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Summary 

Statistical inference on the likelihood ratio statistic for the number of components in a mixture 

model is complicated when the true number of components is less than that of the proposed model 

since this represents an non-regular problem: the true parameter is on the boundary of the parameter 

space and in some cases the true parameter is in a nonidentifiable subset of the parameter space. 

Bootstrap confidence regions based on the likelihood ratio statistic are shown by analysis and Monte 

Carlo simulation to be superior to the traditional likelihood based confidence region in all three cases: 

regular case, simple boundary case, and nonidentifiable, boundary case. 

1. Introduction 

Mixture models have been widely used in biology, medicine and engineering (Titterington, 

Smith and Makov, 1985). When the number of components is known, the statistical inferential 

procedures about the parameters are well developed, mostly via likelihood based inferences. However, 

inferential procedures for the number of components in a mixture is still an open question. If there are 

possibly k components in a mixture, the null hypothesis of k' components where k' < k corresponds to 

the parameter being on the boundary of the parameter space. Furthermore, if there exists at least one 

unknown parameter, nuisance or of interest, in addition to the mixing parameters, the above null 

hypothesis often corresponds to an nonidentifiable subset of the parameter space. The classic 
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98104. 
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assumptions (Cramer, 1946) about the asymptotic properties of the maximum likelihood estimator 

and the likelihood ratio statistic are not valid under the null hypothesis. 

There have been only conjectures and simulation results for the limiting distribution of 

likelihood ratio statistic for the mixture models (Wolfe, 1971; Hartigan, 1979, 1985; McLachlan, 1987; 

Thode, Finch and Mendell, 1988). Redner (1981) extended Wald's results on consistency of the 

maximum likelihood estimator to the nonidentifiable case in a quotient space approach. Ghosh and 

Sen (1985) showed that choosing an identifiable parametrization can create a problem of 

differentiability of the density. Due to the difficulties discussed above, statisticians have turned to the 

bootstrap method. Bootstrapping the likelihood ratio to test number of components of a normal 

mixture was investigated via simulation by McLachlan (1987). Beran (1988) showed that 

bootstrapping the likelihood ratio test in the regular case automatically accomplishes the Bartlett 

adjustment and has level error O(n-3/ 2). For general theoretical discussions of the performance of the 

bootstrap procedure see Bickel and Freedman (1981), Singh (1981), Beran (1984), Hinkley (1988) and 

Hall (1986, 1988). There does not appear to be any work regarding the theoretical evaluation of the 

bootstrap method under non-regular conditions as in mixture models. 

This paper first extends Beran's result to confidence regions in a more general setting, namely 

by showing the bootstrap likelihood confidence region has level error O(n-3/ 2) both in the regular case 

and in cases where the parameter is on the boundary of the parameter space. Some theoretical 

justification and Monte Carlo simulation are provided for bootstrap, likelihood ratio confidence 

regions in the cases where the parameter is on the boundary of the parameter space and in a 

nonidentifiable subset of the parameter space. 

2. Level error of bootstrap likelihood ratio confidence region in regular and boundary cases 

Let X=(x1, ... ,xn) be an iid sample of size n from a population with probability density f(x,B), 

where B is an unknown parameter of order p, B E 0. Let /(B,X) denote the log-likelihood. Under the 

classical regularity condition, the generalized likelihood ratio test of H0 : B = B* level a is: 
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Reject H0 if 2(/(B ,x) - 1(8* ,x)) < 2 
X p, o: (2.1) 

The 100(1-o:)% confidence region based on inverting the likelihood ratio test is: 

~o: = {8: 2(/(0 ,x) - 1(8 ,x)) < x2 p, a } (2.2) 

In general, this confidence region has the correct 1-o: coverage only asymptotically. To improve 

the confidence region in finite samples, the bootstrap of likelihood-based confidence regions was 

introduced by Hall (1987). The statistic which he bootstraps is n1/ 2y-l/\0-8) where B and V are, 

respectively, the maximum likelihood estimate of 8 and an estimate of the variance matrix of 

n1 / 2(B-8). A likelihood-based region is a random region ~o: which has the property that all 

parameter values inside ~o: have higher likelihood than those outside (Cox & Hinkley, 1974, p. 218) 

and the bootstrap procedure enables us to construct ~o: based on the empirical distribution F n· 

A drawback of the above approach is that this statistic is of dimension p, the dimension of 8. A 

contour device needs to be used to get the bootstrap confidence region and this is difficult to express 

analytically. Therefore, the use of it by practitioners is limited. Hall's procedure can be totally 

nonparametric if B and V are obtained by some nonparametric procedure and, e.g., a kernel density 

estimator is used to draw the contours. 

For cases in which the likelihood can be specified, it is desirable to reduce the problem to a one 

dimensional statistic. Two natural candidates are the quadratic form 

and the likelihood ratio statistic 

W(8,X) =: 2(/(B,X) - 1(8,X)). 

where /( 8, X) is the log likelihood evaluated at 8. 

Hall (1987) argued that likelihood-based regions should not be approximated by ellipses, if we 

are to have any hope in capturing first-order departures from normality. This rules out the possibility 

of using a quadratic form as the statistic to bootstrap. 

We now introduce the bootstrap testing and confidence region procedures. The bootstrap 
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likelihood ratio test procedure for simple H0 : 8 = 80 is: 

Reject H0 if W(80 ,X) ~ W a(80 ,X*(80 )) (2.3) 

where W a(.,.) is the upper a quantile of W(.,.), and X*(80) means bootstrap resampling under 80 , the 

parameter under H0 and 

(2.4) 

where 0 is the maximum likelihood estimator under n from x*. 

We should emphasize that 0 depends on the sample from which it is calculated, and therefore it 

really is O(X) or O(X*(.)), For composite H0 with 8 = (81, 82) and an H0 of the form H0: 81 = 801 , 82 

unspecified, denote the maximum likelihood estimator under H0 as 00 = (801 , 002). The bootstrap test 

is then: Reject H0: 81 = 801 if 

(2.5) 

The inversion of (2.3) and (2.5) to get confidence regions lRa's are: 

lRa - { 8: W(8,X) < W a(8,X*(8) }. (2.6) 

Beran (1988) proved that (2.3) and (2.5) have level error O(n-3/ 2). This means that the actual 

size of the test is a + O(n-3/ 2). When we are inverting (2.3) to form a confidence region, the 

100(1-a)% confidence region is (2.6). This is computationally difficult since the bootstrap distribution 

under each 8 has to be obtained, usually by a Monte Carlo simulation, to decide the critical value for 

that particular 8. On the other hand, if W is a pivot, then the distribution is independent of 8 and 

any 8 can be used to generate the bootstrap samples and get the critical value when inverting the 

likelihood ratio-tests into a confidence region. However, in general, W is a pivot only asymptotically, 
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since its distribution approaches a chi-squared distribution. In finite samples when W is not a pivot, 

the bootstrap sample generated from each 0 has a different distribution and therefore has a different 

critical value. Below we introduce a procedure which is easier to compute. That is, we show that it is 

permissible to use 0 or O(F) to get the critical value and the level error remains the same as Beran's 

bootstrap likelihood ratio test. 

Define the new bootstrap confidence region lRa : 

(2.7) 

where X*(O) is bootstrap sample from F(O), i.e., the parametric bootstrap, 0 and O* are the maximum 

likelihood estimates of 0 from X and X*(O) respectively, 

Theorem 2.1. 

Assume that the joint distributions of the components of 0, and the first four derivatives of the 

log likelihood, after standardization by location and scale have multivariate Edgeworth expansions. 

We further assume that the first five derivatives of the log likelihood exist. Then we have for any real 

x, 

Pr{W(O,X*(O)) $ x} - Pr{W(O,X) < x} = O(n-3/ 2) (2.8) 

Furthermore, the boundaries of confidence regions defined by (2.6) and (2. 7) differ by the order 

Op(n-3/ 2). This means if Oa denotes any one point in !Ra constructed by (2.6), then 

(2.9) 

and 

Pr( (J E Ra) (2.10) 

i.e. 
A 3/2 
!Ra has level error O(n- ) 
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Proof: (in Appendix). 

Remark 1: 

Barndorff-Nielsen and Hall (1988) applied a Taylor expansion and Edgeworth expansion to 

(1+n-1b1f 1W, the Bartlett adjustment of W, to prove the level error of the Bartlett adjustment on 

the likelihood ratio statistic. The proof of Theorem 3.1 uses a similar technique based on a Taylor 

expansion and Edgeworth expansion of W(O,X*(O)) and W(O,X) and then a comparison of the 

difference. The asymptotic expansion of the likelihood ratio statistic has been studied by Lawley 

(1956), Hayakawa (1976), Chandra and Ghosh (1979), Chandra (1985) and Bhattacharya (1985). The 

details of the existence of Edgeworth expansions are in Bhattacharya and Ghosh (1978). 

Hall (1986) investigated the level error of the bootstrap confidence interval in the class of 

"studentized" statistics which includes the maximum likelihood estimator when it can be expressed as 

a function of the sample mean. Our finding is different from Hall's in two aspects: 1) -2log~ does not 

have to be a function of the sample mean, i.e. a "studentized statistic"; 2) 0 can be p-dimensional 

where p ~ 1. 

Remark 2: 

The reason the bootstrap likelihood ratio is superior to the bootstrap quadratic form is that the 

quadratic form uses a confidence region which is a symmetric ellipsoid. This is the correct shape of a 

confidence region only in the limiting case, i.e. as n -+ oo, while the first one is based on the 

likelihood and able to capture the asymmetry in finite samples. 

For the case where the true parameter is on the boundary of the parameter space, Theorem 2.2 

below indicates that the bootstrap confidence region or test still has the level error O(n-3/ 2). For the 

assumptions and proof of the theorem see Feng and McCulloch (1990). The basic idea is to enlarge 

the parameter space and not force the maximum likelihood estimate of 0 to lie in the original 

parameter space. We call such an estimate the unrestricted maxima. 
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Theorem 2.2. 

Let X=(xv···•xn) be i.i.d. observations with density f(x,B0) with some regularity assumptions but 

where the unknown 00 is on the boundary of n. Then with probability tending to 1 as n -+ oo, there 

exists a 1J E JRP, a local maxima, with the property that 

(i) 1J -+ ()0 w.p. 1 

(ii) n 1/ 2(0- 00 ) _£ N(O, I(B0r1). 

Remark: 

For bootstrap likelihood ratio test or bootstrap confidence region where the unrestricted maxima 

still identifies a probability distribution, either the parametric or nonparametric bootstrap can be 

used. For the bootstrap confidence region procedure where the unrestricted maxima does not identify 

a probability distribution when it is out of the parameter space, only the nonparametric bootstrap can 

be used to generate the bootstrap sample. In both cases, the maximum likelihood estimator can be 

used to generate the bootstrap sample, and the level error probably remains the same but is difficult 

to obtain since the maximum likelihood estimator does not have an asymptotic normal distribution 

when the true parameter is on the boundary of the parameter space and the assumptions for Theorem 

2.1 are not satisfied. 

We illustrate the use of the bootstrap likelihood ratio method and compare it to the classic 

likelihood ratio method by using a Monte Carlo simulation of the level error of the likelihood 

confidence regions obtained by both methods. We consider two cases: a multinomial mixture and a 

mixture of two normals. The simulations were programmed in GAUSS (Edlefsen and Jones, 1988). 

The mixture multinomial model has been used in genetics by McCulloch (1987) and Roeder, 

Devlin and Lindsay (1989). We here follow the notation of McCulloch. Suppose we observe f=(f1, ... , 

fa) sampled from multinomial (N,p) with parameters: 

G 

N = L f. , P = (Pt• ... , Pc)T 
. 1 J 
J= 
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s 
and Pj = L 7rip(j li) 

i=1 

s 

with 0 ~ 71"i ~ 1 and L 11"i = 1. 

i=1 
When the p(jli)'s are assumed known and when at least one 1ri = 0 this is the case of a 

parameter on the boundary of the parameter space. The coverage probability of the bootstrap 

likelihood ratio method by (2. 7) and the likelihood ratio confidence regions for 1r's based on 500 

simulations are given in Table 1 and 2. A bootstrap sample size of 1000 was used to get the cutoff 

point of the simulated bootstrap distribution for each single replicate of the simulation. Sample sizes 

of 10, 25, 50 and 100 are used to investigate the convergence rate of the bootstrap likelihood ratio and 

the likelihood ratio statistic. 1 - a = 0.9 is used. Table 1 represents the boundary problem with: 

r = (1.0 0.0), P* = (pOl;)) = [ ·~ ·: ] and 

Table 2 represents the regular problem with: 

.5 .25 .25 

71" = (0.6 0.35 0.05), p* - (p(jli)) = 0 .75 .25 

.875 .125 0 

Table 1 indicates that bootstrap likelihood ratio method outperforms the likelihood ratio 

method since the coverage probability is not significantly different from 0.9 when N ~ 25, while the 

likelihood ratio method has coverage probability significantly less than 0.9 even at N = 50. Note that 

when N = 100, the likelihood ratio method has coverage probability 0.884, supporting the fact that it 

has asymptotic correct coverage probability as from Theorem 2.2. The results of Table 2 indicate that 

the bootstrap method still outperforms the likelihood ratio method but on the whole both methods 

performed pretty well in this example. 

Table 3 describes the simulation results of the bootstrap and likelihood ratio test procedures 
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based on the unrestricted maxima for mixture normal alternative (1-11")N(1,1) + 1rN(0,1) with the true 

population being standard normal. The probabilities of correctly accepting H0 for both procedures are 

near the nominal level when the sample size N is 100, but the bootstrap procedure still outperformed 

the likelihood ratio method. This difference was clearer for small sample sizes. The likelihood ratio 

method performed poorly when n = 10 with the probability of making a correct conclusion from 0.128 

to 0.180 less than the nominal level while the bootstrap procedure has the probability only 0.010 to 

0.018 away from the nominal level. 

Table 4 gives the simulation results for the same model as used in Table 3 except that the 

coverage probabilities of bootstrap confidence region constructed by (2.7) are compared with the 

confidence region constructed by the likelihood ratio statistic based on the unrestricted maxima. First 

of all, when n = 100, both procedures performed very well. The bootstrap confidence region still has 

quite an accurate coverage probability when the sample size is as low as 10 while the likelihood ratio 

method begins to perform poorly when n = 30 and is much worse when n = 10. 

3. Bootstrap confidence region for nonidentifiable case 

We first extend the definition of consistency and prove that the unrestricted maxima 1J is 

consistent in the following sense: 1J - ()* 0(0) --+ 0 with probability one for some ()* 0 (0) E n0, where n0 

identifies a subset of n in which the distributions are not distinguishable. Simulation results are 

provided to evaluate the bootstrap, likelihood ratio confidence region procedure for the model: 

(1-11") N(0,1) + 1r N(Jt,1) (3.1) 

when the true distribution is N(0,1). 

We first extend the definition of £(0; x) to RP: 

(3.2) 

where 1(.) is an indicator function and f*(O,xi) is the extension off(O,xi) to all 0 E RP. 

We need following assumptions, with 00 an arbitrary fixed point in 0 0: 
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(A) the parameter space n has finite dimension. 

(B) f(x,80) = f(x,80') V 80 , 80 ' E n0• That is, all parameters in n0 generate the same 

distribution and therefore the distribution is not identifiable in no. 

(C) there exists an open subset wf of IRP containing Q0 , such that for almost all x, f(8; x) admits 

all third derivatives w.r.t. 8 for all 8 E wf' and 

rP 

Remark: wf is not necessarily an open ball and can be expressed as wf = U B (8 )(80 ). for each 
8o E no f o 

€(80) > 0, depending on 80 . In the above example, wf is then an open stripe with unequal width 

surrounding no. 

(D) E 80 [ 0 ~.log f(X,8)] = o 
J 

for j = 1, ... , p and all 80 E n0 . 

for any 8 rJ. n0, the 80 E n0 which is nearest to 8 in Euclidian distance, (i.e. J8 - 80 J ::; J8 - 80 '1 V 

80' E n0), has the property that (8- 80)TI(80)(8- 80 ) > 0 for all 8 in the neighborhood of 80• 

Remark: 

Notice that the above properties need not be held by all 80 E n0 . For those 80 which will not 

be selected by the above rule the assumptions can be relaxed, i.e., the quadratic form can be zero. 

It is not difficult to check that the above example satisfies the (A)- (D) with Fisher information 

evaluated in no as follows: 
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[ : 0 ] T p2 , 1((0,11) ) [ e•:~ 1 : ] 

and [: : l 
If IPI < 1111, i.e., it is near the 11-axis, then: 

On the other hand, if IPI > 1111, then 

For IPI = 1111, choose either (0,11) or (p,O). Though 

1(0) = 0 at 0 = (0,0), this point is never selected by the selection rule. 

Theorem 3.1. 

Let X = (xv···•xn) be i.i.d. observations with density f(x,O) satisfying assumptions (A)-(D) 

above and with the true parameter 00 being any point in 0 0 • (The value of B0 is not important since 

all points in 0 0 identify the same density function). Then with probability tending to 1 as n --> oo, 

there exists a 0 E IRP, a local maxima of t*(B,X) as defined in (3.2), which has the property that 

there exists a B6(0) E 0 0 which depends on 0 such that 

0- B6(0) --> 0 with probability 1 

Proof. The proof is similar to that of Lehmann (1983) with modifications to adapt assumptions (B) 

and (C). We only need to show that for sufficiently small ~:(0 0 ) > 0, t*(B,X) < t*(00 ,X) at all 

points 0 on the boundary of some stripe w f surrounding 00 , since this means that there exists at least 

a local maxima within We We can choose ~:(B 0 ) small enough such that f(xi,B) > 0 V xi's in the 

sample and Taylor expansion of t* ( 0, X) about 00 is justified in we For any fixed 0 on the boundary 

of wE, we define 06( 0), such that IB - B6( B) I ~ 10 - 001 V B0 E 0 0, i.e., 06( B) is the point in 0 0 closest 

toBin Euclidian distance. Taylor expansion of t*(B,X) about B6(B) leads to: 
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kt* ( 8 , X) - kt* ( 8~ ( 8 , X) ) (3.3) 

= 8; j c 8)) [ 8 ~ j I* C 8, x) 1 8 =£J~ C 8) J 

and 0 :::; h'jkl(x)l :::; 1 by assumption (C). 

The asterisk on the log-likelihood can be dropped in each term of the Taylor expansion since 

86(8) E 0. Therefore, the rest of the proof of S1 + S2 + S3 < 0 as n ---+ oo follows the classic one 

(Lehmann, 1983). 

Remark: 

Redner (1981) proved the strong consistency of the maximum likelihood estimator in the 

quotient space. The above proof is the parallel result expressed in Euclidean space and is therefore 

easier to interpret. This approach might also lead to obtaining the asymptotic distribution of -2log.A *, 

the likelihood ratio statistics based on the unrestricted maxima. However, we have not been able to 

derive the asymptotic distribution of -2log>.* or -2log>.. Hartigan (1985) pointed out that for the 

example of (3.1), -2log>. is asymptotically not bounded in probability but tends to infinity at a very 

slow rate (~log log n). This implies the asymptotic distribution of -2log>. does not exist in this case. 

However, the distribution of -2log.A or -2log>.* for any finite sample does exist. This suggests that the 

bootstrap procedure is a natural candidate for this inference problem since it mimics the underlying 

finite sample distribution. The significance of Theorem 3.1 is that since the maximum likelihood 

estimator converges to no, the bootstrap procedure should asymptotically mimic the true distribution 
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though the theoretical level error of the bootstrap procedure is difficult to obtain. The merit is that 

every point in 0 0 corresponds to the same distribution and therefore the bootstrap distributions are 

asymptotically the same no matter which point in wt is used to generate bootstrap samples. 

Simulation of the coverage probability of bootstrap confidence region was carried out on 

Cornell's supercomputer. -2log~ and -2log~* are the statistics we bootstrapped. A subroutine, 

DBCONF, which uses a quasi-Newton and a finite-difference gradient method in IMSL was called in a 

FORTRAN program to find the maximum likelihood estimators from random samples of size 100, 30 

and 10. Then 500 bootstrap samples were generated by the parametric bootstrap method and the 

90%, 95% and 99% cut off points for the distribution of -2log~ (or -2log~*) were obtained from 500 

simulated -2log~s (or -2log~*s) each computed from its co~responding bootstrap sample to form the 

confidence region as (2. 7). This process was repeated 500 times to evaluate the coverage probability. 

Table 5 indicates that the bootstrap confidence procedure is again clearly better than the 

confidence region based on x2
1 (x2 

2 approximation was even worse in this simulation). We should 

mention that neither x21 nor x2 2 has a theoretical basis for use. The bootstrap confidence region has 

good coverage probabilities that are very close to the nominal levels in all sample size and at all 

nominal levels, while the chi-squared approximation, though not bad in 0.95 and 0.99 nominal levels, 

performed poorly at the 0.90 nominal level. 

The simulation results of the coverage probabilities of the bootstrap confidence region for the 

above example are in Table 6, the only difference between Table 6 and Table 5 being that the 

bootstrap statistic is -2log~*, i.e., based on the unrestricted maxima. Table 6 indicates that the 

coverage probability based on x21 is much too liberal while that based on x2 2 is a little too 

conservative. The bootstrap procedure is again a winner at all sample sizes. 

4. Discussion 

The singular Fisher information is the major difficulty in investigating the level error of the 

bootstrap procedure for the nonidentifiable case. As we saw in section 2, the proof of the level error of 
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the bootstrap procedure depends on the existence of an Edgeworth expansion of -2log.A. Bhattacharya 

(1985) proved that if -2log.A = 2n(H(Z) - H(J.t)) where Z = n-1(Z1 + ... + Zn) with Jl = EZ1 and with 

some other regularity conditions, the Edgeworth expansion of -2log.A is valid. Chandra and Ghosh 

(1979, p.42) pointed out that if the assumptions (A1) to (A4) and (A6) of Theorem 3 of Bhattacharya 

and Ghosh (1978) are satisfied, the Edgeworth expansion of the cdf of -2log.A agrees with the true 

distribution up to op(n-1). Unfortunately, (A4) is that the Fisher information is nonsingular. The 

importance of (A4) is that it enables us to apply the implicit function theorem to ensure that there 

exists an uniquely defined real-valued infinitely differentiable function H on the neighborhood of J.l· 

The difference between n1/ 2(fJ- 80) and its Edgeworth representation is then of the order o(n-(s-2)/2), 

where s is the positive integer such that the ith derivative of the density function with respect to 

every (} is continuously differentiable for 1 ~ i ~ s. The representation of -2log.A as a sum of iid 

random variables is necessary in all three of the above papers' proof. Therefore, a possible approach is 

to develop some non-Edgeworth expansion method or other criterion to justify the Edgeworth 

expansion. 

Appendix: 

Proof of Theorem 2.1. By the assumption of the continuity of the derivatives of the log likelihood, the 

TaylorexpansionofW(B,X) = 2(/(B,X)- l(B,X)) aboutBis: 
p p p 

w(o,x) = 2 2:: (oj- oj) l'jCB,x) + L:: L:: co ro j)Cok-ok) l'jkco,x) 
j=1 j=1 k=1 

(A.1) 

Taylor expansion of l'jC B, X) about (} gives: 



-15-

Substituting (A.2) into the first term of the right hand side of (A.l), gives 
p p 

wco,x) = 2: 2: cor o.)(ok- ok)(-l'jk co,x)) 
j=l k=l J 

Furthermore, 

(A.2) 

(A.3) 

• p 2 
The first term of S1 is a quadratic form in ( 0 - 0) and can be written as 2:: (a.) , where a is a p

j=l J 

dimensional vector with limiting normal distribution N(O, Ip), where lp is the identity matrix of 
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dimension p. The variances are all unity because the first term is standardized by the Fisher 

information. The second term is a function of limiting normals times n -1 / 2 which also can be treated 

as a linear transformation of aj's and .Bjk's with limiting joint standard normal distribution, times 

n-1/ 2 . .Bjk comes from the linear mapping of {n-1/ 2(- ljk (O,X) - E[- l'jk (O,X)])} to the 

limiting standard normal. 

we apply the same method to s2 and s3 and get, 

{ n-1/2(- f"' 
jklm (O,X) - E[- l'Jklm (A.4) 

The second term of S3 is of the order Op(n-3/ 2) and therefore can be collapsed into the remainder 

which is Op(n-3/ 2). We can express the terms in S1, S2 and S3 as a polynomial in the a's and /3's. 

We get: 

p 2 
W(O, X) = I: (a·) 

j=l J 
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(A.5) 

The C1jk• C2jkl• C1jkl and C2jklm are constants representing the linear transformation from a:'s and 

j3's to the limiting normals in S1 , S2 and S3 • Notice that they do not depend on n. 

Now assume a:'s and j3's have a joint density function f which admits an Edgeworth expansion of the 

form: 

2 -~ 3/2 
f(z) = ¢(z) + L: n Pj(z)¢(z) + O(n- ) 

j=1 
(A.6) 

where ¢(z) is the N(O, I) density. 

By the results of Bhattacharya(1985), the pj's with j odd vanish. Then 

Pr( W(B,X) ~ x) = J ~(x;n) { ¢(z) + n-1p2(z)¢(z)} dz + O(n-3/ 2) (A.7) 

where 

~(x;n) 

p 

{ z: L: (a:·)2 
. 1 J 
J= 

(A.8) 

The remainder term, after introducing the integral, is still O(n-3/ 2) since ~(x;n) is a region with finite 

area and the integrand is also finite and thus the order of the error is preserved. 

By the same Taylor expansion on W(O,X*(O)) and denoting O(X*(O)) as 9* for simplicity, we get 
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(A.9) 

p p p 

-1( 2 ""' ""' ""' * * *R* C + n - 3 L...J L...J L...J a jakal""' jkl 2jkl 
j=l k=l 1=1 

( -3/2) + Op n . (A.10) 

The constants C1jk• C2jkl• C1jkl and C2jklm are the same as in (A.5) since the same linear 

transformation can be used from a* to the limiting normals corresponding to the terms in (A.4) 

except with e replacing (} and 8* replacing e. 

Similarly, 

(A.ll) 

where ~(x; n) is the same as in (A.8) since the same mapping was applied. p2(z) is a polynomial 

whose coefficients are the first and second cumulants and Hermite polynomials H4(z) and H6(z) which 
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are defined by 

p;(z) is the same polynomial except with the cumulants replaced by their bootstrap estimates. 

p2(z) - Pi(z) = Op(n-1/ 2) since they are smooth functions of sample moments and population 

moments which have differences of the order Op(n-1/ 2) as long as the fourth moment is finite. 

(Serfling, 1981, p.68). Therefore, again by noticing that ~(x; n) and the integrand are finite, we have 

Pr(W(B,X*(B)) ~ x) - Pr(W(O,X) ::; x) 

(A.12) 

This proves (2.8). 

To prove (2.9) and (2.10), since direct inversion of bootstrap likelihood ratio confidence region iR(O) 

has level error O(n-3 / 2), it is sufficient to prove (2.9) and then (2.10) follows. To show that 

- * - * 3/2 Pr(W(O,X (0))::; x) - Pr(W(Oa,X (Oa)) ~ x) = O(n- ), where (}a is any (} E iRa constructed from 

(2.6), similar expansions of W(B,X*(B)) and W(Oa,X*(Oa)) as before give: 

Pr(W(B,X*(B)) < x) - Pr(W(Oa,X*(Oa)) < x) 

(A.13) 

When the Edgeworth expansion exists, the Pi's are bounded functions of order Op(1) uniformly in 0. 

Since they are polynomials, they are continuous in 0. When O's are restricted in ~a , notice that ~a 

shrinks in each of its linear coordinates as Op(n-1/ 2), therefore, lOa- OJ = Op(n-1/ 2) uniformly in iRa 

and Pi(z, B)- Pi(z, Oa) = Op(n-1/ 2) uniformly in ~a· This indicates that (A.13) is of order O(n-3/ 2).0 
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Table 1 Coverage probabilities of the bootstrap likelihood ratio and the likelihood ratio based 
confidence regions from 500 simulations on mixture multinomials with two components and with 

the parameter on the boundary of the parameter space 

(nominal coverage probability = 0.9, 500 replications) 

Estimated coverage probability (standard error) 

Sample 

Size Boot-LR LR 

10 0.968 (0.008) 0.884 (0.014) 

25 0.902 (0.013) 0.890 (0.014) 

50 0.908 (0.013) 0.866 (0.015) 

100 0.886 (0.014) 0.884 (0.014) 
1- a 0.900 0.900 
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Table 2. Coverage probabilities of the bootstrap likelihood ratio and the likelihood ratio based 
confidence regions from 500 simulations on mixture multinomials with three components and the 

parameter is near the boundary of the parameter space 

(nominal coverage probability = 0.9, 500 replications) 

Estimated coverage probability (standard error) 

Sample 
Size Boot-LR LR 

10 0.884 (0.014) 0.802 (0.018) 
25 0.928 (0.012) 0.894 (0.014) 
50 0.906 (0.013) 0.906 (0.013) 
100 0.910 (0.013) 0.906 (0.013) 
1- a 0.900 0.900 
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Table 3. Probabilities of acceptance of H0 by the bootstrap and the likelihood ratio test 

procedures in a test of H0 : N(0,1) vs. H1: 1r N(0,1) + {1-7r) N{1,1) when H0 is true. The 
likelihood ratio statistic is based on the unrestricted maxima {500 replications). 

Estimated Coverage Probability (standard error) 

Nominal Sample 

1-a Size Boot-LR LR 

10 0.882 {0.014) 0. 720 {0.020) 
.90 30 0.892 (0.014) 0.824 {0.017) 

100 0.894 (0.014) 0.864 {0.015) 

10 0.938 {0.011) 0. 796 {0.018) 

.95 30 0.950 {0.010) 0.884 {0.014) 

100 0.948 {0.010) 0.924 {0.012) 

10 0.980 {0.006) 0.862 (0.015) 

.99 30 0.998 {0.002) 0.956 {0.009) 
100 0.990 {0.004) 0.982 {0.006) 
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Table 4. Coverage probabilities of the bootstrap and the likelihood ratio based confidence 
intervals for a mixture normal model: 1r N(0,1) + (1-7r) N(1,1) when the true distribution is 
N ( 0,1). The likelihood ratio statistic is based on the unrestricted maxima ( 500 replications.) 

Estimated coverage probability (standard error) 

Nominal Sample 
1-a Size Boot-LR LR 

10 0.912 (0.013) 0.728 (0.020) 
.90 30 0.924 (0.012) 0.840 (0.016) 

100 0.898 (0.014) 0.874 (0.015) 

10 0.944 (0.013) 0. 796 (0.018) 
.95 30 0.968 (0.008) 0.910 (0.013) 

100 0.946 (0.010) 0.946 (0.010) 

10 0.952 (0.010) 0.858 (0.016) 
.99 30 0.992 (0.002) 0.952 (0.010) 

100 0.984 (0.006) 0.976 (0.007) 
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Table 5. Coverage probabilities of the bootstrap and the likelihood ratio based confidence regions 
for a mixture normal model: (1-11") N(0,1) + 1r N(J.t,1) when the true distribution is N(0,1). The 

likelihood ratio statistic is based on the maximum likelihood estimator (500 replications). 

Simulated coverage probability (standard error) 

Nominal Sample 
1-a Size Boot-LR LR 

10 0.916 (0.012) 0.878 (0.015) 
.90 30 0.918 (0.012) 0.856 (0.016) 

100 0.916 (0.012) 0.862 (0.015) 

10 0.946 (0.010) 0.926 (0.012) 
.95 30 0.954 (0.009) 0.924 (0.012) 

100 0.966 (0.008) 0.926 (0.012) 

10 0.988 (0.005) 0.986 (0.005) 
.99 30 0.984 (0.006) 0.970 (0.008) 

100 0.996 (0.003) 0.992 (0.004) 
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Table 6. Coverage probabilities of the bootstrap and the likelihood ratio based confidence regions 
for a mixture normal model: (1-11') N(0,1) + 11' N(Jt,1) when the true distribution is N(0,1). The 

likelihood ratio statistic is based on the unrestricted maxima (500 replications). 

Simulated coverage probability (standard error) 

Nominal Sample 
1-a size Boot-LR LR{;e1) LR(x22) 

10 0.902(0.013) 0. 788(0.018) 0.896(0.014) 
.90 30 0.932(0.011) 0.828(0.017) 0.942(0.010) 

100 0.896(0.014) 0.830(0.017) 0.932(0.011) 

10 0.952(0.010) 0.866(0.015) 0.940(0.011) 
.95 30 0.968(0.008) 0.918(0.012) 0.974(0.007) 

100 0.942(0.010) 0.894(0.014) 0.964(0.008) 

10 0.998(0.002) 0.948(0.010) 0.980(0.006) 
.99 30 0.992(0.004) 0.978(0.007) 0.994(0.003) 

100 0.992(0.004) 0.978(0.007) 0.996(0.003) 


