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1 Introduction

The conformal bootstrap has seen a revival in recent years and given a plethora of results

both numerical and analytical. It is a non-perturbative approach to quantum field theory

in which symmetry principles play a fundamental role without relying on weak-coupling ex-

pansions. Some of the highlights that the modern reincarnation of the bootstrap has given

include high precision estimates of critical exponents [1–3], universal behavior of CFTs at

large spin [4, 5], and the discovery of solvable subsectors in superconformal theories [6–9].

An important class of systems and the main focus of this work are CFTs in the presence

of an extended operator or “defect”. Conformal defects have numerous applications in

condensed matter systems, holography, and formal aspects of superconformal field theory.

From the bootstrap point of view most of the work has been on correlation functions of

local operators in the presence of a defect. Apart from the rich and well understood case

of 2d CFTs [10–12], two early papers in the higher dimensional case are [13, 14] where

two-point functions of CFTs near a boundary were studied. More recently, the authors

of [15] presented a thorough analysis of two-point functions in the presence of a defect of

any codimension.

The most interesting feature of defect CFTs is the presence of additional CFT data.

In addition to the standard OPE coefficients of bulk operators and OPE coefficients of

local operators on the defects, there are also bulk-to-defect couplings.1 The latter control

the convergent expansion of local operators in the bulk in terms of local operators on the

defect. The increase in data is balanced by the fact that there are also more constraints.

Two-point functions in the presence of the defect exemplify this feature. In figure 1 there

is a pictorial representation of “crossing symmetry” for this system.

The channel on the left depicts the standard bulk OPE followed by taking the expec-

tation value in the presence of the defect. Because the full conformal symmetry is partially

broken, certain bulk local operators can have a non-zero one-point function. The CFT data

for this channel are thus the standard three-point couplings times the one-point function

coefficients. The channel on the right corresponds to expanding each bulk local operator

in terms of local operators on the boundary. The resulting two-point function of bound-

ary operators is then fixed by the defect conformal symmetry. This channel thus involves

only the new bulk-to-defect couplings, a subset of which is given by the one-point function

1There is also the interesting possibility of introducing an expansion of the defect itself in terms of local

bulk operators as proposed in [16], and recently investigated in [17]. We will not consider such expansions

in this paper.
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Figure 1. Crossing symmetry for two-point functions in the presence of a defect. The channel

on the left represents the standard bulk OPE between local operators. The channel on the right

is the bulk-to-defect OPE in which each local operator can be written as a convergent sum of

defect operators.

coefficients. It should be noticed that, given CFT data for the theory in the bulk and

for the theory restricted to the boundary, the crossing equations in figure 1 do not imply

by themselves that the full boundary CFT is consistent. They should be supplemented

with the generalization of the case presented in figure 1, when an arbitrary local operator

on the boundary is added. Note that even when the external operators are identical, the

coefficients of the conformal block expansion do not exhibit any positivity property. The

numerical bootstrap program was applied to defect CFTs in [18, 19] using the method

of [20], and in [21, 22] using the method of [23].

In this work we will be interested in flat defect CFTs that also exhibit supersymme-

try. In particular, N = 4 SYM with 1
2 -BPS boundary conditions. This set of boundary

conditions was extensively studied by Gaiotto and Witten in [24].2 Even though this is

an interesting system on its own, a particular motivation for our work is to present a set

of bootstrap equations that might be tractable analytically. The analytical understanding

of the bootstrap has improved significantly in recent years, however, much remains to be

done. Two-point functions in the presence of a flat defect are a promising arena: the

blocks depend on only one cross-ratio and are therefore relatively simple. The addition of

supersymmetry makes the setup even more attractive. Supersymmetry is a powerful tool

that gives good analytic control on certain quantities which are otherwise hard to study.

If a non-trivial analytic solution to the bootstrap equations is within reach, the equations

presented in this paper are a promising candidate for it.

The system we discuss possesses the three-dimensional superconformal symmetry

OSP(4|4). As explained in [8, 9], any three-dimensional N = 4 superconformal theory con-

tains a closed subsector of operators whose correlators are described by a one-dimensional

topological theory. It was also mentioned in [9] that such considerations extend to the case

in which the three-dimensional theory lives on the boundary of a d = 4, N = 4 theory. The

construction consists in truncating the system by restricting to the cohomology of a special

supercharge inside osp(4|4). We will therefore refer to this subsector as the “cohomological

sector”. The approach championed in the original papers [6–9] is that the superconformal

2A class of 1
2
-BPS interfaces in N = 4 SYM were constructed in [25]. In the context of integrability,

there have been perturbative calculations of one-point functions in this setup, see [26–29] and references

therein. Defect CFTs have also been studied from the point of view of holography, see [30–33] and refe-

rences thereafter.
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bootstrap can be implemented as a two-step process. First, we solve for the truncated

cohomological sector using analytical tools, and then we proceed to the harder task of

studying non-protected quantities, maybe resorting to numerics.3

In this paper we set the stage for this two-step program. We start by obtaining

the full superconformal block expansion for two-point functions of 1
2 -BPS operators. This

expansion, when restricted to the cohomological sector, implies an infinite set of polynomial

equations relating bulk and boundary data. We present a preliminary study of solutions to

this truncated system, leaving a more complete analysis for future work. We also explore

the full bootstrap equations with the goal of eventually using modern numerical techniques

to study their dynamics.

It should be pointed out that all the results we present for the codimension one 1
2 -

BPS defect in a d = 4, N = 4 superconformal theory, automatically extend to the case

of a codimension three 1
2 -BPS defect. The connection is spelled out in the main text and

includes the superconformal blocks and the existence of a cohomological sector. Moreover,

and somewhat surprisingly, we find that superconformal blocks for four-point functions in

d = 3, N = 4 theories and OSP(4∗|4) superformal quantum mechanics with no defect,

are essentially equal to the defect superblocks we determine. The latter superblocks have

also not appeared in the literature yet, and we will therefore solve four different systems

in one blow.

The outline of the paper is as follows. In section 2 we study one- and two-point

functions using a novel superspace setup. For two-point functions of 1
2 -BPS operators we

obtain the corresponding Ward identities, which capture in an elegant and compact form

the constraints of superconformal invariance. In section 3 we present the complete solution

of the Ward identities in the form of a superconformal block expansion for the correlator.

In section 4 we initiate the study of solutions to the bootstrap equations concentrating

mostly in the restricted cohomological sector. We conclude with section 5 and gather

several technical details in the appendices.

2 Correlation functions in superspace

Let us start by introducing the superspace we will use to describe correlation functions

in a d = 4, N = 4 superconformal theory in the presence of a flat 1
2 -BPS defect. It is

particularly useful for correlators of 1
2 -BPS operators and will allow us to write the Ward

identities in a very compact form. Similar superspaces have already been used in the

literature to study 1
2 -BPS correlators in different superconformal setups [35–37].

2.1 Superspace setup

The N = 4 superconformal group in four dimensions is PSL(4|4).4 The four-dimensional

Minkowski space can be extended to a superspace with coordinates

X =
(
XAȦ

)
=

(
xαα̇ λαȧ

πaα̇ yaȧ

)
, (2.1)

3The bootstrap for N = 4 SYM without defects was studied in [34].
4For the discussion in this section groups and coordinates are complexified.
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where α ∈ {1, 2}, α̇ ∈ {1̇, 2̇}, a ∈ {1, 2}, ȧ ∈ {1̇, 2̇}. The R-symmetry coordinate y can be

considered as parameterizing a second copy of Minkowski space. The remaining variables

λ, π are fermionic. The action of GL(4|4) is given by

g ◦X = (AX +B) (C X +D)−1 , g =

(
A B

C D

)
∈ GL(4|4) . (2.2)

Due to the projective nature of these transformations, only PGL(4|4) acts non-trivially

on this set of coordinates. The symmetry group PSL(4|4) corresponds to the elements in

PGL(4|4) with unit superdeterminant. The group element

gψ :=

(
Aψ 0

0 Aψ

)
∈ PGL(4|4) , Aψ =

(
ψ+112 0

0 ψ−112

)
, (2.3)

generates an outer automorphism of PSL(4|4). This superspace goes under a variety of

names (analytic/projective) and is particularly useful to describe correlation functions.

We will now turn to the discussion of the symmetry group preserved by the presence of

a 1
2 -BPS boundary, namely, the three-dimensional N = 4 superconformal group OSP(4|4).

The supergroup OSP(4|4). We define the orthosymplectic group as

OSP(4|4) =
{
g ∈ GL(4|4) such that gst η g = η

}
. (2.4)

In the equation above st denotes super-transposition (an operation with the properties

(AB)st = BstAst and (Ast)st = ΠAΠ where Π is the super-parity matrix which acts as +1

on bosons and −1 on fermions) and η is a supersymmetric matrix, i.e. η = ηstΠ = Π ηst.

We choose conventions as

Π =

(
Σ 0

0 Σ

)
, η = gψ

(
0 14

Σ 0

)
gψ , (2.5)

where Σ =
(−12 0

0 +12

)
and gψ is defined in (2.3). Notice that ψ parametrizes inequivalent

embeddings OSP(4|4) ⊂ GL(4|4), see e.g. [24]. The U(1)Y outer automorphism, which is

not a symmetry of the N = 4 d = 4 superconformal theory [38], changes the value of the

embedding parameter. Finally, we define super-transposition as (Ast)ij := (−1)(|i|+1)|j|Aji,

where (−1)|i| := Πii. Notice that this definition can be applied to square matrices as well

as to rectangular ones.

The superalgebra osp(4|4). The even and odd parts of the superalgebra g = osp(4|4)

are given by

g0 = sp(4)⊕ su(2)+ ⊕ su(2)− , g1 = (4,2,2) , (2.6)

where the latter notation indicates that the fermionic generators transform in the tri-

fundamental representation of the bosonic subalgebra g0. This super-algebra possess a

Z2 outer automorphism M that exchanges su(2)+ with su(2)− and the fermionic genera-

tors accordingly.5

5The choice of letter M is motivated by the fact that this automorphism is related to mirror symmetry.
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Figure 2. On the left we have the configuration space for the spacetime coordinates and on the right

for the R-symmetry coordinates. The subgroup of the conformal group unbroken in the presence

of the defect is clear from the picture. On the left is the group of conformal transformations of the

three-dimensional boundary SO(3, 2). On the right is the product of rotations SO(3) in the space

orthogonal to the line with the SL(2,R) conformal transformations on the line.

Superspace coordinates and their transformations. The next step is to decom-

pose the coordinate (2.1) of the four-dimensional superspace in boundary coordinates and

distance coordinates as follows

X = A−1
ψ (Xb +Xd) Aψ , Xst

b = −ΣXb , Xst
d = +ΣXd . (2.7)

where the matrix Aψ is defined in (2.3) and the subscripts b and d stand for boundary and

distance respectively. More explicitly

Xb =
(
XAB

b

)
=

(
xαβb θaβ

θbα εabyb

)
, Xd =

(
XAB

d

)
=

(
εαβ xd χaβ

−χbα yabd

)
, (2.8)

where xαβb = xβαb and yabd = ybad . When the fermions are zero, the geometric interpretation

of these coordinates is given in figure 2.

It should be noticed that the parameter ψ, which parametrizes different embeddings

of OSP(4|4) ⊂ PSL(4|4) affects only the relation between fermionic coordinates as

θ =
1

2

(
ψ+2 λ+ ψ−2 π

)
, χ =

1

2

(
ψ+2 λ− ψ−2 π

)
. (2.9)

From now on we will set ψ = 1. The general case can be easily recovered using (2.7).6

The transformation properties of these coordinates under OSP(4|4) follow from (2.2), (2.4)

and (2.7). More explicitly, super-translations and super-rotations are given by

(Xb, Xd) 7→ (Xb +B,Xd) , (Xb, Xd) 7→ (AXbA
st, AXdA

st) , (2.10)

6The factor ψ is important if we want to extract component-correlators from a superfield correlator.

For example, it corresponds to a one parameter family of boundary conditions in the free U(1) theory,

see [39, 40].
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where Bst = −ΣB and A ∈ GL(2|2). Special superconformal transformations mix bound-

ary and distance coordinates and act as follows

(Xb, Xd) 7→ K (Xb −X C ΣXst, Xd)Kst , K = (1 +X C)−1 , (2.11)

where Cst = −C Σ. It is worth remarking that on the boundary these transforma-

tions reduce to Special superconformal transformations of the three-dimensional boundary

theory, namely

(Xb, 0) 7→ ((1 +XbC)−1Xb, 0) . (2.12)

The element η given in (2.5) generates the superconformal inversion η◦X = A2
ψ(X−1Σ)A−2

ψ .

A remark concerning the action of R-symmetry on the y coordinates is in order. The

R-symmetry preserved by the boundary conditions is o(4) ' su(2) ⊕ su(2). One su(2)

acts linearly on the indices a, b, . . . and will be denoted by su(2)+, the second su(2) acts

projectively on the R-symmetry boundary coordinate yb and will be denoted by su(2)−.

This observation can be better understood by noticing that the superspace setup just

described can be applied to the case of a 1
2 -BPS line defect in N = 4 as well. The only

difference is that we reinterpret the coordinate y as spacetime coordinates and x as R-

symmetry coordinates, see figure 2. At the complexified level both the codimension one

and codimension three cases preserve an OSP(4|4) embedded in the bulk symmetry as

described by (2.4). At the level of real forms, in the codimension one case the symmetry

is OSP(4|4,R) ⊂ PSU(4|2, 2), while in the codimension three case one has OSP(4∗|4) ⊂
PSU(2, 2|4). The fact that a 1

2 -BPS Wilson line in N = 4 SYM is symmetric under

OSP(4∗|4) was first observed in [41], the SP (4) ' SO(5) ⊂ SO(6) is the symmetry that

survives after fixing a non-null direction in the space of six scalars.

Superspace description of codimension two defects. Four dimensional N = 4 su-

perconformal theories also admit codimension two superconformal defects. Let us present

how this set up can be realized in superspace in the case in which the defect preserves half

of the supersymmetries. As before one splits the superspace coordinate in coordinates on

the surface and coordinates perpendicular to the surface X = XS +X⊥ where

XS = x S ⊗ ( 1 0
0 0 ) + x̄ S ⊗ ( 0 0

0 1 ) , X⊥ = x⊥ ⊗ ( 0 1
0 0 ) + x̄⊥ ⊗ ( 0 0

1 0 ) , (2.13)

where x S, x̄ S, x⊥ and x̄⊥ are (1|1) × (1|1) supermatrices. The subgroup of the conformal

group preserved by an 1
2 -BPS surface defect is P (SU(2|2) × SU(2|2)) ⊂ PSU(2, 2|4), see

e.g. [42], corresponding to elements of the form(
A B

C D

)
=
(
a b
c d

)
⊗ ( 1 0

0 0 ) +
(
ā b̄
c̄ d̄

)
⊗ ( 0 0

0 1 ) , (2.14)

with sdet
(
ā b̄
c̄ d̄

)
= sdet

(
a b
c d

)
= 1. The projective condition corresponding to the letter

“P” is automatic in the representation (2.2). The action of the subgroup (2.14) on (2.13)

– 6 –
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follows from (2.2). For convenience we spell it out here. Super-translations and super-

rotation respectively act as(
x S, x̄ S

)
7→
(

x S + b, x̄ S + b̄
)
,

(
x⊥, x̄⊥

)
7→
(

x⊥, x̄⊥
)
, (2.15)(

x S, x̄ S

)
7→
(
a x S d

−1, ā x̄ S d̄
−1
)
,

(
x⊥, x̄⊥

)
7→
(
a x⊥ d̄−1, ā x̄⊥ d−1

)
. (2.16)

Concerning special superconformal transformations, for c̄ = 0 they take the form(
x S, x̄ S

)
7→
(

x S(1 + c x S)−1, x̄ S − x̄⊥(1 + c x S)−1c x⊥
)
, (2.17)(

x⊥, x̄⊥
)
7→
(
(1 + x S c)

−1x⊥, x̄⊥(1 + c x S)−1
)
. (2.18)

The transformations for c = 0 are obtained from the above by changing barred and unbarred

quantities. Notice that on the surface, where x⊥ = x̄⊥ = 0, the coordinates x S, x̄ S

transform independently. We remark that both boundary defect and surface defect preserve

an su(2)⊗su(2) subgroup of the R-symmetry algebra su(4), but with different embeddings.

In the surface case the embedding is specified by the decomposition of the fundamental

representation [1, 0, 0] → (1
2 , 0) ⊕ (0, 1

2), while in the boundary case [1, 0, 0] → (1
2 ,

1
2). It

follows that in the case of a 1
2 -BPS surface defect

[0, p, 0]→
p⊕

f=0

mp,f

(
f

2
,
f

2

)
, mp,f = p− f + 1 , (2.19)

in particular the singlet appears p+ 1 times.

2.2 Correlation functions

We now turn our attention to correlation functions in the presence of a 1
2 -BPS boundary or

interface. In the first part of this section we will classify which bulk operators can have a

non-zero one-point function, and which boundary operators can have a non-zero two-point

function with a 1
2 -BPS bulk operator. The second part of the section contains a derivation

of the so-called superconformal Ward identities (WI) for two-point functions of 1
2 -BPS bulk

operators. These identities follow from the requirement that the correlation function is free

of spurious singularities in the R-symmetry coordinates, a condition that goes under the

name of superspace analyticity.

Supermultiplets/superfields. Let us start by reviewing the relevant representations of

superconformal algebras in three and four dimensions and set up the notation. A unitary

highest weight representation χblk of psu(2, 2|4) is usually identified using the Dynkin la-

bels {∆, (`, ¯̀), [q, p, r]}, where `, ¯̀ and [q, p, r] are spin and su(4) labels respectively. For the

discussion of correlation functions it is convenient to reorganize these labels into a represen-

tationRblk of ps(u(2|2)⊕u(2|2)), see [36]. Similarly, a unitary highest weight representation

χbdy of osp(4|4) can be identified using the Dynkin labels {δ, s, (k+, k−)}. Where δ is the

dilatation weight and we use conventions with s, k± ∈ 1
2Z≥0. For the discussion of correla-

tion functions it is convenient to reorganize these labels into a representation Rbdy of u(2|2).

Notice that the bosonic subalgebra of this u(2|2) is su(2)+ ⊕ su(2)Lorentz ⊕ u(1)− ⊕ u(1)D,

where u(1)− corresponds to the Cartan generator of su(2)− and u(1)D corresponds to di-

latations in spacetime. The list of the unitary irreducible highest weight representations is

given in appendix A.1.
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The 1
2 -BPS operators in the bulk have Dynkin labels {p, (0, 0), [0, p, 0]} and will be

denoted by Wp(X). The 1
2 -BPS operators in the boundary come in two families (B,+)k

and (B,−)k with Dynkin labels given by {k, 0, (0, k)} and {k, 0, (k, 0)} respectively. Their

superspace description is not symmetrical. The (B,+)k supermultiplets correspond to

the one-dimensional representation of the u(2|2) introduced above and are denoted by

ϕ̂+,k(Xb). The (B,−)k supermultiplets correspond to the rank 2k totally symmetric rep-

resentation of the same u(2|2), they are denoted by ϕ̂−,k(Xb, V ), where V A is an auxiliary

variable with V α fermionic and V a bosonic and ϕ̂−,k(Xb, λV ) = λ2k ϕ̂−,k(Xb, V ).

The description of superfields just provided is actually oversimplified. What we did not

specify are certain analyticity constraints on the superfields. These enforce the requirement

that null states are actually zero (like the familiar ∂µ∂µϕ = 0 for a massless scalar) and

include the condition that only finite dimensional representation of R-symmetry, which

is non-linearly realized in our setup, can appear. While such constraints are known in

various examples, see e.g. [43], we feel that they have not been fully explored in the current

literature. A complete classification is left to the future.

Covariance properties of correlation functions. Correlation functions of super-

primary fields are superconformally covariant in the following sense:

〈O1(X ′1) . . .On(X ′n) Ôn+1(X ′b,n+1) . . . Ôn+m(X ′b,n+m))〉 = (2.20)

M (X,Xb, g) 〈O1(X1) . . .On(Xn) Ôn+1(Xb,n+1) . . . Ôn+m(Xb,n+m))〉 , (2.21)

for any g ∈ OSP(4|4). In the equation above X ′ = g ◦ X and the conformal factor is

given by

M (X,Xb, g) =

(
n∏
i=1

Rblk,i(Ωg,Xi)

)(
n+m∏
j=n+1

Rbdy,j(ωg,Xb,i
)

)
, (2.22)

where Ωg,X ∈ PS(GL(2|2) × GL(2|2)) and ωg,Xb
∈ GL(2|2) are given in appendix A.2.2.

Notice that while Rblk,i is defined for any Ωg,X , the restriction to g ∈ OSP(4|4) identifies

a GL(2|2) ⊂ PS(GL(2|2)×GL(2|2)), see (A.15).

One-point functions of bulk operators. Since the full N = 4 superconformal symme-

try of the four-dimensional theory is reduced to OSP(4|4) ⊂ PSL(4|4) by the presence of the

boundary, certain bulk operators can have non-vanishing one-point function. This follows

form the covariance property (2.20) that we will now analyze. Due to super-translation

invariance (2.10) the one-point function can depend only on the distance coordinate Xd,

so we introduce the notation GO(Xd) := 〈O(X)〉. For given X, one can restrict attention

to g ∈ OSP(4|4) that leave X invariant, i.e. such that X ′ = g ◦ X = X. We call this

stability group SX . It follows from (2.20) that

GO(Xd) = Rblk(Ωg,Xd
)GO(Xd) , ∀ g ∈ SXd

, (2.23)

GO(AXdA
st) = Rblk(A, (Ast)−1)GO(Xd) , A =

(
α 12 0

0 α−112

)
∈ GL(2|2) . (2.24)

In the second line we added the covariance properties with respect to the relevant GL(1) ⊂
GL(2|2). In general the two conditions (2.23) and (2.24) should be supplemented by the
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requirement of superspace analyticity7 discussed below. It is not hard to verify that the

SX is isomorphic to OSP(2|2) × OSP(2|2), see appendix A.2.4. The first condition (2.23)

implies that for the one-point function to be non-vanishing the representation Rblk has to

contain a singlet with respect to the decomposition osp(2|2)⊕osp(2|2) ⊂ ps(u(2|2)⊕u(2|2)).

Such representations are classified in appendix A.3.2. The second condition (2.24) then

fixes the one-point function uniquely up to a multiplicative constant. Let us illustrate this

point in the simple example of the one-point function of a 1
2 -BPS operator Wp(X). In this

case the representation Rblk is trivial and the condition (2.23) is automatically satisfied.

The second condition implies that

〈Wp(X)〉 = δp, even
ap

(sPfXd)p
, (2.27)

where the super-Pfaffian is defined in (A.18) and the constant ap, which is left undetermined

by conformal symmetry, encodes dynamical information. Notice that the condition that

p is even comes from the requirement of superspace analyticity. The case of a generic

bulk operator is similar, but we will not give nor use the explicit expression for their one-

point function here. Using the criterion above together with the requirement of superspace

analiticity we arrive at the following

Classification: the only operators, apart from the identity, that can have non-zero one-

point function in the presence of an OSP(4|4) symmetric codimension one defect are

• 1
2 -BPS representations B[0,2n,0] with n ∈ Z>0,

• 1
4 -BPS representations B[2m,2n,2m] with m,n ∈ Z>0,

• Long representations A∆
[2m,2n,2m̄],(0,0) with m̄,m, n ∈ Z>0.

Notice that the one-point function of a bulk operator is non-zero if and only if the top

component of the supermultiplet, obtained by setting all the Grassmann variables to zero,

has a non-zero one point function. The latter can be studied using the bosonic symmety,

i.e. three-dimensional conformal and R-symmetry. The first symmetry implies that only

scalar operators, i.e. representations χblk with ` = ¯̀= 0 can have non-zero one-point func-

tion, the second that only representations [q, p, r] with q, p, r all even can have non-zero

one-point function. This follows by looking at the decomposition of [p, q, r] in representa-

tions of oR(4). This condition is not sufficient, as can be seen in the case of the so-called

semi-short multiplets C, see appendix A.1.

It is gratifying that the same classification can be obtained independently by solving the

superconformal Ward identities for bulk superconformal blocks. This is done in section 3.

7An illustrative example is the case of the three-point function of 1
2
-BPS operators. The object

〈Wp1(X1)Wp2(X2)Wp3(X3)〉0 ∝
1

sdet(X12)
p1+p2−p3

2 sdet(X13)
p1+p3−p2

2 sdet(X23)
p2+p3−p1

2

, (2.25)

where 〈. . . 〉0 means that there is no defect, is superconformally covariant for any p1, p2, p3. The requirement

of analyticity gives the condition

p1 ∈ {|p2 − p3|, |p3 − p3|+ 2, . . . , p2 + p3} . (2.26)

– 9 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
2

Bulk-boundary two-point functions. While the one-point function of a bulk operator

in the presence of a defect can be considered as the analogue of the two-point function

without defect, the two-point function of one bulk and one boundary operator in the

presence of a defect is the analogue of the three-point function in the CFT without defect.

Generically, it is a linear combination of a finite number of superconformal structures.

Given a bulk point X1 and a point on the boundary X2,b, it is convenient to construct

the combination

X1,2̂ := Σ (X1,d +X12,b)stX−1
1,d (X1,d +X12,b) , Xst

1,2̂
= +ΣX

1,2̂
. (2.28)

This combination is like a distance coordinate, see (2.7), and transforms covariantly with re-

spect with the boundary point X2,b. In particular X1,2̂ 7→ (1+X2,bC)−1X1,2̂(1+CX2,b)−1

under special superconformal transformations. One can perform a super-translation to

set X2,b = 0 followed by a special superconformal transformation, see (2.11), to set

(X1,b, X1,d) = (0, X1,2̂). In this frame the definition (2.28) reduces to an identity. Let

GOÔ(X1,2̂) := 〈O(X1,2̂)Ô(0)〉 = Rblk,1(Ω∗)〈O(X1)Ô(X2,b)〉 , (2.29)

where Ω∗ =
(

1−X12,bX
−1
1,d, 1−X

−1
1,dX12,b

)
. The last equality, which follows from (2.20),

allows to reconstruct in a simple way the bulk-boundary two-point function from GOÔ.

We can now write equations analogous to (2.23) and (2.24) in the case of one bulk and one

boundary operator:

GO,Ô(X1,2̂) = Rblk,1(Ωg,X1,2̂
)Rbdy,2(ωg,0)GO,Ô(X1,2̂) ,

∀ g ∈ SX1,2̂,0
, (2.30)

GO(AX1,2̂A
st) = Rblk,1(A, (Ast)−1)Rbdy,2(A)GO,Ô(X1,2̂) ,

A =
(
α 12 0

0 α−112

)
∈ GL(2|2) . (2.31)

In the equation above SX1,X2,b
denotes the stability group of one bulk point and one

boundary point, specialized to SX1,2̂,0
by the choice of frame (2.29). This stability group

is the subgroup of the stability group of one bulk point SX=X1,2̂
' OSP(2|2) × OSP(2|2)

that leaves the second boundary point X2,b = 0 fixed. It is not hard to see that this is the

diagonally embedded OSP(2|2). In summary, the elements of SX1,2̂,0
are super-rotations,

see (2.10), such that AX1,2̂A
st = X1,2̂. We conclude that superconformal structures

for the two-point function (2.29) corresponds to osp(2|2) invariant states in the triple

tensor product of the sl(2|2) representations Rleft
blk,1, Rright

blk,1 , R̃bdy,2, see tables 2 and 1,

regarded as reducible osp(2|2) representations. Among these, the superconformal structures

that are not superspace analytic should be discarded as an allowed bulk-boundary two-

point function.

The 1
2 -BPS bulk operators correspond to Rleft/right

blk being the trivial representation.

Using the result of appendix A.3.2 and by looking at table 2 one immediately concludes

that the only boundary operators that can appear in the boundary OPE of a 1
2 -BPS bulk

operator are the ones given in (A.4), (A.5). The range of the R-symmetry labels (k+, k−)

is dictated by superspace analyticity. We conclude that
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Classification: the only boundary operators Ô, apart from the identity, that can have

a non-zero two point function with a 1
2 -BPS bulk operator in the presence of a OSP(4|4)

symmetric codimension one defect are

• 1
2 -BPS operators (B,±)k, k ∈ Z>0.

• 1
4 -BPS operators (B, 1)(k+,k−), k± ∈ Z>0, k+k− 6= 0.

• Long operators Lδ(k+,k−), k± ∈ Z>0.

Where we used the notation (A.4), (A.5). The precise range of representation labels for

the operators appearing in the bulk-boundary OPE of a given 1
2 -BPS bulk operatorWp(X)

can in principle be derived by imposing the requirement of harmonic analyticity. Let us

illustrate the derivation in the simplest case of 1
2 -BPS boundary operators. The general

case will be analyzed in a different way using the superconformal block expansion of the

two-point function of 1
2 -BPS bulk operators in section 3, see equations (3.24), (3.25). The

explicit form of the simplest bulk-boundary two-point function is

〈Wp(X1) ϕ̂+,k(Xb,2)〉 =
µ+
p,k

sPf(X1,d)p sPf(X1,2̂)k
=

µ+
p,k

sDet(X12,b +X1,d)k sPf(X1,d)p−k
.

(2.32)

The middle expression in (2.32) should be compared to (2.29), the second equality follows

from the definition (2.28). The constants µ+
p,k are not fixed by superconformal symmetry

and encode dynamical information about the boundary conditions. Analyticity in the R-

symmetry coordinates implies that p − k ∈ 2Z≥0. As already discussed, the choice of

superspace is not symmetric in the descriptions of 1
2 -BPS boundary operators (B,+) and

(B,−). In the latter case the relevant two point function is given by

〈Wp(X1) ϕ̂−,k(Xb,2, V )〉 =
µ−p,k

sPf(X1,d)p

(
V X−1

1,2̂
V
)k

. (2.33)

We will not consider more general bulk-boundary two-point functions in this paper as they

are not directly relevant for the study of the bootstrap equations for 1
2 -BPS operators.

Nevertheless we stress that the criterion given above works in general.

2.2.1 Correlation functions in the presence of a 1
2
-BPS line defect and other

examples

1
2
-BPS line defect. As already pointed out in section 2.1, and summarized in figure 2,

the superspace setup we introduced can be directly applied to the study of correlation

functions in the presence of a 1
2 -BPS line defect. The only modification is that one should

exchange the spacetime coordinates x with the R-symmetry coordinates y and change the

analyticity conditions accordingly. In this case, an OSP(4∗|4) superconformal quantum

mechanics lives on the defect.8

8In principle, there are many superalgebras that can serve as symmetries of superconformal quantum

mechanics, see table 6 in [44]. The one living on 1
2
-BPS line defects of a four-dimensional N = 4 theory of

course belongs to this list.
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Repeating the analysis of section 2.2, one concludes that the only bulk operators that

can have non-zero one-point functions in the presence of a 1
2 -BPS line defect are 1

2 -BPS,
1
4 -BPS and long multiplets of the type B[0,n,0], C[0,n,0],(`,`) and A∆

[0,n,0],(`,¯̀)
. See (A.1) for the

notation. This classification corresponds to the supermultiplets of psu(2, 2|4) for which the

inducing representations R̃left
blk and R̃right

blk are either atypical representations whose Young

diagram is a single row of even length, or long representations of the form [0, 2n]γ . This

follows from the analysis in appendix A.3.2 after a rotation by 90 degrees.

In order to discuss the classification of boundary operators that can have a non-

vanishing two-point function with a 1
2 -BPS bulk operator, it is necessary to first discuss

some representation theory of OSP(4∗|4) superconformal quantum mechanics. The rele-

vant representations are reviewed in appendix A.1. The local operators living on the line

defect that can have a non-vanishing two-point function with a 1
2 -BPS bulk operator are

listed in (A.8).

Correlators in d = 3, N = 4 superconformal theories. These considerations are

relevant for the discussion in the next section. Using the same ideas as in section 2.2,

one can determine the structure of boundary three-point functions. The stability group

of three points on the boundary is OSP(2|2) where O(2) ⊂ OSP(2|2) is a subgroup of the

conformal group. It follows that superconformal structures for three boundary operators

are in one-to-one correspondence with OSP(2|2) invariant states in the triple tensor product

R̃bdy,1⊗R̃bdy,2⊗R̃bdy,3. It follows from this observation, consulting table 2, that the only

operators that can appear in the OPE of (B,+)k1 with (B,+)k2 are 1
2 -BPS, 1

4 -BPS and long

multiplets respectively of the type (B,+)k, (A,+)sk and L[2s]
(2k;0)
δ . If k1 = k2 also higher-

spin conserved currents of even spin A1[2s]
(0;0)
s+1 , where the lowest value s = 0 corresponds

to the stress-tensor supermultiplet, can appear. This OPE will be further discussed in

section 3.4.2. More general three-point functions can be determined in a similar way.

Codimension two defect. In this case the one-point functions of bulk operators contain

more than one covariant structure. Even in the simplest example of 1
2 -BPS operators

one has

〈Wp(X)〉S =

p∑
n=0

a
(S)
p,n

(sdet x⊥)n (sdet x̄⊥)p−n
, (2.34)

where the perpendicular supercoordinates are defined in (2.13). The selection rule that

determines which supermultiplets can have a non-zero one-point function is found by look-

ing at the stability group for one bulk point, which in this case is SU(2|2). The class of

operators that can have a non-vanishing one-point function is thus much larger than in the

codimension one and three cases.

2.2.2 The super-displacement operator

In any defect CFT there is a distinguished boundary operator known as the displacement

operator. We will denote it by D̂(xb). It is associated to the breaking of the translation

symmetry in the direction perpendicular to the defect. In the case of a CFT in d dimensions

with a d− 1 dimensional defect, it is a scalar of dimension δ = d. The goal of this section

– 12 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
2

is to determine which three-dimensional N = 4 superconformal multiplet contains the

displacement operator. The main condition, apart from the fact that the supermultiplet

should contain a conformal primary with the correct quantum numbers, is that it preserves

supersymmetry. This is translated into the requirement that

Q3d D̂(xb) =
∂

∂xb
(. . . ) , ∀ d=3, N = 4 Poincaré supersymmetry Q3d , (2.35)

in other words, Q3d D̂ is a conformal descendant. This condition can be understood by

recalling that∫
d3xb 〈D̂(xb)O1(x1) . . .On(xn)〉 = −

n∑
k=1

∂

∂xk,d
〈O1(x1) . . .On(xn)〉 . (2.36)

The condition (2.35) is strong enough to leave only two possible super-displacement op-

erators. They correspond to the 1
2 -BPS osp(4|4) supermultiplets (B,±)2. By comparison

recall that flavor currents sit in (B,±)1 supermultiplets. The structure of the (B,+)2 su-

permultiplet can be found e.g. in equation (2.5) of [9] with r = 2. The case of (B,−)2 is

obtained by applying the mirror automorphism M defined below (2.6). The supermulti-

plets contain also other defect primaries corresponding to the bulk conserved currents that

are broken by the defect. Recall that the bulk R-symmetry current, which is in the adjoint

of su(4), decomposes as (1, 0)⊕ (0, 1)⊕ (1, 1) with respect to the relevant embedding of the

defect R-symmetry su(2)⊕ su(2) ⊂ su(4). The supermultiplets (B,±)2 contain the confor-

mal primary associated to the broken R-symmetry which is a scalar of dimension δ = 3 and

R-symmetry representation (1, 1). Finally, there are operators associated to the breaking

of supersymmetry with dimension δ = 3 + 1
2 spin 1

2 and R-symmetry representation ( 1
2 ,

1
2).

As expected they are part of the (B,+)2 and (B,−)2 supermultiplets.

2.3 Ward identities

In the presence of a superconformal defect, the functional form of the two-point function

of bulk operators is not fixed by the unbroken superconformal symmetry: there are cer-

tain combinations of coordinates that are invariant under its action. The first step is to

determine such “cross ratios”. The second step is to impose that the two-point function is

free from certain superspace singularities. This requirement produces very powerful con-

straints known as superconformal Ward identities (WI). While these identities are new

in this specific context, identical identities have appeared before, see e.g. [35, 37] . This

analogy suggests a deeper connection revealed in section 3.4.2.

Superconformal invariants made of two bulk points. The set of eigenvalues of the

super-matrix

Z := Σ
(
X−1

2,d X12

)st
Σ
(
X12X

−1
1,d

)
= (1− Y+1)(Y−1 − 1) , (2.37)

is OSP(4|4) invariant. This statement can be verified using the transformation proper-

ties (2.10) and (2.11). The second equality in (2.37) defines the matrix Y up to Y 7→ Y−1.
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It turns out that the three distinguished eigenvalues9 of Y are convenient variables in which

to write the superconformal Ward identities. A possible way to visualize the invariants

above is to use superconformal transformations10 to choose a frame in which

(X1,b, X1,d) = (0, X̃1,d) , (X2,b, X2,d) = (0, X̃2,d) , (2.38)

this frame is still acted upon by GL(2|2). The only invariants under this action are the

eigenvalues of the matrix X̃2,dX̃
−1
1,d. It is not hard to verify that

Y
∣∣
frame (2.38) = X̃2,dX̃

−1
1,d ∼ diag(z, z, w1, w2) . (2.39)

The fact that Y is defined up to inversion is translated to the requirement of Bose symmetry

when changing the first and the second point.

A useful Z2 action. It follows from the definition of z, w1, w2 that these variables are

defined up to three involutions:

(z, w1, w2) 7→ (z, w2, w1) , (z, w1, w2) 7→ (z−1, w1, w2) , (z, w1, w2) 7→ (z, w−1
1 , w−1

2 ) .

(2.40)

The first involution corresponds to the standard action of the symmetric group on the

eigenvalues of a graded matrix. The second and third follow from the fact that the matrix

Y is defined by (2.37) up to inversion.11 There is an extra Z2 that acts on these variables as

(z, w1, w2) 7→ (z, w1, w
−1
2 ) . (2.42)

Superconformal Ward Identities. It follows from superconformal invariance and the

previous discussion that

〈Wp1(X1)Wp2(X2)〉 =
Fp1,p2(z, w1, w2)

(sPfXd,1)p1 (sPfXd,2)p2
, (2.43)

where Fp1,p2(z, w1, w2) = Fp1,p2(z, w2, w1) = Fp1,p2(z−1, w1, w2) = Fp1,p2(z, w−1
1 , w−1

2 ).

While (2.43) transforms covariantly under superconformal transformations for any func-

tion Fp1,p2 , in general it does not possess the correct analyticity properties. If one expands

the eigenvalues of the supermatrix (2.37) in Grassmann coordinates, one encounters poles

9The fact that the 4× 4 matrix Z has only three distinguished eigenvalues can be verified by setting the

fermionic coordinates to zero (this can be achieved with a superconformal transformation).
10Explicitly, this can be achieved by performing a super-translation (2.10) followed by a special supercon-

formal transformations (2.11) with CΣ =
[
(X1 +B)−1

]
(X1,b +B)

[
(X1 +B)−1

]st
=
[
(X2 +B)−1

]
(X2,b +

B)
[
(X2 +B)−1

]st
. The fact that a graded-symmetric matrix B that satisfies the last equality exists is not

obvious but true.
11More concretely, z, w1, w2 are defined by the three equations

Str(Zn) = ((1− z)(z−1 − 1))n −
2∑
k=1

((1− wk)(w−1
k − 1))n , n = 1, 2, 3 . (2.41)

These equations are invariant under the three involutions (2.40).
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when the R-symmetry cross ratios are equal to the spacetime one. The vanishing of the

residue at these spurious poles translates into the equations(
∂w1 +

1

2
∂z

)
Fp1,p2(z, w1, w2)

∣∣
w1=z

= 0 ,

(
∂w2 +

1

2
∂z

)
Fp1,p2(z, w1, w2)

∣∣
w2=z

= 0 .

(2.44)

See [35, 37] for more details. In particular, (2.44) imply that Fp1,p2(t, t, t) is a constant.

These equations will play a crucial role in the derivation of superconformal blocks in the

next section. It should be noticed that Fp1,p2 is different from zero only when p1 and p2

have the same parity (both even or both odd). The structure of Fp1,p2 depends only on

M := min(p1, p2) and is given by

Fp1,p2(z, w1, w2) =

M∑
a,b=0

w
a−M

2
1 w

b−M
2

2 Aab(z) . (2.45)

Invariance under (2.40) implies that Aab(z) = Aab(1/z) and the various Aab(z) are not

independent. The number of independent functions depends on whether M is even or

odd. If we rewrite M = 2n + ε with ε ∈ {0, 1} the number of independent functions is

(n+ 1)(n+ ε+ 1), which coincides with the number of R-symmetry channels as discussed

in appendix A.3.1. It turns out that the general solution of the Ward identities is given

in terms of two constants and n(n + ε) single variable functions. This is what we will

now explain.

Solving the WI in two examples. Let us first see how the superconformal Ward

identities can be solved explicitly in the two examples (p1, p2) = (1, 1) and (p1, p2) = (2, 2).

The general solution is discussed below. The goal is to solve the equations (2.44) imposing

the form (2.45). It is not hard to find that in the case (p1, p2) = (1, 1) the WI fix the

two-point function uniquely up to two constants

F1,1(z, w1, w2) = AΩ+ + BΩ− , Ω± :=
2∏
i=1

w+ 1
2

i ∓ w−
1
2

i

z+ 1
2 ∓ z−

1
2

 . (2.46)

This is not surprising as in this case the external operators correspond to N = 4 free fields.

We will come back to a discussion of these constants in section 4.2.1. The solution in the

(p1, p2) = (2, 2) is more interesting. It is not hard to show that the most general solution

to the WI in this case is given by

F2,2(z, w1, w2) = C+ + κC− + DH(z) , (2.47)

where

κ :=
w1 − w

−1
1

z − z−1

w2 − w
−1
2

z − z−1
, D := (g1 + g2) +

g1g2

z − z−1
z∂z , ga :=

(
1− wa

z

)(
z − 1

wa

)
,

(2.48)

Notice that, given a solution of the WI, like a superconformal block, the coefficients C± and

the function H(z) can be extracted unambiguously. In this case, all the dynamics is con-

tained in the two constants C± and the single-variable function H(z). It should be noticed

that since the structure of Fp1,p2 depends only on min(p1, p2), the results (2.46), (2.47) can

be applied to the cases of F1,2n+1 and F2,2n+2 with n > 0 as well.
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The general solution of the WI. It is not hard to convince oneself that any function of

the form (2.46) subject to (2.40), can be rewritten with the help of the quantities introduced

in (2.48) as

Ω
δε,1
−

(
n∑
t=0

t∑
s=0

(g1g2)s(g1+g2)t−s f
(0)
s,t (z)

)
+Ω

−δε,1
− κ

(
n+ε−1∑
t=0

t∑
s=0

(g1g2)s(g1+g2)t−s f
(1)
s,t (z)

)
,

(2.49)

where min(p1, p2) = 2n+ε with ε ∈ {0, 1}. Compare to (A.24). Notice that the part multi-

plied by κ is odd under (2.42) while the remaining part is even. Using the rewriting (2.49)

it is not hard to show that the general solution of the WI takes the form

Ω
δε,1
− C1 + Ω

−δε,1
− κC2 + Ω

δε,1
− Geven

n (z, w1, w2) + Ω
−δε,1
− κGodd

n+ε−1(z, w1, w2) , (2.50)

where C1, C2 are constants and

G
even/odd
N (z, w1, w2) = (g1g2)2 F

even/odd
N (z, w1, w2) +

N∑
i=1

(g1 + g2)i−1 Df even/odd
i (z) , (2.51)

where the degree of F
even/odd
N in w1, w2 is lowered by the presence of the factor (g1g2)2. This

function should be invariant under (2.40), so that it depends on 1
2N(N − 1) functions of z

individually invariant under z → z−1. The functions G
even/odd
N are thus specified in terms of

1
2N(N + 1) single variable functions, moreover they vanish when evaluated at z = w1 = w2

and its images under (2.40). Notice that in order to extract fn(z) and F (z, w1, w2), it is

convenient to first evaluate the quantity above at the special kinematical point w1 = z so

that g1 = 0. We should remark that while (2.50) is the most general solution to the Ward

identities, it is not clear whether more convenient parameterizations exist.

3 Superconformal blocks

In this section we present the superconformal blocks for the two-point function of 1
2 -BPS

operators, obtained by solving the Ward identities derived in the previous section. Each

superconformal block captures the contribution coming from the exchange of a particular

superconformal multiplet in the relevant OPE, see figure 1. A superconformal block is

therefore a sum of products of spacetime and R-symmetry blocks, whose relative coefficients

are fixed by superconformal symmetry.

A straightforward way to proceed is to consider the most general linear combination

of spacetime and R-symmetry blocks dictated by the operator content of the exchanged

supermultiplet. The latter can be extracted, for example, using superconformal charac-

ters. Notice that out of the full content of the supermultiplets only a small fraction of

spacetime and R-symmetry multiplets can appear due to the bosonic symmetry, e.g. con-

formal representations with non-zero spin are excluded. Once the ansatz is written, we

can plug it in the WI and look for a solution for the unknown coefficients. In this section

we systematically scan over all possible supermultiplets both in the boundary and bulk

channels. If the WI have no solution, it indicates that the corresponding supermultiplet
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cannot be exchanged in the given channel. On the other hand, if the supermultiplets can

be exchanged, the WI can be solved and the solution is unique, up to normalization. The

results of this section will confirm the superspace analysis of section 2, and further refine

it by providing the range of representation labels for the exchanged operators.

An alternative way to proceed is by defining bulk and boundary superblocks as eigen-

functions of the Casimir operator, supplemented by certain boundary condition reflecting

the OPE behavior of the correlator. In the boundary channel, the relevant operator is the

osp(4|4) Casimir acting on one of the two points, in the bulk channel, the relevant operator

is the psu(2, 2|4) Casimir acting on both points. The method we used here to determine

the superblocks is to solve the Casimir equations only for the bosonic subalgebras and then

impose the Ward identities. This method turned out to be sufficient in this case, but in

more general situations it is not.12

To conclude the section we will present an interesting connection between several

systems that exhibit osp(4|4) symmetry. It turns out that from the superblocks of the 1
2 -

BPS codimension one case, one can also obtain the superblocks relevant for the codimension

three case, as well as the superblocks for four-point functions of 1
2 -BPS operators in d = 3

N = 4 and d = 1 OSP(4∗|4) theories with no defect.

3.1 Boundary channel

Let us write the boundary superblock as

Fbdy
χbdy

(z, w1, w2) =
∑

L,(k+,k−)

cδ,(k+,k−)(χbdy) hbdy
k+

(w+) hbdy
k−

(w−) fbdy
δ (z) , (3.1)

where w2
± := w1w

±1
2 , χbdy is a representation of osp(4|4), (k+, k−) is a representation of

su(2)⊕ su(2), and δ denotes the dimension of the three-dimensional operator. The precise

range of the finite summation in (3.1) depends on the sp(4) ⊕ su(2) ⊕ su(2) content of

the exchanged supermultiplet χbdy and can be extracted using the characters of [47]. An

efficient way to solve for the spacetime and R-symmetry blocks is to use the bosonic Casimir

equation. The spacetime blocks fbdy
δ (z) have already been obtained in the literature [14, 18].

In four dimensions they take the form

fbdy
δ (z) := (4 ξ)−δ 2F1

(
δ, δ − 1; 2δ − 2;−ξ−1

)
, ξ =

(z − 1)2

4 z
. (3.2)

Notice that the boundary block is independent of the dimensions of the external operators

p1, p2. The normalization has been chosen so that fbdy
δ (z) ∼ zδ in the boundary OPE

channel, corresponding to z close to zero. The R-symmetry boundary block solves two

Casimir equations corresponding to the two su(2) R-symmetry factors and therefore they

have a factorized form. The relevant Casimir equation for each factor is

Ĉ2 h
bdy
k (w) = k(k + 1) hbdy

k (w) , Ĉ2 = w2∂2
w +

2w2

w − w−1
∂w , (3.3)

12Two examples are N = 3 theories in 4d and N = 6 theories in 3d [45, 46].
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as can be derived by acting with the su(2) Casimir on one of the two points in R-symmetry

space. The solution with the right asymptotics is given by

hbdy
k (w) = w−k 2F1

(
1

2
,−k;

1

2
− k;w2

)
=
√
π

Γ (k + 1)

Γ(k + 1
2)
C

( 1
2

)

k (cosφ) . (3.4)

Above, k is a non-negative integer and we emphasize that, up to normalization, the R-

symmetry blocks hbdy
k (w) are Gegenbauer polynomials with argument cos φ where w = eiφ.

Their asymptotic behavior is given by hbdy
k (w) ∼ w−k for w ∼ 0. Notice that only integer

spin representations of su(2) appear,13 as can be understood by looking at the branching

ratios (A.23).

We will now proceed to fix the coefficients in (3.1) by solving the Ward identities (2.44).

In the following we will only present the non-zero solutions. These solutions correspond

to the osp(4|4) supermultiplets that can have a non-vanishing two-point function with a
1
2 -BPS bulk operator. As we will see, the results of this section fully agree with the analysis

in section 2.2.

3.1.1 Boundary superblock for χbdy = (B,±)

The simplest superblocks correspond to short multiplets of the type (B,±) being ex-

changed. The expansion reads

Fbdy
(B,+)k

= hbdy
k (w+) fbdy

k (z)− c1(k) hbdy
k−1(w+) hbdy

1 (w−) fbdy
k+1(z) + c2(k) hbdy

k−2(w+) fbdy
k+2(z) ,

(3.5)

where

c1(k) =
2 k

2k − 1
, c2(k) =

16(k − 1)2k(k + 1)

(2k − 1)2(2k − 3)(2k + 1)
. (3.6)

Notice that we suppressed the dependence on z, w+, w− from the left-hand side. The

superblocks Fbdy
(B,−)k

are obtained from Fbdy
(B,+)k

by the replacement w+ ↔ w−.

3.1.2 Boundary superblock for χbdy = (B, 1)

Next in line are the blocks for multiplets of type (B, 1), the most general ansatz consistent

with the character is

Fbdy
(B,1)(k+,k−)

= hbdy
k+

hbdy
k−

fbdy
δ +

(
cδ+1,(k+−1,k−−1)h

bdy
k+−1 h

bdy
k−−1

+cδ+1,(k++1,k−−1)h
bdy
k++1 h

bdy
k−−1 + cδ+1,(k+−1,k−+1)h

bdy
k+−1 h

bdy
k−+1

)
fbdy
δ+1

+
(
cδ+2,(k+,k−−2)h

bdy
k+

hbdy
k−−2 + cδ+2,(k+−2,k−)h

bdy
k+−2 h

bdy
k−

+cδ+2,(k+,k−)h
bdy
k+

hbdy
k−

)
fbdy
δ+2 + cδ+3,(k+,k−)h

bdy
k+−1 h

bdy
k−−1f

bdy
δ+3 ,

(3.7)

13In our conventions the dimension of the su(2) representation is 2k + 1.
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where we have suppressed the coordinate dependence to avoid cluttering and δ = k+ + k−.

By solving the Ward identities one finds

cδ+1,(k+−1,k−+1) =
2k+

1− 2k+
, cδ+1,(k++1,k−−1) =

2k−
1− 2k−

,

cδ+1,(k+−1,k−−1) = −
32k2

+k
2
−(δ + 1)

(2k+ − 1)(2k+ + 1)(2k− − 1)(2k− + 1)(2δ + 1)
,

cδ+2,(k+−2,k−) =
16(k+ − 1)2k+(δ + 1)

(1− 2k+)2(2k+ − 3)(2δ + 1)
,

cδ+2,(k+,k−−2) =
16(k− − 1)2k−(δ + 1)

(1− 2k−)2(2k− − 3)(2δ + 1)
,

cδ+2,(k+,k−) =
16k+k−(δ − 1)(δ + 1)

(2k+ − 1)(2k− − 1)(2δ − 1)(2δ + 1)
,

cδ+3,(k+,k−) = − 32k+k−(δ)(δ + 1)(δ + 2)

(2k+ − 1)(2k− − 1)(2δ + 1)2(2δ + 3)
.

(3.8)

3.1.3 Boundary superblock for χbdy = Lδ

For the long blocks the solutions are a quite involved, but the procedure is the same as

before. We start with the most general ansatz consistent with the content of the supermul-

tiplet and the bosonic symmetries and fix the relative coefficients using (2.44). We have

written the full solution in appendix C.1. It is interesting to note that the (B, 1) blocks

presented above can be obtained as a special limit of the long block:

lim
δ→k++k−+1

[
(k+ + k− + 1− δ)Fbdy

Lδ
(k+,k−)

]
= Fbdy

(B,1)(k++1,k−+1)
. (3.9)

3.2 Bulk channel

Now we calculate the superblocks for the bulk channel. Recall that, unlike Fp1,p2(z, w1, w2)

in the boundary channel, here Ω−
p1+p2

2 Fp1,p2(z, w1, w2) is the quantity to be expanded in

bulk superblocks, where

Ω :=
(sPfXd,1) (sPfXd,2)

sdet(X1 −X2)
=
ξR
ξ

=

2∏
i=1

w+ 1
2

i − w−
1
2

i

z+ 1
2 − z−

1
2

 , (3.10)

and ξR and ξ are given in (B.9) and (B.10). The origin of this factor is clear by looking

at (2.43).

The general form of the superblock in the bulk OPE channel is given by

Fblk
χblk

(z, w1, w2) =
∑
∆,R

c∆,R(χblk) hblk
R (w1, w2) fblk

∆ (z) , (3.11)

where χblk is a representation of psu(2, 2|4) for which the corresponding operator has non-

zero one-point function, and R is a representation of su(4) with Dynkin label [2m, 2n, 2m̄],

n,m, m̄ ∈ Z≥0. In the following we will restrict our attention to the case in which the

external operators have the same quantum numbers p1 = p2 so that only the case m = m̄
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is relevant. Again, the most efficient way for obtaining the bosonic spacetime fblk
∆ (z) and R-

symmetry blocks hblk
R (w1, w2) is by solving the Casimir equation. In this case the relevant

operator is the Casimir of the bulk symmetry acting on both points in the two-point

function. As in the boundary channel, the spacetime blocks are already given in the

literature [14, 18]:

fblk
∆ (z) := (4 ξ)

∆
2 2F1

(
1

2
∆,

1

2
∆; ∆− 1;−ξ

)
, ξ =

(z − 1)2

4 z
. (3.12)

The normalization has been chosen so that fblk
∆ (z) ∼ (z − 1)∆ in the bulk OPE channel

that corresponds to z close to one. Similarly, the R-symmetry bulk blocks can be defined

as polynomial solutions to certain second and fourth order differential equations coming

from the Casimir, see (B.1) for the explicit form. The normalization is chosen so that in

the bulk OPE limit wi ∼ 1 we have

hblk
[2m,2n,2m](w1, w2) ∼ε∼0 (w1 − 1)−(n+m)(w2 − 1)−(n+m) Pm(cosφ) , w1,2 = 1 + ε e±i

φ
2 ,

(3.13)

and Pm(x) are Legendre polynomials normalized as Pm(1) = 1. It is also useful to ob-

serve that

hblk
[2m,2n,2m](w

−1
1 , w2) = (−1)n hblk

[2m,2n,2m](w1, w2) , (3.14)

while they are invariant under (2.40).

We found it convenient in our analysis of the Casimir equation to introduce the fol-

lowing variables

ti :=
wi + 1

wi − 1
, (3.15)

which seem to play a special role in the mathematical literature [48].14 The advantage

of the variables ti is that we managed to write the R = [0, 2n, 0] and R = [2m, 0, 2m]

blocks in closed form, see (B.3). It turns out that this change of variables brings a pleasant

surprise: the R-symmetry block hblk
[2q,2k,2q] can be considered as the analytic continuation

in the representation labels of the standard four-point function d = 3 bosonic block of a

CFT without defects.15 The precise correspondence is obtained by comparing the Casimir

equations and is given in section 3.4.2 and appendix B. For now let us notice the relation

between representation labels and cross-ratios

{∆3d, s} =

{
1

2
− k − q, q

}
, x = t−2

1 , x̄ = t−2
2 . (3.16)

It is worth mentioning that identical external operators in the defect block correspond to

non-identical external operators in the d = 3 picture: ∆12 = ∆34 = −1
2 where ∆ij :=

∆i − ∆j . It turns out that such a relation can be extended to relations between full

superblocks and is explained with more detail in section 3.4.2.

As for the superblocks in the defect OPE channel, the basic idea is that the Ward

identities (2.44) fix the coefficients c∆,R(χblk) uniquely up to an overall normalization.

14An interesting connection between conformal blocks and Koornwinder polynomials was observed in [49].
15We are very grateful to M. Isachenkov and V. Schomerus for pointing this out to us.
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We fix the normalization by c∆min,R(χblk) = 1. If the representation χblk is such that

superconformal symmetry implies 〈Oχblk
〉 = 0, see the classification in section 2.2, then the

corresponding Ward identity has no solution. This provides a cross-check of our analysis.

3.2.1 Bulk superblock for χblk = B[0,2n,0]

Apart from the identity superblock which is just 1, the next simplest superblock correspond

to the 1
2 -BPS supermultiplet B[0,p,0]. The corresponding block is non-trivial only for p = 2n

even. Looking at table I in [50] we see which Lorentz scalar conformal multiplets are in the

B[0,2n,0] supermultiplets. One should further restrict to operators with zero U(1)Y charge,

see below (2.5) for the definition. This leads to an ansatz for the superblock of the form

Fblk
B[0,2n,0]

= hblk
[0,2n,0] f

blk
2n + c1(n) hblk

[2,2n−4,2] f
blk
2n+2 + c2(n) hblk

[0,2n−4,0] f
blk
2n+4 . (3.17)

Notice that we suppressed the dependence on z, w1, w2. The coefficients are fixed by the

Ward identities (2.44) to be

c1(n) =
(n− 1)2n

24(2n− 3)(2n− 1)2
, c2(n) =

(n− 1)n2(n+ 1)

212(2n− 3)(2n− 1)(2n+ 1)2
. (3.18)

As an example, in the case n = 1, which corresponds to the exchange of the stress-tensor

supermultiplet in the bulk channel, the superblock takes the form

Fblk
B[0,2,0]

(z, w1, w2) =

[
2∏
i=1

(
wi + 1

wi − 1

)]
fblk
2 (z) =

2∏
i=1

[(
wi + 1

wi − 1

)(
z − 1

z + 1

)]
. (3.19)

This expression is remarkably simple. It is useful to check its properties. Firstly, it is

invariant under the transformations (2.40) and picks up a sign under (2.42). Secondly,

when specialized to w1 = w2 = z it reduces to a constant. In our normalizations this

constant is one. For ∆ = 2n with n ∈ Z>0 the spacetime part of the blocks takes the form

fblk
2n =

[
(n− 1)

(1 + ξ)n

(
2n− 2

n− 1

)
2F1

(
n− 1, n, 1,

1

1 + ξ

)]
log(1 + ξ) +

Qn(ξ)

1 + ξ
, (3.20)

where Qn(ξ) and the quantity in square bracket are Laurent polynonials in ξ.

3.2.2 Bulk channel superblocks for χblk = B∆
[2m,2n,2m] and χblk = A∆

[2m,2n,2m]

For the long block in the bulk channel we have collected the coefficients in appendix C.2.

For the B[2m,2n,2m] block, the most efficient way to calculate the coefficients is using a

relation analogous to (3.9). Indeed, the long block has a simple pole at ∆ = 2 + 2n+ 4m,

which corresponds to the unitarity bound. The residue of this corresponds to the block

associated to B[2q,2n,2q] multiplets. More precisely

lim
∆→2+2n+4m

[
1

c4,m+1,n
Fblk
A∆

[2m,2n,2m]

]
= Fblk

B
[2(m+1),2n,2(m+1)]

. (3.21)
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Cohomological sector from superconformal blocks. It is instructive to see how

the cohomological sector of [8, 9], which we will study with more detail in section 4, is

singled out by restricting the correlation functions to certain values of the cross-ratios.

Superconformal blocks possess the following remarkable properties

Fblk
χblk

(t, t, t±1) =
∑
n

(±1)n δχblk,B[0,2n,0]
, Fbdy

χbdy
(t, t, t±1) =

∑
k

δχbdy,(B,±)k , (3.22)

where n, k ∈ Z>0. This means that the complicated crossing equations of figure 1 reduce

to identities involving a finite number of operators at a time. The relations (3.22) can be

verified using the explicit expressions for the superblocks, but it should also be possible

to prove them directly from their definition. The crucial input comes from the Ward

identities (2.44). Indeed, they imply that

Fblk
χblk

(t, t, t) = Const(χblk) , Fbdy
χbdy

(t, t, t) = Const(χbdy) . (3.23)

The value of the constants corresponding to (3.22) can then be fixed by a careful analysis

of the relevant OPE limit.

3.3 OPE summary

Here we give a summary of the selection rules obtained in the bulk and boundary OPE

channels. For the boundary channel we have[
B[0,2n+ε,0]

]
∂OPE

' δε,0 ⊕
⊕

(k+,k−)∈Sn,ε

B(k+,k−) ⊕
⊕

(k+,k−)∈Sn−1,ε

Lδ(k+,k−) , (3.24)

where ε ∈ {0, 1} and we define the set Sn,ε =
⋃n
s=0

⋃2s+ε
a=0

{
(2s + ε − a, a)

}
. In the

OPE (3.24) the short operators of B-type are further divided as B(k,0) = (B,+)k, B(0,k) =

(B,−)k and B(k+,k−) = (B, 1)(k+,k−) otherwise.

Concerning the bulk channel, the OPE of 1
2 -BPS operators is well known, see [43, 51,

52], and is independent of the presence of the defect. To determine which operators con-

tribute to the two-point function under study, one should further project to the exchanged

operators that can have a non-zero one-point function. The latter operation is denote by

Pr. Finally, it is convenient to split the operators appearing in the OPE into even and odd

parts with respect to (2.42). In summary we obtain

Pr

(
B[0,2n+ε,0]

OPE

× B[0,2n+ε,0]

) ∣∣∣
even
' I ⊕

⊕
R∈T e

n,ε

BR ⊕
⊕

R∈T e
n−1,ε

A∆
R , (3.25)

Pr

(
B[0,2n+ε,0]

OPE

× B[0,2n+ε,0]

) ∣∣∣
odd
'

⊕
R∈T o

n,ε

BR ⊕
⊕

R∈T o
n−1,ε

A∆
R , (3.26)

where

T e
n,ε =

⋃
0≤a≤b≤n

[2(b−a), 4a, 2(b−a)] , T o
n,ε =

⋃
0≤a≤b≤n+ε−1

[2(b−a), 4a+2, 2(b−a)] . (3.27)

For simplicity, in (3.25) we restricted to the case of identical operators but the general case

is immediately obtained. Summation over the values of δ and ∆ for the long representations

Lδ(k+,k−) and A∆
R is understood.
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3.4 One block to rule them all

In this section we elaborate on the relation between the polynomial R-symmetry blocks and

spacetime bosonic blocks. Thanks to this analysis we will be able to write, with minimal

effort, the superblocks for three additional systems: d = 4, N = 4 theories in the presence

of a 1
2 -BPS line defect, 3d N = 4 superconformal theories, and OSP(4∗|4) superconformal

quantum mechanics. In the latter two cases the theories have no defect, and the blocks we

obtain are relevant for the expansion of four-point functions of 1
2 -BPS operators. All these

systems exhibit the same osp(4|4) symmetry as 4d N = 4 theories in the presence of a flat

codimension one defect.

It is clear from section 2 that the superblocks for the codimension three defects can be

obtained from the codimension one case by a sort of analytic continuation in the representa-

tion labels. This is a special feature of the 4d N = 4 superconformal setup, and is therefore

not surprising that the two-point function superblocks are related to each other. On the

other hand, the connection to four-point function superblocks in theories without defect is

unexpected. It also appears to be more general and certainly warrants further study.

3.4.1 Line defect superblocks

The superconformal blocks for 1
2 -BPS codimension three defects in 4d N = 4 supercon-

formal theories can be obtained in a simple way from the codimension one case presented

above. This fact is manifest by comparing the superspace setup for the two defects.

Superblock dictionary. The bulk channel superblocks are related as[
Fblk
B[0,2n,0]

(z;w1, w2)
]

codim-1

a.c.
=
[
Fblk
B[0,−2n,0]

(w1, w2; z)
]

codim-3
(3.28)[

Fblk
B[2m,2n,2m]

(z;w1, w2)
]

codim-1

a.c.
=
[
Fblk
C[0,−2(n+2m),0],(m−1,m−1)

(w1, w2; z)
]

codim-3
(3.29)[

Fblk
A∆

[2m,2n,2m],(0,0)
(z;w1, w2)

]
codim-1

a.c.
=
[
Fblk

A−2(m+n)
[0,−∆,0],(m,m)

(w1, w2; z)
]

codim-3
(3.30)

the defect channel superblocks are related as[
Fbdy

(B,+)k
(z;w1, w2)

]
codim-1

a.c.
=
[
Fline

(B∗,+)−k
(w1, w2; z)

]
codim-3

(3.31)[
Fblk

(B,1)(k+,k−)
(z;w1, w2)

]
codim-1

a.c.
=
[
Fblk

(B∗,1)(−k+,k−)
(w1, w2; z)

]
codim-3

m > 0 (3.32)[
Fblk

L[0]
(2k+,2k−)

δ

(z;w1, w2)
]

codim-1

a.c.
=
[
Fblk

L∗[−k1]
[0,δ]
k2

(w1, w2; z)
]

codim-3
(3.33)

see (A.1) and (A.8) for the definition of the relevant exchanged supermultiplets. Above,

“a.c.” refers to analytic continuation which is defined as follows. Spacetime and R-

symmetry blocks are individually analytically continued by the requirement that they

satisfy the same Casimir equations with the same boundary conditions, but continued

labels (this point is further discussed below). The analytic continuation of the coefficients

is obvious as they are rational functions of the representation labels. Notice that in the

boundary channel the analytic continuation of unitary representations of the 3d N = 4
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superconformal algebra osp(4|4) gives unitary representations of the 1d N = 4 supercon-

formal algebra osp(4∗|4). This is the superconformal quantum mechanics living on the

line defect.

3.4.2 3d N = 4 theories and 1d OSP(4∗|4) quantum mechanics

It was mentioned in the previous section that R-symmetry blocks in the bulk OPE channel

of a two-point function in the presence of a codimension one defect are essentially analytic

continuation in the representation labels of standard 3d conformal blocks, see (3.16). This

observation is best understood by comparing their definition via the Casimir equations.

We will now sharpen and extend this surprising observation.

Superblock dictionary: line defect/3d N = 4 theory. Let us start by giving the

dictionary between blocks

(
y2

xx̄

) 1
4

G3d,N=4
(B,+) p+1

2

(x, x̄; y) =
[
Fblk
B[0,p,0]

(z1, z2;w)
]

codim-3
, (3.34)(

y2

xx̄

) 1
4

G3d,N=4

(A,+)`p+1
2

(x, x̄; y) =
[
Fblk
C[0,p,0],(`,`)

(z1, z2;w)
]

codim-3
, (3.35)

(
y2

xx̄

) 1
4

G3d,N=4

L[2`]
(p+1;0)
∆+1

2

(x, x̄; y) =
[
Fblk
A∆

[0,p,0],(`,`)
(z1, z2;w)

]
codim-3

, (3.36)

where the cross-ratios are identified as

x =

(
z1 − 1

z1 + 1

)2

, x̄ =

(
z2 − 1

z2 + 1

)2

, y =

(
w − 1

w + 1

)2

. (3.37)

The superblocks G3d,N=4 for the 3d N = 4 superconformal theory are relevant for the

expantion of the four-point function

〈(B,+)k1 (B,+)k1+ 1
2

(B,+)k2 (B,+)k2+ 1
2
〉 . (3.38)

The relations (3.34) follow from the spacetime and R-symmetry block identities

(xx̄)−
1
4 g3d

∆+1
2
,`

(x, x̄) =
[
fblk
∆,`(z1, z2)

]
line

,
√
y gR-symm

k (y) =
[
hblk
k (w)

]
line

, (3.39)

together with the fact that both superblocks satisfy the same superconformal Ward identi-

ties, see (2.44) and [35, 37]. Above, g3d
δ,` are standard 3d blocks relevant for the expansion

of a four-point function of scalar operators with ∆3d
12 = ∆3d

34 = −1
2 where ∆ij := ∆i −∆j .

Moreover, the representation label k on the left hand side is an su(2) labels, while on the

right-hand side is part of the usp(4) Dynkin labels [0, k]. See appendix B for more details.

It should be noticed that the first equation in (3.39) fills a gap in the literature. The

conformal blocks for the line defect in the bulk channel were not determined in [15]. Now,

thanks to (3.39), we can say that they are as well understood as 3d bosonic blocks.
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Superblock dictionary: boundary/1d OSP(4∗|4) quantum mechanics. In this

case the dictionary between superblocks is given by(
x2

yȳ

) 1
4

G
1d,OSP(4∗|4)
(B∗,+) 2n−1

2

(x; y, ȳ) =
[
Fblk
B[0,2n,0]

(w1, w2; z)
]

codim-1
, (3.40)(

x2

yȳ

) 1
4

G
1d,OSP(4∗|4)
(B∗,1)

( 2n−1
2

,m)
(x; y, ȳ) =

[
Fblk
B[2m,2n,2m],(0,0)

(w1, w2; z)
]

codim-1
, m > 0 (3.41)(

x2

yȳ

) 1
4

G
1d,OSP(4∗|4)

L∗[ 1
2

(∆−1)]
[0,m]
2n−1

2

(x; y, ȳ) =
[
Fblk
A∆

[2m,2n,2m],(0,0)
(w1, w2; z)

]
codim-1

. (3.42)

At the level of bosonic blocks, the identity reduces to an analytic continuation in the repre-

sentation labels of (3.39). In particular, the spacetime part is realized by the identification

√
x g1d

∆−1
2

(x) = 2−∆
[
fblk
∆ (z)

]
boundary

, (3.43)

where g1d
h (x) := xh2F1(h− h12, h+ h34, 2h, x) are the 1d blocks above specialized to h12 =

h34 = 1
2 .

Remark. There is a relation between blocks for scalar four-point functions in d dimen-

sions, and bulk channel blocks for scalar two-point functions in the same dimensionality

d in the presence of a codimension two defect [15]. It is then natural to ask whether this

statement can be extended to N = 4 superconformal blocks. An equality of blocks ap-

pears rather unlikely due to the fact that the relevant one-point functions contain multiple

structures, see (2.34). However, we still expect that the superconformal WI for the two-

point function of bulk operators in the codimension two case take a similar form as the

superconformal WI for the four-point function of 1
2 -BPS operators in 4d, N = 4 theories.

Clarifying this point remains an interesting problem for the future.

4 Bootstrap equations

In this exploratory section we initiate the analysis of the dynamical constraints imposed

by the bootstrap equations. As discussed in the introduction, supersymmetry allows to

divide the implementation of the bootstrap in two steps. Section 4.1 concentrates on the

cohomological sector while 4.2 considers the full bootstrap equations.

4.1 Microbootstrap

We will now present the cohomologically truncated bootstrap equations.16 The space of
1
2 -BPS operators in a 4d N = 4 superconformal theory is a graded vector space

V =
∞⊕
p=1

Vp . (4.1)

16The term microbootstrap, introduced in [53], is justified by the fact that, from the point of view of the

bulk theory, it corresponds to a further reduction of the so called miniboostrap equations of [6].
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For each element in Vp there is an associated superconformal primary for the supermulti-

plets B[0,p,0]. Since B[0,2,0] contains the stress tensor, which one requires to be unique, the

space V2 is one-dimensional. The space V1 corresponds to massless representations and

is expected to be part of a decoupled free theory.17 Each Vp is finite dimensional. The

two-point function gives a non-degenerate pairing G : V ×V → C that respects the grading

in (4.1). The three-point function gives a trilinear map

C : V × V × V → C , (4.2)

which is invariant under permutation of the three vectors and due to the superconformal

selection rules is non-vanishing only if p1 ∈ Sp2,p3 := {|p2 − p3|, |p3 − p3|+ 2, . . . , p2 + p3} ,

compare to (2.25). The OPE is encoded in the bilinear map

Ĉ : V × V → id ⊕ V , (4.3)

defined by the condition C(v1, v2, v3) = G
(
Ĉ(v1, v2), v3

)
. Above id corresponds to the

identity operator. Notice that, as opposed to the full OPE of the 4d N = 4 superconformal

theory, the cohomologically truncated OPE (4.3) contains only finitely many terms on the

right hand side. The crossing equations, i.e. the requirement of associativity of the OPE,

take the form

G
(
Ĉ(v1, v2), Ĉ(v3, v4)

)
= G

(
Ĉ(v1, v3), Ĉ(v2, v4)

)
. (4.4)

As an example, let us consider the case in which all Vp are one-dimensional. If we choose an

orthonormal basis {ep} and define Cp1,p2,p3 := C(ep1 , ep2 , ep3), the crossing equations read18∑
k∈Sp1,p2

Cp1p2k Cp3p4k =
∑

k∈Sp1,p3

Cp1p3k Cp2p4k . (4.5)

Notice that the summation is finite. The simplest solution to these equations, which

corresponds to Ggauge = U(1), N = 4 SYM, is given by

Cabc =
1√
a! b! c!

a+b+c∑
n=0

δa+b−2n,c n! c!

(
a

n

)(
b

n

)
. (4.6)

The relations (4.5) together with the condition above correspond to the definition of an

infinite dimensional associative, commutative algebra with some extra structure. It thus

makes sense to consider the subalgebra generated by the unique state in V2 which is the

stress-tensor supermultiplet. This subalgebra contains a unique element for each V2n and

the relevant bootstrap equations take the form (4.5) with pi even. The extremal three-point

structures C2n,2m,2(n+m) in this case can be fixed by general principles [54] to be

C2n,2m,2(n+n) =

√
gn+m

gn gm
, gn :=

Γ(n+ 1)Γ(n+ 2 c4d)

Γ(2 c4d)
, (4.7)

where c4d is the four-dimensional central charge, which for a Lagrangian theory is c4d =
1
4dim(Ggauge). Moreover, it follows from the conformal Ward identities for the stress tensor

17Notice that it cannot really be decoupled if the stress tensor is unique.
18Solutions to these equations were also explored in [53].
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that, in our normalizations, C2,2n,2n = 4
√

2c4d. It appears that, under these conditions and

for any choice of the central charge c4d, (4.5) possess a unique solution. For c4d = 1
4 this

solution reduces to (4.6). As an example, for the next-to-extremal case we find

C2n,2m,2(n+n−1) = 8mnc4d
Γ(n+m)Γ(n+m− 1 + 2 c4d)

Γ(2 c4d)

√
1

gn gm gn+m−1
. (4.8)

We plan to report the general solution elsewhere.

Let us now introduce the boundary data. The space of 1
2 -BPS operators in a 3d N = 4

superconformal theory splits into

U = U+ ⊕ U− , U± =

∞⊕
k=1

U±k , (4.9)

For each element in U±k there is an associated superconformal primary for the supermulti-

plets (B,±)k. Notice that we restricted to integer values of k as they are the only ones enter-

ing in the bulk-boundary OPE. The spaces U±1 correspond to flavor symmetry currents and

the spaces U±2 to the displacement operator. We thus require that dim(U+
2 )+dim(U−2 ) = 1

in the case of a boundary and dim(U+
2 ) = dim(U−2 ) = 1 in the case of an interface. The

boundary two-point function gives non-degenerate pairings g± : U±×U± → C that respect

the grading. The one-point function of bulk operators gives a map a : V → C and the bulk

boundary two-point function defines two maps µ± : V ⊗ U± → C. It follows from super-

conformal symmetry that they are non-vanishing only if p−k ∈ 2Z≥0. The bulk-boundary

OPE coefficients

µ̂± : V → U± , (4.10)

can then be obtained as µ±(u, v) = g±(u, µ̂±(v)). The bootstrap equations in figure 1 take

the form

a(Ĉ(v1, v2)) = g±(µ̂±(v1), µ̂±(v2)) . (4.11)

In the case in which all the involved spaces are one-dimensional and choosing an orthonor-

mal basis the equations above reduce to

∑
p∈Sp1,p2

(±1)
p1+p2+p

2 Cp1p2p ap = δp1,even δp2,even ap1 ap2 +

min(p1,p2)∑
m=ε

µ±p1m µ
±
p2m , (4.12)

where in the sum on the right hand side m ∈ {ε, ε + 2, . . . } and ε = 1 for p1, p2 odd

and ε = 2 for p1, p2 even. One can study the equations (4.12) in the simplest example in

which Cp1p2p are the bulk OPE coefficients corresponding to free N = 4 Maxwell theory

given above. Notice that considering this equation makes sense also when dim(U±k ) > 1,

as the image of a one-dimensional space under µ̂+ or µ̂− is at most one dimensional. We

also remark that the equations are invariant under µ±pm 7→ σm µ
±
pm where σ2

m = 1 and

that the two sets of equations map to each other under ap → (−1)
p
2 ap, µ

± → (−1)
p
2µ∓.

The simplest solution is obtained by setting µ−p,m = 0 by hand. Then the solution of the

remaining equations is given by

a2n = 2n
Γ(n+ 1

2)√
π (2n)!

, µ+
p,k = 2k

√(
p

k

)
ap−k . (4.13)
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One verifies that the displacement operator condition µOD̂ = MaO∆O holds with M =√
2. The result (4.13) can be confirmed by a relatively simple calculation using Wick

contractions and the definition of composite operators in the free theory by normal ordering.

It is interesting to observe that, after imposing µ±p,2 = M± ap p, it appears that (4.12) has

a unique solution parametrized by (M+,M−). It is easy to generate the solution on a

computer but we could not find a closed form expression. Let us also notice that the trivial

defect corresponds to ap = 0, µ± = (±1)
p
2 δp,k, in this case M± →∞.

In order to have a sufficient set of conditions for the mircrobootstrap one needs to add

the crossing equations for correlators involving two bulks and one boundary operator. The

corresponding equation takes the form

g±
(
µ̂±(Ĉ(v1, v2)), u

)
= C3d

(
µ̂±(v1), µ̂±(v2), u

)
. (4.14)

Remark. It is known that the three-point functions encoded in the map C entering (4.2),

are independent of marginal deformations of the N = 4 four-dimensional theory. This is

a rather unique property of 4d N = 4, which is canonically equipped with a conformal

manifold of complex dimension one. The boundary data encoded in µ± and a, on the

other hand, are expected to vary under such marginal deformations. It should be pos-

sible to constraint their dependence on the marginal couplings by using superconformal

perturbation theory.

Microbootstrap equations in the presence of a 1
2
-BPS line defect. The consid-

erations above can be extended to the case of a 1
2 -BPS line defect. In this case correlation

functions of 1
2 -BPS local operator can be related to certain quantities in 2d YM, see [55, 56].

In these examples, it should be possible to verify the microbootstrap equations directly.

4.2 The full bootstrap

In the remaining of the section we will take a closer look at the complete bootstrap equations

in two examples: the two-point function of massless representations and the two-point

function of the super stress-tensor.

4.2.1 Example: N = 4 massless representation, p = 1

As we will see, for this simple example a solution of the microbootstrap equations, gives

automatically a solution of the full bootstrap equations. In this case the bulk and boundary

OPE (3.25), (3.24) reduce to

Pr

(
B[0,1,0]

OPE

× B[0,1,0]

)
' I + B[0,2,0] ,

[
B[0,1,0]

]
∂OPE

' (B,+)1 + (B,−)1 , (4.15)

where B[0,2,0] is the 4d N = 4 stress-tensor supermultiplet and (B,±)1 are 3d N = 4

multiplets corresponding to conserved currents. As in the non-supersymmetric case, see [18,

21, 57], the crossing equation for massless representations is solved by a finite number of

blocks in both channels as

1 + λFblk
B[0,2,0]

= Ω−1
(

(1 + λ)Fbdy
(B,+)1

− (1− λ)Fbdy
(B,−)1

)
. (4.16)
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In this case the full bootstrap equations are satisfied if the microbootstrap equations (4.12),

that in this case read (µ±1,1)2 = ±1+C112a2, are. The parameter λ interpolates between the

trivial interface, corresponding to λ = 0, and the boundary, i.e. the interface with an empty

theory on one side, corresponding to λ = ±1. It should be possible to have a Lagrangian

realization of all other values of the parameter λ as well.

4.2.2 Example: N = 4 stress tensor, p = 2

In this case the OPE (3.25) and (3.24) reduce to

Pr

(
B[0,2,0]

OPE

× B[0,2,0]

) ∣∣∣
even
' I + B[0,4,0] + B[2,0,2] +A∆

[0,0,0] , (4.17)

Pr

(
B[0,2,0]

OPE

× B[0,2,0]

) ∣∣∣
odd
' B[0,2,0] , (4.18)

for the bulk channel and[
B[0,2,0]

]
∂OPE

' 1 + (B,+)2 + (B,−)2 + (B, 1)(1,1) +Aδ(0,0) , (4.19)

for the boundary channel. This time the OPE contains infinitely many operators. We

will use the notation T = B[0,2,0] for the stress-tensor supermultiplet. Recall that (B,+)2

and (B,−)2 are the correct representations to be the super-displacement operator. The

corresponding OPE coefficients µ±2,2 should be considered on the same footing as the central

charge c4d. In this case the microbootstrap equations read

1± Cblk
T T T aT + λblk

B[0,4,0]
= a2
T + µ2

T ,(B,±)2
. (4.20)

The odd part of the full crossing equations

Cblk
T T T aT Ω2 Fblk

T =
(µT ,(B,+)2

)2 − (µT ,(B,−)2
)2

2

[
Fbdy

(B,+)2
− Fbdy

(B,+)2

]
, (4.21)

is then automatically satisfied once (4.20) holds. As in the previous example, the crossing

equation (4.21) involves only a finite number of blocks. The fact that a solution of (4.21)

exists relies on the identity between superblocks

Ω2 Fblk
T = Fbdy

(B,+)2
− Fbdy

(B,−)2
, (4.22)

where Ω is defined in (3.10). Let us turn to the even part of the full crossing equation.

After rewriting bulk and boundary blocks in the form (2.47) and using (4.20) to cancel the

C± contributions from the two sides of the equation, we are left with

Hblk
I + λblk

B[0,4,0]
Hblk
B[0,4,0]

+ λblk
B[2,0,2]

Hblk
B[2,0,2]

+
∑
∆

λblk
A∆ Hblk

A∆ = (4.23)

= R
(
Hbdy

(B,+)2
+ Hbdy

(B,−)2

)
+ µ2

T ,(B,1)(1,1)
Hbdy

(B,1)(1,1)
+
∑
δ

µ2
T ,LδH

bdy
Lδ

.

where R := 1
2(µT ,(B,+)2

)2 + (µT ,(B,−)2
)2, we have defined

λblk
χblk

=
∑

χ(OI)=χblk

Cblk
T T OIaOI , (4.24)
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and used the shorthand notation A∆ = A∆
[0,0,0], L

δ = Lδ(0,0). The reduced superblocks

Hblk/bdy are defined by writing Fbdy and Ω2Fblk in the form (2.47). Following this procedure

one finds the following explicit expressions for the boundary channel contribution

Hbdy
id = 0, Hbdy

(B,±)2
= −1

8
log(1 + ξ−1) ,

Hbdy
Lδ

=
Γ(2δ + 2)

1− δ
(4ξ)−δ−1

2F1(δ + 1, δ + 1, 2δ + 2,−ξ−1) , (4.25)

and for the bulk channel

Hblk
I =

1

4ξ
, Hblk

B[0,2,0]
= 0, Hblk

B[0,4,0]
= −2F1(1, 3, 4,−ξ) ,

Hblk
A∆ =

(4 ξ)β−2

β − 2
2F1(β, β + 1, 2β + 1,−ξ) (4.26)

where β = 1
2∆ + 1. Notice that strictly above the unitarity bound we have β − 2 =

1
2(∆ − 2) > 0. The blocks Hbdy

(B,1)(1,1)
and Hblk

B[2,0,2]
are immediately obtained using the

relations (3.9) and (3.21).

A toy model two-point function. We will now consider the superconformal block

expansion of the toy model two-point function for 〈T T 〉 given by

F2,2(z, w1, w2) = C+ + κC− + DH(z) , H(z) =
z

(1− z)2
− g z

(1 + z)2
, (4.27)

compare to (2.43) and (2.47), where C± and g are certain constants. This three parameter

family of functions can be obtained by postulating that 〈T T 〉 is a linear combination of

〈T 〉〈T 〉 and the square of the two-point function of massless fields corresponding to (4.16).

By expanding this function in superblocks in the two channels we extract the CFT data

in terms of the parameters C+,C−, g

a2
T = C+ − 1− g , µ2

T ,(B,±)2
= 1 + g ± C− , µ2

T ,(B,1)(1,1)
= 2(g − 1) , (4.28)

and

µ2
T ,Aδ =

√
π (δ − 1)

Γ(δ + 1)

Γ(δ + 1
2)

(
1 + (−1)δg

)
, δ ∈ Z≥2 . (4.29)

The data associated to the bulk channel are

Cblk
T T T aT = C− , λblk

B[0,4,0]
= C+ − 1 , λblk

B[2,0,2]
=

1

3
(1− C+) +

1

2
g , (4.30)

and

λblk
A∆ = 21−∆Γ2

(
∆

2
+2

) ((
∆

2
−1

)(
∆

2
+1

)
(C+−1)+

∆

2

(
∆

2
+2−(−1)

∆
2

)
g

)
, (4.31)

∆ = 4, 6, 8, 10, . . . . The trivial interface belongs to this class of examples and corresponds

to C− = 0, C+ = 1 and g = 0. This is a very simple solution of the bootstrap equations
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but implies a remarkable identity for the bulk superblock corresponding to the exchange

of the identity operator F blk
I = 1, namely

Ω2 F blk
I = F bdy

(B,+)2
+ F bdy

(B,−)2
− 2 F bdy

(B,1)(1,1)
+

∞∑
δ=2

√
π (δ − 1)

Γ(δ + 1)

Γ(δ + 1
2)

F bdy
Aδ

. (4.32)

Notice that this result works for any N = 4 theory in the case of a trivial interface. It

would be interesting to learn a general lesson from this example on how the exchange of

the identity operators in the bulk channel is reproduced upon summing infinitely many

contributions from the boundary channel, along the lines of [4, 5].

5 Conclusions

In this work we studied 4d N = 4 superconformal theories in the presence of defects from

the point of view of the conformal bootstrap. We obtained the full superconformal block

expansion for the two-point function of 1
2 -BPS operators in the codimension one case and

thanks to the analytic continuations explained in section 3, these results also apply to 4d

N = 4 superconformal theories in the presence of a line defect. Moreover, they also capture

the block expansion of 3d N = 4 superconformal theories and 1d OSP(4∗|4) superconformal

quantum mechanics.

In the cohomological sector we presented an infinite set of polynomial equations that

relate defect and bulk data. Apart from the equations coupling bulk and boundary, one

also needs to consider the truncated equations for pure bulk and pure boundary CFT data

separately. While solutions to the bulk equations correspond to a commutative algebra

with certain properties, the associative algebra that describes the boundary data is not

commutative [9]. We observed that the cohomological bulk bootstrap equations admit a

truncation to a subsector corresponding to the subalgebra generated by the super stress-

tensor, whose structure constants are fully determined in terms of the central charge. For

this to be the case, we supplemented the equations with the knowledge of so-called extremal

three-point couplings which had been obtained from rather general principles in [54].

Understanding the solutions of the truncated bootstrap equations is an important step

in order to fully characterize the superconformal theory, and we leave a more thorough

analysis of their solutions for the future. For example, it would very interesting to map the

space of solutions to the boundary conditions studied by Gaiotto and Witten in [24]. This

set of superconformal 1
2 -BPS boundary conditions in N = 4 SYM is extremely rich, as

they can be engineered by gauging a flavor symmetry of a generic three-dimensional N = 4

SCFT. It should be pointed out that defect configurations that are S-dual correspond to

the same solution of the bootstrap equations.

Another interesting question is to understand how deep is the connection between the

four systems studied in this paper: 4d N = 4 superconformal theories with codimension

one and three defects, 3d N = 4 superconformal theories and 1d OSP(4∗|4) quantum

mechanics. If the solutions of the truncated equations can be mapped to each other, it will

bring the kinematic relation uncovered in this paper to the realm of dynamics.
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Given a solution of the bootstrap equations in the cohomological sector, one would like

to determine a, or many, solutions to the full bootstrap equations. This is a complicated

problem, in particular due to the fact that long operators with unknown conformal dimen-

sion appear. The usual approach is to apply modern numerical techniques. The absence

of positivity makes the original method of [58] unsuitable, however, there are alternative

techniques in the literature. Apart from the already mentioned Gliozzi approach, a new

promising method is the one developed in [59].

Another interesting venue is the study superconformal defects in superconformal the-

ories in other dimensions. Promising candidates are codimension one and two 1
2 -BPS

defects in 3d N = 4 theories [60, 61] and codimension two and four defects in 6d (2, 0)

theories, [62, 63]. It would also be interesting to investigate whether certain bulk-boundary

CFT data can be computed using localization methods. This idea has been applied suc-

cessfully to extract the one-point function of the super stress tensor for the case in which

the defect is a Wilson line, see [64] and references therein. For the case of a codimension

one defect, the results of [65, 66] may already contain the necessary information to extract

some boundary CFT data.
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A Some representation theory

A.1 Supermultiplets

We will now review aspects of representation theory of superconformal algebras relevant

for the discussion in the main text. The representation theory of the 4d N = 4 supercon-

formal algebra is summarized in table 1. Certain representations of psu(2, 2|4) will play a

distinguished role

B[q,p,q] := B1B̄1[0; 0]
[q,p,q]
∆=p+2q , (A.1)

C[0,p,0],(`,`) := A∗Ā∗[2`; 2`]
[0,p,0]
∆=2+2`+p , (A.2)

A∆
[q,p,q̄],(`,¯̀) := LL̄[2`; 2¯̀]

[q,p,q̄]
∆ . (A.3)

where A∗ is either A1 or A2 depending on the value of `. For representations of the 3d

N = 4 superconformal algebra see table 2. We give the complete list of representations

however, only a few of them will appear in the boundary OPE of a 1
2 -BPS bulk operator.

We will therefore simplify the notation a bit following [47]:

(B,+)k := B1[0]
(2k,0)
k , (B,−)k := B1[0]

(0,2k)
k , (A.4)
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Supermultiplet Highest weight Rleft
blk

L [2`, 2¯̀]
[q,p,q̄]
∆ [q, 2`]∆−γ

A1 [2`, 2¯̀]
[q,p,q̄]
∆ , ` > 0 q + 1

{ 2`+2︷ ︸︸ ︷

A2 [0, 2¯̀]
[q,p,q̄]
∆ q + 1

{
B1 [0, 2¯̀]

[q,p,q̄]
∆ q

{
Table 1. Unitary representations of the 4d N = 4 superconformal algebra in the notation of [67],

apart for the small modification (R1, R2, R3) replaced by [q, p, q̄] for Dynkin labels. This is just

the chiral half of the conditions. The other half can be easily obtained. The labels [a, b]c denote

long representations of sl(2|2) with dimension 16(a+ 1)(b+ 1) and c ∈ C is the value of the central

charge generators. The rightmost entry of the table is part of the data of the inducing representation

Rblk = {Rleft
blk ,R

right
blk , Q}, where Q = ∆− `− ¯̀ is the conformal twist, see [36] and references therein

for more details.

Supermultiplet Unitarity bound R̃bdy

L[2s]
(2k+; 2k−)
δ δ > s+ k+ + k− + 1 [2kσ, 2s]δ−k−σ

A1[2s]
(2k+; 2k−)
δ , s > 0 δ = s+ k+ + k− + 1 2kσ + 1

{ 2s+2︷ ︸︸ ︷

A2[0]
(2k+; 2k−)
δ δ = k+ + k− + 1 2kσ + 1

{
B1[0]

(2k+; 2k−)
δ δ = k+ + k− 2kσ

{
Table 2. Unitary representations of the 3d superconformal algebra in the notation of [67],

[2s]
(2k+; 2k−)
δ = {δ, s, (k+, k−)} with 2s, 2k+, 2k− ∈ Z≥0. The sign σ ∈ {+,−} denotes the choice

of sl(2|2)± ⊃ suLorentz(2) ⊕ su±(2). The symbol R̃bdy stands for a sl(2|2) representation. The

inducing representation of gl(2|2) is Rbdy = {R̃bdy, b2|2}, where b2|2 is a U(1) quantum number.

Notice that A1[2s]
(2k+;0)
δ and their mirrors are somewhat special since the sl(2|2) inducing repre-

sentation becomes a totally symmetric representation. Following the Dolan classification [47] we

denote (A,±)sk+
:= A1[2s]

(2k+;0)
δ . Among these, the representations A1[2s]

(0;0)
δ are distinguished by

the fact that the sl(2|2) inducing representation becomes a totally symmetric representation with

respect to each of the inducing factors. These multiplets are referred to as conserved currents as

they include higher-spin conserved currents; the s = 0 corresponds to the stress-tensor supermulti-

plet. The sl(2|2) central charge in our normalization is given by δ − k−σ, it is half the number of

boxes in the Young tableaux.
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and

(B, 1)(k+,k−) := B1[0]
(2k+,2k−)
k++k−

, conss := A1[2s]
(0;0)
δ , Lδ(k+,k−) := L[0]

(2k+,2k−)
δ . (A.5)

We also recall that at the unitarity bound, long representation decompose as

lim
δ→k++k−+1

L[0]
(2k+,2k−)
δ ∼ A2[0]

(2k+,2k−)
δ +B1[0]

(2k++1,2k−+1)
δ+1 , (A.6)

lim
δ→s+k++k−+1

L[2s]
(2k+,2k−)
δ ∼ A1[2s]

(2k+,2k−)
δ +A1[2s− 1]

(2k++1,2k−+1)

δ+ 1
2

, (A.7)

where in the second line s > 0. These relations imply that certain boundary superblocks

can be obtained as the residue of the pole in δ of the long block, see (3.9). We also remark

that the decompositions (A.6) take place already at the level of inducing representation

R̃bdy given in table 2, see [68].

Representations of superconformal quantum mechanics. The relevant representa-

tion theory of OSP(4∗|4) superconformal quantum mechanics can essentially be extracted

from [69]. In the following we will describe three classes of representations that are relevant

for the discussion in the main text. The d = 1 superconformal algebra osp(4∗|4) contains

sl(2,R) ⊕ su(2) ⊕ usp(4) as bosonic subalgebra where sl(2,R) plays the role of conformal

algebra in one dimension. The operators with smallest value ∆1d of the one dimensional

dilatation generator form a finite dimensional irreducible representation of the R-symmetry

su(2)⊕ usp(4). We use Dynkin labels to characterize such representation {n, [a, b]}, where

n labels the n+ 1 dimensional representation of su(2) and [a, b] are usp(4) Dynkin labels,

for example [1, 0] = 4 and [0, 1] = 5. Representations of OSP(4∗|4) are then uniquely

characterized by χSCQM = {∆1d, n, [a, b]}. For special values of this labels the representa-

tion contains null states that have to be removed, these corresponds to so-called atypical

representations. We introduce the notation

(B∗,+) b
2

:=

{
b

2
, 0, [0, b]

}
, (A.8)

(B∗, 1)( b
2
,n) :=

{
b

2
, n, [0, b]

}
, n > 0 (A.9)

L∗[∆1d]
[0,b]
n := {∆1d, n, [0, b]} , (A.10)

notice that there is no (B,−) multiplet. Indeed the mirror automorphism is not compatible

with the real form OSP(4∗|4). In these definition subtraction of null states is understood.

A.2 Miscellanea

A.2.1 Details on symmetry and the mirror automorphism

The R-symmetry subgroup of OSP(4|4) can be defined in a similar way as (2.4)

O(4) =
{
g ∈ GL(4) such that gt ηR g = ηR

}
, ηR :=

(
0 12

12 0

)
. (A.11)
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At the lie algebra level, o(4) ∼ su(2)+ ⊕ su(2)− is spanned by matrices

su(2)+ = Span
{( a 0 0 −b

0 a b 0
0 c −a 0
−c 0 0 −a

)}
, su(2)− = Span

{(−ã −c̃ 0 0
−b̃ ã 0 0
0 0 ã b̃
0 0 c̃ −ã

)}
. (A.12)

Notice that su(2)+ acts projectively while su(2)− acts linearly on the R-symmetry coordi-

nates. Let us define

TR :=

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
. (A.13)

This element generates a (non-central) Z4 ⊂ SL(4). Moreover it generates the mirror

automorphism M defined below (2.6), which follows from the identity

TR

( a 0 0 −b
0 a b 0
0 c −a 0
−c 0 0 −a

)
T−1
R =

(−a −c 0 0
−b a 0 0
0 0 a b
0 0 c −a

)
. (A.14)

One should also notice that T2
R = ηR, TRT†R = 1, det(TR) = −1.

A.2.2 Conformal factors

The conformal factors are given by

Ωg,X =


(

1, 1
)

g =
(

1 B
0 1

)
,(

A, (Ast)−1
)
, g =

(
A 0
0 (Ast)−1

)(
(1 +X C)−1, (1 + C X)

)
, g =

(
1 0
C 1

) , (A.15)

and

ωg,Xb
=


1 , g =

(
1 B
0 1

)
A , g =

(
A 0
0 (Ast)−1

)
(1 +XbC)−1 , g =

(
1 0
C 1

) (A.16)

The form for general g follows by group composition law.

A.2.3 Definitions

We recall the definitions of superdeterminant and super-Pfaffian

sdet

(
A B

C D

)
:=

det(A−BD−1C)

det(D)
=

det(A)

det(D − CA−1B)
, (A.17)

sPf

(
A sB

Bt D

)
:=

√
det(A)

Pfaff(D − sBtA−1B)
=

√
det(A− sBD−1Bt)

Pfaff(D)
. (A.18)

A.2.4 The stability group SX

Without loss of generality we can take Xb = 0, which can be obtained by performing an

OSP(4|4) super-translation. From the infinitesimal transformation properties

δ
(
0, Xd

)
=
(
β −Xd γ Xd, αXd +Xd α

st
)
, (A.19)
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where close to the identity ĝ := gψg g
−1
ψ = 1 +

(
α β
γ −αst

)
, one finds that the stability group

SX (with X = A−1
ψ XdAψ) close to the identity looks like

ĝ = 1 +

(
α Xd γ Xd

γ −αst

)
+ . . . αXd +Xd α

st = 0 , γ = −γst Σ . (A.20)

It follows that the stability algebra is spanned by

m±(α) :=
1

2

(
+α ±αXd

±X−1
d α −αst

)
, αXd +Xd α

st = 0 . (A.21)

Notice that the fact that Xd is invertible is the statement that the configuration is generic.

It is a simple exercise to show that

[mσ1(α1),mσ2(α2)] = δσ1,σ2 mσ1([α1, α2]) . (A.22)

This proves that the stability algebra is osp(2|2)⊕ osp(2|2).

A.3 Branching ratios and tensor products

A.3.1 R-symmetry channels

For the boundary channel we use the su(4)→ su(2)⊕ su(2) branching ratios

[0, 2`+ ε, 0] →
⊕̀
s=0

2s+ε⊕
a=0

(2s+ ε− a, a) , ε ∈ {0, 1} . (A.23)

For the bulk channel we have

Pr
(

[0, 2`+ ε, 0]⊗ [0, 2`+ ε, 0]
)

=
⊕

0≤m≤n≤`
[2(n−m), 4m, 2(n−m)]

×
⊕

0≤m≤n≤`+ε−1

[2(n−m), 4m+ 2, 2(n−m)] , (A.24)

where Pr denotes a projection into representations of the form [2a, 2b, 2c]. Notice that the

sum (A.24) splits into two sums, the blocks corresponding to each sum have definite Z2

transformation properties. The number of multiplet is the same in bulk and boundary

channel and it is equal to (`+ 1)(`+ ε+ 1).

We also collect the defect channel R-symmetry OPE relevant for the line defect. In

this case one has su(4)→ sp(4) branching ratios

[0, p, 0]→
p⊕
d=0

[0, d] . (A.25)

The sp(4) Dynkin labels [0, d] correspond to 1
6(d+ 1)(d+ 2)(2d+ 3) dimensional represen-

tations. Recall that the representations of su(4) that contains a sp(4) singlet are the ones

with Dynkin labels [0, t, 0].

– 36 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
2

symbol name dimension

{0} trivial representation 1

{j}± atypical representation 4j + 1

{b, j} typical representation 8j

P(0) projective cover of the trivial representation 8

P(±j) projective cover of the atypical representation

{j}±
16j + 4

Table 3. Brief summary of the osp(2|2) representations appearing in the branching ratios considered

here, see [70] for a complete description of these representations. Above 2j ∈ Z>0 and b 6= ±j.

A.3.2 sl(2|2)→ osp(2|2) branching ratios

In this appendix we determine which sl(2|2) representation listed in tables 2 and 1 contains

a state (vector) which is invariant under osp(2|2) ⊂ sl(2|2) where the choice of embedding

is specified in appendix A.2.4. It turns out that, apart from the case in which the sl(2|2)

representation is trivial, this invariant state will not appear as the trivial representation of

osp(2|2), but as part of the so called projective cover of the trivial representation denoted

by P(0), see [70]. We refer to table 3 for the notation and a few facts about the relevant

representations of osp(2|2) ' sl(2|1). Since we could not find the branching ratios in the

literature we present them below.

The branching rules can be determined from the knowledge of tensor products in

sl(2|2) and osp(2|2) together with the fact that the operations of taking tensor product and

branching ratios commute and the tensor product is distributive with respect to direct sums.

Let us illustrate this procedure in a simple example. The fundamental representation of

sl(2|2) decomposes as → {0, 1
2}. This branching ratio specifies the embedding osp(2|2) ⊂

sl(2|2). Taking tensor products and branching ratios of the fundamental representation

with itself gives

⊗ = ⊕ →
{

0,
1

2

}
⊗
{

0,
1

2

}
= {0, 1} ⊕ P(0) , (A.26)

see table 3 for details about the representations on the right hand side. Iterating this

procedure, with extensive use of osp(2|2) ' sl(2|1) tensor product decompositions from [70],

one arrives at the following rules

︸ ︷︷ ︸
s

→
{

0,
s

2

}
, (A.27)

a

{
→


P(0)⊕

a−1
2⊕

b=− a−1
2

′ {b, 1
2} , a = 2 + 2g ,

a−1
2⊕

b=− a−1
2

{b, 1
2} , otherwise ,

(A.28)

– 37 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
2

a+ 1

{ s+1︷ ︸︸ ︷
→


P( s2)⊕ P(− s

2)⊕
a
2⊕

b=− a
2

′ {b, s+1
2 } ⊕

a−1
2⊕

b=− a−1
2

′ {b, s2} , a = s+ 1 + 2g ,

a
2⊕

b=− a
2

{b, s+1
2 } ⊕

a−1
2⊕

b=− a−1
2

{b, s2} , otherwise ,

(A.29)

[a, s]γ →



P(0)⊕ S0,0 , s = 0, a = 0 ,

P(1
2)⊕ P(−1

2)⊕ S1,1 , s = 1, a = 1 ,

P(0)⊕ P(1
2)⊕ P(−1

2)⊕ S0,2g+2 , s = 0, a = 2g + 2 ,

P( s2)⊕ P(− s
2)⊕ P( s+1

2 )⊕ P(− s+1
2 )⊕ Sa,s , s ≥ 1, a = s+ 2g + 2 ,

Sa,s , otherwise ,

(A.30)

where

Sa,s :=

a
2⊕

b=− a
2

′
({

b,
s+ 2

2

}
⊕
{
b+

1

2
,
s+ 1

2

}
⊕
{
b− 1

2
,
s+ 1

2

}
⊕
{
b,
s

2

})
. (A.31)

Some remarks on the notation are in order: the sums
⊕

are integer spaced between the

limits of summation,
⊕′ means that one should exclude from the sum terms that give

contributions of the form {±j, j}, the latter are exactly the one that recombines into

projective representations P, finally g ∈ Z≥0.

The only osp(2|2) representation appearing in the right hand side of the list above that

contains an invariant state is P(0). Notice that

P(0) ∼ 2 {0} ⊕
{

1

2

}
+

⊕
{

1

2

}
−
, P

(
±1

2

)
∼ 2

{
1

2

}
±
⊕ {0} ⊕ {1}± , (A.32)

where ∼ means that they have the same character. In both cases the trivial representation

{0} appears. In the first case it appears twice, only one of them is a true osp(2|2) invariant

state. In the second case the state associated to {0} by the character is not an invariant,

see [70]. This important difference would have been missed by a character analysis.

Looking at the branching ratios given above we conclude that, apart from the trivial

representation of sl(2|2), only the totally antisymmetric representations in 2g+2 indices and

the long representations [a, s]γ = [2g, 0]γ with g ∈ Z≥0 contain an osp(2|2) invariant state.

B Comparison of conformal blocks

In this short appendix we present the details of the comparison between our conformal

blocks and the results already present in the literature.

B.1 Casimir equation for the bulk R-symmetry blocks.

The Casimir equation takes the form[(
2∑
i=1

wi(wi − 1)2∂2
wi

)
+ k(w1, w2)∂w1 + k(w2, w1)∂w2

]
hblk
R = CR hblk

R , (B.1)
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where

k(w1, w2) =

(
w1 (w1 − 1)

w1 − w2
+

w1 − 1

w1w2 − 1
− 2

)
(w1 − 1) ,

C[2m,2n,2m] = 2
(
n2 + 2n(m+ 1) +m(2m+ 3)

)
. (B.2)

The change of variables (3.15) was motivated by the fact that we were able to find two

special cases of R-symmetry blocks in closed form:

hblk
[0,2n,0] =

4−2nn!(
1
2

)
n

n∑
a,b=0

δn−a,evenδn−b,even
ib−a(a+b)!a+k2 ! b+k2 !

i!j!
(
a+b
2 !
)2 k−a

2 !k−b2 !
ta1t

b
2 , (B.3)

hblk
[2m,0,2m] =

(−64)−m(m!)2(
3
4

)
m

(
5
4

)
m

m∑
a,b=0

(2a)!(2b)!(−1)a+b2−4(a+b)−1(2(a+b+m+1))!

(a!)2(b!)2((a+b)!)2(−a−b+m)!(a+b+m+1)!
t2a1 t

2b
2 . (B.4)

In the first equation δa−b,even = 1, if a − b is even, and 0 otherwise. For the special case

w2 = 0,R = [0, 2n, 0] the expression above further simplifies to

hblk
[0,2n,0] (w, 0) =

(−1)n (n+ 1)

4n
(

2n
n

) 2F1

(
−n, n+ 2,

3

2
,

1

1− w

)
. (B.5)

In the variables ti, see (3.15), the Casimir equation (B.1) takes the form ,[(
2∑
i=1

(t2i − 1)∂2
ti

)
+

1

t21 − t22

(
k̃(t1, t2)∂t1 + k̃(t2, t1)∂t2

)]
hblk
R = CR hblk

R , (B.6)

where k̃(t1, t2) = 2t1
(
2t21 − t22 − 1

)
. After performing the change of variables t1 =

√
x,

t2 =
√
x̄ and defining g = (xx̄)

1
4hbulk, one finds that g satisfies the Dolan-Osborn Casimir

equations [71] specialized to d = 3, upon identifying

∆3d =
1

2
− n−m, `[71] = s = m. (B.7)

These relations can be confirmed by comparing the asymptotic behavior in (3.13) with the

one of [71]. By looking at this asymptotic behavior we further conclude that J = 2m and

∆ = −2(m+ n).

B.2 Line defect from analytic continuation

We will now show that the R-symmetry polynomials hblk are an analytic continuation of the

spacetime blocks in the presence of a line defect by comparing with the analysis of [15]. In

the boundary channel the authors were able to find an explicit expression for the conformal

blocks, concerning the bulk channel, [15] contains the relevant Casimir equation without

an explicit solution. We somewhat fill this gap by relating it to the solution of the Casimir

equation of the standard 3d four-point function blocks.

– 39 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
2

Comparison of cross-ratios. The first step is to relate the cross-ratios (2.39) to the

cross-ratios in [15]. Let

cosφ := −1

2

tr(y1,d ε y2,d ε)√
det(y1,d) det(y2,d)

, ξR :=
1

4

det(y1 − y2)√
det(y1,d) det(y2,d)

. (B.8)

By going to the frame (2.39) it is easy to verify that

cosφ =
1

2

w1 + w2√
w1w2

=
w− + w−1

−
2

, ξR =
1

4

2∏
i=1

(
w

+ 1
2

i − w−
1
2

i

)
, (B.9)

where w2
± := w1w

±1
2 have been defined below (3.1). It is instructive to compare these

cross-ratios with the spacetime cross-ratio in the presence of a boundary

ξ :=
det(x1 − x2)

4x1,d x2,d
=

(z − 1)2

4 z
=

1

4

2∏
i=1

(
z+ 1

2 − z−
1
2

)
. (B.10)

Notice that ξR = 1
4ξ[15], while φ is the same, the additional variable χ = (4ξR + 2 cosφ) =

w+ + w−1
+ is also used in [15].

Boundary channel. The block in the defect channel take a factorized form. With the

identifications above we obtain the following block identities valid for each factor,

w
−k−
− 2F1

(
1

2
,−k−,

1

2
−k−;w2

−

)
=

√
π Γ (1+s)

Γ
(

1
2 +s

) 2F1

(
3

2
+
s

2
−1,−s

2
,
3

2
−1; sin2 φ

)
, (B.11)

w
k+
+ 2F1

(
1

2
,−k+,

1

2
−k+;w2

+

)
= χ−δ 2F1

(
δ

2
+

1

2
, δ+1− 1

2
, ;

4

χ2

)
. (B.12)

In the equalities above, representation labels are identified as s = k− is the spin of the

boundary operator appearing in this channel and δ = −k+ is its dimension.

Bulk channel. Using the change of variables (B.9) it is a straightforward exercise to

compare (4.12) of [15] with our Casimir equation (B.1) for the bulk R-symmetry block.

The identification between the labels is

J(J + 2) + ∆(∆− 4) = 2C[2m,2n,2m] , (B.13)

where CR is given in (B.2) we have set q = 3, d = 4, and ∆12 = 0 in (4.12) of [15].

C Long blocks coefficients

In this appendix we present the OPE coefficients for the long superblocks in the bulk and

boundary channels.
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C.1 Boundary channel coefficients

As in (3.8), each coefficient cδ,(k++i,k−+j) has a counterpart cδ,(k++j,k−+i) where k+ and k−
are interchanged. Below we only list the ones with i > j.

cδ+1,(k++1,k−+1) = − δ − k+ − k−
δ − k+ − k− − 1

cδ+1,(k+−1,k−−1) = − 16k2
+k

2
−(δ + k+ + k− + 2)

(2k+ − 1)(2k+ + 1)(2k− − 1)(2k− + 1)(δ + k+ + k− + 1)
(C.1)

cδ+1,(k++1,k−−1) = − 4k2
−(δ − k+ + k− + 1)

(2k− − 1)(2k− + 1)(δ − k+ + k−)

cδ+2,(k++2,k−) =
(−δ+k+−k−−1)(−δ+k++k−)

(−δ+k+−k−)(−δ+k++k−+1)

cδ+2,(k+,k−) = −8k+k−(k++k−−1)(2k++2k−+3)(−δ+k+−k−−1)(δ+k+−k−+1)(δ+k++k−+2)

(2δ−1)(2δ+3)(2k+−1)(2k++1)(2k−−1)(2k−+1)(δ+k++k−+1)

8k+(k−+1)(2k+−2k−+1)(k+−k−−2)(−δ+k++k−)(δ+k+−k−+1)(δ+k++k−+2)

(2δ−1)(2δ+3)(2k+−1)(2k++1)(2k−+1)(2k−+3)(δ+k+−k−)

8(k++1)k−(2k+−2k−−1)(k+−k−+2)(−δ+k+−k−−1)(−δ+k++k−)(δ+k++k−+2)

(2δ−1)(2δ+3)(2k++1)(2k++3)(2k−−1)(2k−+1)(−δ+k+−k−)

− 8(k++1)(k−+1)(k++k−+3)(2k++2k−+1)(−δ+k+−k−−1)(−δ+k++k−)(δ+k+−k−+1)

(2δ−1)(2δ+3)(2k++1)(2k++3)(2k−+1)(2k−+3)(−δ+k++k−+1)

cδ+2,(k+,k−−2) =
16(k−−1)2k2

−(−δ+k+−k−−1)(δ+k++k−+2)

(2k−−3)(2k−−1)2(2k−+1)(−δ+k+−k−)(δ+k++k−+1)
(C.2)

cδ+3,(k++1,k−−1) = − 16δ(δ+2)k2
−(−δ+k++k−)(δ−k++k−+1)(δ + k++k−+2)

(2δ+1)(2δ+3)(2k−−1)(2k−+1)(−δ+k++k−+1)(δ−k++k−)(δ+k++k−+1)

cδ+3,(k++1,k−+1) = − 4δ(δ+2)(δ−k+−k−)(δ+k+−k−+1)(δ−k++k−+1)

(2δ+1)(2δ+3)(δ−k+−k−−1)(δ+k+−k−)(δ−k++k−)
(C.3)

cδ+4,(k+,k−) =
16δ(δ+1)(δ+2)(δ+3)(δ−k+−k−)(δ+k+−k−+1)(δ−k++k−+1)(δ+k++k−+2)

(2δ+1)(2δ+3)2(2δ+5)(δ−k+−k−−1)(δ+k+−k−)(δ−k++k−)(δ+k++k−+1)

(C.4)

C.2 Bulk channel coefficients

Here we present the coefficients of the bulk channel.

c∆+2,[2m−2,2n,2m−2] = −
(4m−1)2(4m+1)2(n+2m)2(n+2m+1)2(2n+2m+1)2(∆+2n+4m+6)

2m3(2m+1)(n+m)(n+m+1)(2n+4m−1)(2n+4m+1)2(2n+4m+3)(∆+2n+4m+4)

c∆+2,[2m−2,2n+4,2m−2] = −
(n+1)2(n+2)2(4m−1)2(4m+1)2(−∆+2n−2)

128(2n+1)2(2n+3)2m3(2m+1)(2n−∆)

c∆+2,[2m,2n,2m] =
1

32

(
∆+1

∆−1
−

(∆+5)(2n+1)2(2n+4m+3)2

(∆+3)(2n−1)(2n+3)(2n+4m+1)(2n+4m+5)

)

c∆+2,[2m+2,2n−4,2m+2] = −
8(2n−3)(m+1)5(∆+2n+4)(2n+2m+1)2

(2n+1)(2m+1)(4m+3)2(4m+5)2(∆+2n+2)(n+m)(n+m+1)

c∆+2,[2m+2,2n,2m+2] = −
(m+1)5(−∆+2n+4m)

8(2m+1)(4m+3)2(4m+5)2(−∆+2n+4m+2)

(C.5)
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c∆+4,[2m−4,2n+4,2m−4] =
(n+1)2(n+2)2(4m−5)2(4m−3)2(4m−1)2(4m+1)2(−∆+2n−2)(n+2m)2(n+2m+1)2(∆+2n+4m+6)

64(2n+1)2(2n+3)2(m−1)3m3(2m−1)(2m+1)(2n−∆)(2n+4m−1)(2n+4m+1)2(2n+4m+3)(∆+2n+4m+4)

c∆+4,[2m−2,2n,2m−2] = −
(4m−1)2(4m+1)2(−∆+2n−2)(∆+2n+4)(n+2m)2(n+2m+1)2(2n+2m+1)2(∆+2n+4m+6)

16(∆+1)(∆+3)(2n−1)(2n+3)m3(2m+1)(n+m)(n+m+1)(2n+4m−1)(2n+4m+1)2(2n+4m+3)(∆+2n+4m+4)

c∆+4,[2m−2,2n+4,2m−2] = −
(n+1)2(n+2)2(4m−1)2(4m+1)2(−∆+2n−2)(−∆+2n+4m)(∆+2n+4m+6)

1024(∆+1)(∆+3)(2n+1)2(2n+3)2m3(2m+1)(2n−∆)(2n+4m+1)(2n+4m+5)

c∆+4,[2m,2n−4,2m] =
(2n−3)(∆+2n+4)(n+2m)2(n+2m+1)2(2n+2m−1)2(2n+2m+1)2(∆+2n+4m+6)

(2n+1)(∆+2n+2)(n+m−1)(n+m)2(n+m+1)(2n+4m−1)(2n+4m+1)2(2n+4m+3)(∆+2n+4m+4)

c∆+4,[2m,2n,2m] = −
(m+1)(−∆+2n−2)(∆+2n+4)(n+2m+2)2(n+2m+3)(2n+2m+3)(−∆+2n+4m)

256(∆+1)(∆+3)(2m+1)(2m+3)(n+m+1)(n+m+2)(2n+4m+5)(−∆+2n+4m+2)

(n + 1)2(n + 2)m(−∆+2n−2)(2n+2m+3)(−∆+2n+4m)(∆+2n+4m+6)

256(∆+1)(∆+3)(2n+3)(2m−1)(2m+1)(2n−∆)(n+m+1)(n+m+2)

(n−1)n2(m+1)(∆+2n+4)(2n+2m+1)(−∆+2n+4m)(∆+2n+4m+6)

256(∆+1)(∆+3)(2n−1)(2m+1)(2m+3)(∆+2n+2)(n+m)(n+m+1)

−
m(−∆+2n−2)(∆+2n+4)(n+2m)(n+2m+1)2(2n+2m+1)(∆+2n+4m+6)

256(∆+1)(∆+3)(2m−1)(2m+1)(n+m)(n+m+1)(2n+4m+1)(∆+2n+4m+4)

c∆+4,[2m,2n+4,2m] =
(n+1)2(n+2)2(−∆+2n−2)(−∆+2n+4m)

4096(2n+1)2(2n+3)2(2n− ∆)(−∆+2n+4m+2)

c∆+4,[2m+2,2n−4,2m+2] = −
(2n−3)(m+1)5(∆+2n+4)(2n+2m+1)2(−∆+2n+4m)(∆+2n+4m+6)

(∆+1)(∆+3)(2n+1)(2m+1)(4m+3)2(4m+5)2(∆+2n+2)(n+m)(n+m+1)(2n+4m+1)(2n+4m+5)

c∆+4,[2m+2,2n,2m+2] = −
(m+1)5(−∆+2n−2)(∆+2n+4)(−∆+2n+4m)

64(∆+1)(∆+3)(2n−1)(2n+3)(2m+1)(4m+3)2(4m+5)2(−∆+2n+4m+2)

c∆+4,[2m+4,2n−4,2m+4] =
4(2n−3)(m+1)5(m+2)5(∆+2n+4)(−∆+2n+4m)

(2n+1)(2m+1)(2m+3)(4m+3)2(4m+5)2(4m+7)2(4m+9)2(∆+2n+2)(−∆+2n+4m+2)
(C.6)

c∆+6,[2m−2,2n,2m−2] = −
(∆+2)(∆+4)(4m−1)2(4m+1)2(−∆+2n−2)(∆+2n+4)(n+2m)2(n+2m+1)2(2n+2m+1)2(∆+2n+4m+6)

512(∆+3)2m3(2m+1)(2n−∆)(∆+2n+2)(n+m)(n+m+1)(2n+4m−1)(2n+4m+1)2(2n+4m+3)(∆+2n+4m+4)

c∆+6,[2m−2,2n+4,2m−2] = −
(∆+2)(∆+4)(n+1)2(n+2)2(4m−1)2(4m+1)2(−∆+2n−2)(−∆+2n+4m)(∆+2n+4m+6)

32768(∆+3)2(2n+1)2(2n+3)2m3(2m+1)(2n−∆)(−∆+2n+4m+2)(∆+2n+4m+4)

c∆+6,[2m,2n,2m] =
(∆+2)(∆+4)(m+1)(−∆+2n−2)(∆+2n+4)(2n+2m+3)(−∆+2n+4m)2(∆+2n+4m+6)

1024(∆+1)(∆+3)2(∆+5)(2n−1)(2n+3)(2n−∆)(∆+2n+2)(2n+4m+5)(−∆+2n+4m+2)

−
(∆+2)(∆+4)m(−∆+2n−2)(∆+2n+4)(2n+2m+1)(−∆+2n+4m)(∆+2n+4m+6)2

1024(∆+1)(∆+3)2(∆+5)(2n−1)(2n+3)(2n−∆)(∆+2n+2)(2n+4m+1)(∆+2n+4m+4)

c∆+6,[2m+2,2n−4,2m+2] = −
(∆+2)(∆+4)(2n−3)(m+1)5(∆+2n+4)(2n+2m+1)2(−∆+2n+4m)(∆ + 2n+4m+6)

32(∆+3)2(2n+1)(2m+1)(4m+3)2(4m+5)2(∆+2n+2)(n+m)(n+m+1)(−∆+2n+4m+2)(∆+2n+4m+4)

c∆+6,[2m+2,2n,2m+2] = −
(∆+2)(∆+4)(m+1)5(−∆+2n−2)(∆+2n+4)(−∆+2n+4m)

2048(∆+3)2(2m+1)(4m+3)2(4m+5)2(2n−∆)(∆+2n+2)(−∆+2n+4m+2)
(C.7)

c∆+8,[2m,2n,2m] =
(∆+2)(∆+4)2(∆+6)(∆−2n+2)(∆+2n+4)(∆−2n−4m)(∆+2n+4m+6)

65536(∆+3)2(∆+5)2(∆−2n)(∆+2n+2)(∆−2n−4m−2)(∆+2n+4m+4)
(C.8)
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