrap-t has rejection rates in row 10 of 0.08 that are much closer

to (but significantly different from) 0.05. The CR3 correction makes little
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difference. Both the residual cluster bootstrap-t and wild cluster bootstrap-t

rejection rates are not statistically different from 0.05 (with the exception of

the residual bootstrap with G = 5).

In summary, Table 2 demonstrates that all the bootstrap-t methods are

an improvement on the usual cluster-robust method with standard normal

critical values; the BCA method provides no improvement on CRVE; and

the residual cluster bootstrap-se also performs well.

4.2 Simulations with Heteroskedastic Clustered Errors

The second simulation brings in the additional complication of heteroskedas-

tic errors. Then the Moulton-type correction and the residual bootstrap are

no longer valid theoretically.

We generated data according to the process:

yig = β0 + β1xig + uig = β0 + β1 (zg + zig) + (εg + εig), (8)

with zg, zig, and εg again independent N [0, 1] draws, but now εig ∼ N [0, 9 ∗

(zg + zig)
2]. The dgp sets β0 = 1 and β1 = 1.

Results appear in Table 3. Default OLS standard errors again do poorly,

with rejection rates around 0.30. The Moulton-type correction breaks down

given the heteroskedasticity, as expected. The cluster-robust methods do a
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little better than in the preceding table, but rejection rates in rows 3 and

4 still generally exceed 0.05. The residual cluster bootstrap-se method now

breaks down due to heteroskedasticity, with rejection rates in row 6 in excess

of 0.15. The pairs cluster bootstrap-se and wild cluster bootstrap-se methods

(rows 5 and 7) perform similarly to Table 2. The BCA bootstrap again has

rejection rates in row 8 similar to those using CRVE (row 3).

The results for the bootstrap-t methods in rows 9 to 13 are similar to

those in Table 2. The BDM bootstrap-t (row 9) has similar high rejection

rates to those in Table 2, aside from marked deterioration for G = 5. The

remaining bootstrap-t methods all yield rejection rates less than 0.08, with

the residual cluster bootstrap-t and wild cluster bootstrap-t doing best. The

good performance of the residual cluster bootstrap-t is surprising given that

errors are heteroskedastic.

In summary, the Table 3 results for inference with heteroskedastic clus-

tered errors are similar to those for homoskedastic clustered errors except

that, as expected, theMoulton-type correction and residual cluster bootstrap-

se methods now perform very poorly. The bootstrap-t methods are an im-

provement on the usual cluster-robust method with standard normal critical

values, while the BCA method provides no improvement.
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4.3 Alternative Critical Values, Cluster Sizes and Re-
gressor Design

We perform a third set of Monte Carlo experiments to examine how the

different estimators perform under varying assumptions. These simulations

are presented in Table 4 with each simulation based on G = 10 groups.

Column 1 of Table 4 provides a baseline against which the other results

are compared. It uses the same dgp as that of Table 2. In column 2 for tests

without asymptotic refinement we use critical values from a T distribution

with 8 degrees of freedom, an ad hoc finite sample correction, so that we

reject H0 if |w| > 2.306 rather than |w| > 1.960. Then the Moulton-type

estimator and the CR3 correction lead to rejection rates not statistically

significant from 0.05. The CRVE and pairs cluster bootstrap-se still lead to

over-rejection, though by not as much. And the residual cluster bootstrap-se

and wild cluster bootstrap-se, which seem to do very well when asymptotic

normal critical values are used, now lead to great under-rejection.

In columns 3 to 5 of Table 4 we consider alternative cluster sizes of,

respectively, 2, 10 and 100 observations. For method 1, the rejection rates

increase with cluster size. Once clustering is accounted for, by any of methods

2-13, rejection rates do not vary significantly with cluster size.
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In column 6 of Table 3 we examine the performance of the various test-

ing methods when there are there are three additional regressors, each with

no clustering component, and we continue to test the first regressor. The

four regressors are scaled down by a factor of 1/2, so that the sum of their

variances will equal the variance of the single regressor used in the dgp of

column 1. The only significant change in rejection rates is an increase in the

already high rejection rate for method 1 which neglects clustering.

All preceding regression designs set the intraclass correlation, ρx, of the

regressor of interest to be 0.5. In column 7 we increase ρx to ρx = 1 (cluster-

invariant regressor with xig = zg) and in column 8 we decrease to ρx = 0 in

column 8 (iid regressor with xig = zig). In both cases the regressor is scaled

up by
√
2 to keep V[xig] unchanged.

With cluster-invariant regressor (column 7) the failure to control for clus-

tering is magnified and the row 1 to 3 rejection rates are larger than in

the benchmark column 1. For bootstrap-se and bootstrap-t there is little

change in rejection rates, except that for reasons unknown the pairs cluster

bootstraps (both bootstrap-se and bootstrap-t) now have rejection rates not

statistically significantly different from 0.05.

With iid regressor (column 8) the default OLS standard errors are consis-
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tent and the rejection rate in row 1 is close to 0.05. The Moulton-type and

CRVE also have rejection rates much closer to 0.05. The various bootstrap

procedures lead to rejection rates that are all close to those in column 1.

Finally, in column 9 we change the dgp to examine an unbalanced setting,

so that one half of the clusters are small (with group size NG = 10) and half

of the clusters are large (with group size NG = 50). The residual cluster

bootstrap requires equal cluster sizes, so it cannot be used in this design.

The remaining methods yield results qualitatively similar to those in column

1, with the main change being that the standard CRVE leads to much larger

over-rejection in row 3.

In summary, all the bootstrap-t methods are an improvement on the usual

cluster-robust method with standard normal critical values; the BCAmethod

provides no improvement; and the residual cluster bootstrap-se also performs

well. Table 4 also indicates that when non-bootstrap methods are used to

control for clustering, it is better to use critical values from a T (G− 2)

distribution than from a standard normal.
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5 Bertrand, Duflo and Mullainathan (2004)
Simulations

To enable a more practically familiar application of our methods, we now

consider the differences-in-differences setup explored in Bertrand, Duflo, and

Mullainathan (2004). The main results of this section are that the residual

and wild cluster bootstrap methods perform well in cases with as few as 6

clusters. These results stand in contrast to the more pessimistic conclusion

about cluster bootstrapping in BDM (2004).

The data set is of U.S. states over time. The dependent variable is the

state-by-year average log wage level (after partialling out certain individual

characteristics). For such a variable, the error term within cluster is serially

correlated, even if state and year fixed effects are included as regressors. The

regressor of interest is a state policy dummy variable.

The original data is CPS data on many individuals over time and states.

Most of the BDM (2004) study uses a smaller data set that aggregates indi-

vidual observations to the state-year level. We begin with these data, which

have the advantage of being balanced and relatively small, before moving to

the individual data.9

9We extracted individual-level data from the relevant CPS data sets and, when appro-
priate, aggregated these data using the method presented in BDM (2004). This gave data
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5.1 Aggregated State-year Data

Using our choice of subscripts, the igth observation is for the ith year in the

gth state. There are fifty states and twenty-one years. The aggregate model

estimated is

yig = αg + γi + β1Iig + uig,

where yig is a year-state measure of excess earnings, the regressors are state

dummies, year dummies, and a policy change indicator Iig.10

If a policy change occurs in state g at time i∗, then Iig = 0 for i < i∗ and

Iig = 1 for i ≥ i∗. BDM’s experiments randomly assign a policy change to

occur in half the states, and when it does occur it occurs somewhere between

the sixth and fifteenth year. In each simulation a different draw of G states

with replacement is made from the original 50 states.

TheWald statistic studied isw = bβ1/sbβ1. BDM investigate size properties
by letting the policy change be a “placebo” regressor that has no effect on

yig. They also investigate the power against the alternative Ha : β1 = 0.02

similar to that in BDM (2004). We thank these authors for sharing some of their data
with us, enabling this comparison.
10We retain our notation for consistency with the rest of our discussion. However,

more obvious subscripts for this problem are i for individual, s for state and t for year.
The underlying model is yist = αs + γt + x

0
istδ + βIst + uist, where yist is individual

log-earnings for women aged 25-50 years, and xist is age and education. BDM use a
two-step OLS procedure: (1) regress yist on xist yielding OLS residual buist; (2) regressbust = N−1st Pi buist on state dummies, year dummies, and Ist. Thus our yig is their bust.
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by actually increasing yig by 0.02 when Iig = 1. They find that (1) default

standard errors do poorly; (2) cluster-robust standard errors do well for all

but G = 6; and (3) their bootstrap, which we discuss in our section 3.1, does

poorly for low numbers of clusters, with actual rejection rates 0.44, 0.23 and

0.13 for G = 6, 10 and 20, respectively.

The first two rows of Table 5 show that the default standard errors and

Moulton-type estimator lead to high rejection rates. The third row uses the

cluster-robust variance estimator, and gives results very close to those in

BDM’s Table 8.

Rows 4 to 6 of our Table 5 give rejection rates when the Wald statistic

is calculated using bootstrap standard error estimates. These generally lead

to tests with actual size between 0.04 and 0.09. The one notable exception

is that the cluster-pairs standard error bootstrap (row 4) produces severe

under-rejection (0.001) with G = 6. Informal experimentation suggests to

us that this is because many bootstrap replications (with only a couple of

states sampled) sample only one “treatment” or “control” state. For these

replications, the treatment dummy (or constant) is fit perfectly, and so has

zero estimated residuals. When these “zero” residuals are plugged into the

CRVE formula (3) the resulting bVCR[bβ∗1] is unreasonably small, leading to
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Wald statistics in some bootstrap resamples that are too large to consistently

represent the Wald statistic’s true distribution. This in turn results in the

severe under-rejection.11

The BCAmethod with pairs cluster resampling in general leads to greater

over-rejection than when CRVE is used.

The remaining rows 8 to 11 of Table 5 give rejection rates for various

bootstrap-t procedures. From row 8 we find that the BDM bootstrap per-

forms similarly to cluster-robust standard errors. For reasons we cannot ex-

plain, the rejection rates we obtain are considerably lower than those given

in BDM Table 5. The pairs cluster bootstrap-t under-rejects appreciably

for both G = 6 and G = 10 for reasons discussed above. The residual and

wild cluster bootstrap-t methods (rows 9 and 10) do very well with actual

rejection rates approximately equal to 0.05, even for G = 6.

The discussion so far has focused on size. The last 4 columns in Table

5 report power against a fixed alternative. As expected, power increases

as the number of clusters increases, since there is then greater precision in

estimation.
11We thank Doug Staiger for suggesting this mechanism to us.
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5.2 Individual-Level Data

For completeness we additionally consider regression using individual-level

data. Recall that we are using g to denote the clustering unit and i to

denote year, so we use n to denote individual. Then the model is

ynig = αg + γi + x
0
nigδ + β1Iig + unig,

where the individual-level regressors xnig are a quartic in age and three ed-

ucation dummies. Iig is generated as before.

Table 6 reports the results of R = 250 simulations with B = 199 repli-

cations used for the bootstrap. We consider cases G = 6 and G = 10. The

first row reports high rejection rates when we use the CRVE but erroneously

cluster on state-year combinations. In the second row of Table 6 we see that

using the CRVE and correctly clustering on state considerably reduces the

rejection rates, but they are still much too high. The third row of Table

6 shows that the bootstrap-t procedure using wild cluster resampling (with

clustering on the state) leads to rejection rates not statistically significantly

different from 0.05. Because the individual level data are unbalanced we

cannot use the residual cluster bootstrap.

In summary, using both aggregate andmicro data, the wild cluster bootstrap-
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t leads to rejection rates of 0.05. The pairs cluster bootstrap-t works fine

for G ≥ 20, but for G ≤ 10 can fail due to problems posed by the binary

regressor.

6 Gruber and Poterba (1994) Application

Gruber and Poterba (1994, henceforth GP) examine the impact of tax incen-

tives on the decision to purchase health insurance. They analyze differential

changes for self-employed and business-employed in the after-tax price of

health insurance due to the Tax Reform Act of 1986 (TRA86). The TRA86

extended the tax subsidy for health insurance to self-employed individuals;

individuals employed by a business had a tax subsidy both before and after

TRA86, and so can serve as a comparison group.

The dependent variable y is whether or not an employed person has pri-

vate health insurance. Like GP we focus on individuals 25-54 years of age.

The model can be written as

yijt = α1 + α2SELFijt + α3POSTijt + β1SELFijt × POSTijt + ujt,

where i denotes individual, j denotes employer type, t denotes year, SELFijt =

1 if individual i is self-employed at time t, and POSTijt = 1 if the year is

1987, 1988 or 1999.
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We perform difference-in-difference analysis, controlling for potential clus-

tering of errors of a form considered by Donald and Lang (2007). Like Donald

and Lang, we ignore additional regressors (GP examine subtle interactions

between pre-tax income, employment status, and the TRA86).

In their preliminary analysis, GP report in their Table IV average insur-

ance rates by year and employer-type for March CPS data on eight years (five

before the TRA86 and three after), leading to an aggregated data set with

sixteen observations. Our simple difference-in-difference estimate is 0.055,

with a standard error of 0.0044.

We next follow Donald and Lang (2007), and treat years as clusters, so

that there are G = 8 clusters in our analysis. When we cluster on year, the

cluster-robust standard error obtained using (3) is 0.0074. The regressor is

highly statistically significant, with bβ1/sbβ1 = 7.46 and very low p-value.
To enable more meaningful analysis we test H0 : β1 = 0.040 against

Ha : β1 6= 0.040. Then w = (0.055 − 0.040)/0.0074 = 2.02 with p-value of

0.043 using standard normal critical values and 0.090 using the T distribution

with G− 2 = 6 degrees of freedom.

If we instead bootstrap this Wald statistic with B = 999 replications, the

pairs cluster bootstrap-t yields p = 0.209, the residual cluster bootstrap-t
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gives p = 0.112, and the wild cluster bootstrap-t gives a p-value of 0.070.12

We believe that the p-value for the pairs cluster bootstrap is implausibly

large, for reasons discussed in the BDM replication, while the other two

bootstraps lead to plausible p-values that, as expected, are larger than those

obtained by using asymptotic normal critical values.

We have also estimated this model on individual-level data (see Cameron,

Gelbach, and Miller, 2006), with results very similar to those reported here.

7 Conclusion

Many microeconometrics studies use clustered data, with regression errors

correlated within cluster and regressors correlated within cluster. Then it

is essential that one control for clustering. A good starting point is to use

Wald tests (or “t” tests) that use cluster-robust standard errors, provided

the appropriate level of clustering is chosen. As made clear in section 2 of

BDM (2004), too many studies fail to do even this much.

In this paper we are concerned with the additional complication of hav-

ing few clusters. Then the use of appropriate cluster-robust standard errors

still leads to nontrivial over-rejection by Wald tests. Our Monte Carlo sim-
12The results reported use Mammen weights and do not impose the null hypothesis.

Similar results were obtained using Rademacher weights and imposing the null hypothesis.
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ulations reveal that at the very least one should provide some small sample

correction of standard errors, such as magnifying the residuals in (3) by a

factor
p
G/(G− 1) and using a T distribution with G or fewer degrees of

freedom (we arbitrarily used G− 2 in Table 3).

The primary contribution of this paper is to use bootstrap procedures

to obtain more accurate cluster-robust inference when there are few clusters.

Our discussion and implementations of the bootstrap make it clear that there

are many possible variations on a bootstrap. The usual way that the boot-

strap is used, to obtain an estimate of the standard error, does not lead to

improved inference with few clusters as it does not provide an asymptotic

refinement.

We focus on the bootstrap-t procedure, the method most emphasized by

theoretical econometricians and statisticians, and which provides asymptotic

refinement. We find that the bootstrap-t procedure can lead to considerable

improvement, provided the same method is used in calculating the Wald

statistic in the original sample and in the bootstrap resamples.

But these improvements depend on the resampling method used and on

the discreteness of the data being resampled. The standard method for

resampling that preserves the within-cluster features of the error is a pairs
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cluster bootstrap that resamples at the cluster level, so that if the gth cluster

is selected then all data (dependent and regressor variables) in that cluster

appear in the resample. This bootstrap can lead to inestimable models or

nearly inestimable models in some bootstrap pseudo-samples when there are

few clusters and regressors take a very limited range of values. While not

all applications will encounter this problem, it does arise when interest lies

in a binary policy variable that is invariant (conditional on other regressors)

within cluster.

We find that an alternative cluster bootstrap, the wild cluster bootstrap

does especially well. This bootstrap is a cluster generalization of the wild

bootstrap for heteroskedastic models. Even when analysis is restricted to a

wild cluster bootstrap, several different variations are possible. The variation

we use is one that uses equal weights and probability, and uses residuals from

OLS estimation that imposes the null hypothesis. This bootstrap works well

in our own simulation exercise and when applied to the data of BDM (2004).

The BDM (2004) study is one of the highest profile papers highlight-

ing the importance of cluster robust inference. One important conclusion of

BDM (2004) is that for few (six) clusters the cluster-robust estimator per-

forms poorly, and for moderate (ten and twenty) number of clusters their
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bootstrap based method also does poorly. We perform a re-analysis of their

exercise, and come to much more optimistic conclusions. Using the wild

cluster bootstrap-t method our empirical rejection rates are extremely close

to the theoretical values, even with as few as six clusters, and there is no

noticeable loss of power after accounting for size. Our results offer not only

theoretical improvements, but practical ones as well. We hope researchers

will take advantage of these improvements in the plentiful cases when clus-

tering among a relatively small number of groups is a real concern.
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A Appendix

Appendix A.1 presents a general discussion of the bootstrap and why it is as-

ymptotically better to bootstrap an asymptotically pivotal statistic (bootstrap-

t method). Appendix A.2 details the various bootstraps summarized in Table

1.

A.1 Asymptotic Refinement for Bootstrap-t

The theory draws heavily on Hall (1982) and Horowitz (2001). Cameron and

Trivedi (2005) provide a more introductory discussion.

A.1.1 General Bootstrap Procedure

We use the generic notation TN = TN(SN) to denote the statistic of interest,

calculated on the basis of a sample SN of size N . We focus on inference

for a single regression coefficient β1 from multivariate OLS regression. Then

leading examples are TN = bβ1, and TN = (bβ1−β01)/sbβ1, where we recall that
β01 is given by the null hypothesis.

We wish to approximate the finite sample cdf of TN , HN(t) = Pr[TN ≤ t].

The bootstrap does this by obtaining B resamples of the original sample

SN , using methods given in the subsequent subsection. The bth resample is

denoted S∗Nb and is used to form a statistic T ∗Nb = T
∗
N(S∗Nb). The empirical
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distribution of T ∗Nb, b = 1, .., B, is used to estimate the distribution of TN , so

Pr[TN ≤ t] is estimated by the fraction of the realized values of T ∗N1, ..., T ∗Nb

that are less than t, denoted

bHN(t) = B−1 BX
b=1

1(T ∗Nb ≤ t), (9)

where 1 (·) is the indicator function. This distribution can be used to compute

moments such as variance, and also to compute test critical values and p-

values.

General Bootstrap Procedure for a Statistic TN

1. Do B iterations of this step. On the bth iteration:

(a) Re-sample the data from SN using one of the procedures presented

in Appendix A.2. Call the resulting re-sample S∗Nb.

(b) Use the bootstrap re-sample form T ∗Nb = T
∗
N(S∗Nb), where in some

but not all cases T ∗N(·) = TN(·).

2. Conduct inference using bHN(t). See Appendix A.2 for further details.
The bootstrap-t method directly approximates the distribution of TN =

(bβ1 − β01)/sbβ1 . If the bootstrap resampling method imposes H0 then T ∗Nb =
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(bβ∗1b−β01)/sbβ∗1b, where bβ∗1b is the estimator of β1 and sbβ∗1b is the standard error
from re-sample S∗Nb. Note that we center T ∗Nb on β01 since the resampling dgp

has β1 = β01. If instead the bootstrap resampling method does not impose

H0, the case necessarily for pairs cluster, then T ∗Nb = (bβ∗1b − bβ1)/sbβ∗1b. The
centering is on bβ1 and the bootstrap views the original sample as the popu-
lation. That is, implicitly we impose β1 = bβ1, and the bootstrap resamples
are viewed as B samples from a population with β1 = bβ1.
By contrast the bootstrap-se, percentile and BCA methods bootstrap

TN = bβ1. Then T ∗Nb = bβ∗1b, where bβ∗1b is the estimator of β1 from re-sample

S∗Nb.

A.1.2 Asymptotic Refinement

For notational simplicity drop the subscript N , so TN(SN) = T has small-

sample cdf denoted H(t|F ) = Pr[T ≤ t|F ] where F is the true cdf generating

the underlying data in sample SN . The distribution H usually is analytically

intractable. The usual first-order asymptotic theory replaces it with the

asymptotic distribution of the test-statistic. The bootstrap instead replaces

H with bH(t| bF ) = Pr[T ∗ ≤ t| bF ] where bF denotes the cdf used to obtain

bootstrap resamples. We are concerned with how good an estimate bH(t| bF )
is of H(t|F ).
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The bootstrap leads to consistent estimates and hypothesis tests under

relatively weak assumptions. Because the bootstrap should be based on a

distribution bF that is consistent for F , one must take care to choose the

resampling method so as to mimic the properties of F . For consistency,

the bootstrap requires smoothness and continuity in F and in bH. These
assumptions are satisfied for our application for the OLS estimator with

clustered errors.

A consistent bootstrap need not have asymptotic refinement, however. A

key requirement is that we work with an asymptotically pivotal statistic, as

now explained.

To begin with assume that T is standardized to have mean 0 and variance

1. The usual asymptotic approximation T a∼ N [0, 1] is

Pr[T ≤ t|F ] = Φ(t) +O(N−1/2),

where Φ(·) is the standard normal cdf and N is sample size. When one uses

the standard normal critical values with a “t” statistic, this is the approxima-

tion on which one relies. The Edgeworth expansion gives a better asymptotic

approximation

Pr[T ≤ t|F ] = Φ(t) +N−1/2a(t)φ(t) +O(N−1),
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where φ(·) is the standard normal density and a(·) is an even quadratic

polynomial with coefficients that depend on the low-order cumulants (or mo-

ments) of the underlying data. One can directly use the preceding result, but

computation of the polynomial coefficients in a(t) is theoretically demanding.

The bootstrap provides an alternative.

The bootstrap version of T is the statistic T ∗, which has Edgeworth

expansion

Pr[T ∗ ≤ t| bF ] = Φ(t) +N−1/2ba(t)φ(t) +Op(N−1),

where bF is the empirical distribution function of the sample. If ba(t) =
a(t) +Op(N

−1/2), which is often the case, then

Pr[T ≤ t|F ] = Pr[T ∗ ≤ t| bF ] +Op(N−1). (10)

This statement means that the bootstrap cdf Pr[T ∗ ≤ t| bF ] is within Op(N−1)

of the unknown true cdf Pr[T ≤ t|F ], which is a better approximation than

one gets using Φ(t), since the standard normal cdf is within O(N−1/2) and

Pr[O(N−1/2)−Op(N−1) > 0] gets arbitrarily close to 1 for sufficiently large

N .

What if we use a nonpivotal statistic T? Suppose T a∼ N [0,σ2] so that

T/s
a∼ N [0, 1] where s is a consistent estimate of the standard error. Then

46



Edgeworth expansions still apply, but now

Pr[T ≤ t|F ] = Φ(t/σ) +N−1/2b(t/σ)φ(t/σ) +O(N−1),

for some quadratic function b(·) 6= a(·), and similarly for the bootstrap esti-

mates

Pr[T ∗ ≤ t| bF ] = Φ(t/s) +N−1/2bb(t/s)φ(t/s) +Op(N−1).

Now, even if bb(·) = b(·) + Op(N−1/2), these functions are evaluated at t/s

where usually s = σ +Op(N
−1/2). It follows for nonpivotal T that

Pr[T ≤ t|F ] = Pr[T ∗ ≤ t| bF ] +Op(N−1/2), (11)

so there is no asymptotic refinement. Thus nonpivotal statistics bring no

improvement in the convergence rate relative to using first-order asymptotic

theory.

The main requirement for the asymptotic refinement (10) is that an as-

ymptotically pivotal statistic is the object being bootstrapped. The bootstrap-

t procedure does this.

The preceding analysis shows that for tests of nominal size α the true

size is α + O(N−j/2) where j = 2 using the bootstrap-t procedure, while

j = 1 using the usual asymptotic normal approximation and the percentile
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and bootstrap-se procedures. These results for are for a one-sided test or a

nonsymmetric two-sided test. For a two-sided symmetric test, cancellation

occurs because a(t) is an even function, so one further term in the Edgeworth

expansion can be used. Then j = 3 using the bootstrap-t procedure and j = 2

using the other procedures.

A.2 Bootstrap Procedures

A.2.1 Bootstrap-t Procedures

We begin with the preferred bootstrap-t procedures using three bootstrap

sampling schemes - pairs cluster, residual cluster and wild cluster - that are

generalizations of pairs, residual and wild resampling for nonclustered data.

Pairs Cluster Bootstrap-t

1. From the original sample form w = (bβ1−β0)/sbβ1 , where sbβ1 is obtained
using the CRVE in (3) with eug = (G/(G− 1))bug.

2. Do B iterations of this step. On the bth iteration:

(a) Form a sample ofG clusters {(y∗1,X∗1), ..., (y∗G,X∗G)} by resampling

with replacement G times from the original sample of clusters.

(b) Calculate the Wald test statistic w∗b = (bβ∗1,b−bβ1)/sbβ∗1,b, where bβ∗1,b
and its standard error sbβ∗1,b are obtained from OLS estimation us-
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ing the bth pseudo-sample, sbβ∗1,b is obtained using the same method
as that in step 1, and bβ1 is the original OLS estimate.

3. Reject H0 at level α if and only if w < w∗[α/2] or w > w
∗
[1−α/2], where

w∗[q] denotes the q
th quantile of w∗1, ..., w

∗
B.

We consider two variations of this procedure that use alternative esti-

mators of sbβ in both step 1 and in step 2b. First, the pairs cluster CR3
bootstrap-t uses the CRVE in (3) with eug calculated using the CR3 correc-
tion. Second, the pairs cluster BDM bootstrap-T uses default OLS standard

errors and is a symmetric version of the Wald test, following BDM (2004).

The remaining bootstrap-t procedures use residual cluster and wild clus-

ter resampling schemes that take advantage of the ability to resample with

the null hypothesis β1 = β01 imposed.

Cluster Residual Bootstrap-t with H0 imposed

1. From OLS estimation on the original sample form w = (bβ1 − β0)/sbβ1,
where sbβ1 is obtained using the CRVE in (3) with eug = (G/(G−1))bug.
Also obtain the restricted OLS estimator bβR that imposesH0 : β1 = β01,

and the associated restricted OLS residuals {buR1 , ..., buRG}.13
13The restricted estimator can be obtained by regressing yig−β01x1,ig on a constant and

all regressors other than x1,ig.
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2. Do B iterations of this step. On the bth iteration:

(a) Form a sample ofG clusters {(by∗1,X1), ..., (by∗G,XG)} by resampling

with replacement G times from {buR1 , ..., buRG} to give {buR∗1 , ..., buR∗G }
and then forming by∗g = X0

g
bβR + buR∗g , g = 1, ..., G.

(b) Calculate the Wald test statistic w∗b = (bβ∗1,b − β01)/sbβ∗1,b, wherebβ∗1,b and its standard error sbβ∗1,b are obtained from unrestricted

OLS estimation using the bth pseudo-sample, with sbβ∗1,b computed
using the same method as that in step 1.

3. Reject H0 at level α if and only if w < w∗[α/2] or w > w
∗
[1−α/2], where

w∗[q] denotes the q
th quantile of w∗1, ..., w

∗
B.

Hall (1992, pp.184-191) provides theoretical justification for the residual

bootstrap for clustered errors. This bootstrap is used as a benchmark in

Monte Carlo simulations for the other bootstraps. In practice it is too re-

strictive as it assumes that ug are iid, ruling out heteroskedasticity across

clusters, and that clusters are balanced.

Wild Cluster bootstrap-t with H0 imposed

The wild cluster bootstrap-t with H0 imposed follows the same steps
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as the cluster residual bootstrap-t with H0 imposed, except that step 2a is

replaced as follows:

2a Form a sample of G clusters {(by∗1,X1), ..., (by∗G,XG)} by the following

method. For each cluster g = 1, ..., G, form either buR∗g = buRg with
probability 0.5 or buR∗g = −buRg with probability 0.5 and then form by∗g =
X0
g
bβR + buR∗g , g = 1, ..., G.

A variety of weights ag have been proposed for the wild bootstrap. The

ones we use, with ag = 1 with probability 0.5 and ag = −1 with probability

0.5 are called Rademacher weights. Mammen (1993) actually proposed an

alternative set of weights: ag = (1 −
√
5)/2 ' −0.6180 with probability

(1 +
√
5)/2
√
5 ' 0.7236 and ag = 1− (1−

√
5)/2 with probability 1− (1 +

√
5)/2
√
5. These weights are the only two-point distribution that satisfy the

constraints E[ag] = 0 and E[a2g] = 1 and the additional constraint E[a
3
g] = 1,

which is necessary to achieve asymptotic refinement if bβ is asymmetrically
distributed.

A.2.2 Bootstrap-se Methods

We present the bootstrap-se for pairs cluster resampling.

Pairs Cluster Bootstrap-se
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1. From the original sample form bβ1.
2. Do B iterations of this step. On the bth iteration:

(a) Form a sample ofG clusters {(y∗1,X∗1), ..., (y∗G,X∗G)} by resampling

with replacement G times from the original sample.

(b) Calculate the OLS estimate bβ∗1,b.
3. Reject H0 at level α if and only if |wBSE| > zα/2, where

wBSE =
bβ1 − β01
sbβ1,B ,

sbβ1,B is the bootstrap estimate of the standard error

sbβ1,B =
Ã

1

B − 1

BX
b=1

(bβ∗1b − bβ∗1)2
!1/2

,

and bβ∗1 = 1
B

PB
b=1
bβ∗1b.

This method is easily adapted to the other resampling schemes by appro-

priately amending steps 1 and 2a.
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Table 1: Different Methods for Wald Test

Method Bootstrap? Refinement? H0 imposed?
Conventional Wald
1. Default (iid errors) No - -
2. Moulton type No - -
3. Cluster-robust No - -
4. Cluster-robust CR3 No - -
Wald bootstrap-se
5. Pairs cluster Yes No -
6. Residuals cluster H0 Yes No -
7. Wild cluster H0 Yes No -
BCA test
8. Pairs cluster Yes Yes
Wald bootstrap-t
9. BDM Yes No No
10. Pairs cluster Yes Yes No
11. Pairs CR3 cluster Yes Yes No
12. Residuals cluster H0 Yes Yes Yes
13. Wild cluster H0 Yes Yes Yes
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Table 2: 1,000 simulations from dgp with group level random errors.
Rejection rates for tests of nominal size  0.05 with simulation se's in parentheses.

Number of Groups (G)
Estimator 5 10 15 20 25 30

# Method

1 Assume iid 0.426 0.479 0.489 0.490 0.504 0.472

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

2 Moulton-type estimator 0.130 0.084 0.086 0.074 0.080 0.052

(0.011) (0.009) (0.009) (0.008) (0.009) (0.007)

3 Cluster Robust 0.195 0.132 0.096 0.093 0.095 0.069

(0.013) (0.011) (0.009) (0.009) (0.009) (0.008)

4 CR3 Residual Correction 0.088 0.084 0.065 0.072 0.067 0.057

(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

5 Pairs Cluster Bootstrap - se 0.152 0.122 0.095 0.096 0.100 0.072

(0.011) (0.010) (0.009) (0.009) (0.009) (0.008)

6 Residual Cluster  Bootstrap - se 0.047 0.049 0.063 0.062 0.066 0.043

(0.007) (0.007) (0.008) (0.008) (0.008) (0.006)

7 Wild Cluster Bootstrap - se 0.012 0.031 0.039 0.041 0.056 0.040

(0.003) (0.005) (0.006) (0.006) (0.007) (0.006)

8 Pairs Cluster Bootstrap - BCA 0.161 0.106 0.101 0.087 0.094 0.068

(0.012) (0.010) (0.010) (0.009) (0.009) (0.008)

9 BDM Bootstrap - t 0.117 0.109 0.094 0.094 0.095 0.068

(0.010) (0.010) (0.009) (0.009) (0.009) (0.008)

10 Pairs Cluster Bootstrap - t 0.081 0.082 0.075 0.073 0.070 0.054

(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

11 Pairs CR3 Bootstrap - t 0.081 0.085 0.070 0.072 0.069 0.051

(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

12 Residual Cluster Bootstrap - t 0.034 0.052 0.049 0.044 0.056 0.050

(0.006) (0.007) (0.007) (0.006) (0.007) (0.007)

13 Wild Cluster Bootstrap - t 0.054 0.062 0.056 0.045 0.060 0.045

(0.007) (0.008) (0.007) (0.007) (0.008) (0.007)
T_distribution(G-k) 0.145 0.086 0.072 0.066 0.062 0.060
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Table 3: 1,000 simulations from dgp with group level random errors and heteroskedasticity.
Rejection rates for tests of nominal size  0.05 with simulation se's in parentheses.

Number of Groups (G)
Estimator 5 10 15 20 25 30

# Method

1 Assume iid 0.302 0.288 0.307 0.295 0.287 0.297

(0.015) (0.014) (0.015) (0.014) (0.014) (0.014)

2 Moulton-type estimator 0.261 0.214 0.206 0.175 0.174 0.180

(0.014) (0.013) (0.013) (0.012) (0.012) (0.012)

3 Cluster Robust 0.208 0.118 0.110 0.081 0.072 0.068

(0.013) (0.010) (0.010) (0.009) (0.008) (0.008)

4 CR3 Residual Correction 0.138 0.092 0.086 0.070 0.062 0.062

(0.011) (0.009) (0.009) (0.008) (0.008) (0.008)

5 Pairs Cluster Bootstrap - se 0.174 0.111 0.109 0.085 0.074 0.070

(0.012) (0.010) (0.010) (0.009) (0.008) (0.008)

6 Residual Cluster  Bootstrap - se 0.181 0.169 0.183 0.157 0.149 0.163

(0.012) (0.012) (0.012) (0.012) (0.011) (0.012)

7 Wild Cluster Bootstrap - se 0.019 0.041 0.057 0.040 0.038 0.043

(0.004) (0.006) (0.007) (0.006) (0.006) (0.006)

8 Pairs Cluster Bootstrap - BCA 0.183 0.103 0.099 0.082 0.070 0.064

(0.012) (0.010) (0.009) (0.009) (0.008) (0.008)

9 BDM Bootstrap - t 0.181 0.108 0.110 0.090 0.070 0.068

(0.012) (0.010) (0.010) (0.009) (0.008) (0.008)

10 Pairs Cluster Bootstrap - t 0.079 0.067 0.074 0.058 0.054 0.053

(0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

11 Pairs CR3 Bootstrap - t 0.064 0.062 0.072 0.057 0.050 0.048

(0.008) (0.008) (0.008) (0.007) (0.007) (0.007)

12 Residual Cluster Bootstrap - t 0.066 0.057 0.066 0.049 0.043 0.047

(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)

13 Wild Cluster Bootstrap - t 0.053 0.056 0.058 0.048 0.041 0.044

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006)
T_distribution(G-k) 0.145 0.086 0.072 0.066 0.062 0.060
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Table 4: 1,000 simulations from different dgps (see text) and G = 10 groups.
Rejection rates for tests of nominal size  0.05 with simulation se's in parentheses.

Main - 
from 

Table 2

Reject 
based 
on T (8 

dof)

Cluster 
size = 

2

Cluster 
size = 

10

Cluster 
size = 
100

4 RHS 
variabl

es

X's are 
consta

nt 
within 
group

X's are 
iid

Unbala
nced 
group 
sizes 

(10,50)
Estimator            Column number 1 2 3 4 5 6 7 8 9
# Method

1 Assume iid 0.491 0.106 0.268 0.679 0.687 0.770 0.054 0.524

(0.016) (0.010) (0.014) (0.015) (0.015) (0.013) (0.007) (0.016)

2 Moulton-type estimator 0.092 0.044 0.095 0.098 0.088 0.089 0.125 0.061 0.129

(0.009) (0.006) (0.009) (0.009) (0.009) (0.009) (0.010) (0.008) (0.011)

3 Cluster Robust 0.129 0.082 0.137 0.126 0.115 0.129 0.183 0.103 0.183

(0.010) (0.009) (0.010) (0.010) (0.010) (0.010) (0.013) (0.010) (0.012)

4 CR3 Residual Correction 0.090 0.054 0.094 0.086 0.077 0.080 0.090 0.086 0.091

(0.009) (0.007) (0.009) (0.009) (0.008) (0.009) (0.009) (0.009) (0.009)

5 Pairs Cluster Bootstrap - se 0.120 0.071 0.100 0.114 0.120 0.128 0.063 0.122 0.138

(0.010) (0.008) (0.009) (0.010) (0.010) (0.010) (0.008) (0.010) (0.011)

6 Residual Cluster  Bootstrap - se 0.058 0.013 0.069 0.068 0.060 0.057 0.054 0.080

(0.007) (0.004) (0.008) (0.008) (0.008) (0.007) (0.007) (0.009)

7 Wild Cluster Bootstrap - se 0.028 0.006 0.048 0.044 0.032 0.030 0.036 0.053 0.019

(0.005) (0.002) (0.007) (0.006) (0.006) (0.005) (0.006) (0.007) (0.004)

8 Pairs Cluster Bootstrap - BCA 0.111 0.125 0.112 0.109 0.112 0.100 0.134 0.140

(0.010) (0.010) (0.010) (0.010) (0.010) (0.009) (0.011) (0.011)

9 BDM Bootstrap - t 0.119 0.086 0.115 0.112 0.119 0.121 0.097 0.128

(0.010) (0.009) (0.010) (0.010) (0.010) (0.010) (0.009) (0.011)

10 Pairs Cluster Bootstrap - t 0.096 0.085 0.083 0.086 0.090 0.066 0.079 0.120

(0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.009) (0.010)

11 Pairs CR3 Bootstrap - t 0.090 0.075 0.077 0.081 0.084 0.050 0.082 0.110

(0.009) (0.008) (0.008) (0.009) (0.009) (0.007) (0.009) (0.010)

12 Residual Cluster Bootstrap - t 0.055 0.052 0.056 0.050 0.043 0.043 0.065

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006) (0.008)

13 Wild Cluster Bootstrap - t 0.055 0.064 0.056 0.048 0.052 0.045 0.064 0.061

(0.007) (0.008) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008)
T_distribution(8) 0.086

62



Table 5: 1,000 simulations from BDM (2004) design.
Rejection rates for tests of nominal size 0.05 with simulation se's in parentheses.
Size column measures size and power column measures power.

Number of States (G)
Estimator 6 10 20 50 6 10 20 50

Size Size Size Size Power Power Power Power
# Method

1 Assume iid 0.459 0.438 0.461 0.439 0.515 0.506 0.574 0.692

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

2 Moulton-type estimator 0.449 0.428 0.454 0.429 0.510 0.490 0.565 0.686

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

3 Cluster Robust 0.109 0.088 0.049 0.048 0.165 0.110 0.142 0.254

(0.010) (0.009) (0.007) (0.007) (0.012) (0.010) (0.011) (0.014)

4 Pairs Cluster Bootstrap - se 0.001 0.087 0.060 0.058 0.001 0.103 0.161 0.275

(0.001) (0.009) (0.008) (0.007) (0.001) (0.010) (0.012) (0.014)

5 Residual Cluster Bootstrap - se 0.043 0.055 0.045 0.048 0.079 0.069 0.127 0.260

(0.006) (0.007) (0.007) (0.007) (0.009) (0.008) (0.011) (0.014)

6 Wild Cluster Bootstrap - se 0.043 0.056 0.046 0.047 0.076 0.075 0.134 0.262

(0.006) (0.007) (0.007) (0.007) (0.008) (0.008) (0.011) (0.014)

7 Pairs Cluster Bootstrap - BCA 0.087 0.111 0.067 0.061 0.147 0.134 0.166 0.276

(0.009) (0.010) (0.008) (0.008) (0.011) (0.011) (0.012) (0.014)

8 BDM Bootstrap - t 0.111 0.086 0.053 0.054 0.161 0.113 0.153 0.270

(0.010) (0.009) (0.007) (0.007) (0.012) (0.010) (0.011) (0.014)

9 Pairs Cluster Bootstrap - t 0.006 0.022 0.043 0.061 0.007 0.033 0.112 0.255

(0.002) (0.005) (0.006) (0.008) (0.003) (0.006) (0.010) (0.014)

10 Residual Cluster Bootstrap - t 0.046 0.051 0.039 0.044 0.081 0.065 0.118 0.256

(0.007) (0.007) (0.006) (0.006) (0.009) (0.008) (0.010) (0.014)

11 Wild Cluster Bootstrap - t 0.067 0.053 0.041 0.045 0.110 0.078 0.124 0.247
(0.008) (0.007) (0.006) (0.007) (0.010) (0.008) (0.010) (0.014)
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Table 6: 250 simulations from BDM (2004) design using micro data.
Rejection rates for tests of nominal size 0.05 with simulation se's in parentheses.

Number of States (G)
Estimator 6 10

Size Size
# Method

1 CRVE cluster on state-year 0.440 0.444

(0.031) (0.031)

3 CRVE cluster on state 0.148 0.100

(0.023) (0.019)

11 Wild Bootstrap-t cluster on state 0.080 0.048
(0.017) (0.014)

Note:  Micro regressions control for a quartic in age, three education 
dummies, and state and year fixed effects.  Number of Monte Carlo 
replications R=250.  Nummber of boostrap replications B=199.
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