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Abstract

Many modern estimators require bootstrapping to calculate confidence intervals because either no 

analytic standard error is available or the distribution of the parameter of interest is non-

symmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with 

multiple imputation to address missing data. We present four methods which are intuitively 

appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We 

show that three of the four approaches yield valid inference, but that the performance of the 

methods varies with respect to the number of imputed data sets and the extent of missingness. 

Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from 

HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation 

in young children, demonstrates the practical implications of the four methods in a sophisticated 

and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, 

a method for which no standard errors are available.
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1. Introduction

Multiple imputation (MI) is a popular method to address missing data. Based on 

assumptions about the data distribution (and the mechanism which gives rise to the missing 

data) missing values can be imputed by means of draws from the posterior predictive 

distribution of the unobserved data given the observed data. This procedure is repeated to 

create M imputed data sets, the analysis is then conducted on each of these data sets and the 

M results (M point and M variance estimates) are combined by a set of simple rules [1].

During the last 30 years a lot of progress has been made to make MI useable for different 

settings: implementations are available in several software packages [2, 3, 4, 5], review 

articles provide guidance to deal with practical challenges [6, 7, 8], non-normal –possibly 
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categorical–variables can often successfully be imputed [9, 3, 6], useful diagnostic tools 

have been suggested [3, 10], and first attempts to address longitudinal data and other 

complicated data structures have been made [11, 4].

While both opportunities and challenges of multiple imputation are discussed in the 

literature, we believe an important consideration regarding the inference after imputation has 

been neglected so far: if there is no analytic or no ideal solution to obtain standard errors for 

the parameters of the analysis model, and nonparametric bootstrap estimation is used to 

estimate them, it is unclear how to obtain valid inference – in particular how to obtain 

appropriate confidence intervals. Moreover, bootstrap estimation is also often used when a 

parameter’s distribution is assumed to be non-normal and bootstrap inference with missing 

data is then not clear either. As we will explain below, many modern statistical concepts, 

often applied to inform policy guidelines or enhance practical developments, rely on 

bootstrap estimation. It is therefore necessary to have guidance for bootstrap estimation for 

multiply imputed data.

In general, one can distinguish between two approaches for bootstrap inference when using 

multiple imputation: with the first approach, M imputed datsets are created and bootstrap 

estimation is applied to each of them; or, alternatively, B bootstrap samples of the original 

data set (including missing values) are drawn and in each of these samples the data are 

multiply imputed. For the former approach one could use bootstrapping to estimate the 

standard error in each imputed data set and apply the standard MI combining rules; 

alternatively, the B × M estimates could be pooled and 95% confidence intervals could be 

calculated based on the 2.5th and 97.5th percentiles of the respective empirical distribution. 

For the latter approach either multiple imputation combining rules can be applied to the 

imputed data of each bootstrap sample to obtain B point estimates which in turn may be 

used to construct confidence intervals; or the B × M estimates of the pooled data are used for 

interval estimation.

To the best of our knowledge, the consequences of using the above approaches have not 

been studied in the literature before. The use of the bootstrap in the context of missing data 

has often been viewed as a frequentist alternative to multiple imputation [12], or an option to 

obtain confidence intervals after single imputation [13]. The bootstrap can also be used to 

create multiple imputations [14]. However, none of these studies have addressed the 

construction of bootstrap confidence intervals when data needs to be multiply imputed 

because of missing data. As emphasized above, this is however of particularly great 

importance when standard errors of the analysis model cannot be calculated easily, for 

example for causal inference estimators (e.g. the g-formula).

It is not surprising that the bootstrap has nevertheless been combined with multiple 

imputation for particular analyses. Multiple imputation of bootstrap samples has been 

implemented in [15, 16, 17, 18], whereas bootstrapping the imputed data sets was preferred 

by [19, 20, 21]. Other work doesn’t offer all details of the implementation [22]. All these 

analyses give however little justification for the chosen method and for some analyses 

important details on how the confidence intervals were calculated are missing; it seems that 
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pragmatic reasons as well as computational efficiency typically guide the choice of the 

approach. None of the studies offer a statistical discussion of the chosen method.

The present article demonstrates the implications of different methods which combine 

bootstrap inference with multiple imputation. It is novel in that it introduces four different, 

intuitively appealing, bootstrap confidence intervals for data which require multiple 

imputation, illustrates their intrinsic features, and argues which of them is to be preferred.

Section 2 introduces our motivating analysis of causal inference in HIV research. The 

different methodological approaches are described in detail in Section 3 and are evaluated by 

means of both numerical investigations (Section 4) and theoretical considerations (Section 

6). The implications of the different approaches are further emphasized in the data analysis 

of Section 5. We conclude in Section 7.

2. Motivation

During the last decade the World Health Organization (WHO) updated their 

recommendations on the use of antiretroviral drugs for treating and preventing HIV infection 

several times. In the past, antiretroviral treatment (ART) was only given to a child if his/her 

measurements of CD4 lymphocytes fell below a critical value or if a clinically severe event 

(such as tuberculosis or persistent diarrhoea) occurred. Based on both increased knowledge 

from trials and causal modeling studies, as well as pragmatic and programmatic 

considerations, these criteria have been gradually expanded to allow earlier treatment 

initiation in children: in 2013 it was suggested that all children who present under the age of 

5 are treated immediately, while for older children CD4-based criteria still existed. By the 

end of 2015 WHO decided to recommend immediate treatment initiation in all children and 

adults. ART has shown to be effective and to reduce mortality in infants and adults [23, 24, 

25], but concerns remain due to a potentially increased risk of toxicities, early development 

of drug resistance, and limited future options for people who fail treatment.

It remains therefore important to investigate the effect of different treatment initiation rules 

on mortality, morbidity and child development outcomes; however given the shift in ART 

guidelines towards earlier treatment initiation it is not ethically possible anymore to conduct 

a trial which answers this question in detail. Thus, observational data can be used to obtain 

the relevant estimates. Methods such as inverse probability weighting of marginal structural 

models, the g-computation formula, and targeted maximum likelihood estimation can be 

used to obtain estimates in complicated longitudinal settings where time-varying 

confounders affected by prior treatment are present — such as, for example, CD4 count 

which influences both the probability of ART initiation and outcome measures [26, 27].

In situations where treatment rules are dynamic, i.e. where they are based on a time-varying 

variable such as CD4 lymphocyte count, the g-computation formula [28] is the intuitive 

method to use. It is computationally intensive and allows the comparison of outcomes for 

different treatment options; confidence intervals are typically based on nonparametric 

bootstrap estimation. However, in resource limited settings data may be missing for 

administrative, logistic, and clerical reasons, as well as due to loss to follow-up and missed 
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clinic visits. Depending on the underlying assumptions about the reasons for missing data, 

this problem can either be addressed by the g-formula directly or by using multiple 

imputation. However, it is not immediately clear how to combine multiple imputation with 

bootstrap estimation to obtain valid confidence intervals.

3. Methodological Framework

Let � be a n × (p + 1) data matrix consisting of an outcome variable y = (y1, …, yn)′ and 

covariates Xj = (X1j, …, Xnj)′, j = 1, …, p. The 1 × p vector xi = (xi1, …, xip) contains the ith 

observation of each of the p covariates and X = (x1′, …, xn′)′ is the matrix of all covariates. 

Suppose we are interested in estimating θ = (θ1,…, θk)′, k ≥ 1, which may be a regression 

coefficient, an odds ratio, a factor loading, or a counterfactual outcome. If some data are 

missing, making the data matrix to consist of both observed and missing values, 

� = �
obs, �

mis , and the missingness mechanism is ignorable, valid inference for θ can be 

obtained using multiple imputation. Following Rubin [1] we regard valid inference to mean 

that the point estimate θ  for θ is approximately unbiased and that interval estimates are 

randomization valid in the sense that actual interval coverage equals the nominal interval 

coverage.

Under multiple imputation M augmented sets of data are generated, and the imputations 

(which replace the missing values) are based on draws from the predictive posterior 

distribution of the missing data given the observed data 

p(�mis |�obs) = ∫ p(�mis |�obs; ϑ)p(ϑ |�obs)dϑ, or an approximation thereof. The point 

estimate for θ is

θ̄
^

MI =
1
M

∑
m = 1

M

θ̂m (1)

where θ̂
m

 refers to the estimate of θ in the mth imputed set of data �(m), m = 1, …, M. 

Variance estimates can be obtained using the between imputation covariance 

V̂ = (M − 1)−1∑m
(θ̂

m
− θ̄

^
MI)(θ̂m

− θ̄
^

MI)′ and the average within imputation covariance 

Ŵ = M
−1∑m

Cov(θ̂
m

):

Cov(θ̄
^

MI) = Ŵ +
M + 1

M
V̂ =

1
M

∑
m = 1

M

Cov(θ̂m) +
M + 1

M(M − 1) ∑
m = 1

M

(θ̂m − θ̄
^

MI)(θ̂m − θ̄
^

MI)′ . (2)

For the scalar case this equates to

Var(θ̄
^
MI) =

1
M

∑
m = 1

M

Var(θ̂
m

) +
M + 1

M(M − 1) ∑
m = 1

M

(θ̂
m

− θ̄
^
MI)

2
.
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To construct confidence intervals for θ̄
^

MI in the scalar case, it may be assumed that 

Var(θ̄
^

MI)
−

1
2(θ̄

^
MI − θ) follows a tR-distribution with approximately 

R = (M − 1)[1 + MW /(M + 1)V ]2 degrees of freedom [29], though there are alternative 

approximations, especially for small samples [30]. Note that for reliable variance estimation 

M should not be too small; see White et al. [6] for some rules of thumb.

Consider the situation where there is no analytic or no ideal solution to estimate Cov(θ
m

), for 

example when estimating the treatment effect in the presence of time-varying confounders 

affected by prior treatment using g-methods [31, 26]. If there are no missing data, bootstrap 

percentile confidence intervals may offer a solution: based on B bootstrap samples �
b
∗, b = 

1, …, B, we obtain B point estimates θ
b
∗. Consider the ordered set of estimates 

Θ
B
∗ = θ (b)

∗ ; b = 1, …, B , where θ (1)
∗ < θ (2)

∗ < … < θ (B)
∗ ; the bootstrap 1 − 2α% confidence 

interval for θ is then defined as

[θ lower; θupper] = [θ ∗ , α; θ
∗ , 1 − α]

where θ ∗ , α denotes the α-percentile of the ordered bootstrap estimates Θ
B
∗ . However, in the 

presence of missing data the construction of confidence intervals is not immediately clear as 

θ  corresponds to M estimates θ1, …, θ
M

, i.e. θ
m

 is the point estimate calculated from the mth 

imputed data set. It seems intuitive to consider the following four approaches:

• Method 1, MI Boot (pooled sample [PS]): Multiple imputation is utilized for 

the data set � = {�
obs, �

mis}. For each of the M imputed data sets �
m

, B 

bootstrap samples are drawn which yields M × B data sets �
m, b
∗ ; b = 1, …, B; m 

= 1, …, M. In each of these data sets the quantity of interest is estimated, that is 

θ
m, b
∗ . The pooled sample of ordered estimates 

ΘMIBP
∗ = {θ (m, b)

∗ ; b = 1, …, B; m = 1, …, M} is used to construct the 1 − 2α% 

confidence interval for θ:

[θ lower; θupper]MIBP
= [θMIBP

∗ , α
θMIBP

∗ , 1 − α
]; (3)

where θMIBP
∗ , α  is the α-percentile of the ordered bootstrap estimates ΘMIBP

∗ .

• Method 2, MI Boot: Multiple imputation is utilized for the data set 

� = {�
obs, �

mis}. For each of the M imputed data sets �
m

, B bootstrap samples 

are drawn which yields M × B data sets �
m, b
∗ ; b = 1, …, B; m = 1, …, M. The 

bootstrap samples are used to estimate the standard error of (each scalar 
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component of) θ
m

 in each imputed data set respectively, i.e. 

Var(θ
m

) = (B − 1)−1∑b
(θ

m, b
− θ

m
)
2
 with θ

m
= B

−1∑b
θ

m, b
. This results in M 

point estimates (calculated from the imputed, but not yet bootstrapped data), and 

M standard errors (calculated from the respective bootstrap samples). One can 

thus calculate standard multiple imputation confidence intervals, possibly based 

on a tR-distribution, as explained above.

• Method 3, Boot MI (pooled sample [PS]): B bootstrap samples �
b
∗ (including 

missing data) are drawn and multiple imputation is utilized in each bootstrap 

sample. Therefore, there are B × M imputed data sets �
b, 1
∗ , …, �

b, M
∗  which can 

be used to obtain the corresponding point estimates θ
b, m
∗ . The set of the pooled 

ordered estimates ΘBMIP
∗ = {θ (b, m)

∗ ; b = 1, …, B; m = 1, …, M} can then be used to 

construct the 1 − 2α% confidence interval for θ:

[θ lower; θupper]BMIP
= [θBMIP

∗ , α
; θBMIP

∗ , 1 − α
] (4)

where θBMIP
∗ , α  is the α-percentile of the ordered bootstrap estimates ΘBMIP

∗ .

• Method 4, Boot MI: B bootstrap samples �
b
∗ (including missing data) are 

drawn, and each of them is imputed M times. Therefore, there are M imputed 

data sets, �
b, 1
∗ , …, �

b, M
∗ , which are associated with each bootstrap sample �

b
∗. 

They can be used to obtain the corresponding point estimates θ
b, m
∗ . Thus, 

applying (1) to the estimates of each bootstrap sample yields B point estimates 

θ
b

∗
= M

−1∑m
θ

b, m
∗  for θ. The set of ordered estimates ΘBMI

∗ = {θ (b)
∗ ; b = 1, …B}

can then be used to construct the 1 − 2Pα% confidence interval for θ:

[θ lower; θupper]BMI
= [θBMI

∗ , α
; θBMI

∗ , 1 − α
] (5)

where θBMI
∗ , α is the α-percentile of the ordered bootstrap estimates ΘBMI

∗ .

While all of the methods described above are straightforward to implement it is unclear if 

they yield valid inference, i.e. if the actual interval coverage level equals the nominal 

coverage level. Before we delve into some theoretical and practical considerations we 

expose some of the intrinsic features of the different interval estimates using Monte Carlo 

simulations.
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4. Simulation Studies

To study the performance of the methods introduced above we consider four simulation 

settings: a simple one, to ensure that these comparisons are not complicated by the 

simulation setup; a more complicated one, to study the four methods under a more 

sophisticated variable dependence structure; a survival analysis setting to allow comparisons 

beyond a linear regression setup; and a complex longitudinal setting where time-dependent 

confounding (affected by prior treatment) is present, to allow comparisons to our data 

analysis in Section 5.

Setting 1

We simulate a normally distributed variable X1 with mean 0 and variance 1. We then define 

μy = 0 + 0.4X1 and θ = βtrue = (0, 0.4)′. The outcome is generated from N(μy, 2) and the 

analysis model of interest is the linear model. Values of X1 are defined to be missing with 

probability

π
X1

(y) = 1 −
1

(0.25y)2 + 1
.

With this, about 16% of values of X1 were missing (at random).

Setting 2

The observations for 6 variables are generated using the following normal and Bernoulli 

distributions: X1 ~ N(0, 1), X2 ~ N(0, 1), X3 ~ N(0, 1), X4 ~ B(0.5), X5 ~ B(0.7), and X6 ~ 

B(0.3). To model the dependency between the covariates we use a Clayton Copula [32] with 

a copula parameter of 1 which indicates moderate correlations among the covariates. We 

then define μy = 3 − 2X1 + 3X3 − 4X5 and θ = βtrue = (3, −2, 0, 3, 0, −4, 0)′. The outcome is 

generated from N(μy, 2) and the analysis model of interest is the linear model. Values of X1 

and X3 are defined to be missing (at random) with probabilities

π
X1

(y) = 1 −
1

(ay)2 + 1
, π

X3
(X4) = 1 −

1

bX4
3 + 1.05

.

where a and b equate to 0.75 and 0.25 in a low missingness setting (and to 0.4 and 2.5 in a 

high missingness setting). This yields about 6% and 14% (45% and 38%) of missing values 

for X1 and X3 respectively.

Setting 3

This setting is inspired by the analysis and data in Schomaker et al. [33]. We simulate X1 ~ 

logN(4.286, 1.086) and X2 ~ logN(10.76, 1.8086). Again, the dependency of the variables is 

modeled with a Clayton copula with a copula parameter of 1. Survival times y are simulated 

from − log(U)/h0{exp(Xβ)} where U is drawn from a distribution that is uniform on the 

interval [0, 1], h0 = 0.1, and the linear predictor Xβ is defined as −0.3 ln X1 + 0.3 log10 X2. 

Therefore, βtrue = (−0.3, 0.3)′. Censoring times are simulated as − log(U)/0.2. The observed 
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survival time T is thus min(y, C). Values of X1 are defined to be missing based on the 

following function:

π
X1

(T) = 1 −
1

(0.075T)2 + 1
.

This yields about 8% of missing values.

Setting 4

This setting is inspired by our data analysis from Section 5. We generate longitudinal data (t 

= 0, 1, …, 12) for 3 time-dependent confounders (L
t

= {L
t
1, L

t
2, L

t
3}), an outcome (Yt), an 

intervention (At), as well as baseline data for 7 variables, using structural equation models 

[34]. The data generating mechanism and the motivation thereof is described in Appendix B. 

In this simulation we are interested in a counterfactual outcome Yt which would have been 

observed under 2 different intervention rules d j, j = 1, 2, which assign treatment (At) always 

or never. We denote these target quantities as ψ1 and ψ2 and their true values are −1.03 and 

−2.45 respectively. They can be estimated using the sequential g-formula, with bootstrap 

confidence intervals, see Appendix A for more details.

Values of L
t
1, L

t
2, L

t
3, Yt are set to be missing based on a MAR process as described in 

Appendix B. This yields about 10%, 31%, 22% and 44% of missing baseline values, and 

10%, 1%, 1%, and 2% of missing follow-up values.

In all 4 settings multiple imputation is utilized with Amelia II under a joint modeling 

approach, see Honaker et al. [3] and Section 6 for details. In settings 1-3 the probability of a 

missing observation depends on the outcome. One would therefore expect parameter 

estimates in a regression model of a complete case analysis to be biased, but estimates 

following multiple imputation to be approximately unbiased [35, 36].

We estimate the confidence intervals for the parameters of interest using the aforementioned 

four approaches, as well as using the analytic standard errors obtained from the linear model 

and the Cox proportional hazards model (method “no bootstrap”) for the first three settings. 

The “no bootstrap” method serves therefore as a gold standard and reference for the other 

methods. We generate n = 1000 observations, B = 200 bootstrap samples, and M = 10 

imputations. Based on ℛ = 1000 simulation runs we evaluate the coverage probability and 

median width of the respective confidence intervals.

Results

The computation time for Boot MI was always greater than for MI Boot, for example by a 

factor of 13 in the first simulation setting and by a factor of 1.3 in the fourth setting.

In all settings the point estimates for β were approximately unbiased.
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Table 1 summarizes the main results of the simulations. Using no bootstrapping yields 

estimated coverage probabilities of about 95%, for all parameters and settings, as one would 

expect.

Bootstrapping the imputed data (MI Boot, MI Boot [PS]) yields estimated coverage 

probabilities of about 95% and confidence interval widths which are similar to each other, 

except for the high missingness setting of simulation 2. The standard errors for each 

component of β as simulated in the 1000 simulation runs were almost identical to the mean 

estimated standard errors under MI Boot, which suggests good standard error estimation of 

the latter approach. In the first simulation setting the coverage of MI Boot pooled is a bit too 

low for M = 10 (93%), but is closer to 95% if M is large (M = 20, Figure 1).

Imputing the bootstrapped data (Boot MI, Boot MI [PS]) led to overall good results with 

coverage probabilities close to the nominal level, except for the high missingness setting of 

simulation 2; however, using the pooled samples led to somewhat higher coverage 

probabilities and the interval widths were slightly different from the estimates obtained 

under no bootstrapping.

Figure 1 shows the coverage probability of the interval estimates for β1 in the first 

simulation setting given the number of imputations.

As predicted by MI theory, using multiple imputation needs generally a reasonable amount 

of imputed data sets to perform well – no matter whether bootstrapping is used for standard 

error estimation or not (MI Boot, no bootstrap). Boot MI may perform well even for M < 5, 

but the pooled approach has a tendency towards coverage probabilities > 95%. For M = 1 the 

estimated coverage probability of Boot MI is too large in the above setting.

Figure 2 offers more insight into the behaviour of ‘Boot MI (PS)’ and ‘MI Boot (PS)’ by 

visualizing both the bootstrap distributions in each imputed data set (method MI Boot [PS]) 

as well as the distribution of the estimators in each bootstrap sample (method Boot MI [PS]): 

one can see the slightly wider spectrum of values in the distributions related to ‘Boot MI 

(PS)’ explaining the somewhat larger confidence interval in the first simulation setting.

More explanations and interpretations of the above results are given in Section 6.

5. Data Analysis

Consider the motivating question introduced in Section 2. We are interested in comparing 

mortality with respect to different antiretroviral treatment strategies in children between 1 

and 5 years of age living with HIV. We use data from two big HIV treatment cohort 

collaborations (IeDEA-SA, [37]; IeDEA-WA, [38]) and evaluate mortality for 3 years of 

follow-up. Our analysis builds on a recently published analysis by Schomaker et al. [17].

For this analysis, we are particularly interested in the cumulative mortality difference 

between strategies (i) ‘immediate ART initiation’ and (ii) ‘assign ART if CD4 count < 350 

cells/mm3 or CD4% < 15%’, i.e. we are comparing current practices with those in place in 

2006. We can estimate these quantities using the g-formula, see Appendix A for a 
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comprehensive summary of our implementation details and assumptions. The standard way 

to obtain 95% confidence intervals for this method is using bootstrapping. However, baseline 

data of CD4 count, CD4%, HAZ, and WAZ are missing: 18%, 28%, 40%, and 25% 

respectively. We use multiple imputation (using Amelia II [3]) to impute this data. We 

also impute follow-up data after nine months without any visit data, as from there on it is 

plausible that follow-up measurements that determine ART assignment (e.g. CD4 count) 

were taken (and are thus needed to adjust for time-dependent confounding) but were not 

electronically recorded, probably because of clerical and administrative errors. Under 

different assumptions imputation may not be needed. To combine the M = 10 imputed data 

sets with bootstrap estimation (B = 200) we use the four approaches introduced in Section 3: 

MI Boot, MI Boot (PS), Boot MI, and Boot MI (PS).

Three year mortality for immediate ART initiation was estimated as 6.08%, whereas 

mortality for strategy (ii) was estimated as 6.87%. This implies a mortality difference of 

0.79%. The results of the respective confidence intervals are summarized in Figure 3: the 

estimated mortality differences are [−0.34%; 1.61%] for Boot MI (PS), [0.12%; 1.07%] for 

Boot MI, [−0.31%; 1.63%] for MI Boot (PS), and [−0.81%; 2.40%] for MI Boot.

Figure 3 shows that the confidence intervals vary with respect to the different approaches: 

the shortest interval is produced by the method Boot MI. Note that only for this method the 

95% confidence interval does not contain the 0% when estimating the mortality difference, 

and therefore suggests a beneficial effect of immediate treatment initiation. The distributions 

of θ
b, m
∗  for Boot MI (PS) and MI Boot (PS), as well as the distribution of θ

b

∗
 for Boot MI, are 

also visualized in the figure and are reasonably symmetric.

Figure 4 visualizes both the bootstrap distributions in each imputed data set (method MI 

Boot [PS]) as well as the distribution of the estimators in each bootstrap sample (method 

Boot MI [PS]). It is evident that the overall variation of the estimates is similar for these two 

approaches considered, which explains why their confidence intervals in Figure 3 are almost 

identical. Moreover, and of note, the top panel highlights the large variability of the point 

estimates used for the calculation of the MI Boot estimator. The graph indicates a large 

between imputation uncertainty of the point estimates, possibly due to the high missingness 

and complex imputation procedure. The large confidence interval of MI Boot in Figure 3, 

based on formula (2), reflects this uncertainty.

In summary, the above analyses suggest a beneficial effect of immediate ART initiation 

compared to delaying ART until CD4 count < 350 cells/mm3 or CD4% < 15% when using 

method 3, Boot MI. The other methods produce larger confidence intervals and do not 

necessarily suggest a clear mortality difference.

6. Theoretical Considerations

For the purpose of inference we are interested in the observed data posterior distribution of 

θ �
obs

 which is
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P(θ |�obs) = ∫ P(θ |�obs, �mis)P(�mis |�obs)d�mis

= ∫ P(θ |�obs, �mis) ∫ P(�mis |�obs, ϑ)P(ϑ |�obs)dϑ d�mis .

(6)

Please note that ϑ refers to the parameters of the imputation model whereas θ is the quantity 

of interest from the analysis model. With multiple imputation we effectively approximate the 

integral (6) by using the average

P(θ |�obs) ≈
1
M

∑
m = 1

M

P(θ |�mis
(m), �obs) (7)

where �
mis
(m) refers to draws (imputations) from the posterior predictive distribution 

P(�
mis

�
obs

).

MI Boot and MI Boot (PS)

The MI Boot method essentially uses rules (1) and (2) for inference, where, for a given 

scalar, the respective variance in each imputed data set Var(θ
m

) is not calculated analytically 

but using bootstrapping. This approach will work if the bootstrap variance for the imputed 

data set is close to the analytical variance. If there is no analytical variance, it all depends on 

various factors such as sample size, estimator of interest, proportion of missing data, and 

others. The data example highlights that in complex settings with a lot of missing data the 

between imputation variance can be large, yielding conservative interval estimates. As well-

known from MI theory M should, in many settings, be much larger than 5 for good estimates 

of the variance [14]. Using bootstrapping to estimate the variance does not alter these 

conclusions. Using MI Boot should always be complemented with a reasonably large 

number of imputations. This consideration also applies to MI Boot (PS), which –as seen in 

the simulations–, can sometimes be even more sensitive to the choice of M.

Boot MI and Boot MI (PS)

Boot MI uses � = �
mis

, �
obs

 for bootstrapping. Most importantly, we estimate θ, the 

quantity of interest, in each bootstrap sample using multiple imputation. We therefore 

approximate P (θ|Dobs) through (6) by using multiple imputation to obtain θ  and 

bootstrapping to estimate its distribution – which is valid under the missing at random 

assumption.

However, if we simply pool the data and apply the method Boot MI (PS) we essentially pool 

all estimates θ
m, b

: with this approach each of the B × M estimates θ
m, b

 serves then as an 

estimator of θ (as we do not combine/average any of them). A possible interpretation of this 

observation is that each θ
m, b

 estimates θ and since this is only a single draw from the 
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posterior predictive distribution P(�
mis

�
obs

) we conduct multiple imputation with M = 1, 

i.e. we calculate θMI = 1
1 ∑m = 1

1
θ

m, b
, B × M times. Such an estimator is statistically 

inefficient as we know from MI theory: the relative efficiency of an MI based estimator 

(compared to the true variance) is (1 + γ

M
)
−1

 where γ describes the fraction of missingness 

(i.e. V/(W + V)) in the data. For example, if the fraction of missingness is 0.25, and M = 5, 

then the loss of efficiency is 5% [6]. The lower M, the lower the efficiency, and thus the 

higher the variance. This explains the results of the simulation studies: pooling the estimates 

is inefficient, does therefore overestimate the variance, and thus leads to confidence intervals 

with incorrect coverage.

It follows that one typically gets larger interval estimates when using Boot MI (PS) instead 

of Boot MI. Similarly, one can decide to use Boot MI with M = 1, which is not incorrect but 

often inefficient in terms of interval estimation.

Comparison

General comparisons between MI Boot and Boot MI are difficult because the within and 

between imputation uncertainty, as well as the within and between bootstrap sampling 

uncertainty, will determine the actual width of a confidence interval. If the between 

imputation uncertainty is large compared to between bootstrap sample uncertainty (as, for 

example, in the data example [Figure 4]) then MI Boot is large compared to Boot MI. 

However, if the between imputation uncertainty is small relative to the bootstrap sampling 

uncertainty, then Boot MI may give a similar confidence interval to MI Boot (as in the 

simulations [Figure 2]).

Another consideration is related to the application of the bootstrap. We have focused on the 

percentile method to create confidence intervals. However, it is also possible to create 

bootstrap intervals based on the t–distribution. Here, an estimator’s variance is estimated 

with the sample variance from the B bootstrap estimates and symmetric confidence intervals 

are generated based on an appropriate t-distribution. In fact, MI Boot uses this approach 

because in each imputed dataset we estimate the bootstrap variance 

Var(θ
m

) = (B − 1)−1∑b
(θ

m, b
− θ

m, b
)
2
, then calculate (2), followed by confidence intervals 

based on a tR distribution, see Section 3. A similar approach would be possible when 

applying Boot MI. This method produces B point estimates θ
b

∗
= M

−1∑m
θ

b, m
∗  for θ. One 

could estimate the variance as (B − 1)−1∑b
(θ

b

∗
− θ̄̄

^∗
)
2

, with θ̄̄
^∗

= B
−1∑b

θ̄
^

b

∗
, and then create 

confidence intervals based on a t-distribution. This would however require that one assumes 

the estimator to be approximately normally distributed.

Bootstrapping as part of the imputation procedure

For each of the estimators introduced in Section 3, M proper multiply imputed data sets are 

needed. “Proper” means that the application of formulae (1) and (2) yield 1) approximately 

unbiased point estimates and 2) interval estimates which are randomization valid in the sense 
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that actual interval coverage equals the nominal interval coverage. Some imputation 

algorithms use bootstrapping to create proper imputations, and this may not be confused 

with the bootstrapping step after multiple imputation which we focus on in this paper.

To follow this argument in more detail it is important to understand that proper imputations 

are created by means of random draws from the posterior predictive distribution of the 

missing data given the observed data (or an approximation thereof). These draws can (i) 

either be generated by specifying a multivariate distribution of the data (joint modeling) and 

simulate the posterior predictive distribution with a suitable algorithm; or (ii) by specifying 

individual conditional distributions for each variable Xj given the other variables (fully 

conditional modeling) and iteratively drawing and updating imputed values from these 

distributions which will then (ideally) converge to draws of the theoretical joint distribution; 

or (iii) by the use of alternative algorithms.

An example for (i) is the EMB algorithm from the R-package Amelia II which assumes a 

multivariate normal distribution for the data, � N(μ, ∑) (possibly after suitable 

transformations beforehand). Then, B bootstrap samples of the data (including missing 

values) are drawn and in each bootstrap sample the EM algorithm [39] is applied to obtain 

estimates of μ and Σ which can then be used to generate proper multiple imputations by 

means of the sweep-operator [40, 11]. Of note, the algorithm can handle highly skewed 

variables by imposing transformations on variables (log, square root). Categorical variables 

are recoded into dummy variables based on the knowledge that for binary variables the 

multivariate normal assumption can yield good results [9].

An example for (ii) is imputation by chained equations (ICE, mice). Here, (a) one first 

specifies individual conditional distributions (i.e. regression models) p(Xj|X−j, θj) for each 

variable. Then, (b) one iteratively fits all regression models and generates random draws of 

the coefficients, e.g. β
∼

N(β, Cov(β)). Values are (c) imputed as random draws from the 

distribution of the regression predictions. Then, (b) and (c) are repeated k times until 

convergence. The process of iteratively drawing and updating the imputed values from the 

conditional distributions can be viewed as a Gibbs sampler that converges to draws from the 

(theoretical) joint distribution. This method is among the most popular ones in practice and 

has been implemented in many software packages [4, 5]. However, there remain theoretical 

concerns as a joint distribution may not always exist for a given specifications of the 

conditional distributions [41]. A variation of (c) is a fully Bayesian approach where the 

posterior predictive distribution is used to draw imputations. Here, the bootstrap is used to 

model the imputation uncertainty and to draw the M imputations needed for the M imputed 

data sets. This variation yields approximate proper imputations and is implemented in the R 

library Hmisc [42].

An example for (iii) is the Approximate Bayesian Bootstrap [29]. Here, the (cross-sectional) 

data is stratified into several strata, possibly by means of the covariates of the analysis 

model. Then, within each stratum (a) one draws a bootstrap sample among the complete data 

(with respect to the variable to be imputed). Secondly, (b) one uses the original data set (with 

missing values) and imputes the missing data based on units from the data set created in (a), 

Schomaker and Heumann Page 13

Stat Med. Author manuscript; available in PMC 2019 June 30.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



with equal selection probability and with replacement. The multiply imputed data are 

obtained by repeating (a) and (b) M times.

It is evident from the above examples that many imputation methods use bootstrap 

methodology as part of the imputation model, that this does not replace the additional 

bootstrap step needed for the inference in the analysis model, and that – if they are combined 

– the resampling steps are nested.

7. Conclusion

The current statistical literature is not clear on how to combine bootstrap with multiple 

imputation inference. We have proposed that a number of approaches are intuitively 

appealing and three of them are correct: Boot MI, MI Boot, MI Boot (PS). Using Boot MI 

(PS) can lead to too large and invalid confidence intervals and is therefore not 

recommended.

Both Boot MI and MI Boot are probably the best options to calculate randomization valid 

confidence intervals when combining bootstrapping with multiple imputation. As a rule of 

thumb, our analyses suggest that the former may be preferred for small M or large 

imputation uncertainty and the latter for normal M and little/normal imputation uncertainty.

There are however other considerations when deciding between MI Boot and Boot MI. The 

latter is computationally much more intensive. This matters particularly when estimating the 

analysis model is simple in relation to creating the imputations. In fact, in our first 

simulation this affected the computation time by a factor of 13. However, MI Boot naturally 

provides symmetrical confidence intervals. These intervals may not be wanted if an 

estimator’s distribution is suspected to be non-normal.
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A. Details of the G-formula Implementation

We consider n children studied at baseline (t = 0) and during discrete follow-up times (t = 1, 

…, T). The data consists of the outcome Yt, an intervention variable At, q time-dependent 

covariates L
t

= {L
t
1, …, L

t
q}, and a censoring indicator Ct. The covariates may also include 

baseline variables V = {L0
1, …, L0

qV}. The treatment and covariate history of an individual i up 

to and including time t is represented as Āt,i = (A0,i, …, At,i) and L
t, i
s = (L0, i

s , …, L
t, i
s )

respectively. Ct equals 1 if a subject gets censored in the interval (t − 1, t], and 0 otherwise. 

Therefore, C
t

= 0 is the event that an individual remains uncensored until time t.

The counterfactual outcome Y
t, i

a
t  refers to the hypothetical outcome that would have been 

observed at time t if subject i had received, possibly contrary to the fact, the treatment 

history Āt,i = āt. Similarly, L
t, i

a
t  are the counterfactual covariates related to the intervention 

Āt,i = āt. The above notation refers to static treatment rules; a treatment rule may, however, 

depend on covariates, and in this case it is called dynamic. A dynamic rule d
t
(L

t
) assigns 

treatment At,i ∈ {0, 1} as a function of the covariate history L
t, i

. The vector of decisions dt, t 

= 0, …, T, is denoted as d
T

= d. The notation A
t

= d refers to the treatment history up to time 

t according to the rule d. The counterfactual outcome related to a dynamic rule d is Y
t, i
d , and 

the counterfactual covariates are L
t, i
d .

In our setting we study n = 5826 children for t = 0, 1, 3, 6, 9, … where the follow-up time 

points refer to the intervals (0, 1.5), [1.5, 4.5), [4.5, 7.5), …, [28.5, 31.5), [31.5, 36) months 

respectively. Follow-up measurements, if available, refer to measurements closest to the 

middle of the interval. In our data Yt refers to death at time t (i.e. occurring during the 

interval (t − 1, t]). At refers to antiretroviral treatment (ART) taken at time t. 

L
t

= (L
t
1, L

t
2, L

t
3, L

t
1m, L

t
2m, L

t
3m) are CD4 count, CD4%, and weight for age z-score (WAZ, 

which serves as a proxy for WHO stage, see [43] for more details) as well as three indicator 

variables whether these variables have been measured at time t or not. V = L0
V refer to 

baseline values of CD4 count, CD4%, WAZ, height for age z-score (HAZ) as well as sex, 

age, and region. The two treatment rules of interest are:

d
t
1 = c

t
= 0; l

t
1m = l

t
2m = l

t
3m = 1; a

t
= 1 for ∀t

d
t
2 =

c
t

= 0; l
t
1m = l

t
2m = l

t
3m = 1; a

t
= 1 if CD4 count

t
d

2
< 350 or CD4%

t
d

2
< 15%

c
t

= 0; l
t
1m = l

t
2m = l

t
3m = 1; a

t
= 0 otherwise
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The quantity of interest is cumulative mortality after T = 36 months, under (the intervention 

of) no censoring, regular 3 monthly follow-up and for treatment assignment according to d j, 

that is ψ = ∑t = 1
T ℙ(Y

t
d

j
= 1).

Under the assumption of consistency, i.e. Y
d

t = Y if A
t

= d
t
 and L

t

d
t = L

t
 if A

t − 1 = d
t − 1, 

sequential conditional exchangeability (or no unmeasured confounding), i.e. 

Y
d

t∐ A
t
|L

t
, A

t − 1 for ∀A
t

= d
t
, L

t
= l

t
, t ∈ {0, …, T} and positivity, i.e. 

P(A
t

= d
t
|L

t
= l

t
, A

t − 1 = d
t − 1) > 0 for ∀t, d

t
, l

t
 with P(L

t
= l

t
, A

t − 1 = d
t − 1) ≠ 0, the g-

computation formula can estimate ψ as:

ψ = ∑
t = 1

T

ℙ(Y t

d
j = 1) = ∑

t = 1

T

∫
l ∈ L

t

ℙ(Y t = 1| At − 1 = dt − 1, Lt = lt, Y t − 1 = 0)

× ∏
t = 1

T

f (lt | At − 1 = dt − 1, Lt − 1 = lt − 1, Y t − 1 = 0) dl

(8)

see [23] and [44] about more details and implications of the representation of the g-formula 

in this context. Note that the inner product of (8) can be written as

∏
t = 1

T

∏
s = 1

q

f (l
t
s | A

t − 1 = d
t − 1, L

t − 1 = l
t − 1, L

t
1 = l

t
1, …, L

t
s − 1 = l

t
s − 1, Y

t − 1 = 0) .

In the above representation of the g-formula we assume that the time ordering is 

L
t
1

L
t
2

L
t
3

A C Y.

There is no closed form solution to estimate (8), but ψ can be approximated by means of the 

following algorithm; Step 1: use additive linear and logistic regression models to estimate 

the conditional densities on the right hand side of (8), i.e. fit regression models for the 

outcome variables CD4 count, CD4%, WAZ, and death at t = 1, 3, .., 36 using the available 

covariate history and model selection. Step 2: use the models fitted in step 1 to stochastically 

generate Lt and Yt under a specific treatment rule. For example, for rule (ii), draw 

L1
1 = CD4 count1 from a normal distribution related to the respective additive linear model 

from step 1 using the relevant covariate history data. Set A1 = 1 if the generated CD4 count 

at time 1 is < 350 cells/mm3 or CD4% < 15% (for rule d2). Use the simulated covariate data 

and treatment as assigned by the rule to generate the full simulated data set forward in time 

and evaluate cumulative mortality after 3 years of follow-up. We refer the reader to [17], 

[23], and [44] to learn more about the g-formula in this context.

Note that the so-called sequential g-formula, used in the simulation study, shares the idea of 

standardization in the sense that one sequentially marginalizes the distribution with respect 
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to L given the intervention rule of interest. It is just a re-expression of (8) where integration 

with respect L is not needed [45]:

�(YT
d ) = �(�(…�(�(YT | AT = dT, LT) | AT − 1 = dT − 1, LT − 1)…| A0 = d0, L0) |L0) . (9)

B. Data Generating Process in the Simulation Study

Both baseline data (t = 0) and follow-up data (t = 1, …, 12) were created using structural 

equations using the R-package simcausal [34]. The below listed distributions, listed in 

temporal order, describe the data-generating process. Baseline data refers to region, sex, age, 

CD4 count, CD4%, WAZ and HAZ respectively (V1, V2, V3, L0
1, L0

2, L0
3, Y0). Follow-up data 

refers to CD4 count, CD4%, WAZ and HAZ ( L
t
1, L

t
2, L

t
3, Yt), as well as an antiretroviral 

treatment (At) and censoring (Ct) indicator. For simplicity, no deaths are assumed. In 

addition to Bernoulli (B), uniform (U) and normal (N) distributions, we also use truncated 

normal distributions which are denoted by N[a,b] where a and b are the truncation levels. 

Values which are smaller a are replaced by a random draw from a U(a1, a2) distribution and 

values greater than b are drawn from a U(b1, b2) distribution. Values for (a1, a2, b1, b2) are 

(0, 50, 5000, 10000) for L1, (0.03, 0.09, 0.7, 0.8) for L2, and (−10, 3, 3, 10) for both L3 and 

Y. The notation � means “conditional on the data that has already been measured 

(generated) according the the time ordering”. The distributions are as follows:

For t = 0:

V
1

B(p = 4392/5826)

V
2 |�

B(p = 2222/4392) if V
1 = 1

B(p = 758/1434) if V
1 = 0

V
3

� U(1, 5)

L0
1 |� ∼

N[0, 10000](650, 350) if V
1 = 1

N[0, 10000](720, 400)) if V
1 = 0

L
∼

0
1|� ∼ N((L0

1 − 671.7468) (10 · 352.2788 + 1, 0)
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L0
2 |� ∼ N[0.06, 0.8](0.16 + 0.05 · (L0

1 − 650 650, 0.07)

L
∼

0
2|� ∼ N((L0

2 − 0.1648594) (10 · 0.06980332 + 1, 0)

L0
3 |� ∼

N[ − 5, 5]( − 1.65 + 0.1 · V
3 + 0.05 · (L0

1 − 650) 650 + 0.05 · (L0
2 − 16) 16, 1) if V

1 = 1

N[ − 5, 5]( − 2.05 + 0.1 · V
3 + 0.05 · (L0

1 − 650) 650 + 0.05 · (L0
2 − 16) 16, 1)) if V

1 = 0

A0 |� ∼ B(p = 0)

C0 |� ∼ B(p = 0)

Y0 |� ∼ N[ − 5, 5]( − 2.6 + 0.1 · I(V3 > 2) + 0.3 · I(V1 = 0) + (L0
3 + 1.45), 1.1)

For t > 0:

L
t
1

�

N[0, 10000](13 · log(t · (1034 − 662)/8) + L
t − 1
1 + 2 · L

t − 1
2 + 2 · L

t − 1
3 + 2.5 · A

t − 1, 50) if t ∈ 1, 2, 3, 4

N[0, 10000](4 · log(t · (1034 − 662)/8) + L
t − 1
1 + 2 · L

t − 1
2 + 2 · L

t − 1
3 + 2.5 · A

t − 1, 50) if t ∈ 5, 6, 7, 8

N[0, 10000](Lt − 1
1 + 2 · L

t − 1
2 + 2 · L

t − 1
3 + 2.5 · A

t − 1, 50) if t ∈ 9, 10, 11, 12

L
t
2 |� N[0.06, 0.8](Lt − 1

2 + 0.0003 · (L
t − 1
1 − L

t − 1
1 ) + 0.0005 · (L

t − 1
3 ) + 0.0005 · A

t − 1 · L
∼

0
1, 0.02)

L
t
3 |� N−5, 5(L

t − 1
3 + 0.0017 · (L

t
1 − L

t − 1
1 ) + 0.2 · (L

t
2 − L

t − 1
2 ) + 0.005 · A

t − 1 · L
∼

0
2, 0.5)

A
t
|�

B(p = 1) if A
t − 1 = 1

B(p = 1/(1 + exp( − [ − 2.4 + 0.015 · (750 − L
t
1) + 5 · (0.2 − L

t
2) − 0.8 · L

t
3 + 0.8 · t]))) if A

t − 1 = 0
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C
t
|� B(p = 1/(1 + exp( − [ − 6 + 0.01 · (750 − L

t
1) + 1 · (0.2 − L

t
2) − 0.65 · L

t
3 − A

t
])))

Y
t
|� N[ − 5, 5](Yt − 1 + 0.00005 · (L

t
1 − L

t − 1
1 ) − 0.000001) · (L

t
1 − L

t − 1
1 ) · L

∼
0
1 2

+ 0.01 · (L
t
2 − L

t
2)

− 0.0001 · (L
t
2 − L

t − 1
2 ) · L

∼
0
2 2

+ 0.07 · ((L
t
3 − L

t − 1
3 ) · (L0

3 + 1.5135)) − 0.001

· ((L
t
3 − L

t − 1
3 ) · (L0

3 + 1.5135))
2

+ 0.005 · A
t

+ 0.075 · A
t − 1 + 0.05 · A[t] · A[t − 1], 0.01)

The data generating process leads to the following baseline values: region A = 75.5%; male 

sex = 51.2%; mean age = 3.0 years; mean CD4 count = 672.5; mean CD4% = 15.5%; mean 

WAZ = −1.5; mean HAZ = −2.5. At t = 12 the arithmetic mean of CD4 count, CD4%, WAZ 

and HAZ are 1092, 27.2%, −0.8, −1.5 respectively. The target quantities ψ1 and ψ2 are 

defined as the expected value of Y at time T, under no censoring, for a given treatment rule 

d
j, where

d
t
1 = {c

t
= 0; a

t
= 1 for ∀t and d

t
2 = {c

t
= 0; a

t
= 0 for ∀t

and are −1.03 and −2.45 respectively. Missing baseline and follow-up data were created 

based on the following functions:

π
(L

t
1)

= 0.1;

π
(L0

2)
(L0

1) = 1 −
1

(0.001 · L0
1)

2
+ 1

; π
(L

t
2)

(t, L
t
1) = 1 −

1

(0.00005 · t · L
t
1)

2
+ 1

;

π
(L0

3)
(Y0) = 1 −

1

(0.2 · Y0 )2 + 1
; π

(L
t
3)

(t, Y
t
) = 1 −

1

(0.015 · t · Y
t

)2 + 1
;

π(Y0)(L0
3) = 1 −

1

(0.7 · |L0
3 | )

2
+ 1

; π(Y
t
)(t, L

t
3) = 1 −

1

(0.015 · t · |L
t
3 | )

2
+ 1

.
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Figure 1. 

Coverage probability of the interval estimates for β1 in the first simulation setting dependent 

on the number of imputations. Results related to the complete simulated data, i.e. before 

missing data are generated, are labelled “original data”.
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Figure 2. 

Estimate of β1 in the first simulation setting, for a random simulation run: distribution of 

‘MI Boot (pooled)’ for each imputed dataset (top) and distribution of ‘Boot MI (PS)’ for 50 

random bootstrap samples (PS). Point estimates are marked by the black tick marks on the 

x-axis.
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Figure 3. 

Estimated cumulative mortality difference between the interventions ‘immediate ART’ and 

‘350/15’ at 3 years: distributions and confidence intervals of different estimators
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Figure 4. 

Estimated cumulative mortality difference: distribution of ‘MI Boot (PS)’ for each imputed 

dataset (top) and distribution of ‘Boot MI (PS)’ for 25 random bootstrap samples (bottom). 

Point estimates are marked by the black tick marks on the x-axis.
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