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Bootstrap Methods for Finite Populations 

James G. BOOTH, Ronald W. BUTLER, and Peter HALL* 

We show that the familiar bootstrap plug-in rule of Efron has a natural analog in finite population settings. In our method a 
characteristic of the population is estimated by the average value of the characteristic over a class of empirical populations constructed 
from the sample. Our method extends that of Gross to situations in which the stratum sizes are not integer multiples oftheir respective 
sample sizes. Moreover, we show that our method can be used to generate second-order correct confidence intervals for smooth 
functions of population means, a property that has not been established for other resampling methods suggested in the literature. A 
second resampling method is proposed that also leads to second-order correct confidence intervals and is less computationally 
intensive than our bootstrap. But a simulation study reveals that the second method can be quite unstable in some situations, whereas 
our bootstrap performs very well. 

KEY WORDS: Confidence interval; Edgeworth expansion; Empirical population; Plug-in rule; Resample; Second-order correct; 
Subsample; Survey data. 

I, INTRODUCTION 

In this article we show that the now-familiar nonpara- 
metric bootstrap method (Efron 1982) for approximating 
characteristics of a unknown distribution has a natural analog 
in classical finite-population sampling problems. In partic- 
ular, we show that there exist second-order correct bootstrap 
estimates for the distribution of Studentized versions of 
stratified sample means, separate ratio estimates, and other 
well-known estimates of a finite population mean. Inversion 
of the bootstrap distribution function leads to second-order 
correct, percentile-t bootstrap confidence intervals that can 
be considerably more accurate than the standard intervals 
based on the normal approximation, especially in small-scale 
surveys. (See Hall 1988 for an in-depth discussion of the 
percentile-t method in the infinite population setting.) 

In common with the infinite population case is the fact 
that exact computation of bootstrap estimates is rarely fea- 
sible. In Section 2 we describe a Monte Carlo technique for 
approximating bootstrap estimates and constructing boot- 
strap confidence intervals that involves resampling from 
empirical populations. In Section 3 we discuss two alternative 
approaches to estimation in finite-population settings that 
also require a form of resampling. The first of these methods, 
due to Bickel and Freedman (1984), is not second-order cor- 
rect but in practice often gives answers close to our bootstrap, 
particularly when the sampling fractions are small. This 
method was also suggested independently by Chao and Lo 
(1985). Both our bootstrap method and the Bickel and 
Freedman (BF) method reduce to a resampling procedure 
suggested by Gross (1980) when the ratios of stratum sizes 
to sample sizes are all integers. The second alternative 
method involves estimating the distribution of a statistic by 
the distribution of its version based on subsamples selected 
at random and without replacement from the observed stra- 
tum samples, with the subsampling fractions as close as pos- 
sible to the original sampling fractions. The resulting estimate 
is not second-order correct, but a modified estimate obtained 
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by mixing the subsampling estimate with the standard nor- 
mal distribution is second-order correct. This procedure is 
effective when the sampling fractions are large, which is often 
the case in small-scale surveys, but can perform badly when 
the sampling fractions are small. In Section 4 we summarize 
the results of a simulation study in which the three resampling 
techniques and the normal approximation are compared for 
various standard estimates. We discuss technical issues and 
give an outline of the proof of our assertions concerning 
second-order correctness in Section 5. The key theoretical 
tools required for this discussion are theorems 1 and 2 of 
Babu and Singh (1985) on Edgeworth expansions in finite- 
population sampling settings. We conclude in Section 6 with 
a brief discussion of our results. Other related work involving 
resampling methods in finite-population settings includes 
that of Kover, Rao, and Wu ( 1988), Krewski and Rao (1 98 l),  
Lo (1988), McCarthy and Snowdon (1985), Rao and Wu 
(1 988), and Sitter (1 992). We conclude this section with a 
more detailed description of our method and introduce some 
notation. 

In the infinite population setting, the bootstrap method 
may be described as a plug-in rule, whereby a functional B 
= t (F )  of an unknown distribution function F is estimated 
by 8 = t ( ~ ) ;that is, by plugging in the empirical distribution 
function F based on a random sample from F .  In finite- 
population settings, the role of the unknown distribution 
function Fis played by the set P = {xl,. . . ,xN) of numerical 
measurements on elements of a population of size N, where 
the measurement xi corresponding to the ith element of the 
population may consist of k (k  2 1) components. In an abuse 
of the usual sampling terminology, we shall refer to P as the 
population. 

Suppose that P is divided into s ( s  2 1) mutually exclusive 
and exhaustive strata P 1 ,  . . . , P, of sizes NI ,  . . . ,N,. We 
write P = { P I ,. . . , P,) and use the notation P, = {x,,~, 
. . . , x , , ~ , )  to distinguish elements of the rth stratum. For 
each r = 1, . . . ,s let X, = { X , ,, . . . ,X , , , )  be a sample of 
size n, IN, selected at random and without replacement 
f romP, , le tn .  = n1 + . . .  +n , ,p .  = p l  + +p,and 
9. = 91 + ' ' ' + 9~3where pr = nrlNr is the 

for the rth stratum and g, = 1 - p,. Write X = { X I ,  . . . , 
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X, )  for the complete sample. Let E( . 1'3) and P( . I P ) de-
note the expectation and probability under this sampling 
scheme. 

Now, suppose that 6 = t (  P )  is a characteristic of the pop- 
ulation P that is of interest. The natural analog of the infinite 
population bootstrap plug-in rule in this setting is to estimate 
6 by 8 = t ( p ) ,where p is an empirical population based on 
the sample X .  In the case where Nr/ n, is an integer, say m,, 
for each r = 1, . . . ,s , an obvious candidate for p is obtained 
by replicating X,m, times, giving say p r ,  and then letting 
p = { P I ,. . . ,p,} .This procedure was suggested by Gross 
(1980).More generally, however, we let m ,  be the integer 
part of Nr/ n, and k, = N, - n,m,. Then for each r = 1, . . . , 
s form an empirical stratum @ T by combining m , replicates 
of X , with a sample of size k,, selected at random and without 
replacement from X,.  We then call p * = { p T , . . . , p $  ) 
an empirical population based on X and define the bootstrap 
estimate of 6 by 

8 = ~ { t ( p * ) l X ) ,  ( 1 )  

where E { . / X ) denotes expectation conditional on X .  
We focus in this article on estimating the distribution 

function of a Studentized estimate of a population mean p. 
A confidence interval for p can be constructed from the dis- 
tribution function estimate by the usual inversion technique. 
Specifically, let T = ( n . / q . )' I 2 ( ;  - p ) /  G, where f i  is an es- 
timate such as a stratified sample mean or separate ratio 
estimate and (q./ n .) ' I 2 ;  is an estimate of the standard error 
of jl under repeated sampling from P.  Then let 6 = P ( T  
I yl P ) .  It turns out that under certain regularity conditions, 
the bootstrap estimate 8 given by ( 1 ) approximates 6 to second 
order in the sense that 8 = 6 + o , ( n ~ ~ ' ~ ) .In comparison, 
the normal approximation @ ( y )deviates from 19 by a term 
of size O ( ~ T ] ' ~ )under the same conditions. As with its 
infinite-population counterpart, our bootstrap method comes 
into its own with small- to moderate-sized samples. Thus we 
envisage our procedure being most useful in small-scale sur- 
veys. If n .  is large and the sampling fractions are not too 
close to 1, then the normal approximation will usually be 
adequate. In the latter situation, bootstrap methods and the 
normal approximation will typically yield very similar an- 
swers. The beauty of the bootstrap approach is that it adapts 
to the problem as required, leading to accurate inferences 
when the normal approximation works well and also when 
it does not. 

Formula ( I )  can also be used to estimate the variance of 
b by letting 6 = var(b / P ) .As in the infinite population case, 
bootstrap variance estimates are biased, even for linear es- 
timates; the bootstrap variance estimate typically have ex- 
pectation 1 + O ( n ~ l )times the exact variance. For example, 
in the single-stratum case, when the population size is an 
integer multiple of the sample size ( N = n m ),the bootstrap 
estimate of the variance of the sample mean is ( n  - l ) / ( n  
- 1 / m ) times the usual unbiased estimate (McCarthy and 
Snowdon 1985, p. 2) .  Because of this, other resampling 
schemes may be preferred for variance estimation, particu- 
larly when some or all of the stratum sample sizes are very 
small. For example, the "rescaling" and "mirror-match" re-
sampling methods proposed by Rao and Wu (1988)and Sit- 
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ter (1992) reproduce the usual unbiased variance estimate 
in the linear case. 

2. MONTE CARL0 APPROXIMATION 

As noted in Section 1, exact computation of the bootstrap 
estimate 8 in ( 1 )  is usually not practical. In this section we 
describe a simple Monte Carlo technique for approximating 
8.  We consider in particular the case where 6 = P( T I y 1 ' 3 )  
and T is a Studentized estimate of a population mean p, and 
discuss the concentration of bootstrap confidence intervals 
for p by the inversion method. Let 2 = ( X I ,. . . ,2,) and x 
= ( X I ,. . . ,X,),where k,  and X ,are the mean vectors cor- 
responding to the rth stratum P ,  and its associated sample 
X,.  Suppose that i? = ;(x;k )  is an estimate of F = ~ ( 2 )  
and that ( q . ~ n . ) ' ' ~ G ,where G = G ( x ;  k )  is an estimate of 
the standard error of b under repeated sampling from P.  
Define T = ( n .  19.)  ' I 2 ( ;  - p ) /  G. Notice that by allowing 
jl to be a function of the population vector 2 as well as the 
sample vector X ,we include in our discussion estimates that 
use knowledge of the stratum means of one or more auxiliary 
variables. For example, suppose that the population consists 
of paired measurements, ( x l i ,x ~ ~ )i = 1, . . . ,N, and that 
p = ,TI is the characteristic of interest. If the value of X2 is 
known exactly, then the ratio estimate of p is given by b 
= ( X 1  /Z2)X2.  In this instance, the variance estimate obtained 
by linearization (Cochran 1977, sec. 6.4) is given by 

Suppose that p * is an empirical population constructed 
in the manner described in Section 1. For r = 1, . . . ,s ,  let 
X be a sample of size n,, selected at random and without 
replacement from the rth empirical stratum p:. Then we 
call X *  = { X T , . . . , X : )  a resample from p*.  Let k* 
and x * denote the mean vectors corresponding to p * and 
X *  and define T *  = ( n . ~ q . ) ' ' ~ ( b *- p*)/G*, where b* 
= ;(x *; k* ), F* = p(X* ), and G* = G ( x  *; k* ). Observe 
that 6 = P( T * I y 1 X ),where P( . / X ) denotes probability 
conditional on X .  

Let p TI),. . . ,p T B ) be B empirical populations constructed 
independently in the manner described in Section 1. For 
each b = 1, . . . ,B let X Tb,l), . . . , X Tb,C) be a collection of 
C independently selected resamples from p Tb).An unbiased 
Monte Carlo approximation to 8 is then given by 

where TTb-l)C+cis the version of T computed using the em- 
pirical population p Tb) and resample X Tb,c) and I( .) is the 
indicator set function. 

We assume that the lack of continuity of the distributions 
of T in repeated sampling from P and T *  conditional on 
X is negligible. Then an "exact" a-level confidence interval 
for F is given by 

where yo denotes the 0 quantile of the distribution of T sat-

isfying 0 = P( T I ys I P ) for 0 < < 1 .  The bootstrap es- 
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timate of the interval in ( 3 ) is obtained by replacing exact 
quantiles yo by their bootstrap approximations Gp satisfying 
p = P( T * I / X ) . Finally, a Monte Carlo approximation 
to j p  is given by F p  = =TRP),where R = B X C and TT,) 
denotes thejth order statistic of T : ,  . . . ,T ; ,  where j is the 
closest integer in the set { 1, . . . ,B )  to the value a .  

3. TWO ALTERNATIVE METHODS 

Bickel and Freedman (1984)have proposed an alternative 
resampling procedure for situations in which the ratios of 
stratum sizes to samples sizes, N,/n,, r = 1, . . . , s are not 
all integers. The method differs from the one that we pro-
posed in Section 1 by the way in which empirical populations 
are constructed. More specifically, Bickel and Freedman 
suggested letting the rth empirical stratum, say plj:,consist 
of m ,  replicates of X ,  with probability ir, (0  < ir, I1 )  and 
m ,  + 1 replicates of X ,  with probability 1 - ir,. Let p' 
= { p ;,. . . ,p j )  denote the resulting empirical population. 
A resample X ' from ' then consists of s samples of sizes 
n l ,. . . ,n,, selected randomly and without replacement from 
the empirical strata pi,. . . , p j .  The values of ir,, r = 1, 
. . . ,s ,  are chosen so that the average resampling fraction in 
the rth stratum equals the true value p,; that is, ir, satisfies 
pr = ir,/m, + ( 1  - w,) / (m,  + 1 ) .  Let 2' and X'denote the 
empirical population and resample stratum mean vectors 
and define T '  = ( n . l q . ) ' I 2 ( ; '  - pl) /Z ' ,where p' = p(x ' ) ,
i' = jl(%';?'), and Z' = ;(%'; 2 ' ) .  Then the BF estimate of 
6 = P ( T  Iy 1 P )  is 8' = P ( T 1r y l X ) .  Monte Carlo ap-
proximation of 8' and of j i ,  the corresponding P-quantile 
estimate, proceeds as in Section 2. Notice that if m ,  = 1 for 
some value of r ,  then the corresponding empirical stratum 
will sometimes be the same as the stratum sample. Hence 
there is potentially no resampling variability in such strata, 
with the result that the estimate of I9 may be extremely poor. 

A second alternative procedure involves subsampling from 
the original sample X .  For r = 1 ,  . . . , s ,  let n," denote the 
integer part of n,p,, so that n," In ,  = p,, and let X ," denote 
a sample of size n," ,selected at random and without replace-
ment from X,.  Write X 0  = { X p ,  . . . , X , " )  and let T o  
denote the version of T computed using X O and X in place 
of X and P .  Then we call P( T o  r y 1 X )  the subsampling 
method estimate of 19.As pointed out in Section 1, this sub-
sampling estimate is not second-order correct. But this defect 
can be rectified by mixing with the standard normal distri-
bution function to give a modified subsampling estimate, 

where n ? =  n?  + . + n,O. A modified subsampling es-
timate, say p i ,  for the quantile yp is defined in the obvious 
way via the inverse of (4 ) .  

Monte Carlo approximation of 80 and Gp" proceeds by first 
selecting R independent subsamples X TI),. . . , X (OR)  from 
X .  Let T,? denote the value of T O computed using X r,) and 
X ,  j = 1 ,  . . . ,R .  Then an unbiased Monte Carlo approxi-
mation to P( T o  Iy 1 X )  is given by R-' C I(TP I y ) ,  

where the sum is over the range 1 to R .  Substitution of this 
value into ( 4 )  results in an unbiased approximation to 80, 
say 8". A Monte Carlo approximation to Gp" is Fp" = T?,), 
where 

jp = m i n [ j :  j E  { 1 ,  . . . ,R )  and ( n ? / n . ) ' I 2 j / ~  

and TP,.,denotes the jth order statistic of T P ,  . . . , T i .  
We conclude this section with a numerical illustration of 

the various methods involving the estimation of the total 
population of 196 large U.S. cities in 1930. The data, taken 
from Cochran ( 1  977, p. 152),consist of the 1920 and 1930 
populations (in 1,000s) of a random sample of 49 of the 196 
cities. The total 1920 population of all 196 cities is also given, 
as 22,9 19 thousand. The 1920 and 1930 sample totals are 
5,054 and 6,262, leading to a ratio estimate of 28,397 thou-
sand for the 1930 total. The standard error of this estimate 
if 604, and hence a nominal 95% confidence intervals for 
the 1930 total based on the normal approximation is (27,213, 
29,581) thousand. The corresponding bootstrap and sub-
sampling intervals, (27,216, 29,702) and (27,165, 29,943) 
are considerably longer, particularly in the upper tail. Note 
that the BF method is identical to the bootstrap in this prob-
lem, because the population size is exactly four times the 
sample size. The discrepancy between the bootstrap and 
subsampling intervals in this example is discussed in Sec-
tion 6. 

4. A SIMULATION STUDY 

The sampling distributions for T *, T ',and T " were sim-
ulated and the resulting quantiles used as previously de-
scribed in the construction of confidence intervals and es-
timation of quantiles from the distribution to T .  Table 1 
summarizes coverage attainment for the three bootstrap in-
tervals as well as for the usual normal approximation inter-
vals. Table 2 addresses quantile estimation accuracy for the 
finite-population bootstrap method (BT) and the BF method, 
and Table 3 contains summary statistics for the half-widths 
of the various confidence intervals. 

The collective information in the tables demonstrates that 
BT and BF perform best overall in terms of achieving nom-
inal coverage accuracy and accuracy in estimation of quan-
tiles for the distribution of T .  Method BT appears to be 
slightly better for such quantile estimation. Subsampling is 
the next best method when the subsampling sizes are not 
too small. All three bootstrap methods were preferable to 
the normal approximations, however, even in situations 
where the finite populations were constructed as realizations 
of normal samples. 

The study is based on simulated bivariate populations of 
correlated (x,, x 2 )  pairs with two strata. We considered 
smaller populations with strata sizes N 1  = 50 and N2 = 30, 
from which samples of sizes nl = 20 = n2 were drawn, and 
larger populations with strata sizes N 1  = 100 and N2 = 50 
and sample sizes nl = 15 and n2 = 1 1 .  These population 
sizes were considered in combination with two different dis-
tributions for generating the finite populations: correlatkd 
chi-squared with 15 degrees of freedom and correlated bi-
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Table 1. Empirical Coverage Percentages of Confidence Intervals 

Estimator 

Strat Est 

Sep Ratio 

Sep Tin 

Corn Ratio 

Sep Regr 

Corn Regr 

Strat Est 

Sep Ratio 

Sep Tin 

Corn Ratio 

Sep Regr 

Corn Regr 

Smaller population 
Nl = 50, N2 = 30 
n, = 20, n2 - 20 

BT BF SB Z 

Chi-squared populations 

94.5 90.7 
89.3 86.1 
98.6 92.6 
95.0 87.6 
98.7 93.4 
95.1 88.8 
95.9 93.0 
91.8 88.0 

96.1 88.4 
91.6 82.8 
94.5 88.2 
89.3 82.3 

Larger population 
N7 = 100, N2 = 50 
n, = 15, n2 = 11 

BT BF SB Z 

92.9 
87.8 
96.6 
92.0 
96.0 
91.3 
96.2 
91.2 

94.0 
89.9 
93.8 
89.2 

Normal linear regression populations 

95.4 93.8 95.6 
90.3 88.6 91.1 
95.2 94.0 95.6 
90.2 89.0 91.2 
95.2 94.0 95.6 
90.3 89.0 91.3 
95.2 94.0 95.6 
90.2 89.1 91.2 

95.4 93.3 96.6 
90.2 88.0 92.0 
95.2 92.9 96.4 
90.6 87.5 91.8 

'Nominal coverage of 95%. 

'Nominal coverage of 90%. 

'Subsample sizes are n? = 2 = n;, so the subsampled variance estimator is undefined. 


variate normal vectors (a linear regression population situ- 
ation). The latter populations were generated to have mean 
(1 5, 15), variance 1.O, and covariance .8 in the first stratum 
and the same mean, variances .5, and covariance .3 in the 
second stratum. The correlated chi-squared populations were 
generated by summing the component squares of 15 inde- 
pendently generated bivariate normal vectors with mean 0, 
variance 1.0, and covariance .8 in the first strata and mean 
0, variance .5, and covariance .3 in the second stratum. The 
IMSL package with subroutine RNMVN performed the 
simulations. 

We considered estimation of the population mean y for 
the x2variable using Studentized estimates based on various 
ratio and regression estimators. In particular, j i  is taken to 
be a stratified estimator based on the x2 data only (Cochran 
1977, sec. 5.3), a separate ratio estimator (sec. 6. lo), separate 
Tin estimator (secs. 6.15 and 6.16), combined ratio estimator 
(sec. 6.1 I), separate regression estimator (sec. 7.10), and 
combined regression estimator (sec. 7.10). Estimated stan- 
dard deviations for each of the estimators are discussed in 
the appropriate sections of Cochran's book and used in Stu- 
dentization for the T pivotals. All six pivotals assume forms 
that can be specified as smooth functions of vector means, 
so the theory of Section 5 is directly applicable. 

Table 1 summarizes empirical coverage percentages of 
confidence intervals for p constructed form the six Tpivotals. 

A total of 2,000 samples were simulated from each of the 
four populations. The table entries record the frequency of 
coverage of 95% and 90% confidence intervals based on these 
samples. Cutoffs in the confidence intervals are approximated 
using appropriate quantiles from the distributions of T*, 
T', and T ".These were computed by taking 3,000 resamples 
from each sample. For the BT method, we reconstructed B 
= 200 different empirical populations and took C = 15 re- 
samples from each. The choice B = 30 and C = 100 gave 
virtually identical results. When implementing the BF 
method, reconstructed strata required randomizing be-
tween smaller and larger strata reconstructions; the smaller 
strata reconstructions were selected with probabilities (21 5, 
113) for the smaller population and probabilities (31 10, 
215) for the larger. The empirical coverages in Table 1 
have an as m totic standard error approximately equal to 
100ya)/2,000, or .67 when a = .9. This calculation a(1 -
assumes an infinite number of resamples. However, as for 
the infinite population bootstrap, we expect the use of only 
a finite number of resamples to have very little effect on 
coverage accuracy, provided that the number used is suffi- 
ciently large (see Hall 1986 for discussion on this point). 

Table 1 suggests that all three bootstrap methods show 
accurate nominal coverage, except for SB when used with 
the large population. In this situation the small sampling 
fraction leads to subsample sizes n p = 2 = n ; ,  so that the 
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Table 2. Summary Statistics for 2.5% and 97.5% Quantile Estimators 

Smaller population Larger population 
NI = 50, N2 = 30 N1 = 100, N2 = 50 
n, = 20, n2 = 20 n, = 15, n2 = 11 

24% 974% 2;% 	 974% 

Estimator BT BF BT BF BT BF BT BF 

Chi-squared populations 

Strat Est 1.63 
1.67 1.67 

,103 ,109 

Sep Ratio 2.18 
2.23 2.24 

,240 ,240 

Sep Tin 1.96 

Corn Ratio 

Sep Regr 

Corn Regr 

Normal linear regression populations 
Strat Est 2.17 -1.98 

2.17 2.17 -2.02 -2.01 

,141 ,142 ,165 .I59 

Sep Ratio 2.05 -2.13 
2.05 	 2.05 -2.14 -2.14 

,102 ,106 ,150 ,160 


Sep Tin 	 2.04 -2.14 
2.04 2.05 -2.14 -2.15 

,103 .I07 .I50 ,159 

Corn Ratio 2.04 -2.14 
2.04 2.05 -2.14 -2.14 

,102 ,106 ,151 ,160 

Sep Regr 2.14 -2.1 7 
2.16 2.17 -2.24 -2.25 

,130 ,134 .213 ,219 

Corn Regr 2.17 -2.19 
2.17 	 2.18 -2.23 -2.23 

,120 ,123 ,176 ,178 


'"Exact" 24 percentile for the stratified estimator based on 10' simulations. 
Average of 2,000 quantile estimators for the 24 percentile based on the finite population boctstrap (BT). 
Root mean square of the 2,000 BT estimators for the 2; percentile. 

SB method is not accurate or reliable. The BT and BF the bootstrap is a large-deviation approximation in certain 
methods were roughly equivalent in their coverage accu- circumstances and hence can perform well beyond the 
racies. Normal approximations (Z)  show substantial un- levels predicted by Edgeworth expansions (also see Bhat- 
dercovering even in the two populations constructed from tacharya and Qumsiyeh 1989). 
bivariate normal simulations. In the next section we show Table 2 contains summary statistics in the estimation of 
that the second term in the Edgeworth expansion of the 2.5 and 97.5 percentiles of the T distribution using appro- 
distribution of P ( T  IyI 'P) is an even function in y. This priate quantiles from the distributions of T* and T'.  The 
implies that the coverage errors of two-sided equitailed top number in each cell is the "exact" quantile for that T 
confidence intervals obtained using the normal approxi- pivotal computed numerically from lo5 simulations of T. 
mation are of the same order of magnitude as those enjoyed Below that are the mean and root mean squared error about 
by percentile-t bootstrap confidence intervals. Despite this the "exact" value for the two bootstrap estimators. The table 
similarity, bootstrap confidence intervals often have better shows little preference between BT and BF in the skewed 
two-sided coverage properties than normal intervals in chi-squared generated populations. But in the pormally gen- 
practical situations. A possible explanation of this phe- erated populations, BT shows a consistently sinaller error 
nomenon was provided by Hall (1990), who showed that for all estimators. We have not shown the statistics for quan- 
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Table 3. Summary Statistics for the Half-Widths of 90% Confidence Intervals 

Smaller population Larger population 
N, = 50, N2 = 30 Nl = 100, N 2 = 5 0  
n, = 20, n2 = 20 n, = 15, n 2 =  11 

Estimator BT BF SB Z BT BF SB Z 

Chi-squared populations 

Strat Est 3.85 3.31 6.81 
,948 .714 3.01 

Sep Ratio 3.1 1 2.85 5.16 
.458 ,409 1.27 

Sep Tin 3.00 2.85 4.94 
,428 ,409 1.28 

Corn Ratio 3.02 2.81 4.92 
,402 ,374 1.07 

Sep Regr 3.09 2.50 5.16 
,566 .328 1.61 

Corn Regr 3.01 2.44 5.00 
,526 .317 1.58 

Normal linear regression populations 

Strat Est ,202 .I88 .311 
,0231 .0201 .0476 

Sep Ratio .I39 ,132 .I92 
.0135 ,0122 ,0239 

Sep Tin ,139 ,132 ,192 
,0135 ,0122 .0239 

Corn Ratio ,139 ,132 ,191 
.0135 ,0121 ,0239 

Sep Regr .I37 .I21 ,191 
,0140 ,0109 ,0256 

Corn Regr .I35 .I18 ,187 
,0135 ,0105 ,0244 

Mean half width from 2,000 BT confidence intervals wlth 90% coverage. 
Standard deviation of these 2,000 half-widths. 
Subsample slzes are np = 2 = n;, so the subsample variance estimator is undefined 

tile estimation with the SB method, because it was not com- below 1 - e ,  for some e > 0. It is also necessary to assume 
petitive with those listed. that the first few moments of each superpopulation are finite. 

Table 3 contains the means and standard deviations of half- Under these assumptions, our claims concerning the second- 
widths for 90% confidence intervals generated for Table 1. All order properties of the various estimators can be substanti- 
three bootstrap intervals show roughly the same summary sta- ated by extending theorems 1 and 2 of Babu and Singh (1985) 
tistics as long as the subsampling sizes for SB are not so small to a multistrata setting. Babu and Singh considered a slightly 
as to give unreliable results. Note that the Z intervals were weaker set of assumptions in which they imagined a sequence 
shorter on average than their bootstrap counterparts, a fact of finite populations of increasing size such that the sequence 
reflected in their empirical coverages being too low. of distributions formed by assigning probability N-' to each 

Random sampling without replacement and Bernoulli value xihas a strongly nonlattice limit. Either of these sets 
sampling with the BF method were based on IMSL routines of assumptions may seem quite artificial in a practical prob- 
RNSRS and RNBIN using various types of SPARC and HP lem involving real data from a population of fixed size. But 
workstations. the asymptotic results will often still accurately predict the 

relative performance of competing statistical procedures. 
5. THEORY The key structural assumption made by Babu and Singh 

As in the infinite-population case, asymptotic methods- (1985)isthat T = (n./q.) 'I2(b -p)/&admitsashortTaylor 
particularly the theory of Edgeworth expansions-provide a expansion, being a linear term of order 1, a quadratic term 
useful guide as to the performance of bootstrap procedures. of order n:'I2, and a remainder of smaller order than 
To conceptualize the asymptotic arguments, it is necessary n:'I2. This kind of expansion is available for many of the 
to impose a certain structure or asymptotic framework on classical estimates of a finite population mean. For example, 
the problem. We shall suppose that the rth stratum P r ,  r for the stratified sample mean j2 = C:=' (Nr/N)Xr, we 
-- 1, . . . ,s, is in fact a sample from a continuous superpop- have 
ulation II, and that all the Ni's and nj's diverge to infinity 
in such a way that each ratio Ni INj and n, /nj  converges to 
a finite, nonzero limit and the sampling fractions are bounded 
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where 6: = n;' 2 ; ~ ~  x , )~  = T + ~ , ( n : l / ~ )sampling fractions are asymptotically correct, the effective (Xri- and T 
with T = l z T  + ( ~ . / T z . ) ' / ~ z L z ~ ,  = ( I I ,. . . , 12,)where 1 
with 1, = N r / ( N a )and 1,+, = 0, r = 1, . . . , s; L = (li,),i, j 
= 1, .  . . , 2swith 

for i = 1, . . . ,s,j = s + 1, . . . ,2s,  and zero for other values 
of ( i ,  j ) ;  and Z = (211, . . . , ZI , ,  221, . . . , 2 2 , )  with Zlr 
= ( n . / q . ) 1 / 2 ( ~ rK) and-

for r = 1 , .  . . , s .  
Extension of theorems 1 and 2 of Babu and Singh (1985) 

to the multistrata situation leads to the expansion for 19, 

with probability 1, where p = ( p l ,. . . ,p,) is the vector of 
sampling fractions and 

Thus the coefficients of $ depend on the sampling fraction 
vector p .  In the case of the stratified sample mean discussed 
earlier, it turns out that 

and 

where yr = C T ; ~ E { ( X , ~x , ) ~ ) ,- r = 1, . . . ,S. 

The bootstrap estimate (6)of P( T I  y 1 P ) is 8 = E { P( T * 
5 y 1 9* ) I X } . We now observe that the expansion ( 5 ) also 
holds for the conditional probability P( T* 5 y 1 9* ) with 
the population moments in the coefficients of $ replaced by 
the corresponding moments of the empirical population 
P*. In addition, observe that the empirical population mo- 
ments differ from sample moments within each stratum by 
terms no greater than Op(n:1/2).Hence the fact that the 
resample sizes and resampling fractions are the same as the 
original ones and the sample moments deviate from the 
population moments by terms of order O , ( ~ T ' / ~ )explains 
why the bootstrap estimate is second-order correct. In con- 
trait, the fact that the resampling fractions do not equal the 

Ones in the BF why this 
does not yield second-order correct estimates. The latter re- 
sult was noted by Babu and Singh (1985). 

An ( 5 )  for the subsampling 
estimate P( T " I y I X ) . But in this case, although the re- 

resample size is n ?rather than n.  . The modified estimate 
8" given in (4) correctly adjusts the subsampling estimate so 
as to account for the n:'l2 term in ( 5 ) .  

6. DISCUSSION 

In conclusion, we would like to give a summary of argu- 
ments in favor of our bootstrap method. First, as we have 
stressed throughout the article, the bootstrap method leads 
to second-order-correct percentile-t-type confidence inter- 
vals, a property not shared by the BF method. The reason 
that the BF method is not second-order correct is that the 
resampling fractions do not match the original ones. Consider 
the case of a single stratum. In the BF approach the sampling 
fraction is either m;' or ( m l+ I ) - ' ,where ( m l+ I ) - '  5 pl 
< m y 1 .Hence the smaller the sampling fraction, the closer 
the BF method to the true bootstrap. 

Our use of the term "bootstrap" can be justified from 
another point of view. If we let the stratum sizes diverge to 
infinity with the sample sizes held fixed, then the estimate 
( 1 )  converges to E { t (p )1 X } , the analogous infinite popu- 
lation bootstrap estimate. This limit result also holds for the 
BF method but not for the subsampling estimate or its mod- 
ified form. In fact, the subsampling procedure completely 
degenerates under this limit. For example, if NI = 1,000 and 
nl = 35, then nP = l !  This poor asymptotic behavior of the 
subsampling method explains, to some extent, the discrep- 
ancy between the subsampling and bootstrap confidence in- 
tervals in the example at the end of Section 3. The effective 
resample size under the subsampling procedure is only 12 
in this example, leading to highly variable estimates of the 
standard error. 

Given that the finite population bootstrap estimate ( I )  
converges to its infinite population counterpart, it might seem 
surprising that the error in the bootstrap is only o(n:'l2) 
rather than O(n: ' ) ,  as it is in the infinite-population setting. 
By asking that the expansion of T be extendable to a cubic 
term of order n:', plus a remainder of smaller order than 
n:', it is possible to extend Babu and Singh's Edgeworth 
expansion-by showing that the remainder is O ( n y l )rather 
than simply o(n:'I2). 

Finally, we remark that there is no reason why techniques 
other than the percentile-t method for constructing confi- 
dence intervals that have been developed for the infinite- 
population setting cannot be used in finite-population prob- 
lems. Some possibilities for future investigation include the 
use of the bias correction methods of Efron (1987)and the 
iterated bootstrap (see, for example, Beran 1987 and Hall 
and Martin 1988). 

[Received December 1991. Revised October 1993.1 
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