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Abstract

We study the threshold θ bootstrap percolation model on the homoge-
neous tree with degree b + 1, 2 ≤ θ ≤ b, and initial density p. It is known
that there exists a nontrivial critical value for p, which we call pf , such
that a) for p > pf , the final bootstrapped configuration is fully occupied
for almost every initial configuration, and b) if p < pf , then for almost ev-
ery initial configuration, the final bootstrapped configuration has density
of occupied vertices less than 1. In this paper, we establish the existence
of a distinct critical value for p, pc, such that 0 < pc < pf , with the fol-
lowing properties: 1) if p ≤ pc, then for almost every initial configuration
there is no infinite cluster of occupied vertices in the final bootstrapped
configuration; 2) if p > pc, then for almost every initial configuration there
are infinite clusters of occupied vertices in the final bootstrapped config-
uration. Moreover, we show that 3) for p < pc, the distribution of the
occupied cluster size in the final bootstrapped configuration has an expo-
nential tail; 4) at p = pc, the expected occupied cluster size in the final
bootstrapped configuration is infinite; 5) the probability of percolation of
occupied vertices in the final bootstrapped configuration is continuous on
[0, pf ] and analytic on (pc, pf ), admitting an analytic continuation from
the right at pc and, only in the case θ = b, also from the left at pf .

1 Introduction

Bootstrap percolation is a process of continued interest for physicists as well as
mathematicians. For a review, we refer the reader to [1]. Here we obtain new
results for the process on a homogeneous tree. We show that in addition to
the well known critical point pf , above which the tree becomes fully occupied,
there is a distinct critical point pc above which occupied sites percolate. We then
prove several results that indicate the sharpness of the transition to percolation,
and analyticity of the percolation probability between these critical points.

This paper was motivated in part by our work on the threshold θ contact
process on homogeneous trees [6]. In the latter model, sites get infected by
neighboring infected sites, provided there are at least θ of them, at rate λ,
and recover unconditionally at rate 1. Bootstrap percolation corresponds in a
heuristic sense to the λ → ∞ limit of this model at time 0+, and was used
there as a tool in the study of the regime of large λ. Absence of percolation
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of 1’s in the bootstrap percolation process implies that the threshold contact
process converges to the state with all spins 0. We wonder if the presence of an
intermediate phase for the bootstrap percolation process implies the existence
of an intermediate phase also for the threshold contact process with large λ.

In regard to bootstrap percolation on the cubic lattices Z
d, d ≥ 2, one cannot

hope for the same results that we have here, with 0 < pc < pf < 1. This is
so because for these models pf = 0 or pf = 1, according to whether θ ≤ d, or
θ > d, respectively, as proved in [11]. Of course, we have then 0 = pc = pf in
the former case and 0 < pc < pf = 1 in the latter case. There is nevertheless an
important way in which one can describe a surrogate of a non-trivial transition
point pf for the models with pf = 0, as pointed out originally in [2], and further
studied in various papers, including [4] and [8]. For this purpose one takes a
d-dimensional box of sidelength n and scales n→ ∞ at the same time as p→ 0.
If the compromisse between n and p is of the appropriate form (for instance
n = exp(C/p) in the case d = θ = 2), then as a parameter that mediates that
relationship (the parameter C in this d = θ = 2 case) is varied, one can either
have the probability that the box becomes fully occupied converge to 0 or to
1. The mentioned parameter undergoes therefore a non-trivial transition. It
is possible that in this way two distinct critical points may be produced, one
corresponding to full occupancy and one corresponding to an analog in finite
volume of percolation. For this purpose, consider the events Ef that the box
is eventually fully occupied, and Ep that each pair of opposite faces of the box
are eventually connected by a path of occupied sites. It is conceivable that in
d ≥ 3 (but not in d = 2), the way of scaling n with p to see a transition from
P(E) ≈ 0 to P(E) ≈ 1 would depend on whether E = Ef or E = Ep.

We turn now to the notation and definitions needed in this paper. Let Tb be
the (unoriented) homogeneous tree with degree b+1, where b ≥ 2, and let Vb be

its vertex set. We also consider ~Tb, the oriented homogeneous tree with degree
b + 1; this is the graph with the same vertex set Vb as Tb, and oriented edges
such that incident to each vertex there are b outgoing edges and 1 incoming
edge. For x ∈ Vb, let Nx be the set of nearest neighbors of x in Tb, that is,
y ∈ Vb incident to which there are edges of Tb which are incident to x as well.
We also define ~Nx as the set of oriented nearest neighbors of x in ~Tb, that is,
the y ∈ Vb incident to which there are outgoing edges of ~Tb from x. We will
fix an arbitrary vertex of Vb as the root of Tb, and denote it R. We will use
the shorthand N = NR and ~N = ~NR. For x ∈ Vb we will denote by x− the
unique element of Nx \ ~Nx; we will also consider the forward trees from x, T

+,x
b

and ~T+,x
b , consisting respectively of the connected components containing x of

the subgraphs of Tb and ~Tb obtained by removing x− along with all edges of Tb

and ~Tb incident on x−; x will be called the root of the respective trees. We will
write T

+
b = T

+,R
b and ~T+

b = ~T+,R
b for short. Let also V

+,x
b denote the common

vertex set of T
+,x
b and ~T+,x

b , with the shorthand notation V
+
b for V

+,R
b .

Below we will consider elements of {0, 1}Λ, with Λ a subset of Vb. For η a
given such element, which we call configuration, and x ∈ Λ, we say that x is
occupied (in η) if η(x) = 1; and vacant, otherwise. We will say that a subset Λ′

of Λ is occupied (resp. vacant) if η(x) = 1 (resp. 0) for all x ∈ Λ′.
We now define the bootstrap percolation model with threshold θ, an integer

such that 2 ≤ θ ≤ b, and initial density p on Vb. See [3] and references therein
for background on those models. Let the initial configuration η0 ∈ {0, 1}Vb be
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chosen according to a product of Bernoullis with parameter p. And for n ≥ 1
and arbitrary x ∈ Vb set:

ηn(x) =







1, if ηn−1(x) = 1;
1, if ηn−1(x) = 0 and

∑

y∈Nx
ηn−1(x) ≥ θ;

0, if ηn−1(x) = 0 and
∑

y∈Nx
ηn−1(x) < θ.

(1.1)

We note that ηn is nondecreasing in n and thus

lim
n→∞

ηn =: η∞ (1.2)

is well defined. We call η∞ final (bootstrapped) configuration. We will also call
(ηn)n≥0 the (unoriented) bootstrapping dynamics.

Similarly we consider the oriented model ~η0 = η0 and ~ηn defined recursively
as in (1.1), with ~ηn−1 replacing ηn−1, and ~Nx replacing Nx. Monotonicity also
gives sense to

lim
n→∞

~ηn =: ~η∞, (1.3)

the final configuration of the oriented model.
The only randomness entering these models is in the initial configuration η0.

Let Pp denote the underlying probability measure, and Ep the corresponding
expectation. For n = 0, 1, . . . ,∞, let us define

~pn = Ep(~ηn(R)), pn = Ep(ηn(R)). (1.4)

Due to the translation invariance of Pp and of the dynamical rules, we have that
the distributions of ~ηn and ηn are translation invariant for every n = 0, 1, . . . ,∞,
so the particular choice of root is not important in (1.4).

It is well known [3] that if we set

pf = inf{p ∈ [0, 1] : Pp(η∞ ≡ 1) = 1} = inf{p ∈ [0, 1] : p∞ = 1} (1.5)

~pf = inf{p ∈ [0, 1] : Pp(~η∞ ≡ 1) = 1} = inf{p ∈ [0, 1] : ~p∞ = 1} (1.6)

then
pf = ~pf ∈ (0, 1). (1.7)

For p ∈ [0, pf ] it is interesting to study the properties of the random config-
urations η∞ and ~η∞. Here we will study percolation of these configurations.

Given η0 ∈ {0, 1}Vb, for x ∈ Vb, let Cx (resp. ~Cx) denote the cluster of

occupied vertices of Tb (resp. ~Tb) containing vertex x in the final configuration

η∞ (resp. ~η∞). Namely Cx (resp. ~Cx) is the maximal set of occupied vertices y of

Tb in η∞ (resp. ~η∞) such that there is a finite path in Cx (resp. ~Cx) connecting
x to y, where by a path we mean an ordered collection {y1, y2, . . .} ⊂ Vb such

that yi+1 ∈ Nyi
(resp. ~Nyi

) for i ≥ 1. We will denote for short C = CR and
~C = ~CR.

We say that that there is percolation at x in η∞ (resp. in ~η∞) if |Cx| = ∞
(resp. |~Cx| = ∞). We define now the percolation critical points:

pc = inf{p ∈ [0, 1] : Pp(|C| = ∞) > 0} (1.8)

~pc = inf{p ∈ [0, 1] : Pp(|~C| = ∞) > 0} (1.9)

We state the main result of this paper next for the unoriented model alone.
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Theorem 1.1

1.
0 < pc < pf (1.10)

2. For p < pc, there exist positive finite constants c1, c2 such that for all
k ≥ 0

Pp(|C| > k) ≤ c1 e
−c2 k. (1.11)

3. At p = pc,

Pp(|C| > k) → 0, as k → ∞; (1.12)

Ep(|C|) = ∞. (1.13)

4. For p > pc, there exist positive finite constants c3, c4 such that for all
k ≥ 0

Pp(k < |C| <∞) ≤ c3 e
−c4 k. (1.14)

5. π(p) := Pp(|C| = ∞) is continuous on [0, pf ], analytic on (pc, pf ), and
admits an analytic continuation from the right at pc. If θ = b, then π is
continuous on [0, 1].

The smoothness properties of π on the left of pf depend on b and θ, as stated
in the following result.

Theorem 1.2

1. If θ = b, then π admits an analytic continuation from the left at pf .

2. If θ < b, then as p ↑ pf

d

dp
π(p) → ∞. (1.15)

It will become clear in the arguments used to prove the above results that
oriented versions of them hold as well. Moreover, in contrast to (1.7),

pc < ~pc.

It is interesting to note that when Pp(η∞ ≡ 1) = 0, vacant sites must perco-
late in η∞ (since finite clusters of vacant sites are eliminated by the dynamics).
Therefore, in the intermediate phase between pc and pf infinite clusters of vacant
and of occupied sites coexist.

It is interesting to observe that for some values of b and θ, the infinite clusters
of occupied sites that occur in the intermediate regime between pc and pf are
not present at time 0, and are therefore produced by the dynamics. This is the
case, for instance, when θ = 2 and b is large. We know from [3] that pf is then of
order 1/b2. But the critical point for percolation at time 0 is 1/b >> 1/b2. The
existence of the intermediate phase then shows that sometimes the bootstrap
percolation dynamics is “strong enough to create infinite clusters”, but “not
strong enough to make all sites occupied”.

Our proof of Theorem 1.1 requires us to use several tools that are known
to imply (1.7). Because those tools are somewhat different than those found
in [3] and other papers, we review them in Section 2. In Sections 3 and 4 we
analyze the oriented and unoriented models, respectively. An Appendix collects
auxiliary results and supplementary proofs.
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2 Full occupancy

The results in this section are well known. We nevertheless choose to present
proofs for them since we found no clear cut reference for each of them specifically.

Proposition 2.1 ~p∞ is the smallest solution in [0, 1] of

x = fp(x), (2.1)

where fp(x) = p+ q
∑b

k=θ

(

b
k

)

xk(1 − x)b−k, with q = 1 − p.

Remark 2.2 1 is always a solution of (2.1). One readily checks that for p
close enough to 1, this is the only solution, and for p close enough to 0, there
are smaller solutions in [0, 1].

Proof of Proposition 2.1

The key observation is that for every n ≥ 0, the random variables {~ηn(x); x ∈
~N} are independent Bernoullis with common parameter ~pn, and are independent
of ~η0(R). From the dynamical rules, we have that, for n ≥ 1, ~ηn(R) = 1 if and
only if either ~η0(R) = 1 or ~η0(R) = 0 and

∑

x∈ ~N ~ηn−1(x) ≥ θ. By the latter
part of the key observation above, we conclude that

~pn = p0 + (1 − p0) Pp





∑

x∈ ~N

~ηn−1(x) ≥ θ

∣

∣

∣

∣

∣

∣

~η0(R) = 0





= p+ q Pp





∑

x∈ ~N

~ηn−1(x) ≥ θ



 = fp(~pn−1),

where in the latter passage, we have used the first part of the key observation
above, from which follows that

∑

x∈ ~N ~ηn−1(x) has a binomial distribution with
b trials and probability of success ~pn−1 in each trial. From the monotonicity of
~pn in n, the continuity and increasing monotonicity of fp(x) in x and the that
fact that ~p∞ = limn→∞ ~pn, the result follows. �

Corollary 2.3

~pf = sup{p ∈ [0, 1] : (2.1) has a solution in (0, 1)} (2.2)

Remark 2.4 From obvious properties of fp(x), we have that, for p̄ = ~pf and
p̄∞ = ~p∞(p̄), f ′

p̄(p̄∞) = 1, where f ′
p̄ is the derivative of fp̄.

Proposition 2.5 We have

p∞ = p+ q

b+1
∑

k=θ

(

b+ 1

k

)

~p k
∞(1 − ~p∞)b+1−k. (2.3)

Proof

Let x1, . . . , xb+1 be an enumeration of NR, and consider unoriented boot-
strap percolation models on T

+,xi , i = 1, . . . , b + 1, (defined in the obvious

way, and started from η0 restricted to the respective subgraph). Let ζ
(i)
n ,
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n = 0, 1, . . . ,∞ denote the successive configurations of the unoriented boot-
strap percolation models on T

+,xi , i = 1, . . . , b + 1. Now, on {η0(R) = 0} we

have that η∞(R) = 1 iff
∑b+1

i=1 ζ
(i)
∞ (xi) ≥ θ. Since ζ

(i)
∞ , i = 1, . . . , b+ 1, are i.i.d.,

we conclude that (2.3) holds with ~p∞ replaced by Ep(ζ
(1)
∞ ).

Consider now oriented bootstrap percolation on ~T+,x1 . Notice that it is

identical to oriented bootstrap percolation on ~Tb restricted to ~T+,x1 . Let ~ζ
(1)
n ,

n = 0, 1, . . . ,∞ denote the successive configurations of the former model. We

recall that ζ
(1)
0 = ~ζ

(1)
0 = η0 restricted to V

+,x1

b .

To finish the proof, we claim that if ~ζ
(1)
∞ (x1) = 0, then ζ

(1)
∞ (x1) = 0. We

introduce a piece of terminology before proceeding; we will say that a vertex

x ∈ V
+,x1

b is protected if ~ζ
(1)
∞ (x) = 0. Let us also denote T1 = T

(b)
1 := T

+,x1 . To
argue the claim, we start by observing that if x1 is protected, then there must

be a vacant subtree of T
(b)
1 , denoted T , with x1 as root, which is isomorphic

to T
(b−θ+1)
1 . This follows from the fact that in order that x ∈ ~T1 be protected,

we must have ~ζ
(1)
0 (x) = 0 and at least b − θ + 1 protected vertices in ~Nx; for

each such x, let Px be a(n arbitrary) choice of exactly b− θ + 1 such protected
vertices. Then making T0 = {x1} and, for n ≥ 1, Tn = ∪x∈Tn−1

Px, we will
have that ∪nTn may be taken as T . Now T is invariant under the unoriented
threshold θ bootstrap percolation dynamics on T1, since every vertex in it is
vacant and has fewer than θ occupied nearest neighbor vertices in T1. Thus

ζ
(1)
∞ (x1) = 0. �

It follows from Proposition 2.5 that the critical parameters in (1.5-1.6) are
actually equal.

Corollary 2.6

~pf = pf (2.4)

Proof It is clear from (2.3) that p∞ = 1 iff ~p∞ = 1. �

Remark 2.7 An obvious corollary of the above, namely that pf equals the right
hand side of (2.2), is the main statement of Proposition 1.2 of [3].

Remark 2.8 One readily checks from the above that 0 < pf < 1. For p < 1, the
function fp(x) is strictly increasing and analytic; thus for p < pf its derivative
at ~p∞ is strictly less than 1. It follows that the derivative at ~p∞ of fp(x) − x
is nonzero. We can then invoke the Analytic Implicit Function Theorem to
conclude that ~p∞ = ~p∞(p) and p∞ = p∞(p) are analytic in [0, pf). From the
obvious increasing monotonicity of ~p∞ and p∞ we conclude that they are both
strictly increasing in [0, pf ].

pf can be readily explicitly computed in cases θ = 2 and b; in the latter case,
pf = 1 − 1/b. See Proposition 1.2 of [3]. It can also be readily checked that ~p∞
and p∞ are continuous at pf for θ = b and discontinuous (but left continuous)
at pf for θ < b.

3 The oriented case

We will describe ~C, the occupied cluster of the root in ~η∞, as cluster of clusters
of branching processes, which we now discuss.
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We start by classifying an initially vacant vertex as weakly vacant, if it is
eventually occupied by the (oriented) dynamics, and strongly vacant, if it is
never occupied by that dynamics. That is, x ∈ Vb such that ~η0(x) = η0(x) = 0
is weakly vacant if ~η∞(x) = 1, and strongly vacant if ~η∞(x) = 0. We will
consider configurations of occupied, weakly vacant and strongly vacant vertices,
ξ ∈ {1, 0, 0}Vb as follows. For x ∈ Vb, set

ξ(x) =











1, if ~η0(x) = 1,

0, if ~η0(x) = 0 but ~η∞(x) = 1,

0, if ~η∞(x) = 0.

(3.1)

We will consider next the cluster Wx of weakly vacant vertices, or 0-vertices,
containing a given vertex x. That is,

Wx = {y ∈ Vb : there exist x = x0, x1, . . . , xn = y with xi ∈ ~Nxi−1
,

i = 1, . . . n, and ξ(xi) = 0, i = 0, . . . n}.

Wx will be empty, if ξ(x) 6= 0. Otherwise, it is a cluster of a branching pro-
cess. To argue that, we start by letting, for given x ∈ Vb, Ox, Wx, Sx denote
respectively the numbers of initially 1-, 0-, and 0-neighbors of x; that is,

(Ox,Wx, Sx) =





∑

y∈ ~Nx

1{ξ(y) = 1},
∑

y∈ ~Nx

1{ξ(y) = 0},
∑

y∈ ~Nx

1{ξ(y) = 0}



 .

(3.2)

Remark 3.1 The independence of {ξ(y), y ∈ ~Nx} implies that (Ox,Wx, Sx) is
trinomial with parameters b (number of trials) and p,~r∞, ~q∞ (probabilities of
resp. 1, 0, 0), where ~r∞ = ~p∞ − p and ~q∞ = 1 − ~p∞. Also, ξ(x) = 0 if and
only if ~η0(x) = 0 and Sx ≤ b− θ; thus, the conditional distribution of Wx given
ξ(x) = 0 is the same as that of Wx given Sx ≤ b−θ. We conclude that Wx either
is empty, with probability 1 − ~r∞, or, with probability ~r∞, it is the cluster of a
branching process initiated with one individual and with offspring distribution
given by the conditional distribution of Wx given Sx ≤ b− θ.

We now introduce the local cluster Lx of occupied vertices of ~η∞ containing
x, and its boundary Ox of initially occupied vertices.

If ξ(x) = 0, let
Lx = Ox = ∅. (3.3)

If ξ(x) = 1, let
Lx = Ox = {x}. (3.4)

If ξ(x) = 0, let

Lx = Wx ∪Ox, with Ox = {y ∈ ∂̄Wx : ξ(y) = 1}, (3.5)

where, given a nonempty subset Λ of Vb, ∂̄Λ = {y /∈ Λ : y ∈ ~Nz for some z ∈ Λ}
is the oriented outer boundary of Λ.

Remark 3.2 ~Cx can be obtained from local clusters and their 1-boundaries by
the following iteration. Let C0 = Lx, O0 = Ox, and for n ≥ 0 make

Cn+1 = ∪y∈On
∪z∈ ~Ny

Lz; On+1 = ∪y∈On
∪z∈ ~Ny

Oz. (3.6)
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Then
~Cx = ∪n≥0Cn. (3.7)

We now notice that, for every n ≥ 0, with On 6= ∅, the portion of the ξ-
configuration forward from On is independent from that restricted to ∪n

i=0Ci.
From this and the above construction, it follows that O := (On)n≥0 are the
successive generations of a branching process with initial distribution given by
a copy of |O|, and offspring distribution given by the sum of b i.i.d. copies
of |O|,independent of the initial distribution, where O = OR, and that almost

surely |~C| = ∞ if and only if that branching process survives.

The following sequence of lemmas and propositions exploits Remark 3.2.

Lemma 3.3 Let ν = ν(p) = Ep(|O|) and

M = M(p) = q

b
∑

k=θ

k

(

b

k

)

~p k−1
∞ ~q b−k

∞ . (3.8)

Then either M < 1 and ν = p
1−M or else ν = ∞.

Remark 3.4 M(0) = 0 and by Remark 2.8, we have that M is analytic in
[0, pf) and left continuous at pf .

Lemma 3.5 Set p̃ = inf{p ∈ [0, pf ] : M(p) = 1}. Then

p̃

{

< pf , if 2 ≤ θ < b,

= pf , if 2 ≤ θ = b.
(3.9)

Remark 3.6 We will see below that M(p) = 1 has at least 1 solution in [0, pf ].
By the continuity of M we then have that p̃ is the smallest such solution.

Remark 3.7 By the above results and standard facts about analytic function
theory, we have that, on [0, p̃), ν = p

1−M is analytic. Note also that ν(0) = 0
and ν(p) → ∞ as p ↑ p̃.

Lemma 3.8 For p ∈ [0, p̃) there exist positive finite constants c1, c2 such that
for all k ≥ 0

Pp(|L| > k) ≤ c1 e
−c2 k, (3.10)

where L = LR.

Warning: The constants c1, c2 in the above lemma are not necessarily the
same as those in the second part of Theorem 1.1. Throughout, constants denoted
ci, i ≥ 0, may be different in different appearances.

Proposition 3.9 We have

~pc = inf{p ∈ [0, pf ] : ν(p) = 1/b} ∈ (0, p̃). (3.11)

For p < ~pc there exist positive finite constants c1, c2 such that for all k ≥ 0

Pp(|~C| > k) ≤ c1 e
−c2 k. (3.12)

And P~pc
(|~C| = ∞) = 0, E~pc

(|~C|) = ∞.
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Proof of Lemma 3.3

Suppose that ν <∞. Now consider the events

A =







∑

x∈ ~N

1 {ξ(x) = 1 or 0} ≥ θ







(3.13)

and, for k ≤ b and a given selection of k vertices x1, . . . xk of ~N ,

Ak = {ξ(xi) = 1 or 0 for i = 1, . . . , k} . (3.14)

Then

ν = Ep(|O|) = p+ q Ep





∑

x∈ ~N

|Ox|;A





= p+ q

b
∑

k=θ

(

b

k

)

Ep (|Ox1
| + . . .+ |Oxk

|;Ak)

= p+ q

b
∑

k=θ

k

(

b

k

)

Ep (|Ox1
|;Ak)

= p+ q

b
∑

k=θ

k

(

b

k

)

Ep (|Ox1
|; ξ(x1) = 1 or 0) Pp(ξ(x2) = 1 or 0) ×

. . .Pp(ξ(xk) = 1 or 0) Pp(ξ(xk+1) = 0) . . .Pp(ξ(xb) = 0)

= p+ q

b
∑

k=θ

k

(

b

k

)

ν ~p k−1
∞ ~q b−k

∞ = p+ ν M,

where {xk+1, . . . , xb} = ~N \ {x1, . . . , xk}. The result follows. �

Proof of Lemma 3.5

When 2 ≤ θ = b, we have by Remark 2.4 and (2.4) that at p = p̄ = pf ,

1 = f ′
p(p̄∞) = q b p̄b−1

∞ = M(p).

Suppose now that p < pf = 1− 1/b (see Remark 2.8) and M(p) = q b ~p b−1
∞ = 1.

It follows that ~p∞ = (qb)−1/(b−1). Now ~p∞ also satisfies (2.1), which in this case,
since from the strict increasing monotonicity of ~p∞ in [0, pf ] (see Remark 2.8)
we have ~p∞(p) < ~p∞(pf ) = 1, is equivalent to x+ x2 + . . .+ xb−1 = p/q. Thus

p

q
= ~p∞ + . . .+ ~p b−1

∞ = (qb)−
1

b−1 + . . .+ (qb)−1 ≥ b− 1

q b
,

since bq ≥ 1. It follows that p ≥ 1 − 1/b, in contradiction with the hypothesis;
we conclude that p̃ = pf .
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When 2 ≤ θ < b, at p = p̄ = pf , again by Remark 2.4 and (2.4) we have that

1 = f ′
p(p̄∞)

= q
d

dx

{

b
∑

k=θ

(

b

k

)

xk(1 − x)b−k

}

x=p̄∞

= q

b
∑

k=θ

k

(

b

k

)

p̄k−1
∞ q̄b−k

∞ − q

b−1
∑

k=θ

(b − k)

(

b

k

)

p̄k
∞q̄

b−k−1
∞

= M(p) − q
b−1
∑

k=θ

(b− k)

(

b

k

)

p̄k
∞q̄

b−k−1
∞

< M(p),

since q
∑b−1

k=θ(b − k)
(

b
k

)

p̄k
∞q̄

b−k−1
∞ > 0 in this case. So M(p) > 1, and since

M(0) = 0 and M is continuous, it follows that p̃ < p = pf . �

Proof of Lemma 3.8

We claim that M is the offspring mean of the branching process involved in
W := WR (see Remark 3.1). Indeed, that mean equals

Ep(W |S ≤ b− θ)

=
1

Pp(S ≤ b− θ)

b−θ
∑

s=0

b−s
∑

w=0

wPp(W = w, S = s)

=
1

Pp(S ≤ b− θ)

b−θ
∑

s=0

b−s
∑

w=1

w
b!

w!s!(b − w − s)!)
~r w
∞ ~q s

∞p
b−w−s

=
b~r∞

Pp(S ≤ b− θ)

b−θ
∑

s=0

b−s
∑

w=1

(b− 1)!

(w − 1)!s!(b− w − s)!)
~r w−1
∞ ~q s

∞p
b−w−s

=
b~r∞

Pp(S ≤ b− θ)

b−θ
∑

s=0

(

b− 1

s

)

~p b−1−s
∞ ~q s

∞

=
~r∞M(p)

q Pp(S ≤ b− θ)
=

Pp(ξ(R) = 0)

q Pp(S ≤ b − θ)
M(p) = M(p),

where S = SR and W = WR, and the claim is justified.
Thus for p < p̃, W is subcritical, and since its offspring distribution is

bounded, Proposition A.1 applies and we get the exponential decay of the dis-
tribution of |W|. The result now follows from (3.5) and the obvious bound
|O| ≤ b|W| + 1. �

Proof of Proposition 3.9

First note that from Remark 3.2,

b ν(p) > 1 ⇔ Pp(|~C| = ∞) > 0. (3.15)

Also, by the exponential decay of |O| at p < p̃ (which follows by (3.3-3.5) and
Lemma 3.8), we may invoke Theorem I.13.1 in [7] to get that

b ν(p) = 1 ⇒ Ep(|~C|) = ∞. (3.16)
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We also have
b ν(p) = 1 ⇒ Pp(|~C| = ∞) = 0. (3.17)

In contrast to (3.2-3.16), we claim that the same Remark 3.2 and Lemma 3.8
yield

b ν(p) < 1, p < p̃ ⇒ Pp(|~C| > k) ≤ c1 e
−c2k, c1, c2 ∈ (0,∞). (3.18)

Indeed, the exponential decay of the offspring distribution of the O-branching
process follows from (3.10); since it is subcritical, Remark A.3 applies and we
get the exponential decay of the distribution of Z, the total size of its family.
Now we get from Lemma A.4 that |~C| ≤ 2Z (see also Remark A.5). (3.12)
follows.

Set now
p′ = inf{p ∈ [0, pf ] : b ν(p) = 1}.

From Lemma 3.5 and Remark 3.7, we learn that 0 < p′ < p̃ ≤ pf , b ν(p′) = 1
and that there are values of p > p′, arbitrarily close to p′ such that b ν(p) 6= 1.

Therefore, from (3.16), we learn that Ep′(|~C|) = ∞, and by monotonicity in

p, also Ep(|~C|) = ∞ for p ≥ p′. From (3.18), we now know that b ν(p) ≥ 1
for p > p′. Hence, there are values of p > p′ arbitrarily close to p′ such that
b ν(p) > 1. From (3.15), we have then ~pc ≤ p′. Using (3.18) again, we see that
~pc ≥ p′, completing the proof. �

4 The unoriented case

We introduce now two modified oriented systems, out of which C will be con-
structed. For that we will consider another family of oriented trees. Say that a
vertex x points to R in ~Tb if there is an oriented path in ~Tb starting at x and
ending at R. And say that an edge points to R in case it starts at a vertex
that points to R. Let ~T∗

b be obtained from ~Tb by reversing the orientation of

the edges pointing to R. Let ~N ∗
x be the set of oriented nearest neighbors of

x in ~T∗
b , with the shorthand ~N ∗ = ~N ∗

R. Then | ~N ∗| = b + 1 and | ~N ∗
x | = b for

x ∈ Vb \ {R}. For x 6= R, let x∗,− be the unique element of Nx \ ~N ∗
x , and let

~T∗,+,x
b be the graph consisting of the connected component containing x of the

subgraph of ~T∗
b obtained by removing x∗,− along with all edges of ~T∗

b incident

on x∗,−. Let V
∗,+,x
b denote the vertex set of ~T∗,+,x

b .

Let now (η∗n, n ≥ 0) denote the oriented bootstrap dynamics in ~T∗
b and let

C∗ denote the cluster of occupied vertices of η∗∞ containing R. Secondly, for

x 6= R, let (η+,x
n , n ≥ 0) denote the oriented bootstrap dynamics in ~T∗,+,x

b with
the following perturbation: the threshold at x is θ−1 instead of θ, which remains
the threshold of all the remainder vertices of ~T∗,+,x

b ; η+,x
0 is the restriction of

η0 to the vertex set of ~T∗,+,x
b . For y ∈ V

∗,+,x
b , let C+,x

y denote the cluster of
occupied vertices of η+,x

∞ containing y, with C+
x := C+,x

x and C+ = C+
x0

, with x0

a fixed element of ~NR. By the spatial homogeneity of the initial condition and
dynamical rules, the distribution of |C+

x | is independent of x 6= R.
When p ∈ [0, ~pc], it readily follows from Proposition 3.9 that, when p < ~pc,

C∗ and C+ are finite almost surely and that the distributions of |C∗| and |C+|
have exponentially decaying tails. Let now X := |∂̄C+| and X̃ := |∂̃C∗|, where
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∂̃C∗ = {y /∈ C∗ : y ∈ ~N ∗
z for some z ∈ C∗} (with the convention that ∂̃∅ = ∅)

and make
σ = σ(p) := Ep(X |ξ(x0) = 0). (4.1)

We also define
ρ = ρ(p) := Ep(|∂̄ ~C|). (4.2)

Lemma 4.1 For 0 ≤ p ≤ ~pc, we have

σ =

(

b

θ − 1

)

q ~q b−θ
∞ ~p θ−2

∞ {(b− θ + 1) ~p∞ + (θ − 1) ρ}. (4.3)

σ is analytic on [0, ~pc) and

σ(p) →
{

∞ as p ↑ ~pc,

0 as p ↓ 0.
(4.4)

We now construct C as cluster of clusters of branching processes, much as in
Section 3. We do that iteratively, as follows. Let Ĉ0 = C∗, S0 = ∂̄C∗, and for
n ≥ 0 make

Ĉn+1 = ∪y∈Sn
C+

y , Sn+1 = ∂̄Ĉn+1 = ∪y∈Sn
∂̄C+

y ; Ĉ = ∪n≥0Ĉn. (4.5)

When p ≤ ~pc, almost surely at each step we have the addition of a finite set
(which may be empty at a given step; in this case all the subsequent additions
are empty, so one may understand that the iteration stops).

Lemma 4.2 When p ≤ ~pc, (Sn)n≥0 are the successive generations of a branch-

ing process with initial distribution given by the distribution of X̃, and offspring
distribution given by the conditional distribution of X given ξ(x0) = 0.

One may readily check that, almost surely, S survives iff |Ĉ| = ∞.

Lemma 4.3

C = Ĉ (4.6)

We now state the main results of this section, from which Theorem 1.1
follows.

Proposition 4.4 We have

1.
pc = inf{p ∈ [0, pf ] : σ(p) = 1} ∈ (0, ~pc); (4.7)

2. for p < pc there exist positive finite constants c1, c2 such that for all k ≥ 0

Pp(|C| > k) ≤ c1 e
−c2 k; (4.8)

3. at p = pc, Pp(|C| > k) → 0 as k → ∞ and Ep(|C|) = ∞;

4. for p > pc there exist positive finite constants c′1, c
′
2 such that for all k ≥ 0

Pp(k < |C| <∞) ≤ c′1 e
−c′

2
k. (4.9)
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Proposition 4.5

1. π is analytic on (pc, pf ) and left continuous at pf .

2. π admits an analytic continuation from the right on pc.

Remark 4.6 Theorem 1.1 follows from Lemma 3.5 and Propositions 3.9, 4.4
and 4.5.

We next present proofs to the above statements. Theorem 1.2 and Proposi-
tion 4.5 will be proved in the Appendix.

Proof of Lemma 4.1

Consider the events

A =







∑

x∈ ~Nx0

1{ξ(x) = 0 or 1} = θ − 1







,

B =







∑

x∈ ~Nx0

1{ξ(x) = 0 or 1} ≤ θ − 1







,

Ã =

{

θ−1
∑

i=1

1{ξ(xi) = 0 or 1} = θ − 1

}

∩
{

b
∑

i=θ

1{ξ(xi) = 0 or 1} = 0

}

,

where {x1, . . . , xb} is an arbitrary deterministic ordering of ~Nx0
.

Note that {ξ(x0) = 0} = {η0(x0) = 0} ∩B. Thus, since X = 0 in {ξ(x0) =
0, Ac} and A ⊂ B,

~q∞σ = Ep(X, ξ(x0) = 0) = Ep(X, ξ(x0) = 0, A)

= Ep(X, η0(x0) = 0, A) =

(

b

θ − 1

)

Ep(X, η0(x0) = 0, Ã)

=

(

b

θ − 1

)

{

(θ − 1)Ep(|∂̄ ~Cx1
|, η0(x0) = 0, Ã)

+ (b− θ + 1)Pp(η0(x0) = 0, Ã)
}

=

(

b

θ − 1

)

{

(θ − 1)q~p θ−2
∞ ~q b−θ+1

∞ ρ+ (b − θ + 1)q~p θ−1
∞ ~q b−θ+1

∞

}

=

(

b

θ − 1

)

q~p θ−2
∞ ~q b−θ+1

∞ {(θ − 1)ρ+ (b − θ + 1)~p∞} , (4.10)

and (4.3) is verified.
The analyticity of σ follows from that of ρ, which in turn is the object of

Lemma A.6 in the Appendix.
To establish (4.4) we recall that ~p∞ vanishes as p → 0 (see Proposition 2.1

and Remark 2.8), and so does ρ, by Lemma A.6 and the fact that ρ(0) = 0.
This settles the second assertion of (4.4). The divergence as p→ ~pc follows from
the same behavior of ρ, and this is implied again by Lemma A.6 and the fact
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that ρ(~pc) = ∞; this in turn may be seen to follow from E~pc
(|~C|) = ∞ and the

inequality |∂̄ ~C| ≥ 1
2 |~C|, which in turn may be seen to follow from (A.7), if we

observe that, in the context of Lemma A.4, |∂̄C| ≥ |∂∗C|. (That E~pc
(|~C|) = ∞

follows from the divergence of the expected number of generations of the O-
branching process at criticality; to see that, we may apply (I.10.8) of [7]; to
check that the condition for the validity of that formula is satisfied, note that the
offspring distribution of the O-branching process has an exponentially decaying
tail: this follows from Lemma 3.8. See Remark 3.2.) �

Proof of Lemma 4.2

That S0 conforms to the statement is clear. Given that the statement holds
for S0, . . . , Sn, n ≥ 0, we note that Sn+1 depends only on η0 restricted to Sn

and on ∪y∈Sn
V

∗,+,y
b , which is a disjoint union. Since ξ ≡ 0 on Sn, the result

follows. �

Proof of Lemma 4.3

That Ĉ0 = C∗ ⊂ C is clear: if Ĉ0 is nonempty, it is also internally spanned
(that is, the (unoriented) bootstrapping dynamics restricted to Ĉ0 eventually
fully occupies it). Assuming that ∪n

i=0Ĉi ⊂ C, n ≥ 0, we conclude that Ĉn+1, if
nonempty, becomes eventually fully occupied under the bootstrapping dynamics
restricted to ∪n+1

i=0 Ĉi. Since the latter set is connected and contains R, we

conclude that it belongs to C. Since n is arbitrary, we conclude that Ĉ ⊂ C.
To argue the converse inclusion, we consider the following further classifica-

tion of vertices of V
∗
b \ {R}. For x 6= R, set

ξ∗(x) =











1, if η∗0(x) = 1,

0∗, if η∗0(x) = 0 but η∗∞(x) = 1,

0
∗
, if η∗∞(x) = 0,

(4.11)

and, making κx =
∑

y∈ ~N∗

x
1{ξ∗(y) = 1 or 0∗}, set

ξ̃(x) =











ξ∗(x), if ξ∗(x) = 1 or 0∗,

0, if ξ(x) = 0
∗

and κ(x) = θ − 1,

0, if ξ(x) = 0
∗

and κ(x) < θ − 1.

(4.12)

We then have that
η∞(x) = 0 if ξ̃(x) = 0 (4.13)

and for x 6= R
η∞(x) = 1 if ξ̃(x) = 0 and η∞(x∗,−) = 1. (4.14)

Consider now a vertex x of C 6= ∅ and the self avoiding path R = x0, x1, . . . ,
xn = x connecting it to R (with xi ∈ ~N ∗

xi−1
for i = 1, . . . , n).

We claim that xi ∈ Ĉ for i = 0, 1, . . . , n. To argue that, we use induction on
i. An argument like the one in the last paragraph of the proof of Proposition 2.5
shows that η∞(R) = η∗∞(R), and the claim follows for i = 0. Suppose that it is
not true for some 0 < i ≤ n, and let i0 = min{i = 1, . . . , n : xi 6∈ Ĉ}. Then we

must have ξ̃(xi0 ) = 0 (otherwise, xi0 ∈ Ĉ, since, by the definition of i0, x
∗,−
i0

∈ Ĉ,

and thus η∞(x∗,−
i0

) = 1, and since we have (4.14)); but this contradicts (4.13).

The claim is thus established, so x ∈ Ĉ, and C ⊂ Ĉ. �
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Proof of Proposition 4.4

Statements 1 to 3 are proved analogously as the corresponding results for ~C
in Proposition 3.9. We may follow the proof of that result, replacing bν by σ,
~C by C, Remark 3.2 by the above construction of C as a cluster of clusters of
branching processes, O0 by X̃, and the exponential decay of the distribution of
O by those of the ones of X and X̃.

We argue statement 4. In case Pp(η∞ ≡ 1) = 1, the claim is obvious, and
so we will suppose that this is not the case. By the now familiar inequalities
relating volume and perimeter of connected finite sets, we can replace C by Z
the total family size of the S branching process. Therefore, it is enough to argue
that

Pp(k < Z <∞) ≤ c′′1e
−c′′

2
k, (4.15)

for some positive finite c′′1 , c
′′
2 .

In order to prove (4.15), we first observe from the proof of statements 1 to
3 above, we know that when pc < p ≤ ~pc, (|Sn|)n≥0 is a supercritical branching

process started from X̃. Therefore, we can write

|Sn| = V (1)
n + · · · + V (X̃)

n , (4.16)

where V
(1)
n , V

(2)
n , . . . are i.i.d. copies of a branching process (Vn)n≥0 starting

from 1. The latter process has extinction probability

γ = γ(p) < 1. (4.17)

When p > ~pc, Sn+1 is still well defined by (4.5), provide |Sn| <∞, but |Sn| may
take the value ∞ for some n. By assuming that ∞ is a trap for (|Sn|)n≥0, we

observe that (|Sn|)n≥0 is also a branching process started from X̃ in this case,

and (4.16) and (4.17) hold on {X̃ <∞}. It is clear that since we are supposing
Pp(η∞ ≡ 1) = 0, then also γ ≥ Pp(V1 = 0) > 0.

Let

ϕp(s) =
∞
∑

k=0

Pp(|Sn+1| = k||Sn| = 1) sk, s ≥ 0

(which is independent of n ≥ 0) be the probability generating function (pgf) of
the offspring distribution of (|Sn|)n≥0 and (Vn)n≥0. Obviously

ϕp(s) < 1 for 0 ≤ s < 1 (4.18)

(this is true even at s = 1 when |Sn| assumes the value ∞ with positive proba-
bility).

Now the event {∑∞
n=0 Sn = Z < ∞} is precisely the event that (|Sn|)n≥0

becomes extinct. Conditioning on {Z <∞} therefore transforms (|Sn|)n≥0 into
a subcritical branching process. This fact is proved as Theorem 2.1.8 in [5],
where the pgf of the corresponding offspring distribution is found to be

ϕ̄p(s) =
∞
∑

k=0

Pp(|Sn+1| = k||Sn| = 1, Z <∞) sk =
ϕp(sγ)

γ
, s ≥ 0

(indep. of n ≥ 0).
From (4.17) and (4.18), we conclude that

ϕ̄p(u) <∞ for some u > 1.
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The claim (4.15) now follows from Remark A.3 in the Appendix, since also

Pp(X̃ = k|Z <∞) =
Pp(X̃ = k)γk

Pp(Z <∞)
,

implying that the tail of the conditional distribution of X̃ given Z <∞ decays
exponentially. �

Remark 4.7 Note that for x 6= R, we have that ξ̃(x) = 0 iff η0(x) = 0 and
∑

y∈ ~N∗

x
1{ξ∗(y) = 0

∗} ≥ b − θ + 2. Letting q̃∞ = Pp(ξ̃(x) = 0), x 6= R, we then

have by the independence of the above random variables

q̃∞ = q
b
∑

i=b−θ+2

(

b

i

)

~q i
∞(1 − ~q∞)b−i. (4.19)

In particular, q̃∞ is continuous on [0, pf ] and analytic in [0, pf) as a function
of p, and it is continuous at pf .

A Appendix

Proposition A.1 Suppose that a subcritical branching process starting with a
single individual is such that its offspring distribution has an exponentially de-
caying tail. Then the distribution of the total size of the family also has an
exponentially decaying tail.

Remark A.2 A detailed result concerning the distribution of the total size of
the family, from which the above result could perhaps follow, is derived in [9]
(see also Theorem I.13.1 in [7]). We could not verify a condition therein for the
present case, and were thus prompted to write the proof below.

Proof of Proposition A.1

Let (Zn)n≥0 be the sizes of the successive generations of the branching pro-
cess (Z0 = 1), and let Fn denote the probability generating function (pgf ) of
Z0 + . . .+ Zn; and F , that of Z0 + Z1 + . . .. We will show that for some s > 1

F (s) <∞. (A.1)

Let ϕ be the pgf of the offspring distribution. It is known ([7], Subsection
I.13.2) that for n ≥ 1 and s ≥ 0

Fn(s) = s ϕ (Fn−1(s)) . (A.2)

From the hypotheses it follows that ϕ(s) <∞ for some s > 1 and ϕ′(1) < 1,
where ϕ′ is the derivative of ϕ. It follows that there exist 1 < s1 < s0 such that

s0 ϕ
′(s0) =: α < 1 and s1 {1 + [ϕ(s1) − 1]/(1 − α)} ≤ s0 (A.3)

We will argue by induction that for all n ≥ 0

Fn(s1) ≤ s0. (A.4)
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This is obvious for n = 0. Suppose it holds for n ≤ k. Then, applying (A.2),

Fn+1(s1) − Fn(s1) = s1 [ϕ(Fn(s1)) − ϕ(Fn−1(s1))]

≤ s1 ϕ
′(Fn(s1)) [Fn(s1) − Fn−1(s1)] ≤ [s1 ϕ

′(Fn(s1))]
n [F1(s1) − F0(s1)]

= [s1 ϕ
′(Fn(s1))]

n s1[ϕ(s1) − 1] ≤ αn s1[ϕ(s1) − 1], (A.5)

where in the first two inequalities we have used the monotonicity of ϕ′ and
F·(s1); and in the last inequality, the induction hypothesis. Now, summing
up (A.5) in {0, . . . , k}:

Fk+1(s1) ≤ F0(s1) + s1[ϕ(s1) − 1]/(1 − α) = s1 {1 + [ϕ(s1) − 1]/(1 − α)} ≤ s0

by (A.3). (A.1) with s = s1 follows by taking the limit as n→ ∞ in (A.4). �

Remark A.3 Proposition A.1 extends to the case where the initial distribution
has an exponentially decaying tail. Indeed, letting ψ be the pgf of the initial
distribution and F the pgf of the family size , then F = ψ◦F , where F is the pgf
for the family size starting with a single individual. Supposing ψ and F are finite
at some s0 > 1, then by the continuity of F in (0, s0], and the fact F (1) = 1,
we can find s1 > 1 such that F (s1) ≤ s0, and thus F(s1) = ψ ◦ F (s1) <∞.

Lemma A.4 For 2 ≤ θ ≤ b and C a finite nonempty connected subset of T
+
b

containing R, let
∂∗C = {x ∈ C : | ~Nx \ C| > b− θ}. (A.6)

Then

|∂∗C| ≥ |C|
2
. (A.7)

Remark A.5 It follows from the definitions of W and O and the bootstrapping
dynamics that for every vertex of ∂∗W, there is a distinct vertex in O. It follows
from Lemma A.4 that |W| ≤ 2|O| and |~C| ≤ 2Z (see proof of Proposition 3.9).

Proof of Lemma A.4

By induction on n = |C|. It is true for n = 1 and 2 since in these cases
∂∗C = C (since θ ≥ 2). If |C| = n+ 1 ≥ 3, then consider

M = {x ∈ ∂∗C : x is at maximal distance from the root}

and choose x ∈ M and consider x−.
If x− ∈ ∂∗C, then x− ∈ ∂∗ (C \ {x}), and

|∂∗C| = |∂∗ (C \ {x}) | + 1 ≥ n

2
+ 1 ≥ n+ 1

2
. (A.8)

If x− /∈ ∂∗C and x− /∈ ∂∗ (C \ {x}), then (A.8) holds again.
If x− /∈ ∂∗C and x− ∈ ∂∗ (C \ {x}), then (since θ ≥ 2) there exists y ∈

~Nx− ∩M, y 6= x, and so x− ∈ ∂∗ (C \ {x, y}). Then

|∂∗C| = |∂∗ (C \ {x, z}) | + 1 ≥ n− 1

2
+ 1 ≥ n+ 1

2
. (A.9)

�
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Lemma A.6 ρ is analytic on [0, ~pc).

Proof

We follow a standard approach (see Proof of Theorem 5.108 in [10]). Let
~C(0) and ~C(1) denote the vertices of ~C which are initially 0 and 1, respectively.
We write for 1 ≤ n <∞

Pp(|∂̄ ~C| = n) =
∑

m,ℓ

Pp(|~C(0)| = m, |~C(1)| = ℓ, |∂̄ ~C| = n) =
∑

m,ℓ

anmℓp
ℓqm~q n

∞,

(A.10)
where anmℓ is the number of tree animals with m+ ℓ vertices and n boundary
vertices, and orientedly spanning configurations with m 0’s and ℓ 1’s in them
(where by a orientedly spanning configuration of 0’s and 1’s in a tree animal,
we mean a configuration for which that animal is internally spanned by the
oriented bootstrapping dynamics). From the fact that |~C(0)| + |~C(1)| = |~C|, and

the bounds 1
2 |~C| ≤ |∂̄ ~C| ≤ b|~C|, the right hand side of (A.10) is bounded below

by r2n
∑

m,ℓ anmℓ, where r = p ∧ q ∧√
~q∞, and since the left hand side of that

equation is a probability, and the latter sum is independent of p, we get
∑

m,ℓ

anmℓ ≤ λn, (A.11)

with λ = inf0<p<pf
r−2 <∞, since ~q∞ > 0 for p < pf , and pf > 0.

We now claim that in the sum on the right hand side of (A.10), if anmℓ > 0,
then there exists a constant c > 0 such that ℓ ≥ c n. Indeed, let W1, . . . ,Wk

be the 0-subclusters of ~C, and O1, . . . , Ok their 1-boundaries. Then one readily
checks that

|~C(0)| + |~C(1)| = |~C| ≥ 1
b |∂̄ ~C|, (A.12)

|~C(1)| ≥ |O1| + . . .+ |Ok| ≥ 1
2 (|W1| + . . .+ |Wk|) = 1

2 |~C(0)|, (A.13)

where the second inequality in (A.13) follows by an application of Lemma A.4,
as in the the proof of Proposition 3.9. The claim follows with c = 1/3b.

It also follows from one of the above inequalities (1
2 |~C| ≤ |∂̄ ~C|), that

m ∨ ℓ ≤ 2n. (A.14)

Now using the fact that ~q∞ is analytic in (a complex neighborhood of) [0, pf),
we write, formally at this point, in a complex neighborhood of [0, ~pc),

ρ(z) =
∑

n≥1

n
∑

m,ℓ

anmℓz
ℓ(1 − z)m~q∞(z)n. (A.15)

I) To get analyticity of ρ at [0, ~pc), it is enough to check that the series
in (A.15) has a uniformly convergent tail at a neighborhood of any point of that
interval. From the above discussion, we have

∣

∣

∣

∑

m,ℓ anmℓz
ℓ(1 − z)m~q∞(z)n

∣

∣

∣ ≤
∑

m,ℓ anmℓ|z|cn(1 + |z|)2n2n

= |z|cn(1 + |z|)2n2n
∑

m,ℓ anmℓ ≤ (d(z))n

at a neighborhood of the origin where |~q∞(z)| ≤ 2 (which exists by continuity
of ρ at the origin, where it equals 1), and where d(z) = 2λ|z|c(1 + |z|)2 < 1.
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The uniform convergence of the series tail around the origin follows, and ρ is
analytic at the origin.

II) Given p ∈ (0, ~pc) and δ > 0 such that |z−p| ≤ δ and |~q∞(z)−~q∞(p)| ≤ δ,
we have that

∣

∣

∣

∑

m,ℓ anmℓz
ℓ(1 − z)m~q∞(z)n

∣

∣

∣

≤∑m,ℓ anmℓp
ℓqm~q∞(p)n

(

p+δ
p

)ℓ (
q+δ

q

)m (
~q∞(p)+δ

~q∞(p)

)n

≤ c(p, δ)n
∑

m,ℓ anmℓp
ℓqm~q∞(p)n = c(p, δ)n

Pp(|∂̄ ~C| = n) ≤ d(p, δ)n,

where c(p, δ) =
(

(p+δ)(q+δ)
pq

)2 (
~q∞(p)+δ

~q∞(p)

)

→ 1 as δ → 0, and where the second

inequality follows from (A.14), and thus, by the exponential decay of the tail of

the distribution of |∂̄ ~C| (which follows from that of |~C| and |∂̄ ~C| ≤ b|~C|), d(p, δ)
can be taken strictly less than 1 by making δ sufficiently small. The uniform
convergence of the tail of the series in (A.15) on |z − p| ≤ δ follows, and the
argument is complete. �

Proof of Proposition 4.5

1. An entirely similar argument as in II) of the proof of Lemma A.6 can be
made starting from

1 − π(p) = q∞ + Pp(0 < |C| <∞), (A.16)

where q∞ = 1 − p∞. Since p∞ is analytic in [0, pf ), it remains to consider
Pp(0 < |C| <∞), which can be written as follows.

∑

n≥1

∑

k,ℓ,m

Pp(|C(0)| = m, |C(1)| = ℓ, |∂̄C| = k) =
∑

n≥1

∑

k,ℓ,m

ãnkmℓp
ℓqmq̃k

∞, (A.17)

where C(0) and C(1) denote the vertices of C which are initially 0 and 1, respec-
tively; ℓ+m = n; ãnkmℓ is the number of tree animals with m+ ℓ vertices and
k boundary vertices, and spanning configurations with m 0’s and ℓ 1’s in them
(where by a spanning configuration of 0’s and 1’s in a tree animal, we mean
a configuration for which that animal is internally spanned by the unoriented
bootstrapping dynamics); and then using the bound k ≤ bn, the analyticity of
q̃∞ and the exponential decay of Pp(|C| = n) as n→ ∞ for p > pc, which follows
from (4.9).

This argument works for getting the analyticity result. It works as well for
getting left continuity at pf when θ < b, since in this case q̃∞(pf ) > 0. When
θ = b, since in this case q̃∞(pf ) = 0, one needs instead to argue like in I) of the
proof of Lemma A.6. See the proof of Theorem 1.2 below, where the discussion
is done in some more detail.

2. Consider the branching process starting with a single individual and
with offspring distribution given by the conditional distribution of X given that
ξ(R) = 0. Its extinction probability s = d(p) satisfies the equation

s = ϕ+(s) = Ep(s
X |ξ(R) = 0) (A.18)
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(see paragraph above (4.1)). Arguing as in the proof of Lemma 4.1 we get

~q∞ϕ
+(s) =

(

b

θ − 1

)

Ep[s
X , η0(R) = 0, Ã] + qPp(B \A)

= q

(

b

θ − 1

)

sb−θ+1{Ep[s
Y ;Y ≥ 1]}θ−1~q b−θ+1

∞ + q

θ−2
∑

i=0

(

b

i

)

~p i
∞~q

b−i
∞

= q

(

b

θ − 1

)

~p θ−1
∞ ~q b−θ+1

∞ sb−θ+1{Ep[s
Y |Y ≥ 1]}θ−1

+ q

θ−1
∑

i=0

(

b

i

)

~p i
∞~q

b−i
∞ − q

(

b

θ − 1

)

~p θ−1
∞ ~q b−θ+1

∞

= q

(

b

θ − 1

)

~p θ−1
∞ ~q b−θ+1

∞ (sb−θ+1{Ep[s
Y |Y ≥ 1]}θ−1 − 1) + ~q∞, (A.19)

where Y = |∂̄ ~C|, and the identity ~q∞ = q
∑θ−1

i=0

(

b
i

)

~p i
∞~q

b−i
∞ used in the last

equality above follows from Proposition 2.1. After a straightforward calculation,
one gets that (A.18) is equivalent to

(1 − s)G(p) = 1 − sb−θ+1{Ep[s
Y |Y ≥ 1]}θ−1 = 1 − sb{Ep[s

Y −1|Y ≥ 1]}θ−1,
(A.20)

where G(p) = 1/
(

b
θ−1

)

~p θ−1
∞ ~q b−θ

∞ . We rewrite the right hand side of (A.20) as

1 − sb + sb(1 − {Ep[s
Y −1|Y ≥ 1]}θ−1) = (1 − s)

∑b−1
i=0 s

i

~q∞(p) + δ

~q∞(p)
+sb[1 − Ep(s

Y −1|Y ≥ 1)]
∑θ−2

i=0

{

Ep

(

sY −1
∣

∣Y ≥ 1
)}i

. (A.21)

Now the expression in square brackets in the right hand side of (A.21) can be
expressed as

1 − s

~p∞
Ep

(

Y −2
∑

i=0

si;Y ≥ 2

)

(A.22)

Substituting (A.21) and (A.22) in the right hand side of (A.20), we find that it
can be reexpressed as 1 − s times

I(p, s) :=

b−1
∑

i=0

si +
sb

~p∞
Ep

(

Y −2
∑

i=0

si;Y ≥ 2

)

θ−2
∑

i=0

{

Ep

(

sY −1
∣

∣Y ≥ 1
)}i

=:

b−1
∑

i=0

si +
sb

~p∞
I1(p, s)

θ−2
∑

i=0

I2(p, s)
i. (A.23)

By Lemma A.7 below, we have that I1 and I2 are analytic in (0, pc+ǫ)×(0, 1+ǫ)
for ǫ > 0 small enough. Then so is I.

Let now s = e(p) be the solution of I(p, s) = G(p) in a neighborhood of pc.
We have that

e(p) = d(p) for p ≥ pc, (A.24)

and thus e(pc) = 1. One also readily checks that d
dsI(p, s) > 0 in (0, ~pc)× (0, 1+

ǫ). We may then apply the Analytic Implicit Function Theorem to conclude that
e is well defined and analytic in a neighborhood of pc. We then have from (A.24)
that e is the analytic continuation of d on pc.
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We will argue now that 1−π = h(p, d) with h analytic on (pc, 1). The result
then follows, with h(p, e) as the analytic continuation of 1 − π at pc.

Indeed, 1 − π =
∑∞

n=0 d
n
Pp(X̃ = n) =: h(p, d). Proceeding as in the proof

of Lemma A.6, we expand Pp(X̃ = n) = Pp(|∂̄C∗| = n) as done in (A.10):

Pp(|∂̄C∗| = n) =
∑

m,ℓ

a∗nmℓp
ℓqm~q n

∞, (A.25)

so we can express h formally as a function of two complex variables as

h(z, w) =
∞
∑

n=0

wn
∑

m,ℓ

a∗nmℓz
ℓ(1 − z)m~q n

∞(z); (A.26)

again, in order to establish the analyticity of h in (pc, 1), it suffices to show
that the tail of the first sum in (A.26) converges uniformly in the product say
Π = B1 × B2 of two balls in the complex plane around pc and 1 respectively,
with radii say δ > 0 small to be chosen presently. Arguing as before, we get
that

∣

∣

∣

∣

∣

∣

∞
∑

n=M

wn
∑

m,ℓ

a∗nmℓz
ℓ(1 − z)m~q n

∞(z)

∣

∣

∣

∣

∣

∣

≤
∞
∑

n=M

cn
∑

m,ℓ

a∗nmℓp
ℓ
c(1 − pc)

m~q n
∞(pc)

=
∞
∑

n=M

cnPpc
(X̃ = n), (A.27)

where c = supw∈B2
|w| supz∈B1

(

|z(1−z)|
pc(1−pc)

)2
|~q∞(z)|
~q∞(pc) . Since c can be made close

to 1 by making δ close to 0, the result follows by the exponential decay of the
distribution of X̃ below ~pc. �

Lemma A.7 I1 and I2 defined in (A.23) above are analytic in (0, p̄)× (0, 1+ ǫ)
for all p̄ < ~pc and ǫ = ǫ(p̄) > 0 small enough.

Proof

The latter function can be expressed as

I2(p, s) =
1

~p∞

∞
∑

n=1

sn
Pp(Y = n) =

1

~p∞

∞
∑

n=1

sn
Pp(|∂̄ ~C| = n). (A.28)

We then replace (A.10) above and proceed similarly as in the proof of
Lemma A.6, part II. (Note that at a point of the argument, we need to take ǫ > 0
small enough; we again use the exponential decay of the tail of the distribution
of |∂̄ ~C|, which holds below ~pc.)

As for I1, we reexpress it as

I1(p, s) =

∞
∑

n=0

sn
∞
∑

k=n+2

Pp(|∂̄ ~C| = n), (A.29)
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and then again proceed as in the proof of Lemma A.6. �

Proof of Theorem 1.2

1. Recalling the discussion in the first paragraph of Lemma 3.5, in this case,
for p ≤ pf , we have that ~p∞ is the solution x(p) of x+ x2 + . . .+ xb−1 = p/q in
(0, 1). Now x(p) is well defined and indeed analytic on (0, 1) (by the Analytic
Implicit Function Theorem), and of course coincides with ~p∞ on (0, pf ]. We
thus have that x(p) is an analytic continuation of ~p∞ on pf , and from (2.3)
and (4.19), we find analytic continuations of both q∞ and q̃∞ on pf , x̄(p) and
x̃(p), respectively.

To get the result for π, we consider the function

y(p) := x̄(p) +
∑

n≥1

∑

k,ℓ,m

ãnkmℓp
ℓqmx̃(p)k (A.30)

(see (A.16-A.17)) and argue as in the proof of Proposition 4.5 to find that
the sum on the right hand side above is uniformly convergent on a complex
neighborhood of pf . For that we use the fact that x̃ is continuous on a complex
neighborhood of pf and x̃(pf ) = 0 to get that given δ > 0, we find a complex
neighborhood of pf such that x̃ ≤ δ in that neighborhood. We also have as

in (A.11) that
∑

k,ℓ,m ãnkmℓ ≤ λ̃n for a suitable finite λ̃. We conclude that y is
analytic on pf , and it is thus an analytic continuation of 1 − π in that point.

2. We start by establishing (1.15) for π replaced by ~p∞: we claim

p′∞(p) =
d

dp
~p∞(p) → ∞ as p ↑ pf . (A.31)

Indeed from Proposition 2.1 and the Implicit Function Theorem, we have that

p′∞(p) =

d
dpfp(x)

1 − f ′
p(x)

∣

∣

∣

∣

∣

x=~p∞

=
1 −∑b

k=θ

(

b
k

)

~p k
∞(1 − ~p∞)b−k

1 − f ′
p(~p∞)

. (A.32)

Since ~p∞(pf ) < 1, we have that the numerator of (A.32) is bounded away from
zero as p ↑ pf . On the other hand, the denominator vanishes as p ↑ pf (see
Remark 2.4). (A.31) follows.

Now by (A.17) and statement 5 of Theorem 1.1, we have for pc < p < pf

π′(p) = p′∞(p) − q̃′∞(p)
∑

n≥1

∑

k,ℓ,m

k ãnkmℓp
ℓqmq̃k−1

∞ (p)

+
∑

n≥1

∑

k,ℓ,m

ãnkmℓ(p
ℓqm)′q̃k

∞(p). (A.33)

We have that p∞ is increasing and analytic, so p′∞ ≥ 0. By (4.19) and (A.31),
one readily gets that q̃′∞(p) → −∞ as p ↑ pf . It is easy to see that the factor
of q̃′∞(p) in (A.33) is bounded away from zero in a left neighborhood of pf . So,
to get the result, it is enough to show that the latter summand in (A.33) is
bounded in a left neighborhood of pf . To argue that, we take pf − ǫ < p < pf ,
where ǫ > 0 will be chosen small enough later on, and bound the absolute value
of that term by

c
∑

n≥1

n
∑

k,ℓ,m

ãnkmℓp
ℓqmq̃k

∞(p), (A.34)

22



where c is the constant obtained by bounding above ℓ and m in the above sum
in terms of n, as usual, times p−1 + q−1. The above sum can now be bounded
above by

∑

n≥1

nδn
∑

k,ℓ,m

ãnkmℓp
ℓ
f(1 − pf)mq̃k

∞(pf ) = Epf
(|C|δ|C|; |C| <∞), (A.35)

where δ =
(

suppf−ǫ<p<pf

(1−pf ) q̃∞(pf )
(1−p) q̃∞(p)

)d

, and d is the constant obtained by

bounding above m and k in the above sum in terms of n, as usual. It is now
clear by the continuity of q̃∞ that δ can be made arbitrarily close to 1 by taking
ǫ small enough. The result follows from statement 4 of Theorem 1.1. �
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