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[A tutorial for the signal processing practitioner]

T
his year marks the pearl anniversary of the bootstrap. It has been 30 years since

Bradley Efron’s 1977 Reitz lecture, published two years later in [1]. Today, bootstrap

techniques are available as standard tools in several statistical software packages and

are used to solve problems in a wide range of applications. There have also been sev-

eral monographs written on the topic, such as [2], and several tutorial papers writ-

ten for a nonstatistical readership, including two for signal processing practitioners published

in this magazine [4], [5].

Given the wealth of literature on the topic supported by solutions to practical problems, we

would expect the bootstrap to be an off-the-shelf tool for signal processing problems as are max-

imum likelihood and least-squares methods. This is not the case, and we wonder why a signal

processing practitioner would not resort to the bootstrap for inferential problems.

We may attribute the situation to some confusion when the engineer attempts to discover

the bootstrap paradigm in an overwhelming body of statistical literature. To give an example

and ignoring the two basic approaches of the bootstrap, i.e., the parametric and the nonpara-

metric bootstrap [2], there is not only one bootstrap. Many variants of it exist, such as the small

bootstrap [6], the wild bootstrap [7], the naïve bootstrap (a name often given to the standard

bootstrap resampling technique), the block (or moving block) bootstrap (see the chapter by Liu

and Singh in [8]) and its extended circular block bootstrap version (see the chapter by Politis

and Romano in [8]), and the iterated bootstrap [9]. Then there are derivatives such as the

weighted bootstrap or the threshold bootstrap and some more recently introduced methods

such as bootstrap bagging and bumping. Clearly, this wide spectrum of bootstrap variants may

be a hurdle for newcomers to this area.

[Abdelhak M. Zoubir and D. Robert Iskander]
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The name bootstrap is often associated with the tale of Baron

von Münchhausen who pulled himself up by the bootstraps from

a sticky situation. This analogy may suggest that the bootstrap is

able to perform the impossible and has resulted sometimes in

unrealistic expectations, especially when dealing with real data.

Often, a signal processing practitioner attempting to use the

basic concepts of the bootstrap is encouraged by his or her early

simulation studies. However, this initial fascination is often fol-

lowed by fading interests in the bootstrap, especially when the

technique did not prove itself with real data. Clearly, the boot-

strap is not a magic technique that provides a panacea for all

statistical inference problems, but it has the power to substitute

tedious and often impossible analytical derivations with compu-

tational calculations [3], [5], [10]. The bootstrap indeed has the

potential to become a standard tool for the engineer. However,

care is required with the use of the bootstrap as there are situa-

tions, discussed later, in which the bootstrap fails [11].

The first question a reader unfamiliar with the topic would

ask is, “what is the bootstrap used for?” In general terms, the

answer would be “the bootstrap is a computational tool for sta-

tistical inference.” Specifically, we could list the following

tasks: estimation of statistical characteristics such as bias, vari-

ance, distribution functions and thus confidence intervals, and

more specifically, hypothesis tests (for example for signal

detection), and model selection. The following question may

arise subsequently, “when can I use the bootstrap?” A short

answer to this is, “when I know little about the statistics of the

data or I have only a small amount of data so that I cannot use

asymptotic results.”

Our aim is to give a short tutorial of bootstrap methods sup-

ported by real-life applications so as to substantiate the answers

to the questions raised above. This pragmatic

approach is to serve as a practical guide rather than a

comprehensive treatment, which can be found else-

where; see for example [2]–[5].

THE BOOTSTRAP PRINCIPLE

Suppose that we have measurements collected in

x = {x1, x2, . . . , xn}, which are realizations of the

random sample X = {X1, X2, . . . , Xn}, drawn from

some unspecified distribution FX . Let θ̂ = θ̂ (X) be an

estimator of some parameter θ of FX , which could be,

for example, the mean θ = µX of FX estimated by the

sample mean θ̂ = µ̂X = 1/n
∑n

i=1 Xi . The aim is to

find characteristics of θ̂ such as the distribution of θ̂ .

Sometimes, the parameter estimator θ̂ is computed

from a collection of n independently and identically

distributed (i.i.d.) data X1, X2, . . . , Xn. If the distri-

bution function FX is known or is assumed to be

known and given that the function θ̂ (X) is relatively

simple, then it is possible to exactly evaluate the dis-

tribution of the parameter estimator θ̂ . Textbook

examples of this situation are the derivations of the

distribution functions of the sample mean µ̂X and its

variance when the data is Gaussian.

In many practical applications, either the distribution FX is

unknown or the parameter estimator θ̂ (X) is too complicated for

its distribution to be derived in a closed form. The question is

then how to perform statistical inference. Specifically, we wish to

answer the following question: how reliable is the parameter esti-

mator θ̂? How could we, for example, test that the parameter θ is

significantly different from some nominal value (hypothesis test)?

Clearly, we could use asymptotic arguments and approximate the

distribution of θ̂ . In the case of the sample mean µ̂X above, we

would apply the central limit theorem and assume that the distri-

bution of µ̂X is Gaussian. This would lead to answering inferen-

tial questions. But how would we proceed if the central limit

theorem does not apply because n is small and we cannot repeat

the experiment? The bootstrap is the answer to our question. Its

paradigm suggests substitution of the unknown distribution FX

by the empirical distribution of the data, F̂X . Practically, it means

that we reuse our original data through resampling to create what

we call a bootstrap sample. The bootstrap sample has the same

size as the original sample, i.e., x∗
b

= {x∗
1, x∗

2, . . . , x∗
n} for

b = 1, 2, . . . , B, where x∗
i , i = 1, 2, . . . , n are obtained, for

example, by drawing at random with replacement from x. The

simplest form of resampling is pictured in Figure 1. Each of the

bootstrap samples in the figure is considered as new data. Based

on the bootstrap sample x∗
b
, bootstrap parameter estimates

θ̂∗
b

= θ̂ (x∗
b
) for b = 1, . . . , B are calculated. Given a large num-

ber B of bootstrap parameter estimates, we can then approximate

the distribution of θ̂ by the distribution of θ̂∗, which is derived

from the bootstrap sample x∗, i.e., we approximate the distribu-

tion F
θ̂

of θ̂ by F̂
θ̂∗ , the distribution of θ̂∗.

From a practical point of view, a limitation of the bootstrap

may appear to be the i.i.d. data assumption, but we will show

[FIG1] The independent data bootstrap resampling principle.
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later how this assumption can be relaxed. There are, however,

several other technical points that need to be addressed. The

sample length n is also of great importance. Bootstrap methods

have been promoted as methods for small sample sizes when

asymptotic assumptions may not hold. However, as with any sta-

tistical problem, the sample size will influence the results in

practice. The number of bootstrap samples B necessary to esti-

mate the distribution of a parameter estimator has also been

discussed in the statistical literature [12]. One rule of thumb is

for the number of bootstrap samples B to take a value between

25 and 50 for variance estimation and to be set to about 1,000

where a 95% confidence interval is sought. However, with the

fast increasing computational power, there are no objections to

exceeding these numbers. 

Note that the bootstrap simulation error, which quantifies

the difference between the true distribution and the estimated

distribution, comprises two independent errors of different

sources, i.e., a bootstrap (statistical) error and a simulation

(Monte Carlo) error. The first error is unavoidable and does not

depend on the number of bootstrap samples B but on the size n

of the original sample. The second one can be minimized by

increasing the number of bootstrap samples. The aim is there-

fore to choose B so that the simulation error is no larger than

the bootstrap error. For a large sample size n, we would reduce

the number of samples B to reduce computations. However,

the larger the size n of the original data, the smaller the boot-

strap error. Thus, a larger number of bootstrap samples is

required for the simulation error to be smaller than the boot-

strap error. We found that the rule of thumb of choosing

B = 40n, proposed by Davison and Hinkley [13], is appropriate

in many applications. If desired, a method called jackknife-

after-bootstrap [14] can be used to assess the contribution of

each of these errors (i.e., bootstrap error versus Monte Carlo

error). In practice, the value of B is application dependent and

is left to the experimenter to choose.

The assumption of the original data being a good representa-

tion of the unknown population is not well articulated in the

statistical literature. However, it is quite intuitive to a signal

processing practitioner who is familiar with the jargon garbage

in→garbage out. The issue essentially concerns the allowed

number of outliers contained in the original data sample for the

bootstrap to work because when we resample with replacement,

it is likely that we produce bootstrap samples with significantly

higher numbers of outliers than the original sample. The issue

of a good original sample is closely related to that of sample size.

Many success stories have been reported by both statisticians

and engineers, while little is shown on bootstrap failures. Cases

indeed exist where bootstrap procedures fail no matter how

good the original sample is and no matter how large n is. A clas-

sical example of bootstrap failure is when we apply the inde-

pendent data bootstrap to find the distribution of the maximum

(or the minimum) of a random sample. Another example is

when the mean of a random variable with infinite variance (e.g.,

from the family of α-stable distributions) is of interest. This

implies that standard bootstrap techniques may produce uncon-

trolled results for heavy-tailed distributions. See the work of

Mammen [15] for more details.

A promising method that has been reported to work when

the conventional independent data bootstrap fails is subsam-

pling. Note that subsampling has been developed as a method

for resampling dependent data under minimal assumptions and

is based on drawing at random subsamples of consecutive obser-

vations of length less than the original data size n. See the book

by Politis et al. [16] for more details.

AN IMAGE PROCESSING EXAMPLE

We consider an example of fitting a circle to a set of two-dimen-

sional (2-D) data. This is common in many image processing

and pattern recognition applications. The application we consid-

er is to fit functions to the outlines of the pupil and limbus (iris

outline) in eye images [17]. The performance of automatic pro-

cedures for extracting these features can be evaluated with syn-

thetic images. However, for real images and particularly for the

limbus, these procedures need to be benchmarked against man-

ual operators assisted with computer-based procedures for point

selection. An operator is asked to select a small number of

points (xi, yi), i = 1, 2, . . . , n, where x i and yi denote the hori-

zontal and vertical point position (see the eight yellow crosses in

Figure 2).

A linear least-squares procedure can be applied to fit a circle,

modeled by the equation x2 + y2 + 2xx0 + 2yy0 + x2
0 +

y2
0 − R2 = 0, to the data (xi, yi), i = 1, 2, . . . , n , so that
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[FIG2] Typical example of a slit lamp image of an eye 
with manually selected points (yellow crosses) around the 
limbus area.
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where p1 = x0 , p2 = y0 , p3 = x2
0 + y2

0 − R2 and εi ,

i = 1, 2, . . . , n, is the modeling error.

The above equation can be rewritten in the form

Y = X · P + E, for which an estimator for P is easily derived,

i.e., P̂ = (XTX)−1XTY .

The question of interest is how well an operator can fit a cir-

cle to the limbus. One way of assessing the parameter estimator

would be to select eight data point pairs (considered in our

example) 1,000 times. Although feasible, this task is laborious,

and the results would most definitely be affected by the subse-

quently decreasing commitment of the operator. The alternative

is to use the bootstrap. Clearly, the selected data points (xi, yi),

i = 1, 2, . . . , n, are not i.i.d, unlike the modeling errors

εi, i = 1, . . . , n, collected in the random sample

ε = {ε1, ε2, . . . , εn}, which can be assumed to be i.i.d. Our

bootstrap procedure is described in Table 1.

An example of the distribution (histogram) of the limbus

radius obtained with the bootstrap method is shown in Figure 3.

Clearly, the bootstrap is capable of providing answers, substitut-

ing the tedious manual labor that would have been required to

complete this task. In the above example, we used the bootstrap

to find the distribution of the limbus radius estimator. This is

not the only question of interest in this application. The boot-

strap can also be used to estimate the existing bias when fitting

the data to ellipses [18], or it can be used for testing whether the

limbus or pupil parameters are different from the left to the

right eye in anisometropic subjects.

BOOTSTRAP TECHNIQUES FOR DEPENDENT DATA

The assumption that the data is i.i.d. is not always valid. Here we

provide some insight as to how to resample dependent data.

Note that if the data was i.i.d., standard bootstrap resampling

with replacement gives an accurate representation of the under-

lying distribution. However, if the data shows heteroskedasticity

(the random variables in the sequence or vector may have differ-

ent variances) or serial correlation, randomly resampled data

would lead to errors.

One way to extend the basic bootstrap principle to dependent

data is the previously mentioned concept of data modeling and

the subsequent assumption of i.i.d. residuals that approximate

the modeling and measurement errors.

There have been a variety of bootstrap methods developed for

dependent data models such as autoregressive (AR) and moving

average models (see [19] and references therein), and Markov

chain models (see the chapter by Athreya and Fuh in [8]), in

which the concept of i.i.d. residuals has been used. In analogy to

the linearization of a nonlinear problem, the idea here is to

reformulate the problem so that the i.i.d. component of the data

may be used for resampling. In most cases, the procedure fol-

lows the structure described in Table 2.

We used the above procedure in many signal processing

problems, including those related to higher-order statistics and

nonstationary signals with polynomial phase [3]. In some cases,

the residuals in Step 2 of the above procedure can be found as a

ratio of two parameter estimators. For example, in power spec-

trum density estimation [20], the ratios between the peri-

odogram and the kernel spectrum density estimator at distinct

frequency bins are assumed to be i.i.d. Note, however, that we

could not use the same concept for the bispectrum [3]. We also

note the approach taken by the authors in some real-life applica-

tions where the asymptotic independence of the finite Fourier

transform at distinct frequencies was explored so that sampling

could be undertaken in the frequency domain [3].

As an example, we describe below the principle of bootstrap

resampling for AR models. Given n observations xt ,

t = 1, . . . , n, of an AR process of order p and coefficients ak,

[FIG3] Histogram of R̂∗
1, R̂

∗
2, . . . , R̂

∗
1,000 based on the eight

manually selected limbus points.

5.92 5.94 5.96 5.98 6 6.02 6.04 6.06
0

20

40

60

80

100

120

Bootstrap Estimates of Limbus Radius (mm)

F
re

q
u
e
n
c
y
 o

f 
O

c
c
u
rr

e
n
c
e

STEP 1) ESTIMATE THE THREE PARAMETERS OF THE CIRCLE x0, y0, AND R ,
COLLECTED IN P̂PP AND CONSTRUCT AN ESTIMATE OF THE CIRCLE
USING ŶYY = XXX · P̂PP.

STEP 2) CALCULATE THE RESIDUALS ÊEE = YYY − ŶYY .
STEP 3) SINCE WE HAVE ASSUMED THAT THE RESIDUALS ÊEE ARE I.I.D., WE

CREATE A SET OF BOOTSTRAP RESIDUALS ÊEE
∗

BY RESAMPLING WITH
REPLACEMENT FROM ÊEE. NOTE THAT THE RESIDUALS NEED TO BE
CENTERED (DETRENDED) BEFORE RESAMPLING.

STEP 4) CREATE A NEW ESTIMATE OF THE CIRCLE BY ADDING THE BOOT-
STRAPPED RESIDUALS TO THE ESTIMATE, OBTAINED FROM THE
ORIGINAL DATA YYY IN STEP 1, I.E., ŶYY

∗
= XXX · P̂PP + ÊEE

∗
.

STEP 5) ESTIMATE A NEW SET OF PARAMETERS FROM THE NEWLY CREATED
BOOTSTRAP SAMPLE P̂PP

∗
= (XXXT

XXX)−1
XXX

T
ŶYY

∗
.

STEP 6) REPEAT STEPS 3–5 B TIMES TO OBTAIN A SET OF P̂PP
∗

1, P̂PP
∗

2, . . . , P̂PP
∗

B
,

FROM WHICH EMPIRICAL DISTRIBUTIONS OF THE CONSIDERED
PARAMETER ESTIMATORS CAN BE OBTAINED.

[TABLE 1]  BOOTSTRAP PROCEDURE FOR THE ESTIMATION 
OF THE DISTRIBUTION OF P̂PP.

STEP 1) FIT A MODEL TO THE DATA.
STEP 2) SUBTRACT THE FITTED MODEL FROM THE ORIGINAL DATA TO

OBTAIN RESIDUALS.
STEP 3) CENTER (OR RESCALE) THE RESIDUALS.
STEP 4) RESAMPLE THE RESIDUALS.
STEP 5) CREATE NEW BOOTSTRAP DATA BY ADDING THE RESAMPLED

RESIDUALS TO THE FITTED MODEL  FROM STEP 1.
STEP 6) FIT THE MODEL TO THE NEW BOOTSTRAP DATA.
STEP 7) REPEAT STEPS 4–6 MANY TIMES TO OBTAIN DISTRIBUTIONS FOR

THE MODEL PARAMETER ESTIMATORS. 

[TABLE 2]  RESIDUAL-BASED BOOTSTRAP PROCEDURE 
FOR DEPENDENT DATA.



k = 1, . . . , p, we would proceed as summarized in Table 3 to

create bootstrap parameter estimates so as to estimate the dis-

tribution functions of the parameter estimators, based on the

original data [3].

The bootstrap estimates â∗b
1 , . . . , â∗b

p for b = 1, . . . , B are

used to estimate the distributions of â1, . . . , âp or their statisti-

cal measures such as means, variances, or confidence intervals.

Practical examples of the above procedure are shown in what

follows in the context of hands-free telephony and micro-

Doppler radar.

AN EXAMPLE FOR HANDS-FREE TELEPHONY

Hands-free communication in cars can be severely disturbed by

car noise. To ensure understandability, noise-reduction algo-

rithms are necessary. These are usually assessed by listening to

estimated speech samples. However, a quantitative assessment

seems to be a more objective approach. In this example, we pro-

pose to assess the confidence intervals of the parameters of an

AR model used to represent the recovered speech signal to ulti-

mately compare them with those of the AR parameters corre-

sponding to the original signal. A bootstrap approach is

suggested due to the complicated nature of the signals and their

statistical properties.

The single-channel recorded signal x(t) is described as a

mixture of a clear speech signal s(t) and car noise n(t). The

noise reduction approach we use here, proposed in [21],

assumes both speech and car noise to be AR processes contami-

nated by white noise. The algorithm uses subband AR modeling

and Kalman filtering to find a noise-reduced estimate ŝ(t) of

the clear speech signal s(t), as shown in Figure 4.

An overview of the noise-reduction algorithm is as follows

(details can be found in [21]):

■ To obtain small AR model orders, the signal is split into 16

subbands with an undersampling rate of 12. The AR model

orders used are 4–6 for clear speech and 2 for car noise.

■ Signal segments with 48 ms duration are considered to be

quasistationary.

■ The block “AR Model Estimation” in Figure 4 can be

roughly described as follows.

— If only noise is present, the noise spectrum is measured

by means of a smoothed periodogram.

— If voice activity is detected, the current noise spectrum is

held fixed and is subtracted from the disturbed speech spec-

trum, to obtain an estimate of the speech only spectrum.

— AR parameter and input power estimation is performed

for both noise and speech separately.

A single-channel speech signal was used. The recording was

the German sentence: “Johann Philipp Reis führte es am 26.

Oktober 1861, erstmals in Frankfurt am Main, vor und nutzte

dazu als einen der ersten Testsätze: ‘Pferde fressen keinen

Gurkensalat.’” A quasistationary segment of this recording is

then chosen corresponding to the vocal part of “Reis.” This sig-

nal segment, sampled at 8 kHz is shown in Figure 5(a). After

estimating the model order to be 11, by means of the minimum

description length (MDL) information theoretic criterion, we

estimate the AR parameters and use the bootstrap to find their

distributions as described in Table 3.

Figure 5(b) shows the residuals, obtained by inverse filtering

of the signal with the estimated parameters of the AR model

from the recovered speech signal ŝ(t). The residuals are close to

white, as can be inferred from the covariance function of the

residuals shown in Figure 5(c).

A quality assessment of a noise-reduction algorithm

should give a measure of how well ŝ(t) estimates s(t), or how

close ŝ(t) is to s(t) in a statistically meaningful way. This

could be done based on the bootstrap distributions of the AR

parameter estimates of s(t) and ŝ(t). We use 90% confidence

intervals of the AR parameters based on the estimated values

to assess how close the original (clear speech) and the noise-

reduced signals are. Figure 5(d) shows the bootstrap 90%

confidence intervals for the 11 AR parameters of the noise-

reduced signal ŝ(t) along with the estimated AR parameters

of ŝ(t) (black crosses) and the estimated AR parameters of

s(t) (red diamonds). The confidence intervals for the fitted AR

parameters to the original speech signal

s(t) (not shown in the figure) are in

close agreement with the confidence

intervals shown in Figure 5(d).

From this example, we can deduce that

the bootstrap can be used to assess the

quality of the noise-reducing algorithm

using approximate confidence bounds. As

an alternative to the common practice of

listening to both the original speech and

the noise reduced speech to assess clarity,

the confidence bounds of their respective

AR parameters are compared.[FIG4]  Noise reduction algorithm using subband AR modeling and Kalman filtering.
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STEP 1) WITH THE ESTIMATES âk OF ak FOR  k = 1, . . . , p (OBTAINED BY
SOLVING THE YULE-WALKER EQUATIONS), CALCULATE THE 
RESIDUALS AS ẑt = xt +

∑p
k=1 âkxt−k FOR t = p + 1, . . . , n.

STEP 2) CREATE A BOOTSTRAP SAMPLE x∗
1, . . . , x∗

n BY DRAWING
ẑ∗

p+1, . . . , ẑ∗
n, WITH REPLACEMENT FROM THE RESIDUALS

ẑp+1, . . . , ẑn, THEN LETTING x∗
t = xt FOR t = 1, . . . , p AND

x∗
t = −

∑p
k=1 âkx∗

t−k + ẑ∗
t FOR t = p + 1, . . . , n.

STEP 3) OBTAIN BOOTSTRAP ESTIMATES â∗
1, . . . , â∗

p FROM x∗
1, . . . , x∗

n .
STEP 4) REPEAT STEPS 2-3 B TIMES TO OBTAIN â∗b

1 , . . . , â∗b
p FOR

b = 1, . . . , B .

[TABLE 3]  BOOTSTRAP RESAMPLING FOR AR MODELS.



ALTERNATIVE DEPENDENT DATA

BOOTSTRAP METHODS

Several questions may be asked at

this stage: how can one bootstrap

non-i.i.d. data without imposing a

parametric model? Can one resample

the data nonparametrically? First

answers to these questions have been

provided by Künsch [22], who introduced the concept of resam-

pling sequences (chunks) of data. The method is referred to as the

moving block bootstrap. In essence, rather than resampling with

replacement single data points, sets of consecutive points are

resampled to maintain, in a nonparametric fashion, the structure

between neighboring data points. The segments chosen for boot-

strapping can be either nonoverlapping or overlapping. To illus-

trate this concept, we use a sequence of Iskander’s eye aberration

data measured by a Hartmann-Shack sensor [23]. The data is

sampled at approximately 11 Hz and is composed of 128 data

points. We divide the sequence into nonoverlapping blocks of 16

samples each, as illustrated in the top panel of Figure 6. The

blocks are then resampled to obtain the bottom panel of Figure 6.

We note that the resampling of

blocks of data is based on the

assumption that the blocks are i.i.d.

This is the case when the data rep-

resents a process that is strong mix-

ing. This means, loosely speaking,

that the resampling scheme

assumes that the data points that

are far apart are nearly independent.

If the data are to be divided into segments, the length of each

segment as well as the amount of overlap may become an issue.

Although automatic procedures for selecting these parameters

have been developed [24], in many practical situations, the

dependence structure of the sample may still need to be estimat-

ed or at least examined. The problem may become even more

complicated if the original data is nonstationary. There are

reported cases where moving block bootstrap techniques show a

certain degree of robustness for nonstationary data (see the chap-

ter by Lahiri in [8]). On the other hand, it is not guaranteed that

the moving block bootstrap estimates from a stationary process

would themselves result in stationary processes. This somewhat

[FIG5]  Results of the speech signal analysis experiment. (a) The original signal s(t) corresponding to the vocal part of “Reis” and its
noise-reduced version ŝ(t). (b) The estimated residuals and (c) their covariance structure. (d) The Estimated coefficients of the AR(11)
model and 90% confidence intervals.
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worrying observation of nonpreser-

vation of stationarity has been

reported in [25]. A resampling

scheme in which the length of each

block is randomly chosen (the so-

called stationary bootstrap) provides

a solution to this problem [26]. See

the paper by Politis [27] for some

recent dependent data bootstrap

techniques.

The observations made above

show that the very appealing simplici-

ty of the standard bootstrap resam-

pling technique is somehow lost in

the dependent data bootstrap meth-

ods. Also, the amount of evidence

supporting the empirical validity of

those procedures is still limited. This

leads to an unpopular conclusion that

the bootstrap novice should attempt a

model-based approach when dealing

with non-i.i.d. data, especially when

only limited knowledge of the data

dependence structure is available.

Nevertheless, there are practical cases

in which a model-based approach

combined with dependent data boot-

strap is powerful.

We now close our dependent data bootstrap treatment with

an example from radar.

MICRO-DOPPLER ANALYSIS

The Doppler phenomenon often arises in engineering applica-

tions where radar, ladar, sonar, and ultra-sound measurements

are made. This may be due to the relative motion of an object

with respect to the measurement system. If the motion is har-

monic, for example due to vibration or rotation, the resulting

signal can be well modeled by a frequency modulated (FM) signal

[28]. Estimation of the FM parameters may allow us to deter-

mine physical properties such as the angular velocity and dis-

placement of the vibrational/rotational motion which can in turn

be used for classification. The objectives are to estimate the

micro-Doppler parameters along with a measure of accuracy,

such as confidence intervals.

Assume the following amplitude modulation (AM)-FM signal

model:

s(t) = a(t) exp{ jϕ(t)}, (1)

where the AM is described by a polynomial: a(t;ααα) =
∑q

k=0
αktk

and ααα = (α0, . . . , αq) are the termed AM parameters. The phase

modulation for a micro-Doppler signal is described by a sinusoidal

function: ϕ(t) = −D/ωm cos(ωmt + φ).

The instantaneous angular frequency (IF) of the signals is

defined by

ω(t;βββ) �
dϕ(t)

dt
= D sin(ωmt + φ), (2)

where βββ = (D, ωm, φ) are termed the FM or micro-Doppler

parameters.

The micro-Doppler signal in (1) is buried in additive noise so

that the observation process is described by X(t) = s(t) + V(t),

where V(t) is assumed to be a colored noise process. Given obser-

vations {x(k)}n
k=1

of X(t), the goal is to estimate the micro-

Doppler parameters in βββ as well as their confidence intervals.

The estimation of the phase parameters is performed using a

time-frequency Hough transform (TFHT) [29], [30]. The TFHT

we use is given by

H(βββ) =

n−(L−1)/2+1∑

k=−(L−1)/2

Pxx[k, ωi(n;βββ)),

where ω(t, βββ) is described in (2), and Pxx[k, ωi(n;βββ)) is the

pseudo-Wigner-Ville (PWVD) distribution, defined as

Pxx[k, ω) =

(L−1)/2∑

l=−(L−1)/2

h[k]x[k + l]x∗[k − l]e− j 2ω, (3)

for k = −(L − 1)/2, . . . , n − (L − 1)/2, where h[k] is a win-

dowing function of duration L. An estimate of βββ is obtained

from the location of the largest peak of H(βββ) , i.e.,

β̂ββ = arg maxβββ H(βββ) . Once the phase parameters have been

[FIG6] An example of the principle of moving block bootstrap. (a) Original data and (b) block
bootstrapped data. Note that some blocks from the original data appear more than once and
some do not appear at all in the bootstrapped data.
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estimated, the phase term is demodulated and the amplitude

parameters α0, . . . , αq are estimated via linear least-squares.

We now turn our attention to the estimation of confidence

intervals for D and ωm using the bootstrap. Given estimates for

ααα and βββ, the residuals are obtained by subtracting the estimat-

ed signal from the observations. The resulting residuals are not

i.i.d., and a dependent data bootstrap would seem a natural

choice. Due to some difficulties with a dependent data boot-

strap approach with real data, we chose to whiten the residuals

by estimating parameters of a fitted AR model. The innovations

are then resampled, filtered, and added to the estimated signal

term to obtain bootstrap versions of the data, as discussed pre-

viously. By reestimating the parameters many times from the

bootstrap data, we are then able to obtain confidence intervals

for the parameters of interest. This is demonstrated using

experimental data.

The results shown here are based on an experimental radar

system, operating at carrier frequency fc = 919.82 MHz. After

demodulation, the in-phase and quadrature baseband channels

are sampled at fs = 1 kHz. The radar system is directed towards

a spherical object, swinging with a pendulum motion, which

results in a typical micro-Doppler signature. The PWVD of the

observations is computed according to (3) and shown in Figure

7(a). The sinusoidal frequency modulation is clearly observed.

[FIG7] (a) The PWVD of the radar data. (b) The PWVD of the radar data and the micro-Doppler signature estimated using the TFHT. (c)
The real and imaginary components of the radar signal with their estimated counterparts. (d) The real and imaginary parts of the
residuals and their spectral estimates.
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Using the TFHT, we estimate the micro-Doppler signature as

discussed above and plot it over the PWVD in Figure 7(b). The

AM parameters of the signal are then estimated. The radar data

and the estimated AM-FM signal term are shown in Figure 7(c),

while the residuals obtained by subtracting the estimated signal

from the data are shown in Figure 7(d) together with their peri-

odogram and AR-based spectral estimates. The model appears to

fit the data well, and coloration of the noise seems to be well

approximated using an AR model.

After applying the bootstrap with B = 500, the estimated dis-

tribution of the micro-Doppler parameters and the 95% confi-

dence intervals for D and ωm are obtained and shown in Figure 8.

This example shows that the bootstrap is a

solution to finding distribution estimates for

D̂ and ω̂m, a task that would be tedious or

even impossible to achieve analytically.

GUIDELINES FOR USING THE BOOTSTRAP

Let us summarize the main points from our

discussion. Is it really possible to use the

bootstrap to extricate oneself from a difficult

situation as anecdotally Baron von

Münchhausen did? There are many dictionary

definitions of the word bootstrap. The one we

would like to bring to the readers’ attention

is: “to change the state using existing

resources.” With this definition, the answer to

our question is affirmative. Yes, it is possible

to change our state of knowledge (e.g., the

knowledge of the distribution of parameter

estimators) based on what we have at hand,

usually a single observation of the process.

However, for the bootstrap to be successful, we need to identify

which resampling scheme is most appropriate. The initial deci-

sion must be based on the examination of the data and the prob-

lem at hand. If the data can be assumed to be i.i.d. (the unlikely

scenario in real world problems, but useful in simulation studies),

standard bootstrap resampling techniques such as the independ-

ent data bootstrap can be used. Should the data be non-i.i.d., we

should consider first a parametric approach in which a specific

structure is assumed (see Figure 9). If this can be done, we can

reduce the seemingly difficult problem of dependent data boot-

strap to standard resampling of the assumed i.i.d. model error

estimates (residuals). If a model for the data structure cannot be
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[FIG8]  The bootstrap distributions and 95% confidence intervals for the FM parameters (a) D and (b) ωm.
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found, the matter is much more deli-

cate. This is because existing non-

parametric bootstrap schemes for

dealing with dependent data have not

been sufficiently validated as an auto-

matic approach for real-life depend-

ent data problems that a signal

processing engineer may encounter.

As we mentioned earlier, a signal

processing practitioner always

attempts to simplify their work. A

nonlinear problem can be either transformed or reduced to a set

of linear problems, and a nonstationary signal can be segmented

to assume local stationarity. Similarly, bootstrap techniques for

real-world data that are often not i.i.d. and nonstationary can be

reduced to standard resampling techniques. This is the approach

we have taken and the one we advocate. With this approach, the

bootstrap may prove itself as an off-the-shelf tool for practical

signal processing problems.
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