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Abstract. Abadie and Imbens (2008) showed that the standard naive bootstrap is inconsis-

tent to estimate the distribution of the matching estimator for treatment effects with a fixed

number of matches. This article proposes an asymptotically valid inference method for the

matching estimators based on the wild bootstrap. The key idea is to resample not only the

regression residuals of treated and untreated observations but also the ones to estimate the

average treatment effects. The proposed method is valid even for the case of vector covariates

by incorporating the bias correction method in Abadie and Imbens (2011), and is applicable to

estimate the average treatment effect and the counterpart for the treated population. A simula-

tion study indicates that our wild bootstrap method is favorably comparable to the asymptotic

normal approximation. As an empirical illustration, we apply our bootstrap method to the

National Supported Work data.

1. Introduction

The method of matching is applied widely in empirical research for program evaluations. In
the series of papers, Abadie and Imbens (2006, 2008, 2011, 2012) studied various properties
of the matching estimator for average treatment effects with a fixed number of matches. In
contrast to nonparametric estimation methods for treatment effects (e.g., Heckman, Ichimura
and Todd, 1998, and Hirano, Imbens and Ridder, 2003), Abadie and Imbens’ estimator shows
rather nonstandard behaviors due to the highly nonsmooth functional form caused by the fixed
number of matches. Abadie and Imbens (2006) showed that the matching estimator is not
√
N -consistent in general. Abadie and Imbens (2011) proposed a bias correction method based

on nonparametric series regression. In addition to the nonstandard asymptotic behavior of the
point estimator, Abadie and Imbens (2008) provided an example to show that the standard naive
bootstrap (i.e., resample the observation vector with equal weights) is inconsistent to estimate
the distribution of the matching estimator for treatment effects. As Abadie and Imbens (2008)
argued, the main reason for the failure of the naive bootstrap is that it fails to reproduce the
distribution of the number of times each unit is used as a match. Therefore, Abadie and Imbens
(2008) recommended to use the asymptotic standard error in Abadie and Imbens (2006) or
subsampling in Politis and Romano (1994) for inference.

In this paper, we propose an alternative inference method for the matching estimator based on
the wild bootstrap (Wu, 1986, and Mammen, 1993). We show that even though the naive boot-
strap is inconsistent to estimate the distribution of the matching estimator, the wild bootstrap
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approach can be deliberately applied to estimate consistently the distribution of the estimator.
Indeed, Abadie and Imbens (2008, p. 1546) mentioned possibility of the wild bootstrap for valid
inference. This paper formally confirms this possibility. However, we emphasize that it is not
a trivial task to construct a valid bootstrap counterpart for the matching estimator due to its
nonstandard nature. There are two key features in our wild bootstrap method. First, in the wild
bootstrap, the treatment assignment and covariates are treated as fixed and thus the distribution
of the number of times each unit is used as a match is preserved. Second, we resample not only
the regression residuals of treated and untreated observations but also the ones to estimate the
average treatment effects. By this construction, we can recover the distribution of the matching
estimator. We show the asymptotic validity of the wild bootstrap methods for the average treat-
ment effect and counterpart on the treated population. Also the proposed methods are valid
even for the case of vector covariates by incorporating the bias correction terms in Abadie and
Imbens (2011). A small simulation study indicates that our wild bootstrap method is favorably
comparable to the asymptotic normal approximation. Finally, the proposed method is illustrated
by an empirical analysis using the National Supported Work data.

The paper is organized as follows. Section 2 introduces the basic setup and notation. In
Section 3, we present our wild bootstrap method and show its asymptotic validity. In Section 4,
some simulation evidences are provided. In Section 5, we apply our wild bootstrap method to
the National Supported Work data. Section 6 concludes. All proofs are contained in Appendix
A. Tables and figures are presented in Appendix B.

2. Setup

Let us introduce the basic setup. Our notation closely follows that of Abadie and Imbens
(2006). For each unit i = 1, . . . , N , we observe an indicator variable Wi for a treatment (Wi = 1

if treated and Wi = 0 otherwise), and outcome

Yi =

{
Yi(0) if Wi = 0,

Yi(1) if Wi = 1,

where Yi(0) and Yi(1) are potential outcomes for Wi = 0 and Wi = 1, respectively. Also we
observe a vector of covariates Xi for each unit. Based on the non-experimental observations
{Yi,Wi, Xi}Ni=1 of size N , we wish to conduct inference on the average treatment effect and the
one for the treated population

τ = E[Yi(1)− Yi(0)],

τ t = E[Yi(1)− Yi(0)|Wi = 1],

respectively. Let I{A} be the indicator function for an event A and |x| be the Euclidean norm.
To estimate the treatment effects τ and τ t, we consider the matching estimators based on the
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distance measured by the covariates,

τ̂ =
1

N

N∑
i=1

{Ŷi(1)− Ŷi(0)},

τ̂ t =
1

N1

∑
i:Wi=1

{Yi − Ŷi(0)},

respectively, where N1 =
∑N

i=1 I{Wi = 1} is the number of treated observations, Ŷi(0) and Ŷi(1)

are estimates of the potential outcomes by imputations defined as

Ŷi(0) =

{
Yi if Wi = 0,

1
M

∑
j∈JM (i) Yj if Wi = 1,

Ŷi(1) =

{
1
M

∑
j∈JM (i) Yj if Wi = 0,

Yi if Wi = 1,

and JM (i) is the set of indices of the first M matches for unit i,

JM (i) =

j ∈ {1, . . . , N} : Wj = 1−Wi,
∑

l:Wl=1−Wi

I{|Xl −Xi| ≤ |Xj −Xi|} ≤M

 .

In the estimators τ̂ and τ̂ t, each unit may be used as a match more than once (matching with
replacement). The Euclidean distance | · | for matching may be replaced with the weighted
Euclidean.

In practice, it is common that the number of matches M is small (could be one) even though
the sample size N is large. To characterize the behaviors of the matching estimators τ̂ and τ̂ t

in such a practical scenario, Abadie and Imbens (2006) analyzed the asymptotic properties of
τ̂ and τ̂ t as the sample size N increases to infinity with fixed M (we call it as the fixed-M
asymptotics). Following Abadie and Imbens (2006), we impose the following assumptions. Let
µ(w, x) = E[Y |W = w,X = x], σ2(w, x) = V ar(Y |W = w,X = x), and N0 = N −N1.

Assumption M. (Conditions for τ̂)

(i): {Yi,Wi, Xi}Ni=1 is an i.i.d. sample of (Y,W,X).
(ii): X is continuously distributed on compact and convex support X ⊂ Rk. The density of
X is bounded and bounded away from zero on X.

(iii): W is independent of (Y (0), Y (1)) conditional on X = x for almost every x. There
exists a positive constant c such that Pr{W = 1|X = x} ∈ (c, 1− c) for almost every x.

(iv): For w = 0 and 1, µ(w, x) and σ2(w, x) are Lipschitz in X, σ2(w, x) is bounded away
from zero on X, and E[Y 4|W = w,X = x] is bounded uniformly on X.

Assumption Mt. (Conditions for τ̂ t)

(i): Conditional on Wi = w, the sample consists of independent draws from Y,X|W = w

for w = 0, 1. For some r ≤ 1, N r
1/N0 → θ ∈ (0,∞).

(ii): X is continuously distributed on compact and convex support X ⊂ Rk. The density of
X is bounded and bounded away from zero on X.

(iii): W is independent of Y (0) conditional on X = x for almost every x. There exists a
positive constant c such that Pr{W = 1|X = x} < 1− c for almost every x.
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(iv): For w = 0, 1, µ(w, x) and σ2(w, x) are Lipschitz in X, σ2(w, x) is bounded away from
zero on X, and E[Y 4|W = w,X = x] is bounded uniformly on X.

The same comments to Abadie and Imbens (2006) apply. Assumption M is used for the estima-
tor τ̂ of the average treatment effect. Assumption M (i) is on the sampling process. Assumption
M (ii) is on the distribution form of the covariates X. The assumption that X is continuously
distributed can be relaxed. Discrete covariates with finite support can be accommodated by
using the subsamples. Such discrete covariates do not change the asymptotic results below.
Assumption M (iii) contains standard unconfoundedness and overlap conditions to identify the
average treatment effect τ . Assumption M (iv) lists boundedness and smoothness conditions for
the conditional mean and variance functions. Assumption Mt is used for the estimator τ̂ t on
the treated population and similar comments to Assumption M apply. Assumption Mt (iii) is
weaker than Assumption M (iii) to allow conditional independence instead of full independence
and overlap over a subset of support X.

Under Assumption M, Abadie and Imbens (2006, Theorems 3 and 4) showed that τ̂ p→ τ and
√
N(τ̂ −BN − τ)

σN

d→ N(0, 1), (1)

as N →∞ (but M is fixed), where BN and σ2
N are asymptotic bias and variance terms, respec-

tively, defined as

BN =
1

N

N∑
i=1

(2Wi − 1)

 1

M

∑
j∈JM (i)

{µ(1−Wi, Xi)− µ(1−Wi, Xj)}

 ,

σ2
N = σ2

1N + σ2
2,

σ2
1N =

1

N

N∑
i=1

(
1 +

1

M

N∑
l=1

I{i ∈ JM (l)}

)2

σ2(Wi, Xi),

σ2
2 = E[{(µ(1, Xi)− µ(0, Xi))− τ}2]. (2)

Also, under Assumption Mt, Abadie and Imbens (2006) showed τ̂ t p→ τ and
√
N1(τ̂ t −Bt

N − τ t)
σtN

d→ N(0, 1), (3)

where

Bt
N =

N∑
i=1

Wi

 1

M

∑
j∈JM (i)

{µ(0, Xi)− µ(0, Xj)}

 ,

(σtN )2 = (σt1N )2 + (σt2)2,

(σt1N )2 =
1

N1

N∑
i=1

(
Wi + (1−Wi)

1

M

N∑
l=1

I{i ∈ JM (l)}

)2

σ2(Wi, Xi),

(σt2)2 = E[{(µ(1, Xi)− µ(0, Xi))− τ t}2|Wi = 1]. (4)

In empirical applications, the number of matches M is typically small (could be one) even for
large sample sizes. The fixed-M asymptotics in (1) and (3) provide useful approximations for
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the distributions of the matching estimators τ̂ and τ̂ t in such a situation. A key feature of
the asymptotic distributions in (1) and (3) is the presence of the bias terms BN and Bt

N that
depend on M . As shown in Abadie and Imbens (2006, Theorems 1 and 2), these bias terms
satisfy BN = Op(N

−1/k) and Bt
N = Op(N

−r/k
1 ), where k is the dimension of X and r appears in

Assumption Mt (i). Therefore, if k ≥ 2, the matching estimator τ̂ is not
√
N -consistent for τ .

Also, if k ≥ 2r, the estimator τ̂ t is not
√
N1-consistent for τ t.

In order to deal with these problems, Abadie and Imbens (2011) estimated the bias terms BN
and Bt

N by

B̂N =
1

N

N∑
i=1

(2Wi − 1)

 1

M

∑
j∈JM (i)

{µ̂(1−Wi, Xi)− µ̂(1−Wi, Xj)}

 , (5)

B̂t
N =

1

N1

N∑
i=1

Wi

 1

M

∑
j∈JM (i)

{µ̂(0, Xi)− µ̂(0, Xj)}

 ,

respectively, where µ̂(w, x) is a nonparametric estimator of µ(w, x). The requirements on µ̂(w, x)

are presented in Theorem 1 below. Abadie and Imbens (2011, Theorem 2) employed a series
estimator for µ̂(w, x) with the series length increasing to infinity, and showed

√
N(B̂N−BN )

p→ 0

and
√
N1(B̂t

N−Bt
N )

p→ 0 under suitable conditions allowing X to be a vector. These surprisingly
fast convergence rates follow from the fact that B̂N and B̂t

N basically estimate the contrast
µ(w, ẋ) − µ(w, x) with ẋ − x → 0. However, in contrast to the number of matches M , the
series length should increase to infinity to guarantee the fast convergence rate. Based on (1)
and (3), the bias corrected estimators are obtained as τ̃ = τ̂ − B̂N and τ̃ t = τ̂ t − B̂t

N , and
these estimators achieve the

√
N -consistency

√
N(τ̃ − τ)/σN

d→ N(0, 1) and
√
N1-consistency√

N1(τ̃ t − τ t)/σtN
d→ N(0, 1) (Abadie and Imbens, 2011, Theorem 2). Since the asymptotic

variances σ2
N and (σtN )2 can be consistently estimated (see, Theorem 6 of Abadie and Imbens,

2006), these asymptotic normality results on τ̃ and τ̃ t yield the asymptotic t confidence intervals
for τ and τ t.

Alternatively, we may consider bootstrap inference based on some resampling scheme. How-
ever, Abadie and Imbens (2008) provided an example showing that the naive bootstrap method
(i.e., resampling from the observations {Yi,Wi, Xi}Ni=1 with uniform weights) cannot consistently
estimate the distributions of

√
N(τ̃ − τ) and

√
N1(τ̃ t − τ t) under the fixed-M asymptotics.

The main reason is that the naive bootstrap fails to reproduce the distribution of the number
of times each unit is used as a match. To best of our knowledge, currently there is no valid
bootstrap procedure to approximate the distributions of

√
N(τ̃ − τ) and

√
N1(τ̃ t − τ t) under

the fixed-M asymptotics. Indeed, Abadie and Imbens (2008, p. 1546) conjectured that a wild
bootstrap method may be employed to estimate consistently the distributions of

√
N(τ̃ − τ) and

√
N1(τ̃ t − τ t). In this paper, we confirm their conjecture by developing a new wild bootstrap

method that is asymptotically valid under the fixed-M asymptotics.
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3. Wild Bootstrap

In this section, we present asymptotically valid bootstrap procedures to estimate the distri-
butions of

√
N(τ̃ − τ) and

√
N1(τ̃ t− τ t) based on the bias corrected estimators τ̃ = τ̂ − B̂N and

τ̃ t = τ̂ t − B̂t
N for the treatment effects.

We first describe the bootstrap procedure for τ̃ . By the definitions of τ̂ and B̂N and the fact
that µ̂(1−Wi, Xj) = µ̂(Wj , Xj) for j ∈ J (i), the estimator τ̃ is written as a linear form

τ̃ =
1

N

N∑
i=1

(2Wi − 1)

{Yi − µ̂(1−Wi, Xi)}+
1

M

∑
j∈J (i)

{Yj − µ̂(1−Wi, Xj)}


= τ̃ +

1

N

N∑
i=1

(2Wi − 1)

êi +
1

M

∑
j∈J (i)

êj

+ ξ̂i, (6)

where êi = Yi−µ̂(Wi, Xi) and ξ̂i = (2Wi−1){µ̂(Wi, Xi)−µ̂(1−Wi, Xi)}−τ̃ . The expression in (6)
is insightful since êi and ξ̂i can be interpreted as residual components. Indeed, if we consider the
population counterparts ei = Yi−µ(Wi, Xi) and ξi = (2Wi−1){µ(Wi, Xi)−µ(1−Wi, Xi)}−τ of
êi and ξ̂i, respectively, then the variance components σ2

1N and σ2
2 appeared in (2) can be written

as

σ2
1N = V ar

 1√
N

N∑
i=1

(2Wi − 1)

ei +
1

M

∑
j∈J (i)

ej

∣∣∣∣∣∣W,X

 ,

σ2
2 = V ar

(
1√
N

N∑
i=1

ξi

)
,

respectively, where W = (W1, . . . ,WN ) and X = (X1, . . . , XN ). Therefore, it is natural to
resample the residuals êi and ξ̂i by the wild bootstrap (Wu, 1986) to recover the asymptotic
variance σ2

N of the bias corrected estimator τ̃ . Let Z = (Z1, . . . , Zn), where Zi = (Yi,Wi, X
′
i)
′.

Precisely speaking, we construct the bootstrap counterpart of τ̃ as

τ̃∗ = τ̃ +
1

N

N∑
i=1

(2Wi − 1)

êiε∗i +
1

M

∑
j∈J (i)

êjε
∗
j

+ ξ̂iε
∗
i , (7)

where {ε∗i }Ni=1 is an i.i.d. sequence satisfying

E[ε∗i |Z] = 0, E[ε∗2i |Z] = 1, E[ε∗4i |Z] < +∞.

For example, as in Mammen (1993), we can draw ε∗i from the two-point distribution,

ε∗i =

{
−(
√

5− 1)/2 with probability (
√

5 + 1)/2
√

5

(
√

5 + 1)/2 with probability (
√

5− 1)/2
√

5
. (8)

In the simulation study below, we employ this distribution. For more discussions on the choice
for ε∗i , see Liu (1988) and Davidson and Flachaire (2008).
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In the same manner, we can construct the bootstrap counterpart of τ̃ t as

τ̃ t∗ = τ̃ t +
1

N1

∑
Wi=1

êiε∗i +
1

M

∑
j∈J (i)

êjε
∗
j

+ ξ̂iε
∗
i (9)

where ε∗i satisfies the same conditions above.
Let λ = (λ1, . . . , λk)

′ be a k-dimensional vector of non-negative integers and ∂λa(x) =

∂
∑k

l=1 λla(x)/∂xλ11 · · · ∂x
λk
k . Define |a(·)|d = max∑k

l=1 λl≤d
supx∈X |∂λa(x)|. Our main theorem,

validity of the wild bootstrap procedures, is presented as follows.

Theorem 1. Suppose that for w ∈ {0, 1}, the derivatives ∂λµ(w, x) exist for all λ with
∑k

l=1 λl =

k and satisfy supx∈X |∂λµ(w, x)| ≤ C for some C > 0, and |µ̂(w, ·)−µ(w, ·)|k−1 = op(N
−1/2+1/k).

(i): Under Assumption M,

sup
t
|Pr{

√
N(τ̃∗ − τ̃) ≤ t|Z} − Pr{

√
N(τ̃ − τ) ≤ t}| p→ 0.

(ii): Under Assumption Mt,

sup
t
|Pr{

√
N1(τ̃ t∗ − τ̃ t) ≤ t|Z} − Pr{

√
N1(τ̃ t − τ t) ≤ t}| p→ 0.

This theorem says that the distributions of the wild bootstrap counterparts
√
N(τ̃∗ − τ̃) and

√
N1(τ̃ t∗ − τ̃ t) consistently estimate those of the target objects

√
N(τ̃ − τ) and

√
N1(τ̃ t − τ t)

under the Kolmogorov distance, respectively. For example, let q∗α be the (1 − α)-th quantile of
|τ̃∗− τ̃ |, which can be estimated by simulating ε∗i . Then based on Theorem 1 (i), the 100(1−α)%

symmetric bootstrap confidence interval of τ is obtained as [τ̃ − q∗α, τ̃ + q∗α]. In the simulation
below, we use this confidence interval.

The condition on µ̂(w, ·) is required to guarantee sufficiently fast convergence rates on the bias
estimators B̂N and B̂t

N in (5), i.e.,
√
N(B̂N −BN )

p→ 0 and
√
N1(B̂t

N −Bt
N )

p→ 0. For example,
µ̂(w, ·) can be a series estimator with a suitable choice of the series length (see, Lemma A.1
of Abadie and Imbens, 2011). Other candidates of µ̂(w, ·) are the kernel estimator and nearest
neighborhood estimator with adequate trimming (Stone, 1977). For any choice of µ̂(w, ·), we
need to choose a tuning constant that varies with N to guarantee the fast convergence of B̂N
and B̂t

N .

4. Simulation

In this section, we present some simulation evidence to illustrate our theoretical result. Based
on Frölich (2004) and Busso, DiNardo and McCrary (2014), we consider the following data
generating process for {Yi,Wi, Xi}Ni=1,

Yi(1) = τ +m(Xi) + εi,

Yi(0) = m(Xi) + εi,

Wi = I{Xi ≤ νi},

Xi = α+ βZi,
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where νi and Zi are uniformly distributed on [0, 1]. The average treatment effect is set as τ = 0.
For the error term εi, we consider two cases, εi ∼ N(0, 0.22) and centered lognormal with the
standard deviation 0.2. We consider 48 data generating processes (four designs of (α, β) and six
curves of m(·)) summarized in Table 1.

Although k = 1 and thus τ̂ is
√
N -consistent without bias correction, we consider the bias

corrected estimator τ̃ = τ̂ − B̂N , where B̂N is estimated by the OLS of the linear regression
µ̂i = γ̂0 + γ̂1Xi. The perturbation ε∗i for the wild bootstrap resample is drawn from the two-
point distribution in (8). For each simulation, we report 90% and 95% coverage rates of the
wild bootstrap and asymptotic t confidence intervals.1 The standard error of the asymptotic
t is computed by the method in Abadie and Imbens (2006). We also report average lengths
(over Monte Carlo replications) of the confidence intervals. The sample size is set as N = 100.
Simulation results based on 10,000 replications are displayed in Tables 2 and 3 for the normal
and lognormal ε cases, respectively.

Our findings are summarized as follows. First, across all cases the coverages of our wild
bootstrap confidence interval are reasonably close to the nominal ones. This result shows that the
wild bootstrap approximation works well even for the moderate sample size N = 100. Second,
compared to the asymptotic t confidence interval, the wild bootstrap shows better coverage
properties. In particular, for the case of Design 1 with Curve 6, the coverage rates of the
90% wild bootstrap confidence intervals are 0.8948 and 0.9011 for the normal and lognormal
cases, respectively. However the asymptotic t confidence intervals show under-coverage, 0.7852
and 0.7461, respectively. Finally, the average lengths of the wild bootstrap and asymptotic t
confidence intervals are comparable except for some cases where the asymptotic t shows under-
coverage.

To assess the power properties, we plot the power curves of the wild bootstrap and asymptotic
t tests for the null hypothesis H0 : τ = 0 with the 5% significance level for the case of Design 1
with Curve 1 in Figures 1 (normal case) and 2 (lognormal case). For the normal case, the power
curves of two tests are very similar. For the lognormal case, the wild bootstrap test is slightly
more powerful than the asymptotic t test.

Overall our simulation results are encouraging: the wild bootstrap method developed in this
paper is favorably comparable to the asymptotic t method in Abadie and Imbens (2006, 2011).

5. Empirical Application

In this section, we apply the wild bootstrap method to the National Supported Work (NSW)
data. The NSW demonstration was a program that aimed to provide temporary job experiments
for individuals with longstanding employment problems. The candidates were randomly assigned
to the treatment group (received all benefit of the NSW program) and control group (did not
receive any benefit). Due to its random assignment property, researchers are able to estimate

1In a preliminary simulation study, we also computed the naive bootstrap confidence intervals (i.e., resample
{Yi,Wi, Xi}Ni=1 with uniform weights), which is inconsistent under the fixed-M asymptotics. For all cases, the
90% and 95% coverage rates are 1 and its confidence intervals are longer than the asymptotic t and wild bootstrap
ones. For example, for Design 1 and Curve 1, the average length of the naive bootstrap confidence intervals is
0.2250 (the asymptotic t is 0.1737 and wild bootstrap is 0.1701).

8



consistently the treatment effect τ t for the treated population. Together with non-experimental
data from outside, we can evaluate the bias of non-experimental estimators. The data was first
analyzed by Lalonde (1986) and subsequently by Heckman and Hotz (1989), Dehejia and Wahba
(1999, 2002) (hereafter, DW), Smith and Todd (2005), among others. Here we use the sample
uploaded by DW. The first experimental sample is the one used by Lalonde (1986). It includes
a male sample with ex-addict, ex-offender, and/or high school dropout having complete ex-ante
and ex-post earning data. The second experimental data is the one used by DW. This is a
subset of the first sample satisfying either randomly assigned in January through April of 1976
or randomly assigned in October of 1976 through August of 1977 with zero earning in 13-24
months before the random assignment. Two non-experimental data were created by Lalonde
(1986) and then used by DW. The first sample is drawn from the Current Population Survey
(CPS) with matched Social Security earnings data. It includes all male samples in the CPS
less than 55 years old. The second sample is drawn from the Panel Study Income Dynamics
(PSID). It contains all male household heads who were less than 55 years old and did not classify
themselves as retired in 1975. To summarize the data, Table 4 reports the mean, standard error,
and normalized distance between the experimental data and non-experimental control groups.
Two NSW data has very similar characteristics except the real earnings in 1975 (RE 75). This
is because the DW data contains more portion of zero earning data. We can also see the clear
difference between the experimental and non-experimental samples. Specifically, age, marital
status, ethnicity, and earnings are largely different. Following Abadie and Imbens (2011), we
report the normalized distance between the experimental data and non-experimental control
groups in the last six rows. The normalized distance is defined as

X̄1 − X̄0√
(S2

0 + S2
1)/2

,

where X̄w =
∑

i:Wi=w
Xi/Nw and Sw =

∑
i:Wi=w

(Xw − X̄w)2/(Nw − 1).2 As expected, the
experimental and non-experimental control groups have larger difference (in absolute value),
which implies difficulty of finding a good match.

For each treatment control pair and the number of matches M , we compute three different
standard errors to assess the difference of three inference methods: (i) the asymptotic standard
error by Abadie and Imbens (2006), (ii) wild bootstrap proposed in this paper, and (iii) naive
bootstrap which is inconsistent under the fixed-M asymptotics.3

Table 5 summarizes the results for these matching estimates and standard errors. The first row
presents the mean differences of treatment/control group. The unbiased estimates of the average
treatment effect on treated are 886.30 and 1794.34 for the Lalonde and DW samples, respectively.
The simple covariate matching works well for the DW sample, but not for the Lalonde sample.
For the standard errors, we find that the asymptotic and wild bootstrap methods provide similar
values in general. On the other hand, the naive bootstrap standard error tends to take somewhat

2Note that the normalized distance is different from the t-statistic (X̄1−X̄0)/
√
S2
0/N0 + S2

1/N1 for null hypothesis
E[X1] = E[X0].
3The matching is based on the Mahalanobis distance. We use the simple linear regression to compute µ̂(w, x) for
the bias correction and wild bootstrap.
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different values compared to the others. This result suggests that statistical inference based on
the naive bootstrap can be problematic and it is reasonable to employ the asymptotic normal or
wild bootstrap inference, which are consistent under the fixed-M asymptotics.

6. Conclusion

This paper proposes a wild bootstrap inference method for the matching estimator of treatment
effects. In contrast to the naive bootstrap, our wild bootstrap method is asymptotically valid
under the asymptotics with a fixed number of matches. Our method is applicable for both
the average treatment effect and the counterpart for the treated population. Simulation results
indicate that the wild bootstrap method works well in finite samples and favorably comparable
with the asymptotic normal approximation. Although it is beyond the scope of this paper, it
would be interesting to extend the higher order analysis for the wild bootstrap (Kline and Santos,
2012) to the fixedM -asymptotics and to investigate higher order properties of our wild bootstrap
method. Also an extension of the wild bootstrap method to the propensity score matching is
currently under investigation by the authors.
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Appendix A. Mathematical Appendix

A.1. Proof of Theorem 1 (i). We first show
√
N(B̂N − BN )

p→ 0. Since |2Wi − 1| = 1, the
argument in Abadie and Imbens (2011, p. 9) based on Taylor expansions implies

|B̂N −BN | ≤ max
i=1,...,N,j∈JM (i)

∑
w=0,1

|{µ̂(w,Xi)− µ̂(w,Xj)} − {µ(w,Xi)− µ(w,Xj)}|

≤
∑
w=0,1

|µ̂(w, ·)− µ(w, ·)|k−1

k−1∑
d=1

1

d!

∑
λ∈Λd

max
i=1,...,N,j∈JM (i)

|Xi −Xj |d + op(N
−1/2),

where Λd is the set of k-vectors λ of non-negative integers with
∑k

l=1 λl = d. By Abadie and
Imbens (2006, Lemma 1), maxi=1,...,N,j∈JM (i) |Xi − Xj |d = Op(N

−d/k). Thus, the assumption
|µ̂(w, ·)− µ(w, ·)|k−1 = op(N

−1/2+1/k) implies
√
N(B̂N −BN )

p→ 0.
We now consider the bootstrap counterpart τ̃∗. Let us introduce some notation

KM (i) =
N∑
l=1

I{i ∈ JM (l)}, ei = Yi − µ(Wi, Xi),

ξi = (2Wi − 1){µ(Wi, Xi)− µ(1−Wi, Xi)} − τ,

τi = µ(1, Xi)− µ(0, Xi).

Then τ̃∗ in (7) is rewritten and decomposed as

τ̃∗ = τ̃ +
1

N

N∑
i=1

(2Wi − 1)

êiε∗i +
1

M

∑
j∈J (i)

êjε
∗
j

+ ξ̂iε
∗
i ,

= τ̃ +
1

N

N∑
i=1

[
(2Wi − 1){1 +M−1KM (i)}êi + ξ̂i

]
ε∗i

= τ̃ + T ∗N +R∗1N +R∗2N ,

where

T ∗N =
1

N

N∑
i=1

[
(2Wi − 1){1 +M−1KM (i)}ei + ξi

]
ε∗i ,

R∗1N =
1

N

N∑
i=1

(2Wi − 1){1 +M−1KM (i)}{µ(Wi, Xi)− µ̂(Wi, Xi)}ε∗i ,

R∗2N =
1

N

N∑
i=1

ξ̂i − ξi.

Thus, it is enough to show that

sup
t
|Pr{

√
NT ∗N ≤ t|Z} − Pr{

√
N(τ̃ − τ) ≤ t}| p→ 0, (10)

√
N(R∗1N +R∗2N )

p→ 0. (11)
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First, we show (10). From Polya’s theorem and (1) shown by Abadie and Imbens (2006,
Theorem 4), it is enough for (10) to verify

V ar(
√
NT ∗N |Z)− σ2

N
p→ 0, (12)

Pr{
√
NT ∗N/σN ≤ t|Z} − Φ(t)

p→ 0 for all t ∈ R, (13)

where Φ(t) is the standard normal distribution function.
To show (12), denote V ar(

√
NT ∗N |Z) = σ̂2

1N + σ̂2
2 + 2CN where

σ̂2
1N =

1

N

N∑
i=1

{1 +M−1KM (i)}2e2
i ,

σ̂2
2N =

1

N

N∑
i=1

(τi − τ)2,

CN =
1

N

N∑
i=1

(2Wi − 1){1 +M−1KM (i)}ei(τi − τ).

By the standard law of large number, σ̂2
2N

p→ σ2
2. For σ̂2

1N note that

E[(σ̂2
1N − σ2

N )2] =
1

N
E
[
{1 +M−1KM (i)}4E[{e2

i − σ2(Wi, Xi)}2|Wi, Xi]
]

≤ 1

N
E[{1 +M−1KM (i)}4] sup

w∈{0,1},x∈X
E[e4

i |Wi = w,Xi = x]

→ 0,

where the convergence follows from Assumption M (iv) and boundedness of E[KM (i)q] for all
q > 0 uniformly over N (Lemma 3 of Abadie and Imbens, 2006). Thus, the Markov inequality
implies |σ̂2

1N − σ2
1N |

p→ 0. Similarly, by Cauchy-Schwarz inequality, we obtain

E[C2
N ] =

1

N
E
[
{1 +M−1KM (i)}2e2

i (τi − τ)2
]

≤ 1

N
E[{1 +M−1KM (i)}4]1/2

(
E[(τi − τ)4] sup

w∈{0,1},x∈X
E[e4

i |Wi = w,Xi = x]

)1/2

→ 0

and thus, CN
p→ 0. Therefore, (12) is verified.

Now denote ηi = (2Wi − 1){1 +M−1KM (i)}ei + ξi. so that T ∗N = N−1
∑N

i=1 ηiε
∗
i . Since ηi is

a deterministic function of Z, T ∗N is a sum of independent variables given Z. Thus, for (13), it is
enough to verify the Lindeberg condition

1

N

N∑
i=1

E[(ηiε
∗
iσ
−1
N )2I{|ηiε∗iσ−1

1 | > δ
√
N}|Z]

p→ 0, (14)

for each δ > 0. By the Cauchy-Schwarz and Markov inequalities, we obtain

E[(ηiε
∗
iσ
−1
N )2I{|ηiε∗iσ−1

N | > δ
√
N}|Z] ≤ E[(ηiε

∗
iσ
−1
N )4|Z]/(δ2N)

= η4
iE[ε∗4i |Z]/(σ4

Nδ
2N).
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Since (a) E[ε∗4i |Z] is bounded (assumption on ε∗4i ), (b) σ4
N is uniformly bounded from below

(σ4
N ≥ infw∈{0,1},x∈X σ

4(w, x)), and (c) 1
N

∑N
i=1 η

4
i = Op(1) (Lemma 1 below), the Lindeberg

condition in (14) follows and (13) is verified.
Next, we show (11). By |2Wi − 1| = 1 and the Cauchy-Schwarz inequality, the term R∗1N

satisfies

E[NR∗21N ] ≤
√
E[{1 +M−1KM (i)}4ε∗4i ]E[{µ(Wi, Xi)− µ̂(Wi, Xi)}4]→ 0,

where the convergence follows from E[{µ(Wi, Xi) − µ̂(Wi, Xi)}4] → 0 (by the assumption on
µ̂(w, ·)) and boundedness of E[KM (i)}4] and E[ε∗4i |Z]. Thus the Markov inequality implies
R∗1N = op(N

−1/2). For R∗2N , decompose

R∗2N =
1

N

N∑
i=1

(2Wi − 1){µ(Wi, Xi)− µ̂(Wi, Xi)}ε∗i

− 1

N

N∑
i=1

(2Wi − 1){µ(1−Wi, Xi)− µ̂(1−Wi, Xi)}ε∗i .

By applying a similar argument to R∗1N , we obtain R∗2N = op(N
−1/2). Therefore, the conclusion

follows.

Lemma 1. Under Assumption M, it holds 1
N

∑N
i=1 η

4
i = Op(1).

Proof: Decompose

η4
i = {1 +M−1KM (i)}4e4

i + 4{1 +M−1KM (i)}3e3
i ξi + 6{1 +M−1KM (i)}2e2

i ξ
2
i

+4{1 +M−1KM (i)}eiξ3
i + ξ4

i .

Since E[Y 4|W = w,X = x] is uniformly bounded over w and x, maxq∈{1,...,4}E[|ei|q|Z] < C for
some C > 0. By Abadie and Imbens (2006, Lemma 3), E[KM (i)q] is also uniformly bounded
for any q. By Lipschitz continuity of µ and compact support of X, it holds |ξi| < C ′ for some
C ′ > 0. Thus, we have

E

[∣∣∣∣∣ 1

N

N∑
i=1

η4
i

∣∣∣∣∣
]
≤ 1

N

N∑
i=1

E[{1 +M−1KM (i)}4e4
i ] +

4

N

N∑
i=1

E[{1 +M−1KM (i)}3|ei|3|ξi|]

+
6

N

N∑
i=1

E[{1 +M−1KM (i)}2e2
i ξ

2
i ] +

4

N

N∑
i=1

E[{1 +M−1KM (i)}|ei||ξi|3] +
1

N

N∑
i=1

E[ξ4
i ]

≤ E[{1 +M−1KM (i)}4]C + 4E[{1 +M−1KM (i)}3]CC ′ + 6E[{1 +M−1KM (i)}2]CC ′2

+4E[{1 +M−1KM (i)}]CC ′3 + C ′4

= C ′′ <∞.

By Markov inequality,

Pr

{∣∣∣∣∣ 1

N

N∑
i=1

η4
i

∣∣∣∣∣ > c

}
<

1

c
E

[∣∣∣∣∣ 1

N

N∑
i=1

η4
i

∣∣∣∣∣
]
<
C ′′

c
,
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for any c > 0, and the conclusion follows.

A.2. Proof of Theorem 1 (ii). The proof is similar to that of Part (i). By the same argument,
it holds

√
N1(B̂t

N −Bt
N )

p→ 0. Note that (9) can be rewritten as

τ̃ t∗ = τ̃ t +
1

N1

∑
Wi=1

êiε∗i +
1

M

∑
j∈J (i)

êjε
∗
j

+ ξ̂iε
∗
i ,

= τ̃ t +
1

N1

N∑
i=1

{
Wi(êi + ξ̂i) + (1−Wi)M

−1KM (i)êi

}
ε∗i

= τ̃ t + T t∗N +Rt∗1N +Rt∗2N ,

where

T t∗N =
1

N1

N∑
i=1

{
Wi(ei + ξi) + (1−Wi)M

−1KM (i)ei
}
ε∗i ,

Rt∗1N =
1

N1

N∑
i=1

(Wi{µ(Wi, Xi)− µ̂(Wi, Xi)}

+ (1−Wi){1 +M−1KM (i)}{µ(Wi, Xi)− µ̂(Wi, Xi)}
)
ε∗i ,

Rt∗2N =
1

N1

∑
i;Wi=1

ξ̂i − ξi.

Thus, the following conditions are sufficient for the result.

sup
t
|Pr{

√
N1T

t∗
N ≤ t|Z} − Pr{

√
N1(τ̃ t − τ t) ≤ t}| p→ 0, (15)√

N1(Rt∗1N +Rt∗2N )
p→ 0. (16)

First we show (15). Since Abadie and Imbens (2006) have shown the asymptotic normality of
√
N1(τ̃ t − τ t)/σtN , it is enough to show the following condition

V ar(
√
N1T

t∗
N |Z)− (σtN )2 p→ 0, (17)

|Pr{
√
N1T

t∗
N ≤ t|Z} − Φ(t)| p→ 0, for all t ∈ R (18)

We first show (17). Note that

V ar(
√
N1T

t∗
N |Z) = (σ̂t1N )2 + (σ̂t2N )2 + 2CtN ,

(σ̂t1N )2 =
1

N1

N∑
i=1

{
Wi + (1−Wi)M

−1KM (i)
}2
e2
i ,

(σ̂t2N )2 =
1

N1

∑
i:Wi=1

(τi − τ)2,

CtN =
1

N1

N∑
i=1

{
Wi + (1−Wi)M

−1KM (i)
}
ei(τi − τ).
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By the law of large numbers, (σ̂t2N )2 p→ (σt2)2. For (σ̂t1N )2, note that

E[{(σ̂t1N )2 − (σt1N )2}2]

= E

[
1

N2
1

N∑
i=1

Wi{e2
i − σ2(Wi, Xi)}2

]
+ E

[
1

N2
1

N∑
i=1

(1−Wi)
(
M−1KM (i)

)4 {e2
i − σ2(Wi, Xi)}2

]

≤ 1

N1
sup

w∈{0,1},x∈X
E[e4

i |Wi = w,Xi = x]

+
1

N1

N0

N1
E[{M−1KM (i)}4|Wi = 0] sup

w∈{0,1},x∈X
E[e4

i |Wi = w,Xi = x]

→ 0,

where the last line follows from the uniform boundedness of N0
N1
E[{M−1KM (i)}4|Wi = 0] (Lemma

3 (iii) Abadie and Imbens 2006). By Markov inequality, it holds |(σ̂t1N )2− (σt1N )2| p→ 0. Finally,
by Cauchy-Schwarz inequality,

E[Ct2N ] = E

[
1

N2
1

N∑
i=1

Wie
2
i (τi − τ)2

]
+ E

[
1

N2
1

N∑
i=1

(1−Wi)
(
M−1KM (i)

)2
e2
i (τi − τ)2

]

≤ 1

N1
E[(τi − τ)2|Wi = 1] sup

w∈{0,1},x∈X
E[e4

i |Wi = w,Xi = x]

+
1

N1

N0

N1
E[{M−1KM (i)}4|Wi = 0]1/2

(
E[(τi − τ)4|Wi = 0] sup

w∈{0,1},x∈X
E[e4

i |Wi = w,Xi = x]

)1/2

→ 0.

holds. By Markov inequality, it holds E[CtN ]
p→ 0 and thus (17) follows.

Let ηti = Wi(ei + ξi) + (1 −Wi)M
−1KM (i)ei so that T t∗N = N−1

1

∑N
i=1 η

t
iε
∗
i . Conditional on

the sample Z, T t∗N is a sum of independent random variable. Thus, the Lindeberg condition

1

N1

N∑
i=1

E[(ηtiε
∗
i /σ

t
N )2I{|ηtiε∗i /σtN | > δ

√
N}|Z]

p→ 0, (19)

is sufficient for (18). Note that

E[(ηtiε
∗
i /σ

t
N )2I{|ηtiε∗i /σtN | > δ

√
N}|Z] ≤ E[(ηtiε

∗
i /σ

t
N )4|Z]/(δ2N)

= ηtiE[(ε∗i /σ
t
1N )4|Z]/(δ2N).

Since (a) E[ε∗4i |Z] is bounded (assumption on ε∗4i ), (b) (σtN )4 is uniformly bounded from below
((σtN )4 ≥ infw∈{0,1},x∈X σ

4(w, x)), and (c) 1
N1

∑N
i=1(ηti)

4 = Op(1) (similar argument to Lemma
1), the Lindeberg condition follows.

The proof of (16) is similar to that of Part (i) and thus is omitted.
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Appendix B. Tables and Figures

Table 1. Simulation designs

Design α β Control-treated ratio
1 0.15 0.7 1:1
2 0.3 0.4 1:1
3 0.5 0.4 7:3
4 0.6 0.2 7:3

Curves m(X)

1 0.15 + 0.7X
2 0.1 +X/2 + exp(−200(X − 0.7)2)/2
3 0.8− 2(X − 0.9)2 − 5(X − 0.7)3 − 10(X − 0.6)10

4 0.2 +
√

1−X − 0.6(0.9−X)2

5 0.2 +
√

1−X − 0.6(0.9−X)2 − 0.1X cos(30X)
6 0.4 + 0.25 sin(8X − 5) + 0.4 exp(−16(4X − 2.5)2)
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Table 2. Coverage rates for normal ε case

Wild bootstrap Asymptotic t
Average Average

Design Curve 90% CI 95% CI CI length 90% CI 95% CI CI length
1 1 0.8798 0.9349 0.1701 0.8843 0.9379 0.1737

2 0.8864 0.9393 0.2007 0.8366 0.9035 0.1803
3 0.8831 0.9350 0.1745 0.8764 0.9310 0.1733
4 0.8800 0.9342 0.1729 0.8792 0.9323 0.1735
5 0.8790 0.9346 0.1759 0.8753 0.9316 0.1750
6 0.8948 0.9457 0.2296 0.7852 0.8588 0.1789

2 1 0.8878 0.9409 0.1618 0.8897 0.9440 0.1642
2 0.9034 0.9496 0.1785 0.8776 0.9333 0.1664
3 0.8891 0.9395 0.1622 0.8906 0.9402 0.1641
4 0.8861 0.9383 0.1620 0.8879 0.9399 0.1639
5 0.8915 0.9428 0.1645 0.8886 0.9422 0.1641
6 0.9285 0.9685 0.1943 0.8744 0.9298 0.1655

3 1 0.8746 0.9265 0.1775 0.8777 0.9307 0.1818
2 0.8556 0.9164 0.2432 0.7352 0.8102 0.1885
3 0.8669 0.9249 0.1783 0.8684 0.9271 0.1814
4 0.8686 0.9219 0.1785 0.8741 0.9251 0.1827
5 0.8715 0.9275 0.1842 0.8679 0.9236 0.1844
6 0.8957 0.9465 0.2113 0.8388 0.9018 0.1845

4 1 0.8804 0.9328 0.1730 0.8838 0.9363 0.1765
2 0.8991 0.9480 0.2108 0.8362 0.8970 0.1793
3 0.8806 0.9346 0.1730 0.8863 0.9384 0.1766
4 0.8818 0.9380 0.1730 0.8876 0.9404 0.1766
5 0.8755 0.9287 0.1765 0.8731 0.9291 0.1777
6 0.8910 0.9402 0.1766 0.8890 0.9386 0.1770
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Table 3. Coverage rates for lognormal ε case

Wild bootstrap Asymptotic t
Average Average

Design Curve 90% CI 95% CI CI length 90% CI 95% CI CI length
1 1 0.8993 0.9542 0.1563 0.8877 0.9480 0.1615

2 0.9007 0.9523 0.1909 0.8236 0.8927 0.1689
3 0.8992 0.9500 0.1609 0.8730 0.9349 0.1605
4 0.9050 0.9591 0.1577 0.8877 0.9450 0.1593
5 0.9058 0.9571 0.1640 0.8842 0.9419 0.1636
6 0.9011 0.9530 0.2231 0.7461 0.8270 0.1678

2 1 0.9079 0.9548 0.1493 0.8950 0.9480 0.1531
2 0.9331 0.9693 0.1698 0.8860 0.9414 0.1568
3 0.9140 0.9594 0.1505 0.8978 0.9524 0.1539
4 0.9118 0.9603 0.1498 0.8976 0.9525 0.1531
5 0.9191 0.9635 0.1538 0.8971 0.9523 0.1545
6 0.9455 0.9816 0.1870 0.8658 0.9269 0.1557

3 1 0.8725 0.9294 0.1614 0.8640 0.9264 0.1673
2 0.8764 0.9291 0.2340 0.7254 0.8052 0.1732
3 0.8924 0.9407 0.1622 0.8774 0.9340 0.1667
4 0.8832 0.9365 0.1620 0.8727 0.9323 0.1679
5 0.8970 0.9446 0.1689 0.8750 0.9339 0.1700
6 0.9371 0.9730 0.2002 0.8526 0.9195 0.1692

4 1 0.8907 0.9395 0.1576 0.8791 0.9335 0.1628
2 0.9343 0.9737 0.1998 0.8507 0.9158 0.1649
3 0.8903 0.9400 0.1586 0.8811 0.9346 0.1636
4 0.8835 0.9394 0.1577 0.8758 0.9342 0.1627
5 0.9026 0.9511 0.1608 0.8848 0.9392 0.1631
6 0.8866 0.9391 0.1627 0.8670 0.9225 0.1638
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Table 4. Summary statistics.

No. of obs Age Education Black Hispanic No degree Married RE74 RE 75

NSW/Lalonde

Treated 297 24.63 10.38 .80 .09 .73 .17 3,066

(6.69) (1.82) (.40) (.29) (.37) (.44) (4,874)

Control 425 24.45 10.19 .84 .11 .81 .16 3,026

(6.59) (1.62) (0.40) (0.32) (0.36) (0.39) (5,201)

NSW/DW

Treated 185 24.45 10.19 .84 .06 .71 .19 2,095 1,532

(7.16) (2.01) (.36) (.24) (.39) (.46) (4,886) (3219)

Control 260 25.05 10.09 .83 .11 .83 .15 2,107 1,267

(7.06) (1.61) (.38) (.31) (.36) (.37) (5,687) (3,102)

PSID 2,490 34.85 12.11 .25 .03 .31 .87 19,429 19,063

(10.44) (3.08) (.43) (.18) (.46) (.34) (13,406) (13,596)

CPS 15,992 33.22 12.02 .07 .07 .29 .71 14,016 13,650

(11.05) (2.87) (.26) (.25 ) (.45) (.46) (9,570) (9,270)

Normalized dif

NSW Lalonde treatment/control 0.03 0.11 0.003 -0.06 -0.20 0.03 0.008

NSW Lalond/PSID -1.17 -0.69 1.32 -1.95 0.26 0.94 -1.57

NSW Lalond/CPS -0.94 -0.69 2.16 -1.31 0.08 0.97 -1.43

NSW DW treatment/control 0.11 0.14 0.04 -0.17 -0.30 0.09 -0.002 0.08

NSW DW/PSID -1.01 -0.68 1.48 0.13 0.88 -1.84 -1.72 -1.77

NSW DW/CPS -0.80 -0.68 2.43 -0.05 0.90 -1.23 -1.57 -1.75
* Earnings are expressed in 1982 dollars.
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Table 5. Simple covariate matching

NSW Lalonde sample NSW DW sample
NSW CPS PSID NSW CPS PSID

Mean difference 886.30 1794.34
(488.20) (671.00)

Covariate matching
K = 1 361.80 19.80 -638.54 2046.21 2186.92 742.54

Asymptotic (619.24) (687.29) (1139.77) (739.40) (924.67) (1262.48)
Wild boot (590.08) (655.89) (1018.55) (762.77) (891.21) (1294.87)
Naive boot (613.46) (674.26) (977.71) (805.07) (849.30) (1055.76)
K = 4 881.31 -340.29 -1122.87 1908.52 1688.37 1460.62

Asymptotic (511.36) (560.47) (1008.49) (678.94) (735.24) (902.77)
Wild boot (500.76) (546.06) (984.54) (704.27) (734.14) (831.73)
Naive boot (534.03) (605.76) (925.64) (699.86) (763.08) (898.42)
K = 16 952.86 -427.62 -928.56 1959.27 1430.83 1687.08

Asymptotic (487.19) (508.27) (785.43) (664.68) (654.88) (846.48)
Wild boot (502.91) (530.95) (777.75) (668.78) (657.65) (800.84)
Naive boot (522.84) (535.95) (774.82) (712.53) (663.70) (790.79)
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Figure 1. Power functions for Design 1 with Curve 1 and normal ε
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Figure 2. Power functions for Design 1 with Curve 1 and lognormal ε
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