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For the purposes of this paper, a distribution is sub-exponential if it has ®nite variance but its moment

generating function is in®nite on at least one side of the origin. The principal aim here is to study the

relative error properties of the bootstrap approximation to the true distribution function of the sample

mean in the important sub-exponential cases. Our results provide a fairly general description of how

the bootstrap approximation breaks down in the tail when the underlying distribution is sub-

exponential and satis®es some very mild additional conditions. The broad conclusion we draw is that

the accuracy of the bootstrap approximation in the tail depends, in a rather sensitive way, on the

precise tail behaviour of the underlying distribution. Our results are applied to several sub-exponential

distributions, including the lognormal. The lognormal case is of particular interest because, as the

simulation studies of Lee and Young have shown, bootstrap con®dence intervals can have very poor

coverage accuracy when applied to data from the lognormal.
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1. Introduction

Since Efron's (1979) landmark paper, the theoretical properties of the bootstrap have been

studied extensively using the technique of Edgeworth expansion; see Singh (1981), Hall

(1986; 1988) and, especially, the monograph by Hall (1992). However, although this work has

provided much valuable insight into the theoretical properties of the bootstrap, it is fair to say

that the Edgeworth perspective does not give a complete theoretical picture. Hall (1992, p.

323) makes the following remark: `One could be excused for thinking that the Edgeworth

view [of the bootstrap] was the only one, or that it provided all the information that we need

about properties of the bootstrap in problems of distribution estimation. This is certainly not

the case.' A key feature of the Edgeworth view of the bootstrap is that it focuses on absolute,

as opposed to relative, errors. Our belief is that a relative error view of the bootstrap is an

important complement to an absolute error (i.e. Edgeworth) view. The purpose of this paper

is to present new results on relative error properties of the bootstrap.

The study of relative error properties of the bootstrap when the relevant exponential

moments are ®nite was initiated by Hall (1990; 1992, p. 324); see also Jing (1992), Jing et

al. (1994) and Booth et al. (1994) for a selection of relative error results for the bootstrap.

However, as far as the author is aware, there is nothing in the literature on relative error

properties of the bootstrap in the subexponential case, i.e. when the population variance is
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®nite but the relevant moment generating function is in®nite on at least one side of the

origin.

An important example of a sub-exponential distribution is the lognormal. The extensive

numerical results of Lee and Young (1995) show that the coverage accuracy of bootstrap

con®dence intervals when the data come from a lognormal distribution is sometimes very

poor, even disastrous. An absolute error view of the bootstrap does not provide clear

theoretical insight into why this should be so ± though the calculation of coef®cients in

Edgeworth expansions, as performed in Lee and Young (1995), can provide useful

diagnostic information. In constrast, the relative error results presented in this paper show

that the bootstrap is on much less favourable ground when applied to data from a lognormal

distribution, compared with distributions whose moment generating functions are ®nite on

both sides of the origin.

A comment on terminology. Some authors use the term subexponential for a class S of

distribution functions de®ned as follows: F 2 S if and only if

F(0�) � 0; F(x) , 1 for all x . 0; F(1) � 1;

1ÿ F (2)(x) � 2f1ÿ F(x)g as x!1, (1:1)

where

F (2)(x) �
�1

0

F(xÿ y) dF(y)

is the convolution of F with itself; see Teugels (1975), Pitman (1980) and Bingham et al.

(1987). The class S is different from the class of sub-exponential distributions considered

here (and note that the hyphen is used to distinguish our class from S ). In particular, (1.1)

implies that F is the distribution function of a non-negative random variable, whereas we do

not impose any non-negativity condition; and, on the other hand, S contains distributions

with arbitrarily heavy tails, whereas we insist that some power moments are ®nite.

Nevertheless, it does seem (though we have not checked this systematically) that the results

in this paper cover most (and possibly all) of the `interesting' distributions in S which have

®nite fourth moment.

A principal application of the bootstrap idea is to the construction of nonparametric

con®dence intervals for a population quantity of interest. Numerous variants of the

bootstrap have been developed for this purpose, including: ordinary percentile intervals,

percentile-t intervals, ABC intervals and intervals based on iterative forms of the bootstrap;

see Hall (1992) and Efron and Tibshirani (1993) for further details.

In this paper we shall focus our attention on the simpler question of bootstrap

approximation to the true distribution of a sample mean. One may ask how the relative

error results that we present for this case extend to more complicated statistics (such as a

studentized sample mean), and translate into corresponding results for the relative coverage

error of various types of bootstrap con®dence interval. These are open questions which are

currently under investigation.

Let X � fX 1, . . . , X ng denote a random sample of size n from an underlying

population with distribution function F, mean ì and variance ó 2. Let X � �
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fX�1 , . . . , X�ng denote a (re)sample obtained by sampling randomly with replacement from

X . Write X and X
�

for the mean of the samples X and X �, respectively. In this paper

we study the quality of the bootstrap approximation P[n1=2(X
� ÿ X ) . yjX ] to the `true'

tail probability P[n1=2(X ÿ ì) . y]. Note that the former probability can be estimated with

arbitrary accuracy by resampling from X , whereas the latter probability is unknown if F is

unknown.

The absolute error of this bootstrap approximation is given by

jP[n1=2(X
� ÿ X ) . yjX ]ÿ P[n1=2(X ÿ ì) . y]j,

typically for ®xed y. In a relative error approach, one studies the ratio

P[n1=2(X
� ÿ X ) . ynjX ]=P[n1=2(X ÿ ì) . yn] (1:2)

where yn !1 at a suitable rate as n!1. Although from a practical point of view it may

seem arti®cial to allow yn to depend on n and increase to in®nity, it turns out that this

approach does produce interesting information about the behaviour of the bootstrap

approximation in the tail. This information does not come to light when y is held ®xed.

The principal purpose of this paper is to study (1.2) when the distribution of X 1 is sub-

exponential. The particular question we focus on is: what is the critical rate of increase of

y � ën at which the bootstrap approximation breaks down? If the distribution of X1 has a

moment generating function which is ®nite in a neighbourhood of the origin, the result is

already known: see Hall (1990; 1992, Appendix V) and Theorem 2.2 below. However, as

far as we are aware, nothing has been published on the case in which X 1 has a sub-

exponential distribution.

We now brie¯y outline our main results. In Theorem 2.1, we present a general result on

the behaviour of the numerator in (1.2); in Theorem 2.2, we recall Hall's result in a slightly

different form; and in Theorems 2.3±2.5, we describe the behaviour of the denominator in

(1.2) in the three most important sub-exponential cases. In Corollaries 2.1±2.3, we give a

simple characterization of the critical rate ën at which the bootstrap approximation breaks

down in these three cases.

Theorems 2.3±2.5 are concerned with moderate and large deviation probabilities for the

sample mean when the underlying population is sub-exponential. There is a substantial and

impressive Russian literature on this topic; see S.V. Nagaev (1979) for a review. However,

apart from Theorem 2.3, which is due to A.V. Nagaev (1969), the results given by Nagaev

(1979) are not presented in a form which is suitable for our purposes. For this reason, we

have formulated and proved new results, Theorems 2.4 and 2.5, which directly address our

needs. The main ingredients of the proofs of these two theorems are condition (2.5),

Lemma 4.2 and Proposition 4.2.

In Section 3, we study several sub-exponential examples, including the lognormal. In

Section 4, we establish several auxiliary results, and Theorems 2.1, 2.4 and 2.5 are proved

in Section 5. A small simulation study is described in Section 6, and we conclude with a

brief discussion in Section 7.
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2. Main results

The following notation will be used throughout the paper. Consider a sample X �
fX 1, . . . , X ng of independent, identically distributed random variables with corresponding

order statistics X (1) < . . . < X (n). De®ne

Sn �
Xn

i�1

(X i ÿ ì) and Gn(y) � P[nÿ1=2Sn . y],

where ì � E(X 1) will usually be assumed to be zero. The corresponding bootstrap quantities

are de®ned analogously: let X�1 , . . . , X�n be a resample drawn randomly, with replacement,

from X and de®ne

S�n �
Xn

i�1

(X�i ÿ X ) and Ĝn(y) � P[nÿ1=2S�n . yjX ],

where X is the mean of the sample X . Also, for given u , v, de®ne

S[u,v]
n �

Xn

i�1

fX i I(u < X i < v)ÿ ìg and H n(y; u, v) � P[nÿ1=2S[u,v]
n . y],

where I(:) is the indicator function and, as before, ì � E(X 1). In all the results below, Ö(:)
denotes the standard normal distribution function. Our ®rst result is the following.

Theorem 2.1. Suppose E(X1) � 0, var(X 1) � ó 2 . 0 , ì3 � E(X 3
1) and E(X 4

1) ,1. Consider

an arbitrary sequence (yn) satisfying yn !1 such that yn � o(n1=4). Then, for 0 < y < yn,

Ĝn(y) � 1ÿÖ
y

ó

� �� �
exp

1

6
nÿ1=2 y

ó

� �3ì3

ó 3

( )
1� op(1)f g � H n(y; X (1), X (n)) 1� op(1)f g:

The op(1) terms above are both of the stated order uniformly for 0 < y < yn.

Remark 2.1. This theorem tells us that when n is large, the distribution of the resample

mean, conditional on X , is close in probability to the theoretical distribution of the

mean of a truncated version of the original sample, where the truncation occurs at the

smallest and largest order statistics. This result is not a surprise, but we do feel that it is

worth stating explicitly as it gives a clear interpretation of what, in effect, the bootstrap

does.

Remark 2.2. Using arguments similar to those employed in the proof of Theorem 2.1, the

following can be shown: if E(X 6
1) ,1 and yn !1, yn � o(n1=3), then

Ĝn(ó̂y) � H n(óy; X (1), X (n)) 1� op(1)f g,
where ó̂ 2 is the variance of the sample X and the op(1) term is of the stated order uniformly

for 0 < y < yn.
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Theorem 2.1 says nothing about whether Ĝn(y) and Gn(y) are close, in the sense of there

being a small relative error. In the case of distributions with moment generating function

®nite in a neighbourhood of the origin, we have the following result, which is a slightly

modi®ed version of a theorem due to Hall (1990; 1992, Appendix V).

Theorem 2.2. Suppose that E(X1) � 0 and that, for some H . 0 , Eexp(hX 1) ,1 for all

jhj, H. If yn !1 and yn � o(n1=4), then

Gn(y) � Ĝn(y)f1� op(1)g, (2:1)

where the op(1) term is of the stated order uniformly for 0 < y < yn.

Proof. The proof is almost exactly the same as the proof given by Hall. The only difference

is that we do not rescale by ó̂ and ó . Consequently, there is a change from yn � o(n1=3) in

Hall's result to yn � o(n1=4) here. Theorem 2.2 bears roughly the same relation to Hall's

result that Theorem 2.1 bears to Remark 2.2. h

Our purpose now is to present results corresponding to Theorem 2.2 for three classes of

sub-exponential distributions. The asymptotic behaviour of Ĝn(y) has already been

described in broad generality by Theorem 2.1, so the principal remaining question is the

asymptotic behaviour of Gn(y) in sub-exponential cases.

For a review of results of this type in the Russian-language literature, see Nagaev (1979)

and the references therein. We state one of these results now in a form which is convenient

for later use.

Theorem 2.3 (Nagaev, 1969). Let X1, . . . , X n be independent, identically distributed

random variables with a common distribution function F which satis®es

1ÿ F(x) � l (x)xÿíf1� o(1)g as x!1, (2:2)

where l (x) is slowly-varying at in®nity and í. 2. Suppose also that E(X 1) � 0 ,

var(X 1) � ó 2 and EjX 1j2�ä ,1 for some ä. 0. Then if 0 , ã,(íÿ 2)1=2 is ®xed,

Gn(y) � f1ÿÖ(y=ó )gf1� o(1)g,
where the o(1) term is of the stated order uniformly for 1 < y < ãó (log n)1=2; and if

ã.(íÿ 2)1=2, then

Gn(y) � nf1ÿ F(n1=2 y)gf1� o(1)g
uniformly for y > ãó (log n)1=2.

This result covers our needs in the case where not all power moments are ®nite. The

consequences for the bootstrap are as follows.

Corollary 2.1. Suppose that the assumptions of Theorem 2.3 are satis®ed with í. 4 (so that

the assumptions of Theorem 2.1 are also satis®ed), and let yn be the same as in Theorem 2.1.

Then if 0 , ã, (íÿ 2)1=2 ,
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Gn(y) � Ĝn(y)f1� op(1)g (2:3)

uniformly for 0 < y < óã(log n)1=2; and if ã. (íÿ 2)1=2, then

Gn(y)

Ĝn(y)
> (2ð)1=2 ny exp 1

2
y2(1ÿ ãÿ1)

n o
f1� op(1)g (2:4)

uniformly for óã (log n)1=2 < y < yn.

Proof. Most of this result follows directly from Theorems 2.1 and 2.3. The particular form

which appears on the right of (2.4) follows from an argument rather similar to that used to

prove part (ii) of Theorem 2.4 below; we omit the details. h

The following three remarks are directed at Corollary 2.1; they apply equally to

Corollaries 2.2 and 2.3 below.

Remark 2.3. It is worth emphasizing that, under the conditions of Theorem 2.3 and Corollary

2.1, the approximation of Gn(y) by Ĝn(y) breaks down precisely when the normal

approximation to Gn(y) breaks down. Note that the breakdown of the normal approximation

is quite dramatic.

Remark 2.4. Corollary 2.1 does not tell us what happens when y . yn. However, it seems

likely that the bootstrap approximation to Gn(y) will continue to deteriorate as y increases

beyond yn, though more elaborate arguments than those given in this paper would be needed

to prove this rigorously.

Remark 2.5. Investigation of the relative error properties of more general statistics (e.g. a

studentized mean) would certainly be of interest, as would the study of the relative coverage

error of the various types of bootstrap con®dence interval.

Note that the lognormal distribution has ®nite power moments and therefore does not

satisfy (2.2). Our next task is to present results roughly along the lines of Theorem 2.3, but

which cover sub-exponential distributions, such as the lognormal, whose power moments are

all ®nite.

First, we introduce some assumptions.

(F1) As x!1,

1ÿ F(x) � expfÿg(x)gf1� o(1)g
where g(x) satis®es the following conditions (as x!1): (a) g(x) is ultimately strictly

increasing and g(x)!1; (b) xÿ1 g(x) is ultimately strictly decreasing and xÿ1 g(x)! 0; and

(c) flog xgÿ1 g(x)!1.

(F2) The function g in (F1) is slowly varying at in®nity; and EjX1j4 ,1.

(F3) The function g in (F1) is regularly varying at in®nity with coef®cient of variation

á 2 (0, 1), i.e. for any r. 0, g(rx)=g(x)! rá as x!1; and EjX1jr ,1 for some

r . maxf4, 2(1ÿ á)ÿ1g.
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Some brief comments on assumptions (F1)±(F3) now follow. In (F1), (a) and (b) are

mild technical conditions. Condition (b) also ensures that
�

ehx dF(x) � 1 for all h . 0,

which rules out the case covered by Theorem 2.2. The purpose of (c) is to rule out the case

covered by Theorem 2.3. Conditions (F2) and (F3) are mutually exclusive; it is helpful to

formulate theorems for the cases covered by (F2) and (F3) separately even though the

proofs are rather similar.

In Theorems 2.4 and 2.5 below, we shall require the following de®nitions. For b , a

de®ne the integer moments

ìr(b, a) �
�

[b,a]

jxjr dF(x)

of X 1 I(b < X1 < a), and write

ÄF(b, a) � sup
r>1

ìr�4(b, a)

r

� �1=r

,

where the supremum is taken over integer values of r. As far as we are aware, for all sub-

exponential distributions of practical interest which satisfy (F1), the following holds:

ÄF(0, a) � a

g(a)
as a!1, (2:5)

where F and g are related via (F1). In the theorems below, we prefer to assume (2.5) and

then check it on a case-by-case basis as in the examples of Section 3.

Let ën be the solution in y > 1 of

y2

2ó 2
� g(n1=2 y), (2:6)

where ó 2 � var(X 1). Note that, as a consequence of (F1), ën > 1 exists and is unique when

n is suf®ciently large.

Theorem 2.4. Let F be the distribution function of a random variable with mean zero and

variance ó 2. If, in addition, (F1), (F2) and (2.5) are satis®ed, then the following statements

hold.

(i) For any ®xed ã 2 (0, 1) and 0 < y < ãën,

Gn(y) � 1ÿÖ
y

ó

� �� �
f1� o(1)g, (2:7)

where the o(1) remainder term is of the stated order uniformly for 0 < y < ãën.

(ii) For any ®xed ã. 1 and y > ãën ,

Gn(y)

1ÿÖ(y=ó )
> (ðó 2=2)1=2 ny exp

(1ÿ ãÿ1)y2

2ó 2

� �
f1� o(1)g (2:8)

uniformly for y > ãën.
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The proof is postponed until Section 5.

Theorems 2.1 and 2.4 combine to produce the following analogue of Theorem 2.2.

Corollary 2.2. Suppose that the assumptions of Theorem 2.4 (and therefore the assumptions

of Theorem 2.1) are satis®ed, and that yn is as before. Then we have the following.

(i) For any ®xed ã 2 (0, 1) ,

Gn(y) � Ĝn(y)f1� op(1)g
uniformly for 0 < y < ãën.

(ii) If ã. 1 then

Gn(y)

Ĝn(y)
> (ðó 2=2)1=2 ny exp

y2(1ÿ ãÿ1)

2ó 2

� �
f1� op(1)g

uniformly for ãën < y < yn.

Proof. Follows directly from Theorem 2.1 and Theorem 2.4. h

We now describe what happens when condition (F2) is replaced by condition (F3).

Nagaev (1973; 1979, Theorem 2.1) has proved a theorem which is directly relevant to

distributions satisfying (F3). However, both the statement and the proof of this result are

very complex. We prefer to give a much simpler, but less complete, result which is tailored

to the present objective of describing the breakdown of the normal approximation.

Theorem 2.5. Let F be a distribution function which satis®es all the assumptions of Theorem

2.4, but with (F2) replaced by (F3). Suppose that (yn) is any sequence satisfying

yn � n(1=4)ÿå for any å. 0, and yn � o(n1=4).

(i) If 0 ,á, 2=3, then for any ®xed 0 , ã, 2ÿ1=(2ÿá) and 0 < y < ãën ,

Gn(y)

1ÿÖ(y=ó )
� exp

1

6
nÿ1=2 y

ó

� �3ì3

ó3

( )
f1� o(1)g (2:9)

uniformly for 0 < y < ãën.

(ii) If 0 ,á, 2
3

then for any ®xed ã. 1 and y 2 [ãën, yn] ,

Gn(y)

f1ÿÖ(y=ó )gexp
1

6
nÿ1=2(y=ó )3 ì3

ó 3

� �

> (ðó 2=2)1=2 ny exp
(1ÿ ãÿ1)y2

2ó 2

� �
f1� o(1)g (2:10)

uniformly for y 2 [ãën, yn].

(iii) If á. 2
3

then for 0 < y < yn,
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Gn(y) � 1ÿÖ
y

ó

� �� �
exp

1

6
nÿ1=2 y

ó

� �3ì3

ó 3

( )
f1� o(1)g (2:11)

uniformly for 0 < y < yn.

The proof is given in Section 5.

The analogue of Corollary 2.2 in this case is as follows.

Corollary 2.3. Suppose the assumptions of Theorem 2.5 (and therefore the assumptions of

Theorem 2.1) are satis®ed. Then parts (i)±(iii) of Theorem 2.5 hold with the following

changes: in (2.9)±(2.11), Ĝn(y) replaces

1ÿÖ
y

ó

� �� �
exp

1

6
nÿ1=2 y

ó

� �3ì3

ó 3

( )
;

and the o(1) terms in (2.9)±(2.11) are replaced by op(1) terms, where the latter inherit the

uniformity properties (in probability) of the former in each case.

Proof. Follows directly from Theorem 2.1 and Theorem 2.5. h

3. Examples

We now apply the results of the previous section to several examples including the lognormal.

3.1. The lognormal case

Suppose that X � expfN(0, ô2)g. Then the tail probability P[X . x] as x!1 is given by

P[X . x] � expfÿg(x)g,
where we may write g(x) � g0(x)� g1(x) with

g0(x) � (2ô2)ÿ1(log x)2 and g1(x) � log log x� 1
2

log
2ð

ô2

� �
:

It is easy to check that g satis®es conditions (F1) and (F2).

Let ó 2 � var(X ) � e2ô2 ÿ eô
2

and, as before, write ën for the solution in x > 1 of

1

2ó 2
x2 � g(n1=2x):

Condition (F1) implies that, when n is suf®ciently large, ën exists and is unique. Since

g1(x) � ofg0(x)g as x!1, it follows that

ën � ó

2ô
log n (3:1)

as n!1.
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In order to apply Theorem 2.4, we need to check that ÄF(0, a) � a=g(a) as a!1,

where ÄF(0, a) is de®ned before Theorem 2.4. Using elementary calculations,

ìr(0, a) � E[X r I(X < a)] � er2ô2=2Ö
log aÿ rô2

ô

� �
, (3:2)

where Ö is the standard normal distribution function and, below, ö is the standard normal

density. Using well-known properties of Mills's ratio f1ÿÖg=ö, we obtain the following

crude bounds on ìr(0, a):

ìr(0, a) <
er2ô2=2 if r < ôÿ2(ô� log a),

C1er log aÿ g(a) if r . ôÿ2(ô� log a),

�
where, as a!1, C1 does not depend on r or a. Using Stirling's approximation, we have

fÃ(r � 1)g1=r � eÿ1 rf1� å(r)g (3:3)

where å(r)! 0 as r!1. Consequently, when a is suf®ciently large and r > 1 is an integer,

ìr�4(0, a)

r!

� �1=r

< C2a1=2 (3:4)

if r � 4 < ôÿ2(ô� log a); and if r � 4 . ôÿ2(ô� log a), then

ìr�4(0, a)

r!

� �1=r

< ç(r)rÿ1 exp log aÿ g(a)ÿ 4 log a

r

� �
: (3:5)

In (3.4), C2 stays bounded as a!1 and in (3.5), ç(r) � C
1=r
1 f1� å(r)gÿ1 ! e as r!1.

It is straightforward to show that as, a!1, (3.5) has an upper bound of size

a

g(a)
f1� o(1)g,

since g(a) � g(a)ÿ 4 log a. Thus

ÄF(0, a) < max C2a1=2,
a

g(a)
f1� o(1)g

� �
� a

g(a)
f1� o(1)g:

To show that this bound is achieved asymptotically, we evaluate fìr�4(0, a)g1=r with r equal

to the integer part of g(a), using (3.2) and (3.3). The details are straightforward.

Thus we may apply Theorems 2.1 and 2.4 and Corollary 2.2, and it is found that the

normal approximation 1ÿÖ(y=ó ) to Gn(y), and the bootstrap approximation Ĝn(y) to

Gn(y) both break down around y � ën, with the asymptotic behaviour of ën described in

(3.1).

3.2. The Weibull case

Consider the Weibull distribution, Wei(á, c), with density

f (x) � cáxáÿ1 exp(ÿcxá), á, c, x . 0, (3:6)
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and distribution function F(x) � 1ÿ exp(ÿcxá). If á > 1 then the moment generating

function is ®nite in a neighbourhood of the origin and we are in the situation covered by

Theorem 2.2. We shall focus on the case á 2 (0, 1).

When á 2 (0, 1) it is easy to check that conditions (F1) and (F3) are satis®ed with

g(x) � cxá. Using both one-sided and two-sided versions of Laplace's approximation, it can

be shown that

ÄF(0, a) � a

g(a)
as a!1: (3:7)

We shall not give a derivation of (3.7) here but we just mention that the simplest approach is

to follow the two-step strategy followed in the lognormal case: (i) show, using relatively

crude approximations that ÄF(0, a) < fa=g(a)gf1� o(1)g; and (ii) show that this bound is

achieved asymptotically by the `optimal' choice of r.

In the Weibull case, it is easily seen that ën is given by

ën � (2có 2)1=(2ÿá) ná=(4ÿ2á)

where

ó 2 � varfWei(á, c)g � cÿ2=á Ã
á� 2

á

� �
ÿ Ã

á� 1

á

� �2
( )

:

If 0 ,á, 2
3
, we are in the situation covered by parts (i) and (ii) of Theorem 2.5 and Corollary

2.3; if 2
3

,á, 1 we are in the situation of part (iii) of Theorem 2.5 and Corollary 2.3; and if

á > 1, we are in the situation covered by Theorem 2.2.

3.3. The log-Weibull case

If X � expfWei(á, c)g, then X is said to have a log-Weibull distribution (cf. the de®nition of

the lognormal). We shall restrict attention to the case in which the index of the Weibull

distribution (á in (3.6)) satis®es á. 1. Then all moments are ®nite but the moment

generating function is not ®nite in any neighbourhood of the origin. The appropriate choice

for g is g(x) � cjlog xjá. It is straightforward to check that conditions (F1) and (F2) are

satis®ed. Moreover, as in the other examples, it can be shown that ÄF(0, a) � a=g(a) as

a!1; we omit the details. Thus we are back in the domain of Theorem 2.4. In this case, ën

is given by

ën � 2(1ÿá)=2c1=2ó (log n)á=2

as n!1, where now ó 2 � var(eWei(á,c)). Note that, as one might expect, when á � 2, ën

grows at a similar rate to the lognormal case.
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3.4. The t distribution

Let T be a random variable which has a t distribution with í degrees of freedom. The density

of T is given by

f í(x) � cíí
ÿ1=2 1� x2

í

� �ÿ(í�1)=2

,

where cí � Ãf(í� 1)=2g=fÃ(í=2)Ã(1=2)g. As x!1, the tail probability P[T . x] satis®es

P[T . x] � expfÿg(x)g,
where

g(x) � í log xÿ log cí ÿ íÿ 2

2
log í:

The fourth moment of T exists if í. 4, in which case we may apply Theorem 2.3 and

Corollary 2.1 to show that ën � (íÿ 2)1=2ó (log n)1=2:
It is interesting to note that, in the case of the t distribution, ÄF(0, a) � èa=g(a) where

è � í=(íÿ 4) . 1; we omit the derivation. It seems that, in general, (2.5) does not hold for

sub-exponential distributions unless all power moments are ®nite.

4. Auxiliary results

We begin with an elementary result whose proof is included for completeness.

Lemma 4.1. Let X1, . . . , X n be independent, identically distributed random variables and

suppose that EjX 1jr ,1 for some r . 0. Then for any 0 , s < r,

P[X (n) . n1=s] � o(nÿ(rÿs)=s) as n!1:
Moreover, nÿ1=r X (n) ! 0 in probability.

Proof. From the de®nition of order statistics,

P[X (n) < n1=s] � f1ÿ P[X1 . n1=s]gn,

and, by a Markov±Chebyshev argument,

fP[X 1 < n1=s]gn > f1ÿ nÿ1 nÿ(rÿs)=sE[jX 1jr I(X 1 . n1=s)]gn

� 1ÿ o(nÿ(rÿs)=s),

since E[jX1jr I(X1 . n1=s)]! 0 as n!1 by the dominated convergence theorem. Therefore

P[X (n) . n1=s] � o(nÿ(rÿs)=s). The second part follows easily from the proof of the ®rst

part. h
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Our next result plays a key roÃle in the proofs of Theorem 2.4 and 2.5. See Hahn and

Klass (1997) and the references therein for discussion of related results.

Lemma 4.2. Suppose that E(X 1) � 0 and EjX 1jr ,1 for some r . 2. Choose y0 . 0 and

è 2 (0, 1], and write b � bn � ÿn1=r and a � an � èn1=2 y. Then for y > y0,

P[nÿ1=2Sn . y] � P[nÿ1=2S[b,a]
n . y]f1� R1,n(y)g � J n(y),

where

f1
2
� R2,n(y)gP[X (n) . n1=2 y] < J n(y) < f1� R3,n(y)gP[X (n) . a]

and, as n!1 ,

sup
y> y0

jRi,n(y)j � o(1), i � 1, 2, 3:

Proof. Consider the following identities:

P[nÿ1=2Sn . y] � P[nÿ1=2S[b,a]
n . y, X (1) > b, X (n) < a]

� P[nÿ1=2Sn . y, X (1) , b, X (n) < a]

� P[nÿ1=2Sn . y, X (n) . a]; (4:1)

P[nÿ1=2S[b,a]
n . y, X (1) > b, X (n) < a]

� P[nÿ1=2S[b,a]
n . y]� P[nÿ1=2S[b,a]

n . y, X (1) , b, X (n) . a]

ÿ P[nÿ1=2S[b,a]
n . y, X (1) , b]ÿ P[nÿ1=2S[b,a]

n . y, X (n) . a]; (4:2)

P[nÿ1=2Sn . y, X (1) , b, X (n) < a]

� P[nÿ1=2Sn . y, X (1) , b]ÿ P[nÿ1=2Sn . y, X (1) , b, X (n) . a]; (4:3)

P[nÿ1=2Sn . y, X (n) . a] � P[X (n) . a]ÿ P[nÿ1=2Sn < y, X (n) . a]: (4:4)

First, note that the second term on the right of (4.2) and the second term on the right of

(4.3) are both bounded above by P[X (1) , b, X (n) . a]. If F is the distribution function of

X 1 then

P[X (1) , b] � 1ÿ f1ÿ F(bÿ)gn, P[X (n) . a] � 1ÿ F(a)n

and

P[X (1) , b, X (n) . a] � 1ÿ f1ÿ F(bÿ)gn ÿ F(a)n ÿ fF(a)ÿ F(bÿ)gn:

But Lemma 4.1 tells us that, with the given choices of a and b, P[X (1) , b] and P[X (n) . a]

both converge to zero. Consequently, nf1ÿ F(a)g and nF(bÿ) both converge to zero and
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P[X (1) , b, X (n) . a] � n2 F(bÿ)f1ÿ F(a)g
� P[X (1) , b]P[X (n) . a]

� ofP[X (n) . a]g as n!1: (4:5)

Let us now consider the second term on the right of (4.4). We have

P[nÿ1=2Sn < y, X (n) . a] � P[nÿ1=2Sn < y, X (n) 2 (a, n1=2 y]]

� P[nÿ1=2Sn < y, X (n) . n1=2 y]: (4:6)

But

P[nÿ1=2Sn < y, X (n) 2 (a, n1=2 y]] < P[X (n) . a]ÿ P[X (n) . n1=2 y] (4:7)

and

P[nÿ1=2Sn < y, X (n) . n1=2 y] �
�

(n1=2 y,1)

P[nÿ1=2Sn < yjX (n) � z] dF(z)n, (4:8)

where P[nÿ1=2Sn < yjX (n) � z] may be arbitrarily de®ned as zero if z lies outside the

support of the distribution of X1. Elementary properties of order statistics imply that

P[nÿ1=2Sn < yjX (n) � z] < P[nÿ1=2S
(ÿ1,z)
nÿ1 � nÿ1=2z < y]

with equality if z lies in the support of X 1 and also X 1 does not have an atom at z. For

z . n1=2 y,

P[nÿ1=2S
(ÿ1,z)
nÿ1 � nÿ1=2z < y] < P[nÿ1=2S

(ÿ1,n1=2 y]
nÿ1 < 0]

< P[(nÿ 1)ÿ1=2Snÿ1 < 0, X (nÿ1) < n1=2 y]

� P[X (nÿ1) . n1=2 y]

< P[(nÿ 1)ÿ1=2Snÿ1 < 0]� P[X (nÿ1) . n1=2 y]

� 1
2
� o(1) (4:9)

where in (4.9), but not elsewhere, X (nÿ1) is the largest order statistic in a sample of size

nÿ 1 from F. Consequently, using (4.7)±(4.9),

P[nÿ1=2Sn < y, X (n) . a] < P[X (n) . a]ÿ P[X (n) . n1=2 y]

� f1
2
� o(1)gP[X (n) . n1=2 y],

and, returning to (4.4),

P[nÿ1=2Sn . y, X (n) . a] > f1
2
� o(1)gP[X (n) . n1=2 y]: (4:10)

Consider now the third and fourth terms on the right of (4.2). We have

822 A.T.A. Wood



P[nÿ1=2S[b,a]
n . y, X (1) , b] � P[nÿ1=2S[b,a]

n . yjX (1) , b]P[X (1) , b]

where, by elementary calculation,

P[nÿ1=2S[b,a]
n . yjX (1) , b] �

Pnÿ1
r�1 Cr,nðr(1ÿ ð)nÿr P[nÿ1=2S[b,a]

nÿr . y]

1ÿ (1ÿ ð)n
(4:11)

where Cr,n � n!=fr!(nÿ r)!g and ð � P[X1 , b] � F(bÿ). Since (i) nð! 0 as n!1 and

(ii) P[X1 > 0] . 0, because E(X 1) � 0 and var(X 1) . 0, it follows from (4.11) that

P[nÿ1=2S[b,a]
n . yjX (1) , b] � P[nÿ1=2S

[b,a]
nÿ1 . y]:

But

P[nÿ1=2S[b,a]
n . y] > P[nÿ1=2S

[b,a]
nÿ1 . y]P[X n > 0]

and therefore

P[nÿ1=2S[b,a]
n . y, X (1) , b] � OfP[nÿ1=2S[b,a]

n . y]P[X (1) , b]g

� ofP[nÿ1=2S[b,a]
n . y]g: (4:12)

An identical argument shows that

P[nÿ1=2S[b,a]
n . y, X (n) . a] � ofP[nÿ1=2S[b,a]

n . y]g: (4:13)

Next, consider the ®rst term on the right of (4.3). We have

P[nÿ1=2Sn . y, X (1) , b] �
�

(ÿ1,b)

P[nÿ1=2Sn . yjX (1) � z] dF(z)n (4:14)

where, for z , b,

P[nÿ1=2Sn . yjX (1) � z] < P[nÿ1=2S
(z,1)
nÿ1 � nÿ1=2z . y]

< P[nÿ1=2S
[b,1)
nÿ1 � nÿ1=2b . y]

< P[nÿ1=2S[b,1)
n . y],

and therefore, using (4.14),

P[nÿ1=2Sn . y, X (1) , b] < P[nÿ1=2S[b,1)
n . y]P[X (1) , b]: (4:15)

But

P[nÿ1=2S[b,1)
n . y] < P[nÿ1=2S[b,a]

n . y]� P[X
[b,1)
(n) . a], (4:16)

where X
[b,1)
(n) is the largest of X 1 I(X1 > b), . . . , X n I(X n > b), and
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P[X
[b,1)
(n) . a] � 1ÿ F(a)ÿ ð

1ÿ ð

� �n

� nf1ÿ F(a)g
� P[X (n) . a], (4:17)

with ð � P[X 1 , b] as before. Therefore, using (4.15)±(4.17),

P[nÿ1=2Sn . y, X (1) , b] � ofP[nÿ1=2S[b,a]
n . y]g � ofP[X (n) . a]g: (4:18)

Finally, the desired conclusion follows after substituting (4.5), (4.10), (4.12), (4.13) and

(4.18) into (4.2)±(4.4), and then using (4.1). h

Let us now recall a result due to Petrov (1995, Theorem 5.23); see also Petrov (1975).

We shall give a slightly different, but equivalent, statement of the result.

Theorem 4.1. Let X 1, . . . , X n be an sample of independent, zero-mean random variables

from a non-degenerate distribution whose moment generating function is ®nite in a

neighbourhood of the origin, i.e. for some H . 0, R(h) � E exp(hX1) ,1 for all jhj, H.

Write Sn �
Pn

i�1 X i and ó 2 � var(X1). Then if yn !1 , yn � o(n1=2), we have

P[nÿ1=2Sn . y]

1ÿÖ(y=ó )
� exp nÿ1=2 y

ó

� �3

ë
y

ón1=2

� �( )
1� O

y� 1

n1=2

� �� �
, (4:19)

with ë(t) de®ned as follows:

t3ë(t) � 1
2
t2 � log R(ĥ)ÿ ĥó t (4:20)

where ĥ � ĥ(t) is the unique solution of d log R(h)=dh � ó t:

Proof. See Petrov (1995). h

We shall consider two variations of Petrov's result which can be applied to triangular

arrays but, for simplicity, we shall restrict attention to deviations of size o(n1=4) rather that

o(n1=2). Let (F (n))n>1 be a sequence of distribution functions. For each n, let X
(n)
1 ,

. . . , X (n)
n be a random sample from F (n). Write ì(n) � E(X

(n)
1 ), ó (n)2 � var(X

(n)
1 ),

ì(n)
r � EjX (n)

1 ÿ ì(n)jr, r � 3, 4, . . . , and consider the following conditions.

(C1) For some sequence (d n)n>1 satisfying d n !1, jX (n)
i j < d n with probability one.

(C2) For some constant 1 , A ,1,

lim inf
n>1

ó (n) . Aÿ1 and lim sup ì(n)
4 , A:

Write S(n)
n �

Pn
i�1(X

(n)
i ÿ ì(n)).

Proposition 4.1. Let (F (n))n>1 be a sequence of zero-mean distribution functions which

satisfy (C1) and (C2). Fix any ã > A. Suppose that the sequence (yn) satis®es yn !1 ,
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yn � o(n1=4) and d n yn < n1=2ã when n. Then

P[nÿ1=2S(n)
n . y]

1ÿÖ(y=ó (n))
� exp

1

6
nÿ1=2 y

ó (n)

� �3 ì(n)
3

ó (n)3

( )
1� Rn(y)f g

where

jRn(y)j < C0fnÿ1 y4 � nÿ1=2(y� 1) for 0 < y < yn, (4:21)

and C0 � C0(ã), which depends only on ã, is ®nite for all ã,1.

Remark 4.1. In our principal applications of Proposition 4.1, (F (n)) will represent a (random)

sequence of distribution functions depending on samples of size n from a ®xed underlying

distribution. In such cases, d n, ó (n) and ì(n)
4 will be random. With very minor modi®cations

to the proof of the deterministic version of Proposition 4.1 given below, it can be shown that

P[nÿ1=2S(n)
n . yjX ]

1ÿÖ(y=ó (n))
� exp

1

6
nÿ1=2 y

ó (n)

� �3 ì(n)
3

ó (n)3

( )
f1� op(1)g

uniformly for 0 < y < yn, given the following: (i) yn !1 and yn � o(n1=4); (ii)

d n � op(n1=4); and (iii) for some constant 0 , A ,1, P[ó (n) , Aÿ1]! 0 and

P[ì(n)
4 . A]! 0.

We shall also require a different version of Proposition 4.1. Consider the following

alternative to condition (C1):

(C19) For all integers r > 4 and n > 1, ì(n)
r�4 < r!d r

n:

Note that in (C19) there is no assumption that X
(n)
i has compact support.

Proposition 4.2. Let (F (n))n>1 be a sequence of zero-mean distribution functions which

satisfy (C19) and (C2). Fix any ã such that (1ÿ Aÿ1) < ã, 1, and suppose that yn !1 ,

yn � o(n1=4) and d n yn < n1=2ó (n)2ã when n is suf®ciently large. Then the conclusion of

Proposition 4.1 holds, but possibly with C0 in (4.21) replaced by C1 � C1(ã) which depends

only on ã and is ®nite for all ã, 1.

Proof of Proposition 4.1. First, note that jX (n)
i j < d n implies that jì(n)

r�4j < 2rd r
nì

(n)
4 , for

r � 0, 1, . . .. Write

R(h) � R(n)(h) � E expfh(X
(n)
1 ÿ ì(n))g

and, to simplify notation, drop the superscript (n) in ó (n) and ì(n)
r , r > 3. Then for any h

satisfying

h > 0, d n h < 2ã and ì4 < ã, (4:22)
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R(h) � 1� 1

2!
ó 2 h2 � 1

3!
ì3 h3 �

X1
r�0

1

(r � 4)!
ìr�4 hr�4

� 1� 1

2!
ó 2 h2 � 1

3!
ì3 h3 � O

1

4!
ì4 h4

X1
r�0

4!

(r � 4)!
2rd r

n hr

 !

� 1� 1

2!
ó 2 h2 � 1

3!
ì3 h3 � O

1

4!
ì4 h4 exp(4ã)

� �

� 1� 1

2!
ó 2 h2 � 1

3!
ì3 h3 � O(h4) (4:23)

in view of (4.21). Similarly, still assuming that h satis®es (4.22), we have

d

dh
R(h) � ó 2 h� 1

2!
ì3 h2 � O(h3),

d2

dh2
R(h) � ó 2 � ì3 h� O(h2),

d3

dh3
R(h) � ì3 � O(h),

d4

dh4
R(h) � O(1),

where in each case the absolute value of the O(hk) remainder term is bounded above by an

expression of the form L(ã)hk where, here and below, L(ã) is used generically for a function

which depends only on ã and is ®nite for all ã. 0.

De®ne m(h) � fR(h)gÿ1dR(h)=dh. For h satisfying (4.22),

m(h) � ó 2 h� 1

2!
ì3 h2 � O(h3),

where the O(h3) remainder term is bounded by L(ã)h3. If n is suf®ciently large (so that, by

(C1), d n is large) and t > 0 satis®es t < óã=d n, the unique solution h � ĥ of m(h) � ó t is

of the form

ĥ � t

ó
ÿ 1

2ó
ì3ó

3 t2 � O(t3) as t! 0, (4:24)

and the absolute value of the remainder term O(t3) in (4.23) is bounded by L(ã)t3. For such t

we ®nd, after substituting (4.24) into (4.20) using (4.15), that

t3ë(t) � 1

2
t2 � log R(ĥ)ÿ ĥó t � 1

6

ì3

ó 3
t3 � O(t4), (4:25)

where jO(t4)j < L(ã)t4. After substitution of (4.25) into (4.19), with t � ó ÿ1 nÿ1=2 y and

0 < y < yn � o(n1=4), it is seen that
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exp nÿ1=2 y

ó

� �3

ë
y

ó n1=2

� �( )
� exp

1

6
nÿ1=2 ì3

ó 3

y

ó

� �3

�O(nÿ1 y4)

( )

� exp
1

6
nÿ1=2 ì3

ó 3

y

ó

� �3
( )

f1� O(nÿ1 y4)g,

where jO(nÿ1 y4)j < L(ã)nÿ1 y4. Thus all we need to do to complete the proof is show that

the remainder term in (4.19) is uniformly of the stated order under the hypotheses of

Proposition 4.1. Inspection of Petrov's (1995) Theorem 5.23 shows that the remainder term in

(4.19) is exactly equal to

En(y) � (I1 ÿ I3)=I3 � (2ð)1=2 I2=I3

where the quantities I1, I2 and I3 are de®ned by Petrov. Under the assumption that

0 < t < óã=d n, it can be shown using arguments identical to those given by Petrov that

jEn(y)j < L(ã)ĥ

where ĥ is given in (4.24). Putting t � ó ÿ1 nÿ1=2 y, where 0 < t < óã=d n, we ®nd that for

0 < yd n=ó 2 < n1=2ã, jEn(y)j � Ofnÿ1=2(y� 1)g as required. h

Proof of Proposition 4.2. The proof is rather similar to that of Proposition 4.1. Using (C19),
again dropping the superscript (n), we have for ®xed (1ÿ Aÿ1) < ã, 1, and h > 0,

hd n < ã,

R(h) � 1� 1

2!
ó 2 h2 � 1

3!
ì3 h3 �

X1
r�0

1

(r � 4)!
ìr�4 hr�4

� 1� 1

2!
ó 2 h2 � 1

3!
ì3 h3 � O h4

X1
r�0

d r
n hr

 !

� 1� 1

2!
ó 2 h2 � 1

3!
ì3 h3 � Ofh4(1ÿ ã)ÿ1g

� 1� 1

2!
ó 2 h2 � 1

3!
ì3 h3 � O(h4),

since ã is ®xed and less than 1; and corresponding approximations hold for the derivatives of

R(h). From here on, the proof is almost identical to that of Proposition 4.1. h

Lemma 4.3. Let F be an arbitrary distribution function. Then for any î. 0,

I �
�1
ÿ1

F(xÿ)î dF(x) < (1� î)ÿ1:

Proof. The result is true with equality when F is continuous, but this does not help with the

general case. We shall establish the general case using an inductive argument. Consider an
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arbitrary two-point distribution F � ð1 Hx1
� ð2 Hx2

, where ð j . 0, ð1 � ð2 � 1, x1 , x2 and

Hx(y) � 0 or 1 depending on whether y < x or y . x. Then I � ðî
1(1ÿ ð1) has a maximum

over ð1 2 [0, 1] of fî=(1� î)gî(1� î)ÿ1 < (1� î)ÿ1 at ð1 � î=(1� î). So the result holds

for all two-point distributions. Suppose now that it holds for all m-point distributions

F �Pm
j�1ð j Hxj

where ð j > 0,
P

ð j � 1 and x1 < . . . < xm. Then it holds for any (m� 1)-

point distribution G � (1ÿ ð)F � ðHxm�1
with ð > 0 and xm�1 . xm, because

I � (1ÿ ð)îð� (1ÿ ð)î�1

�1
ÿ1

F(xÿ)î dF(x)

< (1ÿ ð)îð� (1ÿ ð)î�1(1� î)ÿ1,

using the induction assumption; and the last expression has a maximum over ð 2 [0, 1] of

(1� î)ÿ1 when ð � 0. So the result holds for all ®nitely supported distributions. But, given

an arbitrary distribution function F, we can ®nd a sequence of distribution functions (F (m))

such that F (m) has at most m points of support and also�
F (m)(xÿ)î dF (m)(x)!

�
F(xÿ)î dF(x)

as m!1. h

Lemma 4.4. Let F be a distribution function and r . 0 a real number such that ìr ��1
ÿ1 jxjr dF(x). If X (1) < . . . < X (n) are the order statistics of a random sample from F then,

for any 0 , s , r,

U �
�

(X ( n),1)

jxjs dF(x) � O p(nÿ(rÿs)=r):

Proof. It is suf®cient to show that E(U ) � O(nÿ(rÿs)=r). Write â � r=s and á � r=(r ÿ s).

Then using Fubini's theorem, HoÈlder's inequality and Lemma 4.3,

E

�
(X ( n),1)

jxjs dF(x) � E

�1
ÿ1

I(X (n) , x)jxjs dF(x)

�
�1
ÿ1

F(xÿ)njxjs dF(x)

<

�1
ÿ1

F(xÿ)ná dF(x)

� �1=á �1
ÿ1
jxjsâ dF(x)

� �1=â

< (ná� 1)ÿ1=áfEjX 1jrg1=â

� O(nÿ(rÿs)=r)

as required. h
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5. Proofs of theorems

Proof of Theorem 2.1. Write d n � maxfjX (1)j, jX (n)jg. Since by hypothesis EX 4
1 ,1,

Lemma 4.1 implies that nÿ1=4d n ! 0 in probability. Therefore we may apply Proposition 4.1

combined with Remark 4.1 twice, obtaining

Ĝn(y)

1ÿÖ(y=ó )
� exp

1

6
nÿ1=2 y

ó̂

� �3 ì̂3

ó̂ 3

( )
1� op(1)f g (5:1)

and

H n(y; X (1), X (n))

1ÿÖf(yÿ n1=2~ì)=~óg � exp
1

6
nÿ1=2 y

~ó

� �3 ~ì3

~ó 3

( )
1� op(1)f g, (5:2)

where, in both cases, the op(1) remainder term is uniformly of the stated order for

0 < y < yn. In (5.1), ó̂ 2 and ì̂3 are the variance and centred third moment of the sample X ;

and in (5.2) ~ì, ~ó 2 and ~ì3 are the theoretical mean, variance and centred third moment,

respectively, of the truncated random variable X1 I(u < X 1 < v), evaluated at u � X (1) and

v � X (n) after taking expectations. But E(X 4
1) ,1 implies that ó̂ 2 � ó 2 � O p(nÿ1=2) and

ì̂3 � ì3 � O p(nÿ1=4); and several applications of Lemma 4.4, using the assumptions

E(X 1) � 0 and E(X 4
1) ,1, imply that ~ì � O p(nÿ3=4), ~ó 2 � ó 2 � O p(nÿ1=2) and

~ì3 � ì3 � O p(nÿ1=4). Consequently, since 0 < y < yn � o(n1=4), ó̂ 2 and ì̂3 in (5.1) may

be replaced by ó 2 and ì3, respectively, without changing the order of the error. Similarly, ~ì,
~ó 2 and ~ì3 in (5.2) may be replaced by 0, ó 2 and ì3 without changing the order of the error.

The proof is now complete. h

Proof of Theorem 2.4. Let b � bn � ÿn1=4 and a � an � èn1=2 y, where è 2 (0, 1] will be

speci®ed in particular cases later. We ®rst show that, with this choice of a and b, and with

y > 1, ÄF(b, a)ÄF(0, a) as n!1. For r > 1,

çr�4(b, 0) �
�0

b

jxjr�4 dF(x) < jbjrE(X 4
1)

and therefore

ÄF(b, 0) � sup
r>1

çr�4(b, 0)

r!

� �1=r

< jbjmaxf1, E(X 4
1)g: (5:3)

Since, for any å 2 [0, 1] and u, v 2 R, the inequality ju� vjE < jujE � jvjE, it follows that for

r > 1 and y > 1,

çr�4(b, a)1=r < çr�4(b, 0)1=r � çr�4(0, a)1=r

and therefore

ÄF(b, a) < ÄF(b, 0)� ÄF(0, a):
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By (F2), g is slowly varying, so for any ä. 0 and y > 1, ÄF(0, a) � a=(g(a)� n(1=2)ÿä and

consequently, for such y,

ÄF(b, a) � f1� o(1)gÄF(0, a) � ÄF(0, a):

(i) Fix ã 2 (0, 1). If 0 < y < 1 then the desired conclusion follows directly from the

central limit theorem, so assume y > 1. In view of Lemma 4.2, part (i) will follow if we

can show

P[nÿ1=2S[b,a]
n . y] � 1ÿÖ(y=ó ) (5:4)

and

P[X (n) . a] � of1ÿÖ(y=ó )g (5:5)

uniformly for 1 < y < ãën.

To establish (5.4) we use Proposition (4.2). Choose è � 1
2

in a and choose d n � ÄF(b, a)

in (C19). Since d n � a=g(a) and by assumption g is slowly varying, it follows that, given

any å. 0,

d n < (1� å)
a

g(a)
and

g(n1=2ën)

g(ãn1=2ën=2)
< 1� å

when n is suf®ciently large. Choose å so that 0 < å, ãÿ1=2 ÿ 1. Then for 1 < y < ãën and

n suf®ciently large,

nÿ1=2 y

ó 2
ÄF(b, a) < (1� å)

nÿ1=2 y

ó 2

n1=2 y

2g(n1=2 y=2)

< (1� å)ã2 ë2
n

2ó 2 g(n1=2ën)

g(n1=2ën)

g(ãn1=2ën=2)

< (1� å)2ã2 < ã, 1: (5:6)

Thus Proposition 4.2 may be applied and (5.4) is established.

To prove (5.5) note that for y > 1,

P[X (n) . a] � nf1ÿ F(a)g � n expfÿg(a)g (5:7)

and

1ÿÖ(y=ó ) � (2ð)ÿ1=2 ó

y
exp ÿ y2

2ó 2

� �
: (5:8)

Choose è � 1
2

in a. Following the kind of reasoning leading to (5.6), and using (F1)(c), it can

be shown that

sup
1< y<ãn

log y� y
y2

2ó 2
� log nÿ g(a)

� �
! ÿ1

which establishes (5.5).
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(ii) Fix ã. 1. By Lemma 4.2,

P[nÿ1=2Sn . y] > 1
2
� o(1)

� 	
P[X (n) . n1=2 y]:

So, dividing (5.7) by (5.8) and noting that, by an argument similar to that leading to (5.6),

y2

2ó 2
ÿ g(n1=2 y) � y2

2ó 2
1ÿ 2ó 2 g(n1=2 y)

y2

 !

> (1ÿ ãÿ1)
y2

2ó 2
,

part (ii) is proved. h

Proof of Theorem 2.5. The proof is quite similar to that of Theorem 2.4, but with some

minor differences in detail. Fix è � 1 throughout the proof and recall that E(jX 1jr) ,1 for

some r . maxf4, 2(1ÿ á)ÿ1g, where á is given in condition (F3). Choose bn � b � ÿn1=r

and an � a � n1=2 y. Then following an argument similar to that used at the beginning of the

proof of Theorem 2.4, it is seen that for y > 1,

ÄF(b, a) � ÄF(0, a) � a

g(a)
as n!1:

(When 0 < y , 1, parts (i) and (iii) of the theorem are obviously true; and the condition

y > 1 is not relevant to part (ii).) Also, note that under condition (F3),

ën � ná=(4ÿ2á)ÿå and ën � o(ná=(4ÿ2á)) (5:9)

for any ®xed å. 0.

(i) It follows from (5.9) that when 0 ,á, 2
3
, ën � o(yn) where yn � o(n1=4) and

yn � n(1=4)ÿå for all å. 0. After applying Lemma 4.2 with è � 1, it is seen that part (i)

will follow if

P[nÿ1=2S[b,a]
n . y] � 1ÿÖ(y=ó ) (5:10)

and

P[X (n) . n1=2 y] � of1ÿÖ(y=ó )g (5:11)

uniformly for 1 < y < ãën, where

0 , ã, 2ÿ1=(2ÿá): (5:12)

The proofs of (5.10) and (5.11) are very similar to those of (5.4) and (5.5) in Theorem 2.4(i);

the only difference is that, instead of the requirement that 0 , ã, 1, we need to use (5.12).

(ii) The proof is virtually identical to that of Theorem 2.4(ii).

(iii) When á. 2
3
, ën � yn � o(n1=4). The proof is similar to that of Theorem 2.4(i) and

Theorem 2.5(i). h
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6. Some numerical results

The results of a small simulation study are now described. Three underlying distributions F

were considered: N (0, 1), labelled `Nor'; and the lognormal expfôN (0, 1)g, labelled LN1 and

LN2 for ô � 1, 2, respectively. One hundred samples X 1, . . . , X 100, each of size n, were

generated from each of the three underlying distributions, for n � 25 and n � 100. Then

Monte Carlo estimates of the quantities ø̂ t and î̂ t (t � 1, . . . , 100) de®ned by

ø̂ t � P[n1=2(X
�
t ÿ X t)=ó . 1:645jX t] and î̂ t � P[n1=2(X

�
t ÿ X t)=ó̂

�
t . 1:645jX t]

were obtained, with each estimate based on 1000 bootstrap resamples. In the above, ó is the

standard deviation of F; X t is the mean of sample X t; and X
�
t and ó̂�t are the mean and

standard deviation of a typical resample X �t obtained by random sampling, with

replacement, from X t. The number 1:645 was chosen because Ö(1:645) � 0:95, where Ö
is the distribution function of N (0, 1). The quantities Q1 < . . . < Q100 are the ordered values

of fø̂1, . . . , ø̂100g in the percentile (`Per') cases, and the ordered values of fî̂1, . . . , î̂100g in

the studentized (`Stu') cases. The ®nal row of Table 1 contains Monte Carlo estimates of

ø0 � P[n1=2(X ÿ ì)=ó . 1:645] and î0 � P[n1=2(X ÿ ì)=ó̂ . 1:645],

for each of the three underlying distributions, based on 10 000 simulated samples of size n

from F in each case. The quantity ó̂ in î0 is the sample standard deviation.

Let us now discuss Table 1 in the percentile cases. Note that the bootstrap approximation

to ø0 can be said to be performing `well' if, columnwise, `True' is close to Q50, and Q1

and Q100 are `reasonably' close together; and the normal approximation to ø0 is performing

well if ø0 is approximately 0.05. Bearing this in mind, the bootstrap approximation is

Table 1. Bootstrap estimates of some tail probabilities

n � 25 n � 100

Nor LN1 LN2 Nor LN1 LN2

Per Stu Per Stu Per Stu Per Stu Per Stu Per Stu

Q1 0.001 0.033 0.000 0.006 0.000 0.002 0.020 0.039 0.000 0.005 0.000 0.003

Q25 0.029 0.048 0.006 0.017 0.000 0.008 0.039 0.048 0.019 0.018 0.000 0.008

Q50 0.043 0.057 0.019 0.025 0.000 0.013 0.049 0.052 0.040 0.025 0.000 0.014

Q75 0.065 0.064 0.044 0.031 0.001 0.019 0.059 0.057 0.069 0.031 0.011 0.020

Q100 0.115 0.111 0.173 0.056 0.228 0.033 0.095 0.071 0.262 0.046 0.282 0.035

True 0.052 0.057 0.063 0.011 0.025 0.001 0.050 0.051 0.057 0.018 0.037 0.002

Notes: `Nor' indicates an underlying N (0, 1) distribution, while `LN1' and 'LN2' indicate expfôN (0, 1)g
distributions with ô � 1, 2, respectively. The sample size is denoted by n. `Per' denotes percentile, and `Stu' denotes
studentized. The quantities Q1 < . . . < Q100 are the ordered values of 100 bootstrap estimates of the relevant tail
probability (which has nominal value of 0.05), where each bootstrap estimate is based on 100 resamples; and
`True' denotes a direct Monte Carlo estimate of the true value of this tail probability, based on 10 000 simulated
samples of size n.
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performing well in the normal case, especially when n � 100; but performance is rather

poor in the LN1 cases and extremely poor in the LN2 cases.

Recall the discussion of the lognormal case in Section 3, especially formula (3.1). De®ne

u(ô, n) � (2ô)ÿ1 log n, and note that

u(1, 25) � 1:61, u(1, 100) � 2:30, u(2, 25) � 0:80 and u(2, 100) � 1:15:

Comparing 1.645 with u(ô, n) in the cases considered, we see that relative error

considerations do anticipate the poor bootstrap performance in the lognormal cases.

Nevertheless, some care is needed, and a little more needs to be said. The poor

performance is not due to the breakdown of the normal approximation to ø0, as in each

case ø0 is fairly close to the nominal value of 0.05 (cf. Theorem 2.4 and Corollary 2.2).

Further numerical results (which are not given here) show that the bootstrap approximation

is actually quite good when ó̂ rather than ó is used in the calculation of the ø̂ t, and that

the problem is that ó̂=ó is typically quite different from 1 in the lognormal cases

considered. Since the asymptotic results in Section 2 do not really distinguish between ó̂
and ó to the order of error considered, this is, in a sense, a `subasymptotic' dif®culty.

One might speculate that this scaling problem can be dealt with by studentizing. The

effects of studentizing are investigated in the columns of Table 1 labelled `Stu'. It can be

seen that, in the normal cases, studentizing has a bene®cial effect. However, in the LN1

cases studentizing `over-compensates', so that there is no overall improvement; and in the

LN2 cases studentizing actually makes matters substantially worse.

7. Discussion

In this paper we have presented results on the relative error properties of the bootstrap

approximation to the distribution of the sample mean when the underlying distribution is sub-

exponential. In particular, we have determined a sequence (ën), depending on the underlying

distribution in a simple way, which determines at what point in the tail the bootstrap

approximation breaks down. Although the breakdown does not appear to be as sharp in

practice as the theory suggests, the results of a small simulation study show that the sequence

ën does have practical relevance (even though ën is obtained via asymptotic considerations).

The problem of developing useful diagnostics for predicting bootstrap performance is one

which deserves further study. It is hoped that more detailed study of the errors in (2.5),

Lemma 4.2 and Proposition 4.2 might ultimately lead to useful diagnostics of this type, at

least in simpler settings.

On the theoretical side, it would be nice to know more about the relative error and

breakdown properties in the case of statistics more complicated than a mean, e.g. a

studentized mean, and to extend any such results to the relative coverage error of the

various types of bootstrap con®dence interval.
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