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Abstract
A primary objective in quantitative risk assessment is the characterization of risk which is defined
to be the likelihood of an adverse effect caused by an environmental toxin or chemcial agent. In
modern risk-benchmark analysis, attention centers on the “benchmark dose” at which a fixed
benchmark level of risk is achieved, with a lower confidence limits on this dose being of primary
interest. In practice, a range of benchmark risks may be under study, so that the individual lower
confidence limits on benchmark dose must be corrected for simultaneity in order to maintain a
specified overall level of confidence. For the case of quantal data, simultaneous methods have been
constructed that appeal to the large sample normality of parameter estimates. The suitability of these
methods for use with small sample sizes will be considered. A new bootstrap technique is proposed
as an alternative to the large sample methodology. This technique is evaluated via a simulation study
and examples from environmental toxicology.
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1 Introduction
Dose-response studies are conducted in the quantitative risk assessment of environmental
toxins or other chemical agents in an attempt to specify the probability of an adverse response
as a function of the amount of exposure to the agent. The risk, R(d), is defined as the probability
that a subject exposed to a dose, d, of a hazardous agent will develop a particular adverse
outcome. Potential models for R(d) depend on the nature of the outcomes measured in the
study. For quantitative outcomes such as weight loss, standard regression models coupled with
a definition of an adverse outcome lead to straightforward models for risk (Kodell and West
1993). For quantal outcomes, such as whether or not a subject develops a tumor, the choice of
risk model is somewhat more subjective. A very common model is R(d) = 1 - exp{-θ(d)} which
is a simplified version of the well-known Armitage-Doll multistage model (Armitage and Doll
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1954). In this formulation, θ(d) is typically chosen as a low-order polynomial in d such as the
quadratic function, θ(d) = β0 + β1d + β2d2 (Guess and Crump 1976; Krewski and van Ryzin
1981; Bailer and Smith 1994). Since it can correspond to a simple two-stage progression to
the observed adverse effect, this particular model is often times called the two-stage model.
The parameters in the model βj, j = 0, 1, 2, are typically required to be non-negative so that
risk is a monotone increasing function of dose when d ≥ 0.

Background risk is defined as the risk for the control population, R(0), which has no exposure
to the agent. The extra risk function is defined as the risk above this background level corrected
for non-response in the unexposed population: RE (d) = {R(d) - R(0)}/{1 - R(0)}. Under the
two-stage model, RE (d) = 1 - exp {-β1d - β2d2}. Statistical methods for obtaining upper
confidence limits on extra risk at a given dose are of interest. Also of interest are methods for
obtaining lower confidence limits on the dose level at which a certain excess risk, called a
benchmark risk (BMR), is achieved. This dose level is known as a Benchmark Dose, or BMD
(Crump 1984), while a lower confidence limit on the benchmark dose is called the benchmark
dose lower limit, or BMDL (Crump 1995). Identifying BMDLs is of specific interest for
regulatory purposes, as these values are sometimes used for setting occupational or
environmental exposure criteria. Often a risk regulator has a range of BMRs in mind for a given
data set; e.g., one may desire BMDLs at a variety of BMR values for excess risk between 0.01
and 0.10 (Faustman and Bartell 1997; Schlosser et al. 2003). The corresponding sequence of
BMDLs at each of these values of extra risk will have a joint confidence level which may be
far below the nominal level for each individual BMDL. Using the sequence of BMDLs without
adjustment is an improper inferential technique and leads to a suspect regulatory decision.

For the two-stage model, Al-Saidy et al. (2003) proposed a method to obtain simultaneous
upper confidence bands for RE (d) over an interval 0 < d < B where the value of B > 0 is specified
a priori. The method employs a modification of Scheffé’s S-method for building confidence
bands (Pan et al. 2003), and hence is referred to as the S-method. Nitcheva et al. (2005)
performed a formal comparison of the S-method with various other techniques for constructing
multiplicity-adjusted inferences on sets of one to five BMR values. The S-method should in
this case be conservative since it is designed to provide coverage over an entire interval of dose
values. In their study, the methods were compared in terms of coverage probability and the
median absolute difference between the BMDLs and the true benchmark doses. The S-method
and a Bonferroni-adjusted likelihood ratio technique exhibited superior performance in
Nitcheva et al.’s comparisons, in that both methods tended to provide a coverage probability
above the nominal level and relatively tight BMDLs. While the likelihood ratio technique often
had slightly tighter BMDLs, the S-method possessed the distinct advantage that its BMR values
could be chosen post hoc. Both methods, however, tended to provide very conservative
coverage probabilities.

Guess and Crump (1976) argue that the maximum likelihood estimators (MLEs) for the two
stage model parameters have an asymptotic normal distribution when βj > 0, for all j. The S-
method appeals to the asymptotic normality of the parameter estimates in that estimates of the
asymptotic variances and covariance are required for the construction of the confidence band.
The conservatism of the S-method described above appears in large part due to an inadequate
asymptotic approximation when applied to small samples. Herein, new methods to address this
small-sample conservatism will be proposed. In Sect. 2, a new bootstrap technique is developed
in an attempt to better incorporate small sample variation into the confidence band construction.
The properties of this method are evaluated in Sect. 3 via a simulation study, and the method
is then applied to several real examples in Sect. 4. A short discussion is provided in Sect. 5.
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2 A bootstrap approach
At the ith dose di (i = 1, . . . , n) the number of subjects exhibiting an adverse effect, Yi, is
recorded. Assume that the Yi s are independent, binomial variates with parameters Ni and R
(di), where Ni is the number of subjects tested at dose di and R(di) models the unknown
probability that a subject will respond adversely. Under the two-stage model the MLEs, b =
[b0b1b2]T, of the unknown parameters, β = [β0β1β2]T, are constrained optimization of the
corresponding binomial likelihood function. The MLEs of risk and extra risk are then simply

 and , respectively.

With a benchmark analysis, a 100(1 - α)% upper confidence band on RE (d) is desired over a
range of dose values. As in Al-Saidy et al. (2003), it will be assumed that the dose range of
interest is 0 < d < B. Note that the extra risk is a function of the linear predictor η(d) = β1 +
β2d; i.e., RE (d) = 1 - exp{-dη(d)}. Hence, an upper confidence band on RE (d) can be easily
constructed from an upper confidence band on η(d). In other words, if a function ηU (d) can
be defined such that

(1)

then

Therefore, 1 - exp{-dηU (d)} serves as a 100(1 - α)% upper confidence band on RE (d) for 0 <
d < B. This upper confidence band-can be inverted to obtain a lower confidence band on
benchmark dose over a range of BMR values. At any specific BMR value, the corresponding
100(1 - α)% BMDL is defined as the smallest positive solution of

Focusing on obtaining an upper confidence band on η(d), define η(d,α) as any pointwise upper
confidence limit on η(d) that satisfies Pr(η(d) ≤ η(d,α)) = 1 - α. For example, η(0, α1) represents
a 100(1 - α1)% upper confidence limit on η(0). Similarly, η(B, α2) represents a 100(1 - α2)%
upper confidence limit on η(B). The line connecting these two upper confidence limits is given
by

(2)

Since ηU (d) is linear, η(d) ≤ ηU (d) over 0 < d < B holds if and only if η(0) ≤ ηU (0) and η(B)
≤ ηU (B). If α1 and α2 lie between 0 and 1 such that α1 + α2 = α, we have that

by Bonferroni’s inequality. Thus, this definition of ηU (d) leads to an upper confidence band
that achieves at least a minimal 1 - α confidence level.

Note that the above approach is quite similar to that of Bowden and Graybill (1966), where
proportional width confidence bands for linear regression models were first developed. In their
pioneering work, Bowden and Graybill made use of normality assumptions to derive exact 100
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(1 - α)% confidence bands for a simple linear regression model. With the two-stage model,
however, the normality of maximum likelihood estimates is not guaranteed for smaller samples.
Indeed, for smaller samples, the MLEs of β1 and β2 often appear very non-normal, due to the
parameter constraints which lead to sampling distributions with point masses at zero.

Since the exact distributions of the parameter estimates are not known in this case, consider a
bootstrap approach for defining the upper confidence limits on η(0) and η(B). Let

 for j = 1, . . . , K denote a sequence of K independent boot-strap samples taken
with replacement from the observed data. In other words, each  is a sample taken with
replacement from the Yi adverse responses and Ni Yi nonadverse responses observed at the dose
di. Thus,  is a pseudo-binomial random variable with parameters Ni and Yi/Ni, where Yi/Ni
is the observed proportion of subjects at dose di that respond adversely. For each bootstrap
sample, one can compute the maximum likelihood estimates of β1 and β2 along with the
corresponding estimate of the predictor . Thus, the output of the bootstrap sampling

process consists of K bootstrap estimates of the linear predictor, . The goal
is to define a curve which lies above 100(1 - α)% of these bootstrapped predictor estimates
over the range from 0 to B.

Using a bootstrap percentile approach, an approximate 100(1 - α)% upper confidence limit on

η(d) at a specific dose d, η*(d, α), is the 100(1 -α)th percentile of . The
approximate 100(1 - α)% bootstrap upper confidence band on η(d) over 0 < d < B is then given
by

(3)

The bootstrap approach outlined above is nonparametric in that model information is not taken
into account when generating the bootstrap samples. This approach can be problematic in
practice if none or all of the responses at a particular dose level are adverse, since it leads to
observed proportions of zero or one, respectively. In either case, there will be no variability in
the bootstrap samples at that dose value. To incorporate more of the underlying variability, a
parametric bootstrap where the sample proportion of adverse responses is replaced with the
estimated risk from the fitted model can be used in these special cases. This modified, semi-
parametric approach does not guarantee a nondegenerate bootstrap sample, but it does make
it less likely to occur. While further study on it is warranted, the approach may be more robust
than other strategies which, e.g., replace sample proportions of zero and one with values that
are arbitrarily close to these endpoints.

3 Simulation results
The simultaneous upper limits on RE (d) from the bootstrap approach are expected to contain
the true RE (d) for all d ∈ (0, B) at least 100(1 -α)% of the time. In small samples, however,
the coverage characteristics of the method are less certain. To evaluate the bootstrap approach,
a Monte Carlo simulation study was conducted where the small-sample empirical coverage
was estimated for a variety of two-stage quantal response models. The suite of eight models
considered was the same as those used by Al-Saidy et al. (2003) to validate the S-method. The
background risk, R(0), in these models ranged between 1% and 30%, and the corresponding
risk at the highest dose took values between 5% and 90%. The specific parameter values for
the models are given in the first three columns of Table 1. Four dose levels, d = 0, 0.25, 0.5,
1, with equal numbers of subjects, Ni = N, per dose-group were used in the simulations,
corresponding to a common design in cancer risk experimentation (Portier 1994). Values of
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N ranged between 25 and 500. The value of B required to implement the bootstrap method was
set to the largest dose, d = 1. For each model configuration, 2,000 pseudo-binomial data sets
were simulated, and 2,000 bootstrap samples were generated for each data set.

Table 1 displays the simulation study results. The empirical coverage rates displayed under
each sample size in Table 1 were computed by determining the number of times out of the
2,000 simulation runs that the bootstrap upper confidence band on extra risk based on (3) was
above the true extra risk function over the entire interval from 0 to B. The standard value of
α = 0.05 was used in the construction of the bands, so that the nominal confidence level
associated with the bootstrap confidence bands should be at least 0.95. Notice then that the
approximate standard error of the estimated coverage is , and it
never exceeds . In constructing the upper confidence limits, η*(0,
α1) and η*(B, α2), the values of α1 = α2 = 0.025 were used.

Overall, Table 1 shows that the coverage probabilities are very close to the nominal 0.95 level.
The most prominent exception is the coverage probability for the first model at N = 25. Upon
closer inspection, this model was found to be problematic in that for small sample sizes, a high
proportion of the simulated responses were often zero across all four doses. Clearly, in practice
such data sets would not be subjected to a dose-response analysis. Indeed, Al-Saidy et al.
(2003) also found similar coverage instabilities with this sample size for this model in their
evaluation of the S-method. In the remaining cases, the bootstrap method produced far more
stable and often much less conservative results on average than the S-method as studied by
Al-Saidy et al. (2003). The fourth model is the most obvious example of the less conservative
nature of the bootstrap method in comparison to the S-method. For this model, the coverage
probabilities of the S-method reported by Al-Saidy et al. (2003) were never below 0.978 and
were above 0.998 for three of the five sample sizes considered. The bootstrap method only has
a high coverage probability at the smallest sample size, with the coverage probabilities being
much closer to 0.95 for sample sizes of 50 or larger.

Note that since our simultaneous BMDLs are built by direct inversion of the simultaneous
confidence bands based on (3), the results reported in Table 1 for simultaneous coverage of
extra risk also represent empirical simultaneous coverages for bounding the BMDs. In order
to make a full comparison with the S-method results from Al-Saidy et al. (2003), however, the
simultaneous coverage probability associated with individual BMDLs at the commonly used
benchmark risk levels of 0.01, 0.05 and 0.10 were also evaluated and are shown in Table 2.
For the more shallow risk functions displayed in the first three rows of Table 2, we see very
conservative simultaneous coverage rates that are all larger than 0.98. For the more steep risk
functions displayed in the remainder of Table 2, however, we see much less conservative
coverage rates. For each model, there is no discernable trend in coverage rate across sample
size.

4 Examples
The simulation study in Sect. 3 illustrates that the simultaneous coverage of the bootstrap
confidence bands tends to be less conservative than that of the S-method. This does not imply,
however, that the BMDLs obtained from using the bootstrap method are larger than those from
the S-method. It could be the case that the bootstrap band is higher than the S-method at low
doses but lower at high doses where coverage violations might tend to occur. In fact, since the
bootstrap band is based on a linear limit on β1 + β2d while the S-method band is based on a
hyperbolic limit on β1 + β2d, the two bands on RE will intersect in at most two points past the
obvious intersection at d = 0. To further evaluate this matter, the 95% bootstrap upper band on
extra risk and the 95% S-method band on extra risk were computed for three liver
carcinogenesis data sets found in the literature. The value of B was taken as the largest dose in
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each study. For the bootstrap method, the upper confidence limits at 0 and B were constructed
using α1 = α2 = 0.025.

The first data set considered was the oft-cited Aflatoxin B1 data on liver carcinogenicity of the
mycotoxin contaminant reported by Wogan et al. (1974). The data set consists of the number
of male rats exhibiting hepatocellular tumors at each of six doses (measured in μg/kg/day).
The raw proportions at the dose values of 0, 0.04, 0.2, 0.6, 2 and 4 are 0/18, 2/22, 1/22, 4/21,
20/25 and 28/28, respectively. (Since the observed proportion at dose zero is zero, we will
apply a parametric resampling at this dose level in the analysis below.) The second data set,
as reported by Crump et al. (1977), contains the proportions of mice exhibiting liver tumors
after exposure to the pesticide dieldrin, at each of four dose levels (measured in ppm). The raw
proportions at doses of 0, 1.25, 2.5 and 5 are 17/156, 11/60, 25/58 and 44/60, respectively. The
third data set, reported by Janardan (1995), contains the proportions of mice exhibiting liver
tumors after exposure to the pesticide DDT, at each of five dose levels (measured in ppm). The
raw proportions at doses of 0, 2, 10, 50 and 250 are 4/111, 4/105, 11/124, 13/104 and 60/90,
respectively.

The upper band on extra risk for each data set was inverted to compute the associated BMDLs
at BMRs ranging from 10-5 to 10-1. Results from the analysis of each data set, including
comparisons with Al-Saidy et al.’s S-method BMDLs, are shown in Table 3. For the Aflatoxin
data, the bootstrap BMDLs are less conservative (i.e., higher) than the S-method BMDLs at
all BMR values. The same is true for the dieldrin data with the exception of the highest BMR
value of 0.01. For the DDT data, the opposite is true in that the S-method BMDLs are higher
than those from the bootstrap method. The BMDL values highlight the fact that the upper
confidence bands for both methods are approximately linear over the low dose range. For all
three data sets, the upper band for the bootstrap method (not shown) is slightly below the S-
method at low doses (very low doses in the case of DDT) and above the S-method band at
higher doses.

5 Discussion
Bootstrap methodology for use in quantitative risk assessment has a rich history. Crump and
Howe (1985) discussed the use of bootstrap methods for calculating pointwise lower
confidence limits in low dose extrapolation for risk assessment. Similar or associated
recommendations for use of bootstrap-based inferences in quantitative risk analysis were given
by Bailer and Smith (1994), Smith and Sielken (1988), Schulz and Griffin (1999), and Brand
et al. (2001).

The methodology discussed herein expands the use of bootstrap methods to the case of
simultaneous confidence bands. For the general case of a linear model, Hall and Pittelkow
(1990) constructed bootstrap confidence bands under the assumption of a symmetric error
distribution. They specifically evaluated both S-method bands and fixed-width bands in
conjunction with simple linear predictors. By contrast with the approach proposed herein, they
used model information to base their bootstraps on resampling from the residuals of the original
model fit. The bootstrap procedure developed herein employs information from the binomial/
multi-stage model only when the observed sample proportions are either 0 or 1, and in this
sense it has more of a semi-parametric character.

As developed in (3), the linear confidence band on the predictor, η(d), is a proportional-width
form. Its shape will typically be narrower on the lower end of the dose interval and wider on
the higher end of the dose interval. (Here ‘width’ is defined as the distance from the upper band
to the predictor.) Since the S-method is designed to have minimal width at the mean dose level,
the proportional-width feature will naturally lead the bootstrap band to be somewhat tighter
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than the S-method band over the low dose region. This greater precision, combined with the
closer-to-nominal simultaneous coverage probabilities observed in our simulations, makes the
bootstrap procedure an enticing alternative to the S-method for quantal response benchmark
analysis.

The coverage characteristics are intriguing, since the procedure is based on a conservative
Bonferroni adjustment. However, upon closer inspection of our simulations, the linear
predictor rarely exceeded both the upper limit at 0 and the upper limit at B. Typically, lines
that rise above the upper limit at 0 are different from those that are above the upper limit at
B. Indeed, in the example data from Sect. 4, such simultaneous conflicts never occurred for
the lines constructed for the bootstrap samples. These empirical results suggest that the
coverage probability for the bootstrap procedure will often be very close to nominal.

While only the case of α1 = α2 = α/2 has been considered here, the proportional width feature
of the bootstrap band can be further manipulated to produce even narrower limits for doses
close to 0: simply make α1 larger than α2. Consequent tightness in the band close to 0 will be
balanced with greater ‘proportional’ width at higher doses, although this is problematic since
increasing α1 may increase the probability of making erroneous inference about BMD at lower
risk values. One could also alter the overall shape of the band by including intermittent dose
values between 0 and B in the band construction. This results in a piecewise linear function
that connects the upper confidence limits at each of the selected doses. To provide a total
coverage of α, adjust the confidence levels at each of the intermittent doses in similar fashion
to that employed in (2). Note that addition of too many intermittent points is inadvisable, since
it likely will result in a band that takes the highest bootstrap predictor value at each dose, and
will clearly be very conservative.

Of course, in practice the two-stage risk model may or may not properly characterize the true
risk described by the actual data at hand. Indeed, it is an open question as to how well our
bootstrap procedure generalizes to other forms of risk. It may be worthwhile to examine its
performance under other risk models, particularly those under which extra risk cannot be
expressed as a function of a linear predictor. Along these lines, Piegorsch et al. (2006) studied
the effects of model misspecification on the performance of S-method and proportional width
bands. The proportional width bands were seen to be more resilient to certain forms of model
misspecification and we take from this that a similar analysis for the proposed bootstrap
procedure could be a fruitful area of future research.

One could also consider using the bootstrap procedure with a band function that is not linear.
Indeed, a hyperbolic function similar to that used in the construction of the S-method band
could be considered. One would attempt to identify such a function that covered 95% of the
bootstrapped linear predictors over 0 to B. As is the case for linear band functions, this function
need not be unique, so some form of optimality consideration could be used to define the band.
Associated with this, an interesting question for future research would be to define the surface
that is “closest” to the estimated linear predictor over the entire range from 0 to B that contains
95% of the bootstrap samples. This would be a piecewise linear function constructed from
segments of the bootstrapped predictor values over this range. The attractive aspect of this
approach is that the data would be used to determine the shape of the band rather than a band
function being imposed a priori. Construction of such a surface is a very complex computational
problem, but it may lead to very interesting insights.
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Table 3

Simultaneous BMDLs for both the bootstrap method and the S-method for three data sets. BMDLs were computed
by inverting a 95% upper confidence band in each case. The bootstrap confidence band was based on 2,000
simulated data sets

Substance BMR BMD Bootstrap BMDL S-method BMDL

Aflatoxin B1 10-5 0.000301 0.000024 0.000018

10-4 0.002922 0.000242 0.000183

10-3 0.023701 0.002414 0.001840

10-2 0.124259 0.023606 0.018430

10-1 0.482164 0.202236 0.186968

Dieldrin 10-5 0.000195 0.000055 0.000053

10-4 0.001944 0.000549 0.000530

10-3 0.019190 0.005489 0.005297

10-2 0.172437 0.054648 0.053126

10-1 1.102334 0.527424 0.547405

DDT 10-5 0.007617 0.002571 0.002858

10-4 0.076123 0.025714 0.028582

10-3 0.756938 0.257151 0.285895

10-2 7.189874 2.572926 2.866312

10-1 53.99410 25.93560 29.41630
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