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We consider a statistical prediction problem under misspecified models. In a sense, Bayesian

prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is

obtained by applying Breiman’s ‘bagging’ method to a plug-in prediction. Bootstrap prediction can be

considered to be an approximation to the Bayesian prediction under the assumption that the model is

true. However, in applications, there are frequently deviations from the assumed model. In this paper,

both prediction methods are compared by using the Kullback–Leibler loss under the assumption that

the model does not contain the true distribution. We show that bootstrap prediction is asymptotically

more effective than Bayesian prediction under misspecified models.
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1. Introduction

In this paper, we consider a statistical prediction problem under misspecified models.

Observations xN ¼ fx1, . . . , xNg are independent and identically distributed according to

q(x). The problem is the probabilistic prediction of a future observation xNþ1 based on xN .

We assume a statistical model fp(x; Ł)jŁ ¼ (Ła) 2 ¨, a ¼ 1, . . . , mg, where ¨ is an open

set in m-dimensional Euclidean space Rm. The true distribution q(x) is not necessarily in

the assumed model fp(x; Ł)g. The performance of a predictive distribution p̂p(xNþ1; x
N ) is

measured by using the Kullback–Leibler divergence, that is, we use the loss function

D(q(�), p̂p(�; xN )) ¼
ð
q(xNþ1)log

q(xNþ1)

p̂p(xNþ1; xN )
dxNþ1:

The risk function is

Ex N D(q(�), p̂p(�; xN ))
� �

¼
ð
q(xN )

ð
q(xNþ1)log

q(xNþ1)

p̂p(xNþ1; xN )
dxNþ1

� �
dxN ,

where q(xN ) ¼
QN

i¼1 q(xi).

For the statistical prediction problem, a predictive distribution often used naively is a

plug-in distribution with the maximum likelihood estimator (MLE)

p(xNþ1; Ł̂ŁMLE(x
N )),
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where

Ł̂ŁMLE(x
N ) ¼ argmax

Ł
flog p(xN ; Ł)g:

Akaike’s information criterion is derived from the viewpoint of minimizing the risk of the

plug-in distribution with the MLE (Akaike 1973). Takeuchi’s information criterion is a

criterion for the plug-in distribution when the assumed model does not contain the true

distribution (Takeuchi 1976).

Bayesian methods for prediction also have been considered (Geisser 1993). When the true

distribution belongs to the statistical model fp(x; Ł)g, the Bayes risk with a proper prior

distribution �(Ł),

EŁ[Ex N fD( p(�; Ł), p̂p(�; xN )g]

¼
ð
�(Ł)

ð
p(xN ; Ł)

ð
p(xNþ1; Ł)log

p(xNþ1; Ł)

p̂p(xNþ1; xN )
dxNþ1

� �
dxN

� �
dŁ,

is minimized by the Bayesian predictive distribution (Aitchison 1975)

p�(xNþ1jxN ) ¼
ð
p(xNþ1; Ł)�(ŁjxN )dŁ,

where

�(ŁjxN ) ¼ p(xN ; Ł)�(Ł)ð
p(xN ; Ł)�(Ł)dŁ

is the posterior distribution. Komaki (1996) proved that the Bayesian predictive distribution

includes ‘the vector orthogonal to the model’ and this vector is effective for prediction.

Shimodaira (2000) evaluated the risk of the Bayesian predictive distribution when the true

distribution does not belong to the assumed model.

In the field of machine learning, ‘bagging’ was proposed by Breiman (1996). Bagging

provides a stable prediction by averaging many predictions based on bootstrap data.

Bootstrap predictive distributions are derived by applying the bagging method to the plug-in

distribution with the MLE (Harris 1989; Fushiki et al. 2004; 2005). Fushiki et al. (2004,

2005) investigated the relationship between the bootstrap predictive distribution and the

Bayesian predictive distribution and evaluated the predictive performance.

In this paper, we investigate the bootstrap prediction under misspecified models. In

Section 2 the predictive performance of the Bayesian predictive distribution and that of the

bootstrap predictive distribution are compared. We show that the bootstrap predictive

distribution asymptotically provides better prediction than the Bayesian predictive

distribution. In Section 3 some examples are given; in particular, a regression problem is

considered. Section 4 is a concluding discussion.
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2. Bootstrap prediction under misspecified models

The bootstrap predictive distribution (Fushiki et al. 2005) is defined by

p�(xNþ1; x
N ) ¼ E p̂p p(xNþ1; Ł̂Ł

�
MLE)

n o
¼

ð
p(xNþ1; Ł̂ŁMLE(x

�N )) p̂p(x�N )dx�N , (1)

where p̂p is the empirical distribution p̂p(x) ¼ (1=N )
PN

i¼1�(x� xi) and the bootstrap estimator

Ł̂Ł�MLE ¼ Ł̂ŁMLE(x
�N ) is the MLE based on a bootstrap sample x�N . This predictive distribution

is obtained by applying the bagging method to the plug-in distribution with the MLE. We

investigate the bootstrap prediction under misspecified models.

This paper adopts the tensor notation. A partial derivative with respect to parameter Ła is

written as @a. Einstein’s summation convention is used: if an index appears twice in any

one term, once as an upper and once as a lower index, summation over the index is

implied. For example,

f a@a p(x; Ł) ¼
Xm
a¼1

f a @ p(x; Ł)

@Ła

(see also Amari and Nagaoka 2000; McCullagh 1987).

The following theorem provides an asymptotic expansion of the bootstrap predictive

distribution.

Theorem 1. The bootstrap predictive distribution is asymptotically expanded as

p�(xNþ1; x
N ) ¼ p(xNþ1; Ł̂ŁMLE)þ

1

2N
hac(Ł̂ŁMLE)gcd(Ł̂ŁMLE)h

bd(Ł̂ŁMLE)@a@b p(xNþ1; Ł̂ŁMLE)

þ 1

N
ka2(Ł̂ŁMLE)@a p(xNþ1; Ł̂ŁMLE)þ op(N

�1),

where

gab(Ł) ¼ Eqf@a log p(x; Ł)@b log p(x; Ł)g,

hab(Ł) ¼ Eqf�@a@b log p(x; Ł)g,

ka2(Ł) ¼ hab(Ł)hcd(Ł)ˆbc,d(Ł)þ
1

2
hab(Ł)hce(Ł)hdf (Ł)gef (Ł)Kbcd(Ł),

ˆab,c(Ł) ¼ Eqf@a@b log p(x; Ł)@c log p(x; Ł)g,

Kabc(Ł) ¼ Eqf�@a@b@c log p(x; Ł)g

and (gab(Ł)) and (hab(Ł)) are the inverse matrices of (gab(Ł)) and (hab(Ł)), respectively.

Proof. By Theorem 1 in Fushiki et al. (2005), which remains valid when the true distribution

does not belong to the assumed statistical model, the bootstrap predictive distribution is

asymptotically expanded as
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p�(xNþ1; x
N ) ¼ p(xNþ1; Ł̂ŁMLE)þ

1

N
k
N ,a

2 (Ł̂ŁMLE)@a p(xNþ1; Ł̂ŁMLE)

þ 1

2N
sN ,ab(Ł̂ŁMLE)@a@b p(xNþ1; Ł̂ŁMLE)þ Op(N

�2),

with sN ,ab and k
N ,a

2 as defined in Fushiki et al. (2005). Since

sN ,ab(Ł̂ŁMLE) ¼ hac(Ł̂ŁMLE)gcd(Ł̂ŁMLE)h
bd(Ł̂ŁMLE)þ Op(N

�1=2)

and

k
N ,a

2 (Ł̂ŁMLE) ¼ ka2(Ł̂ŁMLE)þ Op(N
�1=2),

the theorem is obtained. h

The risk of the bootstrap predictive distribution is evaluated as follows. Let Ł0 be the

closest parameter to the true distribution in the following sense:

Ł0 ¼ argmin
Ł

D(q(�), p(�; Ł))f g:

We assume that such Ł0 exists uniquely in ¨. In the following, we also assume that

Efop(N�1)g ¼ o(N�1). The difference between the risk of the bootstrap predictive

distribution and that of the plug-in distribution with the MLE is

Ex N fD(q(�), p(�; Ł̂ŁMLE(x
N )))g � Ex N fD(q(�), p�(�; xN ))g

¼
ð
q(xN )

ð
q(xNþ1)log

p�(xNþ1; x
N )

p(xNþ1; Ł̂ŁMLE(xN ))
dxNþ1 dx

N

¼
ð
q(xN )

ð
q(xNþ1)

p�(xNþ1; x
N )� p(xNþ1; Ł̂ŁMLE(x

N ))

p(xNþ1; Ł̂ŁMLE(xN ))
dxNþ1 dx

N þ o(N�1)

¼ 1

2N
hac(Ł0)gcd(Ł0)h

bd(Ł0)

ð
q(xNþ1)

@a@b p(xNþ1; Ł0)

p(xNþ1; Ł0)
dxNþ1

þ 1

2N
ka2(Ł0)

ð
q(xNþ1)

@a p(xNþ1; Ł0)

p(xNþ1; Ł0)
dxNþ1 þ o(N�1), (2)

where we use the well-known fact that Ł̂ŁMLE converges to Ł0 in probability (White 1982).

From the definition of Ł0,

ð
q(x)@a log p(x; Ł0)dx ¼ 0:

Then, the second term of (2) is 0. Using the relation
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ð
q(x)

@a@b p(x; Ł)

p(x; Ł)
dx ¼

ð
q(x)@a log p(x; Ł)@b log p(x; Ł)dxþ

ð
q(x)@a@b log p(x; Ł)dx

¼ gab(Ł)� hab(Ł),

we can obtain the following theorem.

Theorem 2. The risk of the bootstrap predictive distribution is asymptotically expanded as

Ex N fD(q(�), p�(�; xN ))g ¼ Ex N fD(q(�), p(�; Ł̂ŁMLE(x
N )))g

� 1

2N
fhac(Ł0)gcd(Ł0)h

bd(Ł0)gab(Ł0)� hab(Ł0)gab(Ł0)g þ o(N�1):

According to Shimodaira (2000), the risk of the Bayesian predictive distribution is given

by

Ex N fD(q(�), p�(�jxN ))g ¼ Ex N fD(q(�), p(�; Ł̂ŁMLE(x
N )))g � 1

2N
hab(Ł0)gab(Ł0)� m

� �

þ o(N�1),

where m ¼ dim(Ł).
Using the matrices G(Ł) ¼ (gab(Ł)) and H(Ł) ¼ (hab(Ł)), the above results can be written

as

Ex N fD(q(�), p�(�jxN ))g ¼ Ex N fD(q(�), p(�; Ł̂ŁMLE(x
N )))g

� 1

2N
tr[G(Ł0)H

�1(Ł0)]� m
� �

þ o(N�1),

Ex N fD(q(�), p�(�; xN ))g ¼ Ex N fD(q(�), p(�; Ł̂ŁMLE(x
N )))g

� 1

2N
tr[G(Ł0)H

�1(Ł0)G(Ł0)H
�1(Ł0)]� tr[G(Ł0)H

�1(Ł0)]
� �

þ o(N�1):

Since H(Ł0) is the Hessian matrix of D(q(�), p(�; Ł)) at Ł0, it is a symmetric positive definite

matrix. We assume that G(Ł0) is also positive definite. Since H(Ł0) is positive definite, it can

be written as UDU T, where U is an orthogonal matrix, D ¼ diagf�1, . . . , �mg, and

�1, . . . , �m are the eigenvalues of H(Ł0). If we define H1=2(Ł0) ¼ UD1=2U T, then H(Ł0)
¼ H1=2(Ł0)H1=2(Ł0) and tr[G(Ł0)H�1(Ł0)] ¼ tr[H�1=2(Ł0)G(Ł0)H�1=2(Ł0)]. Let º1, . . . , ºm

be the eigenvalues of H�1=2(Ł0)G(Ł0)H�1=2(Ł0); then º1, . . . , ºm are real and positive

because H�1=2(Ł0)G(Ł0)H�1=2(Ł0) is a symmetric positive definite matrix. Since
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Ex N fD(q(�), p�(�jxN ))g � Ex N fD(q(�), p�(�; xN ))g

¼ 1

2N
tr[G(Ł0)H

�1(Ł0)G(Ł0)H
�1(Ł0)]� tr[G(Ł0)H

�1(Ł0)]
� �

� 1

2N
tr[G(Ł0)H

�1(Ł0)]� m
� �

þ o(N�1)

¼ 1

2N
tr[(H�1=2(Ł0)G(Ł0)H

�1=2(Ł0))
2]� 2tr[H�1=2(Ł0)G(Ł0)H

�1=2(Ł0)]þ m
n o

þ o(N�1)

¼ 1

2N

Xm
i¼1

º2i � 2ºi þ 1
� �

þ o(N�1)

¼ 1

2N

Xm
i¼1

ºi � 1ð Þ2þo(N�1),

we can obtain the following theorem.

Theorem 3. The bootstrap predictive distribution asymptotically provides better prediction

than the Bayesian predictive distribution when G(Ł0) 6¼ H(Ł0).

3. Examples

Example 1 Normal distribution with mean parameter. On the true distribution q(x), let

�t ¼ Eq(x), � 2
t ¼ varq(x):

We consider a statistical model N (�, � 2
m), where �m is given. Then,

�0 ¼ argmin
�

D(q(�), p(�; �))f g

¼ �t

and

G(�0) ¼
� 2
t

� 4
m

, H(�0) ¼
1

� 2
m

:

The difference between the risk of the bootstrap predictive distribution and that of the

Bayesian predictive distribution is

1

2N
G(�0)H

�1(�0)� 1
� �2þo(N�1) ¼ 1

2N

� 2
t

� 2
m

� 1

	 
2

þo(N�1):

Figure 1 shows the results of numerical experiments when the true distribution is N (�t, � 2
t ).
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The uniform prior on � is used to calculate the Bayesian predictive distribution. It is known

that the Bayesian predictive distribution with the uniform prior dominates the plug-in

distribution with the MLE when this assumed normal model is true. Although the uniform

prior is improper, the Bayesian predictive distribution with the uniform prior is admissible

and natural from the viewpoint of invariance. However, as shown in Figure 1, the bootstrap
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Figure 1. Difference between the risk of the bootstrap predictive distribution and that of the Bayesian

predictive distribution. The true distribution is N (0, � 2
t ) and the assumed model is N (�, 1) One

thousand bootstrap samples are used to calculate the bootstrap predictive distribution. The loss

function is calculated by numerical integration and the expectation of the loss is calculated by 10 000

Monte Carlo iterations. (a) � t ¼ 0:5, (b) � t ¼ 1:5.
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predictive distribution is more effective than the Bayesian predictive distribution under the

misspecified model.

Example 2 Gamma distribution. Let

p(x; º) ¼ ºr

ˆ(r)
x r�1 exp (�ºx),

where r is fixed. Then,

º0 ¼ argmin
º

D(q(�), p(�; º))f g ¼ r

Eq(x)

and

G(º0) ¼ varq(x), H(º0) ¼
r

º20
:

The difference between the risk of the bootstrap predictive distribution and that of the

Bayesian predictive distribution is

1

2N
G(º0)H

�1(º0)� 1
� �2þo(N�1) ¼ 1

2N

r varq(x)

Eq(x)2
� 1

� �2

þo(N�1):

Figure 2 shows the results of numerical experiments when the true distribution is a lognormal

distribution. In Figure 2, the Jeffreys prior �(º) / º�1 is used to calculate the Bayesian

predictive distribution.

3.1. Conditional prediction

We now turn to a prediction problem in the conditional setting. This setting includes

regression and classification where bagging is mainly used. Let z ¼ (x, y), where y is a

response variable and x is a covariate. We consider the problem of predicting yNþ1 given

xNþ1 based on data zN ¼ f(x1, y1), . . . , (xN , yN )g. The true distribution is q(x, y)

¼ q(yjx)q(x), and a conditional model fp(yjx; Ł)g is assumed. The loss function of a

predictive distribution p̂p(yNþ1jxNþ1; z
N ) is given byð

q(xNþ1)

ð
q(yNþ1jxNþ1)log

q(yNþ1jxNþ1)

p̂p(yNþ1jxNþ1; zN )
dyNþ1 dxNþ1:

The risk function isð
q(zN )

ð
q(xNþ1)

ð
q(yNþ1jxNþ1)log

q(yNþ1jxNþ1)

p̂p(yNþ1jxNþ1; zN )
dyNþ1 dxNþ1 dz

N : (3)

The conditional bootstrap predictive distribution is defined by

p�(yNþ1jxNþ1; z
N ) ¼ E p̂pfp(yNþ1jxNþ1; Ł̂Ł

�
MLE)g: (4)

Here, Ł̂Ł�MLE does not depend on p(x), which is a statistical model of x. Then, the conditional
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bootstrap predictive distribution does not depend on p(x). The Bayesian predictive

distribution

p�(yNþ1jxNþ1, z
N ) ¼

ð
p(yNþ1jxNþ1; Ł)�(ŁjzN )dŁ
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Figure 2. Difference between the risk of the bootstrap predictive distribution and that of the Bayesian

predictive distribution. The true distribution is q(x) ¼ 1=(
ffiffiffiffiffiffiffiffiffiffiffi
2�� 2

t

p
x) exp[�flog(x)� �tg2=(2� 2

t )] and

the assumed model is p(x; º) ¼ º2x exp (�ºx). One thousand bootstrap samples are used to calculate

the bootstrap predictive distribution. The loss function is calculated by numerical integration and the

expectation of the loss is calculated by 10 000 Monte Carlo iterations. (a) (�t, � t) ¼ (0:5, 0:3), (b)
(�t, � t) ¼ (0:3, 0:5).
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also does not depend on p(x) because the posterior

�(ŁjzN ) / p(yN jxN ; Ł)�(Ł):

does not depend on p(x). Then the results in the previous section remain valid in the

conditional setting.

Example 3 Linear regression. On the true distribution q(x, y), let

�(x) ¼ Eq(Y jX ¼ x), � 2(x) ¼ Eqf(Y � Eq[Y jX ¼ x])2jX ¼ xg:

We consider a statistical model

y ¼ axþ �, � � N (0, � 2
0),

where � 2
0 is given and a is the only parameter. Then

a0 ¼ argmin
a

ðð
q(y, x)log

q(yjx)
p(yjx; a) dy dx

	 

¼ Eqfx�(x)g

Eq(x2)

and

G(a0) ¼ Eqfx2�(x)2 þ x2� 2(x)� 2a0x
3�(x)þ a20x

4g, H(a0) ¼
Eq(x

2)

� 2
0

:

In particular, when x � U (0, 1) and yjx � N (xÆ, � 2
0), the difference between the risk of the

bootstrap predictive distribution and that of the Bayesian predictive distribution is

9(Æ� 1)4(5Æþ 8)2

50(Æþ 2)4(Æþ 4)2(2Æþ 3)2� 4
0N

þ o(N�1):

The results of numerical experiments are shown in Figure 3.

4. Discussion

We have considered the predictive performance of the bootstrap prediction under

misspecified models.

When the true distribution belongs to an assumed model, the Bayesian predictive

distribution with an appropriate prior dominates the plug-in distribution and is considered as

an optimal predictive distribution in some sense (Aitchison 1975). The bootstrap predictive

distribution can be considered to be an approximation to the Bayesian predictive distribution

and asymptotically dominates the plug-in distribution with the MLE (Fushiki et al. 2004;

2005).

However, when the assumed model does not include the true distribution, it was shown

that the bootstrap predictive distribution is asymptotically more effective than the Bayesian

predictive distribution. This result can be understood in the following way. Each bootstrap

estimator is obtained based on a random sample from the empirical distribution which is

close to the true distribution, and then the variance of the bootstrap estimator is
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asymptotically the variance of the MLE in misspecified models and contains information on

misspecification. On the other hand, the asymptotic variance of the posterior distribution

does not have enough information on misspecification because the posterior distribution

�(ŁjxN )(/ p(xN ; Ł)�(Ł)) strongly depends on the assumed statistical model.

�����

����

���

�� ���

�����	
���

	���
�
���
����

����������������	
����

�
��

��
��

���
��

��
�

������

�����

����

�� ���

�����	
���

	���
�
���
����

����������������	
����

�
��

��
��

���
��

��
�

�	�

���

Figure 3. Difference between the risk of the bootstrap predictive distribution and that of the Bayesian

predictive distribution. The true structure is y ¼ xÆ þ �, � � N (0, 0:01), x � U (0, 1), and the assumed

model is y ¼ axþ �, � � N (0, 0:01). The uniform prior on a is used to calculate the Bayesian

predictive distribution. One thousand bootstrap samples are used to calculate the bootstrap predictive

distribution. To calculate the risk function, 10 0000 Monte Carlo samples are used. (a) Æ ¼ 0:5, (b)
Æ ¼ 1:5.
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The asymptotic risk of the Bayesian predictive distribution in Shimodaira (2000) is valid

when log�(Ł) is not too large. When there is strong prior information, log�(Ł) becomes

large. In such a case, the Bayesian prediction is quite different from the plug-in prediction

and sometimes works very well. We think that the bootstrap predictive distribution is more

effective than the Bayesian predictive distribution if there is no strong prior information and

the correctness of the assumed model is suspected. When model misspecification is large,

the difference between the risk of the bootstrap predictive distribution and that of the

Bayesian predictive distribution is not important. However, in real problems, such a model

will not be used, and a more appropriate model will be explored. We think that the result in

this paper is meaningful in realistic situations where the assumed model is misspecified

‘moderately’, but we have not confirmed the effectiveness of the results in real problems.

This will be the subject of future work. In Section 3, we analysed the risk difference by

means of numerical experiments. Low-dimensional models were used to confirm the theory.

In high-dimensional models such as are needed for real problems, the difference is

considered to be much larger.
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