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Standard errors of parameter estimates are widely used in empirical work. The bootstrap often can provide a convenient means of estimating
standard errors. The conditions under which bootstrap standard error estimates are theoretically justified have not received much attention,
however. This article establishes conditions for the consistency of the moving blocks bootstrap estimators of the variance of the least squares
estimator in linear dynamic models with dependent data. We discuss several applications of this result, in particular, the use of bootstrap
standard error estimates for bootstrapping Studentized statistics. A simulation study shows that inference based on bootstrap standard error
estimates may be considerably more accurate in small samples than inference based on closed-form asymptotic estimates.
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1. INTRODUCTION

The bootstrap is a general method for estimating the sam-
pling distribution of a statistic. Under suitable conditions, the
bootstrap distribution is asymptotically first-order equivalent
to the asymptotic distribution of the statistic of interest. The
consistency of the bootstrap distribution, however, does not
guarantee the consistency of the variance of the bootstrap dis-
tribution (the “bootstrap variance”) as an estimator of the as-
ymptotic variance, because it is well known that convergence
in distribution of a random sequence does not imply conver-
gence of moments (see, e.g., Billingsley 1995, thm. 25.12).
For the sample median and smooth functions of sample means,
examples of the inconsistency of bootstrap variance estimators
in the iid context have been given by Ghosh, Parr, Singh, and
Babu (1984) and Shao (1992).

For time series observations, the moving blocks bootstrap
(MBB) introduced by Künsch (1989) and Liu and Singh
(1992a) has been shown to consistently estimate the variance
of the sample mean under weak dependence and heterogeneity
assumptions (see Gonçalves and White 2002). For more gen-
eral statistics, conditions for the consistency of the bootstrap
variance estimator do not appear to be available.

The main purpose of this article is to provide sufficient condi-
tions for the consistency of MBB variance estimators when the
statistic of interest is the least squares (LS) estimator in possibly
misspecified linear regression models with dependent data. Our
framework includes linear regression with iid observations as
a special case. In related work, Liu and Singh (1992b) showed
the consistency of the iid bootstrap variance estimator for re-
gressions with fixed regressors and iid errors. Our results allow
for stochastic regressors and autocorrelated errors. Although
the consistency of the MBB distribution of the LS estimator is
well established in the literature (see, e.g., Fitzenberger 1997;
Politis, Romano, and Wolf 1997), the consistency of the boot-
strap variance of the LS estimator has not received much atten-
tion. As we remarked earlier, the former does not necessarily
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imply the latter, so that currently available results do not jus-
tify bootstrapping the standard errors of the LS estimates using
the MBB.

Our result is important in that many applied studies have used
bootstrap standard error estimates as a measure of the precision
of their parameter estimates (see, e.g., Efron 1979; Freedman
and Peters 1984; Efron and Tibshirani 1986; Li and Maddala
1999). We also emphasize that this result plays an important
role in justifying bootstrap applications based on Studentized
statistics, for which asymptotic refinements of the bootstrap can
be expected. The construction of Studentized statistics involves
normalization by the standard error of the estimator. Our re-
sults formally justify using the bootstrap in computing such
standard errors. This feature is especially convenient in cases
when asymptotic closed-form solutions are not available or are
too cumbersome to be calculated. In addition, we present simu-
lation evidence that suggests that inference based on bootstrap
estimates of standard errors may be considerably more accurate
in small samples than inference based on asymptotic closed-
form standard error estimates. For a multiple linear regression
model with autocorrelated (and heteroscedastic) errors, we find
that confidence intervals that rely on bootstrap standard errors
tend to perform better than confidence intervals that rely on as-
ymptotic closed-form variances. In particular, the coverage er-
rors of symmetric MBB percentile-t confidence intervals based
on bootstrap standard error estimates are substantially smaller
than the coverage errors typically found for other (asymptotic
theory-based and bootstrap-based) confidence intervals in this
setting, especially under strong autocorrelation.

The remainder of the article is organized as follows. Sec-
tion 2 presents the theoretical results. Section 3 compares the
accuracy of the bootstrap estimator with that of closed-form
estimators of the variance. Section 4 provides concluding re-
marks, and an Appendix gives all of the proofs.

2. LINEAR REGRESSION

In this section we prove the asymptotic validity of the MBB
for variance estimation in the context of linear regressions when
the data-generating process (DGP) is near–epoch-dependent
(NED) on a mixing process (Billingsley 1968; McLeish 1975;
Gallant and White 1988). NED processes allow for consid-
erable dependence and heterogeneity. They include as a spe-
cial case the more conventional mixing processes, which can
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be overly restrictive for applications in economics [see, e.g.,
Andrews 1984 for an example of a simple AR(1) process that
fails to be strong mixing]. NED processes cover a variety of
nonlinear time series models, including the bilinear, general-
ized autoregressive conditional heteroscedastic, and threshold
autoregressive models (see Davidson 2002).

We define {Zt } to be Lq -NED on a mixing process {Vt } pro-
vided that E(Zq

t ) < ∞ and vk ≡ supt ‖Zt − Et+k
t−k (Zt )‖q tends

to 0 as k → ∞ at an appropriate rate, where q ≥ 2. In par-
ticular, if vk = O(k−a−δ) for some δ > 0, then we say that
{Zt } is Lq -NED (on {Vt }) of size −a. Here and in what follows,
‖Zt‖q ≡ (E|Zt |q)1/q denotes the Lq norm of the random vec-
tor Zt , with |Zt | its Euclidean norm, and Et+k

t−k (·) ≡ E(·|F t+k
t−k ),

where F t+k
t−k ≡ σ(Vt−k, . . . ,Vt+k) is the σ -field generated by

Vt−k, . . . ,Vt+k . The sequence {Vt } is assumed to be strong
mixing, that is, αk ≡ supm sup{A∈Fm−∞,B∈F∞

m+k} |P(A ∩ B) −
P(A)P (B)| → 0 as k → ∞ at an appropriate rate.

Gallant and White (1988) studied the asymptotic properties
of quasi–maximum likelihood estimators (QMLEs) for hetero-
geneous NED data and nonlinear dynamic models. Recently,
Gonçalves and White (2004) established the first-order as-
ymptotic validity of the MBB for the framework of Gallant
and White (1988). In particular, Gonçalves and White (2004)
showed that the MBB consistently estimates the asymptotic dis-
tribution of the QMLE. But as Gonçalves and White (2004)
remarked, their results do not justify using the variance of the
bootstrap distribution to consistently estimate the asymptotic
variance of the QMLE. Here we fill this gap for the special
case of the LS estimator for linear dynamic models. In partic-
ular, we give explicit conditions that justify bootstrapping the
variance of the LS estimator in possibly misspecified linear dy-
namic models when the DGP is NED on a mixing process.

Assumption 1 is a version of the Gallant and White (1988)
and Gonçalves and White (2004) assumptions specialized to the
case of linear dynamic models.

Assumption 1. a. Let (�,F,P ) be a complete probability
space. The observed data are a realization of a strictly stationary
stochastic process {Zt = (Yt ,X′

t )
′ :� → R

p+1, t = 1,2, . . . },
p ∈ N; Zt (ω) = Wt ( . . . , Vt−1(ω), Vt (ω), Vt+1(ω), . . . ),
ω ∈ �, where Vt :� → R

v , v ∈ N, and Wt :×∞
τ=−∞R

v →
R

p+1 are such that Zt is measurable, t = 1,2, . . . .

b. Yt = X′
tβ

o + εt , t = 1,2, . . . , for some βo ∈ R
p , where

X′
t = (Xt1, . . . ,Xtp) and E(Xt εt ) = 0.
c. For some r > 2, ‖Yt‖6r ≤ � < ∞, ‖Xti‖6r ≤ � < ∞, for

i = 1, . . . , p, t = 1,2, . . . .
d. For some small δ > 0, the elements of {Zt } are L2+δ-NED

on {Vt } with NED coefficients vk of size − 4(r−1)2

(r−2)2 ; {Vt } is an

α-mixing sequence with αk of size − (2+δ)r
r−2 .

e. Ao ≡ E(XtX′
t ) is nonsingular, that is, λmin(Ao) ≥ η > 0

for some η > 0, where λmin(Ao) denotes the smallest eigen-
value of Ao.

f. Bo ≡ limn→∞ Bo
n is positive definite, where Bo

n =
var(n−1/2 ∑n

t=1 Xt εt ).

According to Assumption 1.a, we observe data on (p + 1)× 1
random vectors Zt = (Yt ,X′

t )
′, each of which is viewed

as a transformation of some underlying process {Vt }. Here
Yt denotes the observation t on the dependent variable and

Xt ≡ (Xt1, . . . ,Xtp)′ is the p × 1 vector of regressors for ob-
servation t ; Xt may include lagged dependent variables. For
simplicity, we assume that the DGP for Zt is strictly station-
ary. Without stationarity, results analogous to ours can still be
derived under additional conditions controlling the degree of
heterogeneity in the data. Assumption 1.b specifies a linear dy-
namic model that may be misspecified in the sense that for all
β ∈ R

p , it is true that P(E(Yt |Xt ) 
= X′
tβ) > 0. Such models

are relevant for forecasting, because in this misspecified con-
text βo is the parameter that minimizes the mean squared er-
ror of the linear approximation to the unknown E(Yt |Xt ). In
particular, under Assumption 1.e, βo is uniquely defined by
βo = (E(X′X))−1E(X′Y), where we let Y = (Y1, . . . , Yn)

′ and
X = (X1, . . . ,Xn)

′.
We estimate βo by the LS estimator β̂n = (X′X)−1X′Y.

Under our assumptions, β̂n consistently estimates βo and√
n(β̂n − βo) ⇒ N(0,Ao−1BoAo−1); that is, the limiting dis-

tribution of the LS estimator β̂n is the multivariate normal
distribution with asymptotic variance–covariance matrix Co ≡
Ao−1BoAo−1. The bootstrap can be used to estimate the distri-
bution of

√
n(β̂n − βo) and to estimate Co.

Let β̂∗
n = (X∗′X∗)−1X∗′Y∗ be the LS estimator of βo based

on the bootstrap data {Z∗
nt = (Y ∗

nt ,X∗′
nt )

′} obtained with the
MBB as follows. Let � = �n ∈ N (1 ≤ � < n) denote the length
of the blocks and let Bt,� = {Zt ,Zt+1, . . . ,Zt+�−1} be the block
of � consecutive observations starting at Zt ; � = 1 corresponds
to the standard iid bootstrap. The MBB resamples k = n/�

blocks randomly with replacement from the set of n − � + 1
overlapping blocks {B1,�, . . . ,Bn−�+1,�}, where for simplicity
we assume that n = k�.

One bootstrap variance–covariance matrix estimator of β̂n

is given by the bootstrap population variance–covariance ma-
trix of

√
n(β̂∗

n − β̂n), conditional on the original data, Ĉ∗
n =

var∗(
√

n(β̂∗
n − β̂n)). Because in general there is no closed-

form expression for Ĉ∗
n, we compute an approximation to Ĉ∗

n by

Monte Carlo simulation, that is, Ĉ∗
n = limB→∞ n

B

∑B
i=1(β̂

∗(i)
n −

β̂∗
n )(β̂

∗(i)
n − β̂∗

n)
′, where β̂∗

n = 1
B

∑B
i=1 β̂

∗(i)
n , with β̂

∗(i)
n the

bootstrap LS estimator evaluated on the ith bootstrap replica-
tion and B the total number of bootstrap replications.

In this article we focus on an alternative bootstrap variance–
covariance matrix estimator of β̂n, namely the bootstrap popu-
lation variance–covariance matrix of

√
n(β̃∗

n − β̂n). Following
Liu and Singh (1992b) and Shao and Tu (1995, chap. 7,
sec. 7.2.2), we define β̃∗

n as

β̃
∗
n =






(X∗′X∗)−1X∗′Y∗ if λmin

(
X∗′X∗

n

)

≥ δ

2

β̂n otherwise

(1)

for some δ > 0, where λmin(A) denotes the smallest eigenvalue
of A for any matrix A. Given the foregoing definition, β̃∗

n is
equal to β̂∗

n whenever X∗′X∗
n

is nonsingular. Because for any
ε > 0 and sufficiently large n, there exists δ > 0 such that

P

[

P ∗
(

λmin

(
X∗′X∗

n

)

≥ δ

2

)

> 1 − ε

]

> 1 − ε, (2)

this modification affords considerable convenience without
adverse practical consequences by greatly simplifying the
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theoretical study of the bootstrap variance estimator, C̃∗
n ≡

var∗(
√

nβ̃∗
n).

An important intermediate step toward proving the consis-
tency of C̃∗

n for Co is to establish the first-order asymptotic
validity of the bootstrap distribution of

√
n(β̃∗

n − β̂n). This fol-
lows by an application of theorem 2.2 of Gonçalves and White
(2004) for the special case of the LS estimator of (possibly)
misspecified linear dynamic models and the fact that condi-
tion (2) holds under Assumption 1. Assumption 1 also ensures
that the elements of {Xt εt } satisfy assumptions 2.1 and 2.2 of
Gonçalves and White (2004). In particular, assumption 2.2 of
Gonçalves and White (2004) is automatically satisfied because
E(Xt εt ) = 0 for all t given the stationarity assumption and the
definition of βo. Alternatively, for assumption 2.1 we could
have assumed that ‖Xtiεt‖3r ≤ � < ∞ for some r > 2, and that
for some δ > 0, the elements of {Xt εt } are L2+δ-NED on {Vt }
with NED coefficients vk of size − 2(r−1)

r−2 .

Our main result establishes the consistency of C̃∗
n for Co ≡

Ao−1BoAo−1 under Assumption 1.

Theorem 1. Under Assumption 1, if �n = o(n1/2) and

�n → ∞, then C̃∗
n

P→Co, where C̃∗
n ≡ var∗(

√
nβ̃∗

n) and Co ≡
Ao−1BoAo−1.

Theorem 1 justifies the use of C̃∗
n as an heteroscedasticity-

and autocorrelation-consistent (HAC) variance estimator of Co.
Given the first-order asymptotic validity of the bootstrap distri-
bution of

√
n(β̃∗

n − β̂n), we show that E∗(|√n(β̃∗
n − β̂n)|2+δ) =

OP (1), which is a sufficient condition for the uniform integra-
bility of the sequence {|√n(β̃∗

n − β̂n)|2}.
Although we have focused on the LS estimator for linear

regression models, several extensions of our results are possi-
ble. First, we can generalize our results to the k-step QMLEs
as proposed by Davidson and MacKinnon (1999). To illus-
trate, consider the one-step QMLE as defined by Gonçalves and
White (2004),

θ̂∗
1n = θ̂n − A∗

n(θ̂n)
−1n−1

n∑

t=1

s∗
nt (θ̂n).

We use the same notation as Gonçalves and White (2004).
In particular, θ̂n is the QMLE of a pseudoparameter θo

n ,
A∗

n(θ̂n) = n−1 ∑n
t=1 ∇2 logf ∗

nt (θ̂n) is the MBB resampled es-
timated Hessian, and {s∗

nt (θ̂n)} are the MBB resampled esti-
mated scores. Under the assumptions of Gonçalves and White
(2004), the bootstrap distribution of

√
n(θ̂∗

1n − θ̂n) is first-
order asymptotic equivalent to the asymptotic normal distri-
bution of the QMLE

√
n(θ̂n − θo

n ) (cf. their thm. 2.2 and
cor. 2.1). Therefore, it suffices to show that E∗(|√n(θ̂∗

1n −
θ̂n)|2+δ) = OP (1). As with the LS estimator, here it is con-
venient to consider a truncated version of the one-step boot-
strap estimator, namely θ̃∗

1n = θ̂∗
1n when A∗

n(θ̂n)
−1 exists and

θ̃∗
1n = θ̂n otherwise. To prove that E∗(|√n(θ̃∗

1n − θ̂n)|2+δ) =
OP (1), we can use reasoning similar to that underlying the
proof of our Theorem 1. In particular, it suffices to show that
E∗|n−1/2 ∑n

t=1 s∗
nt (θ̂n)|2+δ = OP (1). To maintain our focus on

the case of linear regression, we do not provide further details
here, but we will take up formal statements of k-step QMLE
results elsewhere.

Another useful extension of the results presented here
is to quantile regression. Because the asymptotic variance–
covariance matrix of the quantile regression estimator depends
on the density of the error term, bootstrapping the standard
error estimate is particularly convenient, because it avoids
nonparametric density estimation. For cross-sectional quan-
tile regression, Buchinsky (1995) investigated the finite-sample
performance of several bootstrap standard error estimates, in-
cluding a pairwise bootstrap standard error estimate. Never-
theless, no formal justification for these bootstrap applications
was provided. Also in the cross-sectional context, Hahn (1995)
proved the first-order asymptotic validity of the bootstrap dis-
tribution of the quantile regression estimator. As Hahn (1995,
p. 107) remarked, his results provide a theoretical justification
for bootstrap percentile confidence intervals, but they do not
justify using the bootstrap to estimate standard errors. Similarly,
although Fitzenberger (1997) proved that the MBB consistently
estimates the asymptotic distribution of the quantile regression
estimator, his results do not apply to bootstrap standard error
estimates. Thus, establishing theoretical results that justify the
application of the bootstrap to variance estimation for the quan-
tile regression estimator is an important area of future research.
In his study, Fitzenberger (1997) treated the quantile regres-
sion estimator in a setting analogous to the LS case. Therefore,
we conjecture that verification of the uniform integrability con-
dition for the quantile regression estimator could be pursued
along the same lines as for the LS estimator in Theorem 1.
As for the k-step QMLE results, we take up formal treatment
of quantile regression elsewhere.

3. MONTE CARLO RESULTS

In this section we conduct a Monte Carlo experiment that
highlights the potential gains in accuracy from using boot-
strap standard error estimates in the context of a multiple linear
regression with serially dependent and heteroscedastic errors.
Important examples of linear regression models in the applied
econometrics literature are long-horizon regressions. Such re-
gression models have been applied in, for example, the context
of testing the predictability of exchange returns or, more gener-
ally, asset returns based on economic fundamentals (see Mark
1995; Hodrick 1992; Kirby 1998; Kilian 1999).

We consider the problem of building a confidence interval for
a single regression parameter. We use the finite-sample cover-
age probability of symmetric 95% confidence intervals as our
performance criterion. Our study is analogous to the simulation
studies of Fitzenberger (1997) and Politis et al. (1997), follow-
ing the basic setup of Andrews (1991) (see also Romano and
Wolf 2003 for a similar design).

In particular, we consider the linear regression model
Yt = X′

tβ
o + εt , where X′

t = (Xt1,X′
t2) contains five regres-

sors, the first of which is a constant (Xt1 ≡ 1). We con-
sider two of the DGPs proposed by Andrews (1991), namely
AR(1)–HOMO and AR(1)–HET2. The regressors and errors
of the DGP AR(1)–HOMO are generated as mutually indepen-
dent AR(1) models with variance 1 and AR parameter ρ,

Xti = ρXt−1,i +
√

1 − ρ2vti , i = 2, . . . ,5,

and

ε̃t = ρε̃t−1 +
√

1 − ρ2ut ,
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where εt = ε̃t . The innovations vti and ut are generated as inde-
pendent standard normal distributions. We set the true parame-
ter βo equal to 0 (without loss of generality) and consider the
following values for the AR parameter ρ: .3, .5, .9, and .95. The
DGP AR(1)–HET2 is obtained from the AR(1)–HOMO model
by introducing conditional heteroscedastiticy in the errors εt .
In particular, we let εt = |X′

t2γ |ε̃t with γ = (.5, .5, .5, .5).
In the simulations, 5,000 random samples are generated for the
sample sizes n ∈ {64,128,256,512,1,024}. The bootstrap in-
tervals are based on 999 replications for each sample.

The goal is to build a confidence interval for βo
2 . The as-

ymptotic normal theory-based confidence interval for βo
2 is

given by β̂2n ± n−1/21.96
√

Ĉn,22, where Ĉn,22 is the ele-
ment (2,2) of Ĉn, a consistent estimator of the asymptotic
variance–covariance matrix Co = Ao−1BoAo−1. We consider
two different choices of Ĉn. Our first choice exploits the sand-
wich form of Co and is given by Ĉn,QS = Â−1

n B̂n,QSÂ−1
n , where

Ân = X′X
n

and B̂n,QS is the quadratic spectral (QS) kernel vari-
ance estimator of Andrews (1991). This yields the following
asymptotic normal theory-based confidence interval for βo

2 :

CIQS = β̂2n ± n−1/21.96
√

Ĉn,QS,22.

A second choice of Ĉn is C̃∗
n = var∗(

√
n(β̃∗

n − β̂n)), the boot-
strap covariance matrix of the distribution of

√
n(β̃∗

n − β̂n). Our
Theorem 1 provides a formal justification for this choice. Here
β̃∗

n is the truncated version of the LS estimator β̂∗
n, which re-

places β̂∗
n with β̂n whenever (X∗′X∗)−1 does not exist. As it

turned out, for our Monte Carlo design we never encountered
any singularity problems. Thus in our simulations, β̃∗

n = β̂∗
n,

and C̃∗
n coincides with Ĉ∗

n = var∗(
√

n(β̂∗
n − β̂n)). Notice that

C̃∗
n does not rely on the sandwich form of Co

n and is typically
evaluated with Monte Carlo simulation methods. In particular,
the bootstrap variance estimator based on B bootstrap replica-
tions is

C̃∗
n,22,B = n

B

B∑

i=1

(
β̃

∗(i)
2n − β̃∗

2n

)2
,

where β̃
∗(i)
2n denotes the (truncated) LS estimator of βo

2 evalu-

ated on the ith bootstrap replication and β̃∗
2n = 1

B

∑B
i=1 β̃

∗(i)
2n .

When B → ∞, C̃∗
n,22,B approximates C̃∗

n,22, the “ideal” boot-
strap variance estimator based on B = ∞. Here we let B = 999.
A bootstrap variance, asymptotic normal theory-based confi-
dence interval for βo

2 can be obtained as

CIvar∗ = β̂2n ± n−1/21.96
√

C̃∗
n,22,B,

where the critical value of the t-statistic is still obtained with
the asymptotic normal distribution.

We also consider bootstrap percentile-t confidence intervals,
for which asymptotic refinements can be expected. A 95% level
symmetric bootstrap percentile-t confidence interval for βo

2
takes the form

CIper-t = β̂2n ± q∗
stud,.95

√

Ĉn,22, (3)

where q∗
stud,.95 is the 95% bootstrap percentile of the absolute

value of the Studentized bootstrap statistic

tβ̃∗
2n

=
√

n(β̃∗
2n − β̂2n)

√
C∗

n,22

. (4)

Here C∗
n,22 is a consistent estimator of the bootstrap population

variance of
√

nβ̃∗
2n. (Note the use of C

∗
n,22 rather than C̃∗

n,22,
for reasons elaborated on later.) A bootstrap percentile-t con-
fidence interval requires the choice of two standard error es-
timates, one for studentizing the t-statistic evaluated on the

real data [cf.
√

Ĉn,22 in (3)] and the other for studentizing the

t-statistic evaluated on the bootstrap data [cf.
√

C∗
n,22 in (4)].

As discussed by Davison and Hall (1993) and Götze and
Künsch (1996), for the MBB with dependent data, a careful
choice of these standard error estimates is crucial if asymp-
totic refinements are to be expected. In particular, for smooth
functions of means of stationary mixing data, to studentize the
bootstrap statistic, Götze and Künsch (1996) suggested a vari-
ance estimator that exploits the independence of the bootstrap
blocks and that can be interpreted as the sample variance of
the bootstrap block means. To studentize the original statistic,
Götze and Künsch (1996) used a kernel variance estimator with
rectangular weights and warned that triangular weights would
destroy second-order properties of the block bootstrap.

In our Monte Carlo simulations, to studentize the origi-
nal t-statistic, we consider the same two choices as before,
namely Ĉn,QS,22, which relies on the sandwich form of Co and
uses the QS-kernel to estimate Bo, and C̃∗

n,22,B , which esti-
mates the standard error of β̂2n with the bootstrap. To studen-
tize the bootstrap t-statistic, we use the multivariate analog of
the Götze and Künsch (1996) variance estimator, adapted to the
LS context. In particular, we let C∗

n,22 be the element (2,2) of

C∗
n = Ã∗−1

n B̃∗
nÃ∗−1

n , where Ã∗
n = X∗′X∗

n
and

B̃∗
n = k−1

k∑

i=1

(

�−1/2
�∑

t=1

XIi+t

(
YIi+t − X′

Ii
β̃∗

n

)
)

×
(

�−1/2
�∑

t=1

X′
Ii+t

(
YIi+t − X′

Ii
β̃∗

n

)
)

,

where {Ii} are iid random variables uniformly distributed on
{0,1, . . . , n − �}. Another possibility would be to use the boot-
strap to estimate the bootstrap variance of

√
nβ̃∗

2n. This would
correspond to a double bootstrap, where the bootstrap is used
to simulate the distribution of the Studentized estimator, which
is based on a standard error estimate that in turn has been es-
timated by the bootstrap. Implementing the double bootstrap
would be extremely computationally intensive, and therefore
we do not consider this alternative here. Nevertheless, we note
that our theoretical results formally justify such an approach.

To summarize, we consider the following two 95% level
symmetric bootstrap percentile-t confidence intervals:

CIper-t,QS = β̂2n ± q∗
stud,.95

√

Ĉn,QS,22

and

CIper-t,var∗ = β̂2n ± q∗
stud,.95

√
C̃∗

n,22,B .
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For comparison purposes, we also include the 95% bootstrap
percentile confidence interval given by

CIper = β̂2n ± q∗
.95,

where q∗
.95 is the 95% bootstrap percentile of the absolute value

of
√

n(β̃∗
2n − β̂2n). In contrast to the bootstrap percentile-t con-

fidence interval, the bootstrap percentile confidence interval
does not require any standard error estimate. However, because
it is not based on an asymptotically pivotal statistic, this boot-
strap method does not promise any asymptotic refinements.

The choices of the bandwidth for the QS-based confidence
interval and of the block size for the MBB confidence inter-
vals are critical. We use Andrews’s (1991) automatic procedure
based on approximating AR(1) models for the elements of Xt ε̂t

to compute a data-driven bandwidth for the QS kernel. Given
the asymptotic equivalence between the MBB and the Bartlett-
kernel variance estimators, we choose the block length as the
integer part of the data-driven bandwidth chosen by Andrews’s
automatic procedure for the Bartlett kernel. This choice is easy
to implement and affords meaningful comparison of our results.

Figures 1 and 2 present results for the DGP AR(1)–HOMO,
and Figures 3 and 4 present results for the DGP AR(1)–HET2.
Each figure contains two panels, corresponding to two different
values of ρ. Each panel depicts the actual coverage rate of each
confidence interval as a function of the sample size.

All methods tend to undercover; the larger the ρ, the worse
the undercoverage. One exception is CIper-t,var∗ , which shows
a slight tendency to overcover for small n. The QS kernel-
based confidence interval shows the worst performance among

all methods. The bootstrap variance-based confidence inter-
val CIvar∗ shows improved coverage rates when compared
with CIQS, especially for small n and large ρ. This im-
provement may be quite substantial. For instance, for DGP
AR(1)–HOMO, when n = 64 and ρ = .9, the coverage rate
of CIQS is 67.34%, whereas that of CIvar∗ is 79.06%. Because
both confidence intervals rely on the asymptotic normal ap-
proximation, using the bootstrap does not eliminate the un-
dercoverage. However, these results suggest that replacing the
asymptotic closed-form standard error estimates by bootstrap
standard error estimates may by itself significantly improve the
finite-sample performance of asymptotic normal theory-based
confidence intervals. The finite-sample performance of CIvar∗
is similar to that of CIper.

As expected from the bootstrap theory, bootstrap percentile-t
confidence intervals have smaller coverage distortions com-
pared with the percentile confidence interval and the asymptotic
normal theory-based confidence intervals. For AR(1)–HOMO,
when the degree of autocorrelation is weak (i.e., for ρ = .3
and ρ = .5), CIper-t,var∗ tends to overcover for the smaller sam-
ple sizes, whereas CIper-t,QS always undercovers. Both meth-
ods tend to be within one percentage point of the desired 95%
level. When the degree of autocorrelation is strong (i.e., ρ = .9
and ρ = .95), the undercoverage of CIper-t,QS worsens. In con-
trast, CIper-t,var∗ shows coverage rates that are closer to the
nominal 95% level, with slight overcoverages for n = 64 and
n = 128 and slight undercoverages for the larger sample sizes.
Thus our results show that the choice of the standard error esti-
mate used to studentize the t-statistic evaluated on the original

(a)

(b)

Figure 1. Coverage Probabilities of 95% Nominal Symmetric Confidence Intervals. Regression errors are homoscedastic AR(1) with autoregres-
sion coefficient equal to ρ. For (a), ρ = .30; for (b), ρ = .50 ( CIQS; CIvar∗ ; CIper; CIper-t,QS; CIper-t,var∗ ).
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(a)

(b)

Figure 2. Coverage Probabilities of 95% Nominal Symmetric Confidence Intervals. Regression errors are homoscedastic AR(1) with autoregres-
sion coefficient equal to ρ. For (a), ρ = .90; for (b), ρ = .95 ( CIQS; CIvar∗ ; CIper; CIper-t,QS; CIper-t,var∗ ).

(a)

(b)

Figure 3. Coverage Probabilities of 95% Nominal Symmetric Confidence Intervals. Regression errors are heteroscedastic AR(1) with autore-
gression coefficient equal to ρ. For (a), ρ = .30; for (b), ρ = .50 ( CIQS; CIvar∗ ; CIper; CIper-t,QS; CIper-t,var∗ ).
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(a)

(b)

Figure 4. Coverage Probabilities of 95% Nominal Symmetric Confidence Intervals. Regression errors are heteroscedastic AR(1) with autore-
gression coefficient equal to ρ. For (a), ρ = .90; for (b), ρ = .95 ( CIQS; CIvar∗ ; CIper; CIper-t,QS; CIper-t,var∗ ).

data is important. Using the bootstrap standard error estimate
instead of the QS kernel-based standard error estimate results
in better finite-sample performance, especially under strong au-
tocorrelation in the errors. The presence of heteroscedastic-
ity [i.e., for AR(1)–HET2] leads to smaller coverage rates for
both bootstrap percentile-t confidence intervals, which results
in worse undercoverage for CIper-t,QS and some undercoverage
for CIper-t,var∗ . Nevertheless, here too replacing the QS-kernel
standard error used to studentize the original t-statistic by the
bootstrap standard error estimate helps reduce the coverage er-
ror of bootstrap percentile-t confidence intervals.

4. CONCLUSIONS

This article gives conditions under which the MBB of
Künsch (1989) and Liu and Singh (1992a) provides consistent
estimators of the asymptotic variance of the LS estimator in
(possibly misspecified) linear regression models. Although we
have focused on the MBB, similar results hold for the station-
ary bootstrap of Politis and Romano (1994) (also see Gonçalves
2000). The Monte Carlo results obtained in this article indicate
that bootstrap variance-based percentile-t confidence intervals
have coverage rates closer to the desired levels in the context
of a particular linear regression model. This is an interesting
finding. An important topic for future research would be to
obtain formal conditions under which bootstrap standard er-
ror estimates have better higher-order asymptotic accuracy than
conventional first-order asymptotic theory-based standard er-
ror estimates. This could help explain the improved accuracy
of bootstrap standard error-based confidence intervals found in
our Monte Carlo experiments.

APPENDIX: PROOFS

Throughout this appendix, C denotes a generic constant that does
not depend on n, and 1(A) denotes the indicator function of any set A.
In obtaining our results, we use the mixingale property of processes
NED on a mixing process. The concept of L2-mixingales was in-
troduced by McLeish (1975) and generalized to Lq -mixingales (for
q > 1) by Andrews (1988). Let (�,G,P ) be a probability space on
which a sequence of random variables {Zt }∞t=1 is defined, and let
{Gt }∞

t=1 be a nondecreasing sequence of sub–σ -fields of G. We say that
{Zt ,Gt }∞

t=1 is an Lq -mixingale (for some q > 1) if there exist nonneg-
ative constants {ct }∞t=1 and {ψm}∞

m=0 such that ψm → 0 as m → ∞,
and for all t ≥ 1 and m ≥ 0 we have ‖E(Zt |Gt−m)‖q ≤ ctψm and
‖Zt − E(Zt |Gt+m)‖q ≤ ctψm+1. We make use of the following re-
sult.

Lemma A.1. For q ≥ 2, let {Zt ,Gt } be an Lq -mixingale with
bounded mixingale constants {ct } and mixingale coefficients {ψm} sat-
isfying

∑∞
m=1 ψm < ∞. Let {Z∗

nt : t = 1, . . . , n} denote a bootstrap
resample of {Zt : t = 1, . . . , n} obtained with the MBB. If �n = o(n)

with �n → ∞, then E(E∗|∑n
t=1 Z∗

nt |q) = O(nq/2) + O(�
q
n).

Proof. We follow Künsch (1989) and write
∑n

t=1 Z∗
nt =

∑k
i=1 Yn,i , where {Yn,i} are iid with P ∗(Yn,i = Zj+1 + · · · +

Zj+�n
) = 1

n−�n+1 , j = 0, . . . , n − �n. Hence,

E∗
∣
∣
∣
∣
∣

n∑

t=1

Z∗
nt

∣
∣
∣
∣
∣

q

= E∗
∣
∣
∣
∣
∣

k∑

i=1

(Yn,i − E∗(Yn,1)) + kE∗(Yn,1)

∣
∣
∣
∣
∣

q
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≤ 2q−1

{

E∗
∣
∣
∣
∣
∣

k∑

i=1

(Yn,i − E∗(Yn,1))

∣
∣
∣
∣
∣

q

+ E∗|kE∗(Yn,1)|q
}

≡ 2q−1(An + Bn),

by an application of the cr -inequality (see, e.g., Davidson 1994,
p. 140). First, consider An. By an extension of Burkholder’s in-
equality to martingale difference arrays, An ≤ CE∗|∑k

i=1 |Yn,i −
E∗(Yn,1)|2|q/2, and by Hölder’s inequality,

E∗
∣
∣
∣
∣
∣

k∑

i=1

|Yn,i − E∗(Yn,1)|2
∣
∣
∣
∣
∣

q/2

≤ E∗
∣
∣
∣
∣
∣

(
k∑

i=1

|Yn,i − E∗(Yn,1)|q
)2/q

k1−2/q

∣
∣
∣
∣
∣

q/2

≤ 2qkq/2E∗|Yn,1|q , (A.1)

where the last inequality follows by a simultaneous application of
the cr -inequality and Jensen’s inequality. Because E∗|Yn,1|q = (n −
�n + 1)−1 ∑n−�n

j=0 |∑�n

t=1 Zt+j |q , we have

E(E∗|Yn,1|q) = (n − �n + 1)−1
n−�n∑

j=0

E

∣
∣
∣
∣
∣

�n∑

t=1

Zt+j

∣
∣
∣
∣
∣

q

≤ (n − �n + 1)−1
n−�n∑

j=0

(
C�

1/2
n

)q

= (C)q�
q/2
n , (A.2)

by a maximal inequality for mixingales (Hansen 1991, lemma 2;
1992), and by the boundedness assumption on the mixingale con-
stants {ct }. Because k = n/�n, it follows from (A.1) and (A.2)
that E(An) = O(nq/2). Next, consider Bn. Noting that E∗(Z̄∗

n) =
�−1
n E∗(Yn,1), we can write

E(Bn) = E
(
E∗|kE∗(Yn,1)|q)

= (k�n)qE
(|�−1

n E∗(Yn,1)|q)

= nqE
(|E∗(Z̄∗

n)|q)
.

By the properties of the MBB, we can write

E∗(Z̄∗
n) = 1

n − �n + 1

(
�n−1∑

t=1

(
t

�n

)

Zt +
n−�n+1∑

t=�n

(
1

�n

)

Zt

+
n∑

t=n−�n+2

(
n − t + 1

�n

)

Zt

)

= 1

n − �n + 1

n∑

t=1

Zt − 1

n − �n + 1

�n−1∑

t=1

(

1 − t

�n

)

Zt

− 1

n − �n + 1

n∑

t=n−�n+2

(

1 − n − t + 1

�n

)

Zt

≡ An1 − An2 − An3,

which implies that E(Bn) = nqE[|An1 − An2 − An3|q ] ≤ 3q−1 ×
nq(E|An1|q + E|An2|q + E|An3|q). By the maximal inequality
for mixingales, E|An1|q = O(n−q/2) if �n = o(n). Similarly, by
the cr -inequality and the fact that E|Zt |q ≤ � < ∞ (given the

Lq -mixingale assumption), we have that

E|An2|q ≤ (n − �n + 1)−q(�n − 1)q−1
�n−1∑

t=1

∣
∣
∣
∣1 − t

�n

∣
∣
∣
∣

q

E|Zt |q

= O

(
�
q
n

(n − �n + 1)q

)

.

By a similar argument, E|An3|q = O(
�
q
n

(n−�n+1)q
). Hence, because

�n = o(n), E(Bn) ≤ O(nq/2) + O(�
q
n), completing the proof.

Proof of Theorem 1

The proof proceeds in three steps.
Step 1. We first show that for any ξ > 0 and for all n sufficiently

large, there exists η > 0 such that

P

[

ω :P ∗
ω

(

λ :λmin

(
X∗′(λ,ω)X∗(λ,ω)

n

)

< η/2

)

> ξ

]

< ξ. (A.3)

For clarity in the argument that follows, it is important to make ex-
plicit the dependence of the bootstrap probability measure P ∗ on
ω ∈ �, as was done by Gonçalves and White (2004). Similarly, we
write X∗(λ,ω) to emphasize the fact that for each ω ∈ � and for
t = 1,2, . . . , n, we let X∗

t = Xτt (λ)(ω), where τt (λ) is a realization
of the random index chosen by the MBB. Fix ξ > 0 arbitrarily. For

ε > 0 (to be chosen shortly), define An,ε ≡ {ω : |λmin(
X′(ω)X(ω)

n ) −
λmin(Ao)| ≤ ε}. Note that for any ω ∈ An,ε , λmin(X′X

n ) ≥ η − ε,
given that λmin(Ao) > η > 0, under Assumption 1.e. Next, for any ω,

define Cn,ω,ε ≡ {λ : |λmin(
X∗′(λ,ω)X∗(λ,ω)

n ) − λmin(
X′(ω)X(ω)

n )| ≤ ε}
and note that for ω ∈ An,ε , Cn,ω,ε implies Bn,ω,ε ≡ {λ :

λmin(
X∗′(λ,ω)X∗(λ,ω)

n ) ≥ η − 2ε}. Thus An,ε ∩ Cn,ω,ε ⊆ Bn,ω,ε ,
which implies that P ∗

ω(Bc
n,ω,ε) ≤ P ∗

ω(Ac
n,ε) + P ∗

ω(Cc
n,ω,ε). Choosing

ε = η/4, it follows that

P
(
P ∗

ω

(
Bc

n,ω,η/4
)
> ξ

)

≤ P
(
P ∗

ω

(
Ac

n,η/4
)
> ξ/2

) + P
(
P ∗

ω

(
Cc

n,ω,η/4
)
> ξ/2

)

<
ξ

2
+ ξ

2
= ξ,

where the last inequality holds because P(P ∗
ω(Ac

n,η/4) > ξ/2) =
P(Ac

n,η/4) < ξ/2 for all n sufficiently large (by convergence of X′X
n

to Ao) and because P(P ∗
ω(Cc

n,ω,η/4) > ξ/2) <
ξ
2 for all n suffi-

ciently large [by lemma A.5 of Gonçalves and White 2004, given that
�n = o(n)]. This proves (A.3).

Step 2. Bo−1/2Ao√n(β̃∗
n − β̂n) ⇒dP∗ N(0, Ip) in probability.

We can write
√

n(β̃∗
n − β̂n) = √

n(β̂∗
n − β̂n) + R∗

n, with R∗
n =

−√
n(β̂∗

n − β̂n)1{λmin(X∗′X∗
n ) < η/2}, given the definition of β̃

∗
n

[with δ = η/2 > 0 and η such that λmin(Ao) > η > 0]. Because under
our assumptions, by an application of theorem 2.2 of Gonçalves and
White (2004), Bo−1/2Ao√n(β̂∗

n − β̂n) ⇒dP∗ N(0, Ip) in probabil-
ity, it suffices to show that R∗

n = oP ∗ (1) in probability. For this, note
that

√
n(β̂∗

n − β̂n) = OP ∗ (1), except in a set with probability tend-

ing to 0. Moreover, E∗(1{λmin(X∗′X∗
n ) < η/2}) = P ∗(λmin(X∗′X∗

n ) <

η/2)
P→0, as we showed in Step 1. This implies that 1{λmin(X∗′X∗

n ) <

η/2} P ∗→0 in probability, proving Step 2.
Step 3. For some δ > 0, E∗(|√n(β̃∗

n − β̂n)|2+δ) = OP (1). Given
the definition of β̃∗

n, we can write
√

n(β̃∗
n − β̂n)

=
(

X∗′X∗
n

)−1
1

(

λmin

(
X∗′X∗

n

)

≥ η/2

)

n−1/2
n∑

t=1

X∗
nt ε̂

∗
nt .
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By a well-known inequality for matrix norms (see, e.g., Strang 1988,
p. 369, ex. 7.2.3), it follows that

∣
∣
√

n(β̃∗
n − β̂n)

∣
∣2+δ

≤
∥
∥
∥
∥

(
X∗′X∗

n

)−1∥
∥
∥
∥

2+δ

1
1

(

λmin

(
X∗′X∗

n

)

≥ η/2

)

×
∣
∣
∣
∣
∣
n−1/2

n∑

t=1

X∗
nt ε̂

∗
nt

∣
∣
∣
∣
∣

2+δ

.

Here, for any matrix A, ‖A‖1 denotes the matrix norm defined by

‖A‖2
1 = maxx
=0

x′A′Ax
x′x . For A symmetric, ‖A‖1 is equal to the largest

eigenvalue of A, that is, ‖A‖1 = λmax(A). When λmin(X∗′X∗
n ) ≥ η/2,

X∗′X∗
n is symmetric and positive definite and we have that

∥
∥
∥
∥

(
X∗′X∗

n

)−1∥
∥
∥
∥

1
= λmax

((
X∗′X∗

n

)−1)

= λ−1
min

(
X∗′X∗

n

)

≤
(

η

2

)−1
= C.

Thus

∣
∣
√

n(β̃∗
n − β̂n)

∣
∣2+δ ≤ C

∣
∣
∣
∣
∣
n−1/2

n∑

t=1

X∗
nt ε̂

∗
nt

∣
∣
∣
∣
∣

2+δ

,

and it suffices to show that E∗(|n−1/2 ∑n
t=1 X∗

nt ε̂
∗
nt |2+δ) = OP (1).

Let ε̂∗
nt ≡ Y ∗

nt −X∗′
nt β̂n and ε∗

nt = Y ∗
nt −X∗′

ntβ
o . Using these definitions

and applying the cr -inequality yields
∣
∣
∣
∣
∣
n−1/2

n∑

t=1

X∗
nt ε̂

∗
nt

∣
∣
∣
∣
∣

2+δ

≤ 21+δ

(∣
∣
∣
∣
∣
n−1/2

n∑

t=1

X∗
nt ε

∗
nt

∣
∣
∣
∣
∣

2+δ

+
∣
∣
∣
∣

(
X∗′X∗

n

)√
n(β̂n − βo)

∣
∣
∣
∣

2+δ
)

≡ C(A∗
1 + A∗

2).

By Lemma A.1, we can show that

E(E∗(A∗
1)) ≤ Cn−(2+δ)/2E

[

E∗
(∣

∣
∣
∣
∣

n∑

t=1

X∗
nt ε

∗
nt

∣
∣
∣
∣
∣

2+δ)]

= O(1) + O

((
�2
n

n

)(2+δ)/2)

,

which is O(1) because �2
n/n → 0. To apply Lemma A.1, we need

{Xt εt } to be a mean-0 L2+δ -mixingale with bounded mixingale con-
stants {ct } and absolutely summable mixingale coefficients {ψm},
which holds under our assumptions. Thus, by Markov’s inequality,
E∗(A∗

1) = OP (1). For A∗
2, note that

A∗
2 ≤

∥
∥
∥
∥

(
X∗′X∗

n

)∥
∥
∥
∥

2+δ

1

∣
∣
√

n(β̂n − βo)
∣
∣2+δ

= λ2+δ
max

(
X∗′X∗

n

)
∣
∣
√

n(β̂n − βo)
∣
∣2+δ

,

implying that

E∗(A∗
2) ≤ E∗

(

λ2+δ
max

(
X∗′X∗

n

))
∣
∣
√

n(β̂n − βo)
∣
∣2+δ

.

Because
√

n(β̂n − βo) converges in distribution, it follows that
|√n(β̂n −βo)|2+δ = OP (1). Thus, to prove that E∗(A∗

2) = OP (1), it

suffices that E∗(λ2+δ
max(X∗′X∗

n )) = OP (1). For this, note that

0 < λmax(X∗′X∗
n ) ≤ tr(X∗′X∗

n ) = ∑p
i=1(n−1 ∑n

t=1 X∗2
t i

), where, for
any matrix A, λi(A) denotes its ith eigenvalue and tr(A) denotes its
trace. Thus

E∗
(

λ2+δ
max

(
X∗′X∗

n

))

≤ E∗
[(

tr

(
X∗′X∗

n

))2+δ]

≤ C

p∑

i=1

n−(2+δ)E∗
(∣

∣
∣
∣
∣

n∑

t=1

X∗2
t i

∣
∣
∣
∣
∣

2+δ)

, (A.4)

by an application of the cr -inequality. Adding and subtracting appro-
priately yields

E∗
(∣

∣
∣
∣
∣

n∑

t=1

X∗2
t i

∣
∣
∣
∣
∣

2+δ)

= E∗
(∣

∣
∣
∣
∣

n∑

t=1

(X∗2
t i − µ2i ) + nµ2i

∣
∣
∣
∣
∣

2+δ)

≤ CE∗
(∣

∣
∣
∣
∣

n∑

t=1

W∗
t i

∣
∣
∣
∣
∣

2+δ)

+ µ2+δ
2i

n2+δ, (A.5)

where we let W∗
t i

≡ X∗2
t i

− µ2i be the resampled version of Wti =
X2

t i
− µ2i , with µ2i ≡ E(X2

t i
). Under Assumption 1, we can show

that {Wti,F t } is an L2+δ -mixingale with bounded mixingale con-
stants {ct } and absolutely summable coefficients {ψm}. Thus, by
Lemma A.1, we have that

E

[

E∗
(∣

∣
∣
∣
∣

n∑

t=1

W∗
t i

∣
∣
∣
∣
∣

2+δ)]

= O
(
n(2+δ)/2) + O(�2+δ

n ). (A.6)

From (A.4), (A.5), and (A.6), it follows that

E

[

E∗
(

λ2+δ
max

(
X∗′X∗

n

))]

= O
(
n−(2+δ)/2) + O

((
�n

n

)2+δ)

+ O(1),

which is O(1) because �n
n → 0. This completes the proof of Step 3.

[Received August 2003. Revised November 2004.]
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