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Abstract. The bootstrap method, due to Bradley 
Efron, is a powerful, general method for estimating a 
variance or standard deviation by repeatedly resam- 
pling the given set of experimental data. The method is 
applied here to the problem of estimating the standard 
deviation of the estimated midpoint and spread of a 
sensory-performance function based on data sets com- 
prising 15-25 trials. The performance of the bootstrap 
estimator was assessed in Monte Carlo studies against 
another general estimator obtained by the classical 
"combination-of-observations" or incremental 
method. The bootstrap method proved clearly su- 
perior to the incremental method, yielding much 
smaller percentage biases and much greater effici- 
encies. Its use in the analysis of sensory-performance 
data may be particularly appropriate when traditional 
asymptotic procedures, including the probit- 
transformation approach, become unreliable. 

1 Introduction 

In the majority of sensory-performance measurements 
the typical finding is that the level of performance 
varies monotonically and nonlinearly with the level of 
the stimulus. In practice, the set of data relating 
stimulus level to performance level may be sum- 
marized by a single number, the critical level of the 
stimulus that yields a criterion level of performance. 
Thus when the response is discrete, referring say to the 
frequency with which a particular stimulus is detected, 
the critical level of the stimulus, in this case the 
threshold, may be defined as the level which corre- 
sponds to a detection frequency of 50 %. The perfor- 
mance function is often called the psychometric func- 
tion (see Fig. 1 a). 

In some situations, it may be possible to replicate 
the experiment and obtain several estimates of a 
parameter such as the threshold so that a mean value 

may be calculated. The reliability of such a point 
estimate is then typically provided by the variance or 
standard deviation calculated from the set of indivi- 
dual estimates. But, in other situations, replication of 
the experiment may be impossible. Given a single set of 
performance data, an estimate of the standard devi- 
ation of a parameter estimate derived from the data set 
may then be essential in assessing the significance of 
the parameter estimate, either absolutely or in relation 
to parameter estimates derived from other distri- 
butions. Additionally, the estimate of standard devi- 
ation may have an importance in its own right, 
particularly when there may be sensory pathology 
(compare Patterson et al. 1980). When replication of 
the experiment is possible, estimates of the standard 
deviations of individual parameter estimates may still 
be useful in forming the best (minimum-variance) 
estimate of the mean or in assessing the contribution of 
potential outliers to the mean. 

Depending on the method used to fit a model 
sensory-performance curve to a single set of data, 
estimates of the variances of the parameters of the 
model may be derived by classical asymptotic theory. 
In particular, if ~ is the estimate of the parameter of 
interest, obtained as the solution of a maximum- 
likelihood equation, its estimated standard deviation 
SD is given by 

S"b = [ - l/(OZL/a T2)] ~/2, 

where L is the likelihood and the partial derivative is 
evaluated at T. It is this relationship that is used to 
estimate the variance of the midpoint ("ED50") and of 
the slope in the classical probit-transformation ap- 
proach to analysing psychometric functions (Finney 
1964). Some computer software packages routinely 
produce estimates of the standard deviations of para- 
meter estimates derived from the Hessian matrix of 
2nd-order partial derivatives of the function describ- 
ing the goodness of fit. 
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Little is known, however, about the trustworthi- 
ness of these asymptotic formulae when the sample size 
is small. Substantial errors are certainly possible. For  
example, biases in the estimated standard deviation of 
the slope of a fitted performance curve derived in a 
standard probit analysis may be 20-30 % for a full- 
range (0-100%) curve, such as that in cases 1 or 3, 
Table 1, based on 25 trials or less, and may become 
many times larger for a half-range (50-100 %) perfor- 
mance curve, such as that in case 5, Table 1, based on 
25 trials (see also McKee et al. 1985). 

Recently, Bradley Efron has developed a "boot- 
strap" method for estimating the standard deviation 
of a point estimate of a parameter, or any other 
aspect of its distribution (Efron 1982; Efron and 
Tibshirani 1986). In essence, the method entails ap- 
proximating the theoretical distribution of the empir- 
ical observations by what Efron refers to as the 
bootstrap distribution. This distribution is obtained 
by taking the empirical distribution of the data in the 
definition of the parameter and then repeatedly sam- 
piing the data, with replacement, to produce a Monte 
Carlo distribution of the resulting random variable. 
(A more formal definition is given in Sect, 2.) 

The bootstrap method has been found to be very 
powerful. It requires few modelling assumptions and 
little analysis, and can be applied automatically to 
almost any situation (Efron 1982), the success of the 
method depending on replacing traditional theoretical 
analysis by computing effort. The purpose of this 
report is to demonstrate the use of the bootstrap 
approach to the problem of estimating standard 
deviations of the estimated midpoints and spreads of 
sensory-performance functions based on small data 
sets. As will be shown, the bootstrap method appears 
well suited to dealing with small samples, and is dearly 
superior to general asymptotic methods. 

2 Estimation of Standard Deviation 
by the Bootstrap Method 

Without loss in generality suppose that the perfor- 
mance measure is discrete, for example per-cent correct 
in a simple detection task, as illustrated in Fig. la. Let 
(I71, Y2,..., I~) be the observed set of 1 scores measured 
at levels xl, x2,..., xz of the stimulus. The scores Yi each 
represent the proportion of r~ successes out of n~ trials, 
i =  1, 2 . . . .  , l, resulting from an unknown theoretical 
distribution F. Let 7" be the estimate of the parameter 
of interest (the midpoint ~, say) derived from the 
observed data by some procedure g; thus 
T=g(Y1, Y2 . . . .  , Yt)-The standard deviation a(F, 7") of 
the statistic ~ cannot be written explicitly. Following 
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Fig. 1. a A performance curve based on a cumulative normal 
function EEq. (3a) with ~ ~ ~, c~ = 0, fl = 1 ] and a sample data set 
based on 5 trials at each stimulus level x = - 2 ,  -1  ..... 2. b 
Histogram of values of the estimated midpoint a based on 100 
bootstrap replications generated from the sample data set in a. 
The smooth curve is a normal curve with the same mean and 
standard deviation as the histogram 

Efron (1982), we use a Monte Carlo algorithm. 
1. Construct if, the empirical distribution of 

(Y1, Y2 . . . .  , Y~), i.e., the distribution obtained by placing 
the rescaled binomial Bi(ni, ri/n~)/ni, with ni draws and 
probability rJnf, at each level x~, i =  1, 2,...,  I. 

2. Draw a bootstrap sample (YI*, Y*,..., Yl*) from 
ff and calculate 7"* =g(Y1*, Y2* . . . .  , Yl*)- 

3. Independently repeat step 2 a large number B of 
times, obtaining bootstrap replications 7"'1 
~ .2  .. . . .  7".B, and calculate 

[ B ~ I  2-]1/2 

where S'D=a(/?,~r~, the bootstrap estimate of the 
B 

standard deviation of T,, and 7"*'= Z T*b/B. 
b = l  

In the present Monte Carlo studies (Sect. 4), the 
number B of bootstrap replications was set at 100 (see 
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Efron 1982; Efron and Tibshirani 1986). Figure lb 
shows a histogram of values of the estimated midpoint 

generated from the sample data set shown in Fig. la. 

3 Estimation of Standard Deviation 
by the Incremental Method 

The performance of the bootstrap estimator of the 
standard deviation was assessed against an alternative, 
general estimator obtained by an approximate method 
belonging to the classical study of the "combination of 
observations". Like the bootstrap method it does not 
depend upon a particular theoretical model and it 
involves little analytic effort. Its application in the 
present context is described more fully in Foster (1986). 

With notation as in Sect. 2, consider the estimate 
T=g(Yx, Y2, .-., Yt), and suppose that the estimated 
variances ~2 of the Y~, i=  1, 2,..., l, are not too large. 
Then, provided that some additional conditions are 
satisfied (including the smoothness of g and the 
independence of the Y~), the estimated standard devi- 
ation g ~  is given approximately by 

s o =  E (Og/O ) , (2) 
i = 1  

where the partial derivatives Og/O Y~ are evaluated at 

Sample sets 
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13=1 
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(Y1, Y2,-.., Yz) (Foster 1986). The ~2 are given by the 
usual binomial formula Yi(1 - Y~)/ni. It should be noted 
that if Y~=0 or I the i th term contributes nothing to 
SD. The method is also known as the incremental 
method. 

4 Monte Carlo Studies 

4.1 Data Simulation 

The bootstrap and incremental methods for obtaining 
the estimated standard deviation g'D were tested by 
applying them to simulated sensory-performance 
data generated in the following way. The underlying 
performance curve was assumed to be of the form of 
the traditional cumulative normal function 

yi=l/7+(1-1/7)(2n) -1/z exp - ~ u  a du, 
- - o o  

(3a) 
z=(xi--~)/fl, i=1 ,2  .... ,1, 

where the constants ~ and fl define the midpoint of the 
curve and its spread [reciprocal of the slope at the 
midpoint except for the factor (1 -1/?)(2n)-1/2], and 
the constant y, when finite, corresponds to the number 
of alternatives in the MAFC task giving rise to the 
data. Thus, in the extreme, in a 2AFC task, the stimulus 
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level x at the midpoint ~ corresponds to a performance 
level y of 75 %, and, in a "yes-no" task where 7 4  0% it 
corresponds to a performance level y of 50 %. Given ni 
trials at level x~, sequences of scores Y/were drawn from 
the corresponding rescaled binomial distributions 

Y~,-~ Bi(n~, y~)/ni, i = 1, 2 . . . .  , I. (3b) 

In Fig. I a, the performance curve had constants c~ = 0, 
fl = 1, and 7 4  0% and the data set was derived with 
x~= - 2, - 1,..., 2, and n i=  n = 5. No special sig- 
nificance should, however, be attached to the present 
use of the cumulative normal curve. Differences be- 
tween it and the logistic function, also often used to 
model sensory-performance curves, are small over 
most of the range. 

For  each set of simulated data (Ya, Y2 . . . . .  Y~) 
generated by (3) for some ~, r ,  7, xi, nz, i = 1, 2 . . . . .  l, a 
curve of the form (3a) was fitted by maximizing the 
likelihood over c~ and fl to obtain "new" estimates ~ and 
ft. Details of the estimation method are given in Foster 
(1986). 

With small data sets, there was an increased risk 
that values of ~ and fl for the fitted curve would take 
extreme values; in particular, c~ could become positive 
infinite or negative infinite, and fl negative, zero, or 
positive infinite. It was not sufficient, however, to 
exclude just these values. Figure 2 shows, for positive 
finite values of ~ and r ,  values of loglo(fl ~ plotted 
against values of log~o~ for the set of all data sets 
(]11, Y2,-.-, Yl) generated by (3) with ct=0, fl--1, 7 ~o e ,  
x~ = - 2 ,  - 1  . . . .  ,2, and ni = n = 5. The total number of 
points plotted is 1878. Despite the restriction of ~ and fl 
to positive finite values, there are a number of extreme 
values that would have a destabilizing effect on the 
computation of the standard deviation of the midpoint 
or of the spread of the distribution. To avoid this 
problem, sample data sets yielding values of ~ or fl 
greater than 20 times the range of the stimulus were 
excluded. For  the case illustrated in Fig. 2, the range 
xs - x ~  was 4.0, and data sets were therefore excluded if 
either log 1 o ~ or log~ o fi exceeded 1.9. The proport ion of 
points thereby eliminated was 4.2 %. 

For  a given set of constants c~, r ,  7, x~, ni, i = 1, 2 . . . .  , l, 
characterizing the model, either 5000 or 10000 such 
sets of admissible data were generated, in turn yielding 
either 5000 or 10 000 estimates of~ and ft. The standard 
deviations of these distributions were calculated and 
used as the "true" values of Sd(~) and Sd(fl~). 

4.2 Assessmen t  o f  S tandard-Devia t ion  Es t imators  

The bootstrap and incremental methods were each 
tested by applying them to 1000 new "trial" sets 

(Y1, Y2 .. . . .  Yz) of simulated data, a set at a time, 
generated as above but independently of that exercise. 
A modification was made, however, to the implemen- 
tation of the algorithms of Sects. 2 and 3. For  a given 
trial set (Y~, Y2 . . . .  , Y~), the model curve was fitted to the 
data, yielding estimates ~ and/7 for the midpoint and 
spread, and a replacement data set (Y~, Y~, ..., Yl') 
calculated, where Yi = Y~ defined by (3a) with ~ = ~ and 
fl =/~ the other constants remaining unaltered. Each 
score in the original trial set was thus replaced by its 
"smoothed" value on the fitted curve 1. The algorithms 
were applied to these smoothed data sets. 

As noted earlier (Sect. 2), bootstrap estimates of the 
standard deviation were each based on 100 bootstrap 
replications. Because of the sensitivity of the bootstrap 
method to extreme values, each Monte Carlo distri- 
bution (of the estimates of the mean and of the spread) 
was symmetrically 2-fold Winsorized, that is, the 
values ~-,b in (1) were re-ordered linearly )-~.(1), 
~.(2) . . . .  ,~.(n), and ~-.(1), ~.(2) each replaced by 
~.(3), and ~.(B),~.(B-~) each replaced by ~.w-2) .  
Winsorization was essentially a safety measure, and, if 
omitted, would not have led to very large increases in 
estimated standard deviations 2. Winsorization was 
preferred to trimming, for in addition to imparting 
robustness it made some use of the extreme values. 
More  serious difficulties due to extreme values would 
have arisen, however, if variances rather than stan- 
dard deviations had been estimated from the empir- 
ical distributions. Winsorization was not applied to 
the distributions used to estimate the true values of 
Sd(~) and Sd(fl') (Sect. 4.l). Although these values were 
based on 5000-10000 draws, they may therefore have 
been vulnerable to occasional extreme values. 

For  the incremental method, the partial derivatives 
in (2) were each estimated by finite-difference approx- 
imations, with averages of forward and backward 
differences being taken. 

The principal measure of performance of the 
bootstrap and incremental estimators g'DBooT and 
g'DINc for the parameters ~ =  ~, fl was percentage  bias, 
that is, the difference between the average of the 

1 This parametric version of the bootstrap was employed to 
avoid obtaining spuriously small standard deviation estimates 
from data sets in which several of the Y~ were zero or unity. 
Such data sets were particularly likely to occur when the total 
number of trials was small and stimulus levels were widely 
spaced 
z Without Winsorization, the worst biases in the estimates given 
in Table 1 were in case 1, where the bias in SDBoor(fl) iAncreased 
from 1.5% to 16%, and in case 2, where the bias in SDBooT(~) 
increased from 9 % to 26 %; all other biases were about the same 
as or less than those with Winsorization 
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estimate and the true value, expressed as a percentage 
of the true value, thus 

[ (Ave(~ 'DBooT(T))- -  S d ( ~ ) ) / S d ( T ) ]  x 100,  

a n d  

[(Ave(g~xNc(7"))--Sd(~))/Sd(~)] x 100. 

Additionally, the relative efficiency of g"~BOOT with 
respect to ~ i N c  was calculated as the inverse ratio of 
variances of the estimates, thus 

Var S(S(S~c(~))/Var S(S(S(~BOOT( 7"))- 

Although large data sets were not investigated here, it 
was confirmed in separate studies that ~BOOT and 
g'~iNc each behaved as consistent estimators 3. 

3 For  sufficiently large samples, the probability of the estimate 
being different from the "true" value could be made arbitrarily 
small; that is, for any small e > 0, prob { [ ~  (N) -Sd ]  > e}-~0 as 
N ~ o o ,  where N is the sample size 

The analysis was carried out for two different 
values of 7, two different numbers of levels l, and two 
different spacings of the levels, xl, x2,..., x~, the const- 
ants chosen to encompass typical experimental values. 
The values of the midpoint a, spread r, and number n, 
of trials at each level were kept fixed, a = 0, fl = 1, n, = 5, 
i -1 ,2 , . . . , l .  Computations were carried out in 
FORTRAN on two mainframe computers, a 
Cyber 176 and a CDC 7600, each with floating-point 
precision of 15 significant decimal digits. The NAG 
routine G05EYF was used to generate pseudo- 
random integers (Numerical Algorithms Group 1984). 

4.3 Results 

Table 1 shows the results of the Monte Carlo studies. 
Summary data are given for the estimates ~'~(02) and 
~'~(~) of the standard deviation of the estimated 
midpoint and spread, respectively, for the five different 

Table 1. Comparison of bootstrap and incremental methods of estimating standard deviations O f estimated midpoint c2 and spread/~ of 
an underlying performance curve [Eq. (3)]. For each method, five Monte Carlo experiments were performed, each comprising 1000 trials 
(Y1, Y2 ... .  , ~) distributed according to Eq. (3), with ~ = 0, fl = 1, ni = n = 5, and other constants as indicated. "True" values of the standard 
deviations were each based on 5000 or 10 000 trials. Relative efficiency of the bootstrap estimator was determined with respect to the 
incremental estimator 

Bootstrap estimate Incremental estimate True value 
S"D~ooT(T) S'~rNc(T) Sd(T) 

Ave Std %Bias  Rel Ave Std %Bias  
dev Eft dev 

Curve range 0-100% (y~oo) 
Sample size ~ nl = N = 25 

Model curve 1: number of levels l=  5, x i=  - 2 ,  - 1 ,  0, 1, 2 

T=c~ 0.330 0.089 - 7.4 0.89 0.324 
T=fl 0.320 0.202 1.5 0.76 0.320 

Model curve 2: number of levels l=  5, x ~ = -  1, -0 .5 ,  0, 0.5, 1 

T = ~ 0.389 0.265 9.0 67 0.497 
T=fl 0.799 0.740 -- 5.6 137 1.285 

Curve range O-100% (7~oo) 
Sample size ~ nl = N = 15 

Model curve 3: number of levels I=3,  x ~ = - 1 ,  0, 1 

T = a  0.474 0.162 -- 1.4 614 0.606 
T=fi 0.681 0.315 - 9.1 2336 1.32 

Curve range 50-100% (7=2) 
Sample size ~ n~ = N = 25 

Model curve 4: number of levels 1= 5, x~= - 1 ,  -0 .5 ,  0, 0.5, 1 

T=c~ 0.552 0.255 -21.1 87000 10.6 
T = fl 0.824 0.466 -- 27.7 278 000 35.2 

Model curve 5: number of levels l=  5, x~=--2,  --1, 0, 1, 2 

T = a  0.779 0.385 -13.5  3100 1.99 
T =  fl 0.965 0.678 -- 19.9 12 200 5.18 

0.084 - -  9.1 0.356 
0.176 1.5 0.315 

2.17 39.2 0.357 
8.66 52.0 0.846 

4.01 25.9 0.481 
15.2 76.8 0.749 

75.2 1410 0.700 
246 2990 1.140 

21.4 121 0.900 
74.8 330 1.200 
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model performance curves 4. Results have been divided 
according to curve range and sample size. The vari- 
ations of the true values of the standard deviations (last 
column in Table 1) may be noted. Decreasing the 
number I of stimulus levels but keeping constant the 
spacing between levels and the number ni of trials 
performed at each level (cases 1 and 3) led to increases 
in the values of Sd(~) and Sd(fl~). Changing the value of 

so that the curve range contracted from 0-100% 
("yes-no" task) to 50-100% (2AFC task) also led to 
increases the values of Sd(02) and Sd(/~ ~) (cases 1 and 5, 
and cases 2 and 4). Reducing the spacing between levels 
for 7 ~ ~ and for 7 = 2 (cases I and 2, and cases 5 and 4) 
had small but opposite effects, which presumably 
resulted from the introduction of respectively larger 
and smaller binomial variances at the altered stimulus 
levels. 

5 Discussion 

The superiority of the bootstrap method is evident in 
Table 1. For  all the full-range model curves (cases 1-3), 
percentage bias in ~'~BOOT(~) and S'DBoox(]~ ~) ranged 
from - 9 . 1 %  to 9.0 %, including case 3 where the total 
number N of trials was 15. Percentage bias for the 
incremental method ranged from - 9 . 1 %  to 76.8%, 
the latter occurring in case 3 for ~'D~c(~), although 
there were also large values in case 2. For  the half- 
range model curves (cases 4 and 5), the performance of 
both methods deteriorated, but much more seriously 
for the incremental method. For  the bootstrap method 
percentage bias ranged from - 13.5 % to - 27.7 %, 
whereas for the incremental method it ranged from 
121% to 2990%. The relative efficiency of the boot- 
strap method with respect to the incremental method 
was also generally high, particularly for the half-range 
model (cases 4 and 5) where values ranged from 3100 to 
278 000. 

For  bootstrap estimation with some parameters, 
for example the off-centre criterion level ED75, the 
distribution of the estimator may be sufficiently 
skewed that the standard deviation no longer provides 
an appropriate summary of its variability. Percentiles 
of the bootstrap distribution might then be used to 
estimate confidence limits for the true parameter value, 
although the number of bootstrap replications may 
have to be increased (Efron and Tibshirani 1986). 

It is worth emphasizing that the application of the 
bootstrap method to estimating the distributional 
characteristics of sensory-performance functions is not 
tied to the use of either the cumulative normal curve 
(3a) or the binomial distribution (3b). The method 

4 Average values of ~*" and/~*" did not differ from their "true" values 
by more than 0.009 and 0.094 respectively in cases 1-3, and by more 
than 0.163 and 0.211 respectively in cases 4 and 5 

should be equally useful for other sigmoidal perfor- 
mance functions, including the logistic function, and, 
more generally, the power-law increment-threshold 
function (Foster 1986). 

Although not explored here, a characteristic conse- 
quence of using the bootstrap method (or any Monte 
Carlo method) to analyse an individual set of empiri- 
cally generated data is that replication of the analysis 
need not yield precisely the same value of the estimated 
standard deviation. Provided that the model curve is 
an appropriate representation of the underlying per- 
formance and that the relative efficiencies given in 
Table 1 offer a reliable guide, the differences in these 
values should be small. Simulation errors can of course 
be reduced by increasing the number B of bootstrap 
replications, or by introducing techniques that in- 
crease the efficiency of the simulations (e.g., Davison et 
al. 1986). 

The numbers of trials associated with each model 
curve were here constrained to range from 15 to 25. 
Most experimental designs (including fixed-levels 
methods and adaptive procedures such as PEST; 
Taylor and Creelman 1967, and hybrid PEST; Hall 
1981) would usually specify more than 25 trials overall, 
but there are some circumstances where it may be 
possible to perform only a few trials, for example, when 
estimating a threshold or spread for a sensory system 
whose characteristics are changing fairly rapidly, as in 
some sensory-adaptation paradigms, or when for other 
reasons there is little time for measurement, as in some 
clinical situations. Bootstrap estimation of the stan- 
dard deviations of these parameters appears to offer 
an acceptably reliable method of assessing their 
significance. 

A FORTRAN listing of the main programs used in 
this study is available from the first author on written 
request. 
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