
Proceedings of NAACL-HLT 2018, pages 41–51

New Orleans, Louisiana, June 1 - 6, 2018. c©2017 Association for Computational Linguistics

Bootstrapping a Neural Conversational Agent with Dialogue Self-Play,
Crowdsourcing and On-Line Reinforcement Learning

Pararth Shah1, Dilek Hakkani-Tür1, Bing Liu2∗, Gokhan Tür1

1Google AI, Mountain View, CA, USA

pararth@google.com, {dilek,gokhan.tur}@ieee.org
2Carnegie Mellon University, Pittsburgh, PA, USA

liubing@cmu.edu

Abstract

End-to-end neural models show great promise

towards building conversational agents that are

trained from data and on-line experience using

supervised and reinforcement learning. How-

ever, these models require a large corpus of di-

alogues to learn effectively. For goal-oriented

dialogues, such datasets are expensive to col-

lect and annotate, since each task involves a

separate schema and database of entities. Fur-

ther, the Wizard-of-Oz approach commonly

used for dialogue collection does not provide

sufficient coverage of salient dialogue flows,

which is critical for guaranteeing an accept-

able task completion rate in consumer-facing

conversational agents. In this paper, we study

a recently proposed approach for building an

agent for arbitrary tasks by combining dia-

logue self-play and crowd-sourcing to gener-

ate fully-annotated dialogues with diverse and

natural utterances. We discuss the advantages

of this approach for industry applications of

conversational agents, wherein an agent can be

rapidly bootstrapped to deploy in front of users

and further optimized via interactive learning

from actual users of the system.

1 Introduction

Goal-oriented conversational agents enable users

to complete specific tasks like restaurant reserva-

tions, buying movie tickets or booking a doctor’s

appointment, through natural language dialogue

via a spoken or a text-based chat interface, instead

of operating a graphical user interface on a device.

Each task is based on a database schema which de-

fines the domain of interest. Developing an agent

to effectively handle all user interactions in a given

domain requires properly dealing with variations

in the dialogue flows (what information the users

choose to convey in each utterance), surface forms

(choice of words to convey the same information),

∗* Work done while the author was an intern at Google.

database states (what entities are available for sat-

isfying the user’s request), and noise conditions

(whether the user’s utterances are correctly recog-

nized by the agent). Moreover, the number of po-

tential tasks is proportional to the number of trans-

actional websites on the Web, which is in the order

of millions.

Popular consumer-facing conversational assis-

tants approach this by enabling third-party devel-

opers to build dialogue “experiences” or “skills”

focusing on individual tasks (e.g. DialogFlow1,

Alexa Skills (Kumar et al. (2017)), wit.ai2). The

platform provides a parse of the user utterance into

a developer defined intent, and the developer pro-

vides a policy which maps user intents to system

actions, usually modeled as flow charts3. This

gives the developer full control over how a par-

ticular task is handled, allowing her to incremen-

tally add new features to that task. However, some

limitations are that (i) the developer must antici-

pate all ways in which users might interact with

the agent, and (ii) since the programmed dialogue

flows are not “differentiable”, the agent’s dialogue

policy cannot be improved automatically with ex-

perience and each improvement requires human

intervention to add logic to support a new dialogue

flow or revise an existing flow.

Recently proposed neural conversational mod-

els (Vinyals and Le (2015)) are trained with su-

pervision over a large corpus of dialogues (Ser-

ban et al. (2016, 2017); Lowe et al. (2017)) or

with reinforcement to optimize a long term reward

(Li et al. (2016a,b)). End-to-end neural conver-

sational models for task-oriented dialogues (Wen

et al. (2016); Liu and Lane (2017a)) leverage an-

notated dialogues collected with an expert to em-

bed the expert’s dialogue policy for a given task in

1https://dialogflow.com
2https://wit.ai
3https://dialogflow.com/docs/dialogs

41

Figure 1: Bootstrapping a neural conversational agent.

the weights of a neural network. However, train-

ing such models requires a large corpus of anno-

tated dialogues in a specific domain, which is ex-

pensive to collect. Approaches that use reinforce-

ment learning to find the optimal policy also rely

on a pre-training step of supervised learning over

expert dialogues in order to reduce the exploration

space to make the policy learning tractable (Fatemi

et al. (2016); Su et al. (2016b, 2017); Liu and Lane

(2017b)). A further issue with application of rein-

forcement learning techniques is that the user sim-

ulator used for the policy training step may not en-

tirely mimic the behavior of actual users of the

system. This can be mitigated by continuously

improving the deployed agent from interactions

with actual users via on-line learning (Gašić et al.

(2011); Su et al. (2015, 2016a)).

The Wizard-of-Oz setup (Kelley (1984);

Dahlbäck et al. (1993)) is a popular approach

to collect and annotate task-oriented dialogues

via crowd-sourcing for training neural conver-

sational models (Wen et al. (2016); Asri et al.

(2017)). However, this is an expensive and lossy

process as the free-form dialogues collected

from crowd-workers might contain dialogues

unfit for use as training data, for instance if the

crowd workers use language that is either too

simplistic or too convoluted, or may have errors

in dialogue act annotations requiring an expensive

manual filtering and cleaning step. Further, the

corpus might not cover all the interactions that the

dialogue developer expects the agent to handle.

In contrast, the recently proposed Machines

Talking To Machines (M2M) approach (Shah

et al. (2018)) is a functionality-driven process

for training dialogue agents, which combines a

dialogue self-play step and a crowd-sourcing step

to obtain a higher quality of dialogues in terms of

(i) diversity of surface forms as well as dialogue

flows, (ii) coverage of all expected user behaviors,

and (iii) correctness of annotations.

To apply these recent neural approaches to

consumer-facing agents that must rapidly scale

to new tasks, we propose the following recipe

(Fig. 1): (1) exhaustively generate dialogue tem-

plates for a given task using dialogue self-play

between a simulated user and a task-independent

programmed system agent, (2) obtain natural lan-

guage rewrites of these templates using crowd

sourcing, (3) train an end-to-end conversational

agent on this fully annotated dataset, achieving a

reasonable task completion rate, and (4) deploy

this agent to interact with users and collect user

feedback, which serves as a reward value to con-

tinuously improve the agent’s policy with on-line

reinforcement learning updates. Consequently, a

programmed dialogue agent’s policy is distilled

into a differentiable neural model which sustains

a minimum task completion rate through guaran-

teed coverage of the interactions anticipated by the

developer. Such an agent is safely deployable in

front of actual users while also continuously im-

proving from user feedback via lifelong learning.

The main contribution of this paper is two-fold:

1. an approach combining dialogue self-play,

crowd-sourcing, and on-line reinforcement

learning to rapidly scale consumer-facing

conversational agents to new tasks.

2. discussion of practical solutions for improv-

ing user simulation and crowd-sourcing se-

tups to guarantee coverage of salient dialogue

flows and diversity of surface forms.

2 Approach

We present a brief overview of the Machines Talk-

ing To Machines (M2M) approach for bootstrap-

ping a conversational agent. We direct the reader

to the technical report Shah et al. (2018) for a de-

tailed description of this approach.

42

Table 1: Sample dialogue outline and rewrite for movie ticket booking.

Outline Rewrite

Annotations Template utterances NL utterances

S: greeting() Greeting. Hi, how can I help you?

U: inform(intent=book movie,

name=Inside Out, date=tomorrow,

num tickets=2)

Book movie with name is

Inside Out and date is tomorrow

and num tickets is 2.

I want to buy 2 tickets for Inside

Out for tomorrow.

S: ack() request(time) OK. Provide time.
Alright. What time would you like

to see the movie?

U: inform(time=evening) Time is evening.
Anytime during the evening works

for me.

S: offer(theatre=Cinemark 16,

time=6pm)

Offer theatre is Cinemark 16 and

time is 6pm.

How about the 6pm show at

Cinemark 16?

U: affirm() Agree. That sounds good.

S: notify success() Reservation confirmed. Your tickets have been booked!

2.1 M2M

At a high level, M2M connects a developer,

who provides the task-specific information, and a

framework, which provides the task-independent

information, for generating dialogues centered

around completing the task. In this work we focus

on database querying applications, which involve

a relational database which contains entities that

the user would like to browse and select through a

natural language dialogue. The input to the frame-

work is a task specification obtained from the de-

veloper, consisting of a schema of “slots” induced

by the columns of the database and an API client

which can be queried with a SQL-like syntax to

return a list of matching candidate entities for any

valid combination of slot values. For example,

the schema for a movie ticket booking domain

would include slots such as “movie name”, “num-

ber of tickets”, “date” and “time” of the show, etc.

The API client would provide access to a database

(hosted locally or remotely via the Web) of movie

showtimes.

Outlines. With the task specification, the

framework must generate a set of dialogues cen-

tered around that task. Each dialogue is a se-

quence of natural language utterances, i.e. dia-

logue turns, and their corresponding annotations,

which include the semantic parse of that turn as

well as additional information tied to that turn.

For example, for the user turn “Anytime during

the evening works for me”, the annotation would

be “User: inform(time=evening)”. The key idea

in M2M is to separate the linguistic variations in

the surface forms of the utterances from the se-

mantic variations in the dialogue flows. This is

achieved by defining the notion of a dialogue out-

line as a sequence of template utterances and their

corresponding annotations. Template utterances

are simplistic statements with language that is easy

to generate procedurally. An outline encapsulates

the semantic flow of the dialogue while abstract-

ing out the linguistic variation in the utterances.

The first two columns of Table 1 provide a sample

dialogue outline for a movie ticket booking inter-

action, consisting of the annotations and template

utterances, respectively.

Dialogue self-play. M2M proceeds by first gen-

erating a set of dialogue outlines for the specified

task. A task-oriented dialogue involves the back

and forth flow of information between a user and

a system agent aimed towards satisfying a user

need. Dialogue self-play simulates this process by

employing a task-independent user simulator and

system agent seeded with a task schema and API

client. The user simulator maps a (possibly empty)

dialogue history, a user profile and a task schema

to a distribution over turn annotations for the next

user turn. Similarly, the system agent maps a di-

alogue history, task schema and API client to a

distribution over system turn annotations. Anno-

tations are sampled from user and system itera-

tively to take the dialogue forward. The gener-

ated annotations consist of dialogue frames that

encode the semantics of the turn through a dia-

logue act and a slot-value map (Table 1). For ex-

ample “inform(date=tomorrow, time=evening)” is

a dialogue frame that informs the system of the

user’s constraints for the date and time slots. We

use the Cambridge dialogue act schema (Hender-

son et al. (2013)) as the list of possible dialogue

43

acts. The process continues until either the user’s

goals are achieved and the user exits the dialogue

with a “bye()” act, or a maximum number of turns

are reached.

In our experiments we use an agenda-based

user simulator (Schatzmann et al. (2007)) pa-

rameterized by a user goal and a user pro-

file. The programmed system agent is modeled

as a handcrafted finite state machine (Hopcroft

et al. (2006)) which encodes a set of task-

independent rules for constructing system turns,

with each turn consisting of a response frame

which responds to the user’s previous turn, and

an initiate frame which drives the dialogue for-

ward through a predetermined sequence of sub-

dialogues. For database querying applications,

these sub-dialogues are: gather user preferences,

query a database via an API, offer matching enti-

ties to the user, allow user to modify preferences

or request more information about an entity, and

finally complete the transaction (buying or reserv-

ing the entity) (Fig. 2). By exploring a range of

parameter values and sampling a large number of

outlines, dialogue self-play can generate a diverse

set of dialogue outlines for the task.

Template utterances. Once a full dialogue

has been sampled, a template utterance generator

maps each annotation to a template utterance using

a domain-general grammar (Wang et al. (2015))

parameterized with the task schema. For ex-

ample, “inform(date=tomorrow, time=evening)”

would map to a template “($slot is $value) (and

($slot is $value))*”, which is grounded as “Date is

tomorrow and time is evening.” The developer can

also provide a list of templates to use for some or

all of the dialogue frames if they want more con-

trol over the language used in the utterances. Tem-

plate utterances are an important bridge between

the annotation and the corresponding natural lan-

guage utterance, as they present the semantic in-

formation of a turn annotation in a format under-

standable by crowd workers.

Crowd-sourced rewrites. To obtain a natu-

ral language dialogue from its outline, the frame-

work employs crowd sourcing to paraphrase tem-

plate utterances into more natural sounding utter-

ances. The paraphrase task is designed as a “con-

textual rewrite” task where a crowd worker sees

the full dialogue template, and provides the nat-

ural language utterances for each template utter-

ances of the dialogue. This encourages the crowd

Figure 2: Finite state machine for a task-independent

system agent for database querying applications.

worker to inject linguistic phenomena like coref-

erence (“Reserve that restaurant”) and lexical en-

trainment (“Yes, the 6pm show”) into the utter-

ances. Fig. 5 in the Appendix provides the UI

shown to crowd workers for this task. The same

outline is shown to K > 1 crowd-workers to get

diverse natural language utterances for the same

dialogue. The third column of Table 1 presents

contextual rewrites for each turn of an outline for

a movie ticket booking task.

Model training. The crowd sourced dataset

has natural language utterances along with full an-

notations of dialogue acts, slot spans, dialogue

state and API state for each turn. These anno-

tated dialogues are sufficient for training end-to-

end models using supervision (Wen et al. (2016)).

Dialogue self-play ensures sufficient coverage of

flows encoded in the programmed system agent

in the crowd sourced dataset. Consequently, the

trained agent reads natural language user utter-

ances and emits system turns by encoding the

FSM policy of system agent in a differentiable

neural model.

2.2 On-line reinforcement learning

A limitation of training a neural agent on the

dataset collected with M2M is that it is restricted

to the flows encoded in the user simulator or the

programmed system agent, and utterances col-

lected from crowd-workers. When deployed to in-

teract with actual users, the agent may find itself in

new dialogue states that weren’t seen during train-

ing. This can be mitigated by continually improv-

44

ing the agent’s language understanding as well as

dialogue policy by using a feedback score on each

dialogue interaction of the neural agent as a reward

value to optimize the end-to-end model using pol-

icy gradient reinforcement learning (RL). The RL

updates can be done in two phases (which could

be interleaved):

RL with user simulator. Since RL requires

training for thousands of episodes, we construct

a simulated environment in which the user sim-

ulator emits a user turn annotation, and a natu-

ral language utterance is sampled from the set of

utterances collected for that dialogue frame from

crowd sourcing. This enables the neural agent

to discover dialogue flows not present in the pro-

grammed agent. The reward is computed based on

successful task completion minus a turn penalty

(El Asri et al. (2014)), and the model is updated

with the on-policy REINFORCE update after each

episode (Liu et al. (2017)).

RL with human feedback. For the agent to

handle user interactions that are not generated by

the user simulator, the agent must learn from its in-

teractions with actual users. This is accomplished

by applying updates to the model based on feed-

back scores collected from users after each dia-

logue interaction (Shah et al. (2016)).

3 User simulation and dialogue self-play

M2M hinges on having a generative model of a

user that is reasonably close to actual users of

the system. While it is difficult to develop pre-

cise models of user behavior customized for every

type of dialogue interaction, it is easier to create a

task-independent user simulator that operates at a

higher level of abstraction (dialogue acts) and en-

capsulates common patterns of user behavior for

a broad class of dialogue tasks. Seeding the user

simulator with a task-specific schema of intents,

slot names and slot values allows the framework

to generate a variety of dialogue flows tailored to

that specific task. Developing a general user sim-

ulator targeting a broad class of tasks, for exam-

ple database querying applications, has significant

leverage as adding a new conversational pattern to

the simulator benefits the outlines generated for

dialogue interfaces to any database or third-party

API.

Another concern with the use of a user sim-

ulator is that it restricts the generated dialogue

flows to only those that are engineered into the

user model. In comparison, asking crowd work-

ers to converse without any restrictions could gen-

erate interesting dialogues that are not anticipated

by the dialogue developer. Covering complex in-

teractions is important when developing datasets

to benchmark research aimed towards building

human-level dialogue systems. However, we ar-

gue that for consumer-facing chatbots, the primary

aim is reliable coverage of critical user interac-

tions. Existing methods for developing chatbots

with engineered finite state machines implicitly

define a model of expected user behavior in the

states and transitions of the system agent. A user

simulator makes this user model explicit and is a

more systematic approach for a dialogue devel-

oper to reason about the user behaviors handled

by the agent. Similarly, having more control over

the dialogue flows present in the dataset ensures

that all and only expected user and system agent

behaviors are present in the dataset. A dialogue

agent bootstrapped with such a dataset can be de-

ployed in front of users with a guaranteed mini-

mum task completion rate.

The self-play step also uses a programmed sys-

tem agent that generates valid system turns for a

given task. Since M2M takes a rule-based agent

which works with user dialogue acts and emits a

neural conversational agent that works with nat-

ural language user utterances, the framework ef-

fectively distills an expert dialogue policy com-

bined with a language understanding module into

a single learned neural network. The developer

can customize the behavior of the neural agent

by modifying the component rules of the pro-

grammed agent. Further, by developing a task-

independent set of rules for handling a broad task

like database querying applications (Fig. 2), the

cost of building the programmed agent can be

amortized over a large number of dialogue tasks.

4 Crowdsourcing

In the Wizard-of-Oz setting, a task is shown to

a pair of crowd workers who are asked to con-

verse in natural language to complete the task. The

collected dialogues are manually annotated with

dialogue act and slot span labels. This process

is expensive as the two annotation tasks are dif-

ficult and therefore time consuming: identifying

the dialogue acts of an utterance requires under-

standing the precise meaning of each dialogue act,

and identifying all slot spans in an utterance re-

45

quires checking the utterance against all slots in

the schema. As a result, the crowd-sourced an-

notations may need to be cleaned by an expert.

In contrast, M2M significantly reduces the crowd-

sourcing expense by automatically annotating a

majority of the dialogue turns and annotating the

remaining turns with two simpler crowd-sourcing

tasks: “Does this utterance contain this particular

slot value?” and “Do these two utterances have the

same meaning?”, which are easier for the average

crowd worker.

Further, the lack of control over crowd workers’

behavior in the Wizard-of-Oz setting can lead to

dialogues that may not reflect the behavior of real

users, for example if the crowd worker provides

all constraints in a single turn or always mentions a

single constraint in each turn. Such low-quality di-

alogues either need to be manually removed from

the dataset, or the crowd participants need to be

given additional instructions or training to encour-

age better interactions (Asri et al. (2017)). M2M

avoids this issue by using dialogue self-play to

systematically generate all usable dialogue out-

lines, and simplifying the crowd-sourcing step to

a dialogue paraphrase task.

5 Evaluations

We have released4 two datasets totaling 3000 dia-

logues collected using M2M for the tasks of buy-

ing a movie ticket (Sim-M) and reserving a restau-

rant table (Sim-R). We present some experiments

with these datasets.

5.1 Dialogue diversity

First we investigate the claim that M2M leads

to higher coverage of dialogue features in the

dataset. We compare the Sim-R training dialogues

with the DSTC2 (Henderson et al. (2013)) train-

ing set which also deals with restaurants and is

similarly sized (1611 vs. 1116 dialogues) (Ta-

ble 2). M2M compares favorably to DSTC2 on

the ratio of unique unigrams and bigrams to total

number of tokens in the dataset, which signifies

a greater variety of surface forms as opposed to

repeating the same words and phrases. We also

measure the outline diversity, defined as the ra-

tio of unique outlines divided by total dialogues in

the dataset. We calculate this for sub-dialogues of

length k = {1, 3, 5} as well as full dialogues. This

4https://github.com/google-research-datasets/simulated-
dialogue

Table 2: Comparing DSTC2 and M2M Restaurants

datasets on diversity of language and dialogue flows.

Metric
DSTC2

(Train)

Sim-R

(Train)

Dialogues 1611 1116

Total turns 11670 6188

Total tokens 199295 99932

Avg. turns per dialogue 14.49 11.09

Avg. tokens per turn 8.54 8.07

Unique tokens ratio 0.0049 0.0092

Unique bigrams ratio 0.0177 0.0670

Outline diversity (k=1) 0.0982 0.2646

Outline diversity (k=3) 0.1831 0.3145

Outline diversity (k=5) 0.5621 0.7061

Outline diversity (full) 0.9243 0.9292

Figure 3: Crowd worker ratings for the quality of the

user and system utterances of dialogues collected with

M2M.

gives a sense of the diversity of dialogue flows in

the dataset. M2M has fewer repetitions of sub-

dialogues compared to DSTC2.

5.2 Human evaluation of dataset quality

To evaluate the subjective quality of the M2M

datasets, we showed the final dialogues to human

judges recruited via a crowd-sourcing service, and

asked them to rate each user and system turn be-

tween 1 to 5 on multiple dimensions. Fig. 6 in the

Appendix provides the UI shown to crowd work-

ers for this task. Each dialogue was shown to 3

judges. Fig. 3 shows the average ratings aggre-

gated over all turns for the two datasets.

5.3 Human evaluation of model quality

To evaluate the proposed method of bootstrapping

neural conversational agents from a programmed

system agent, we trained an end-to-end conversa-

46

Figure 4: Average crowd worker ratings for the quality

of the system utterances of neural conversational agents

trained on Sim-M.

tional model (Liu et al. (2017)) using supervised

learning (SL) on the Sim-M training set. This

model is further trained with RL for 10K episodes

with the user simulator as described in Section 2.2

(SL+RL). We performed two separate evaluations

of these models:

Simulated user. We evaluate the neural

agents in the user simulation environment for 100

episodes. We asked crowd-sourced judges to read

dialogues between the agent and the user simu-

lator and rate each system turn on a scale of 1

(frustrating) to 5 (optimal way to help the user).

Each turn was rated by 3 different judges. Fig. 4

shows the average scores for both agents. End-to-

end optimization with RL improves the quality of

the agent according to human judges, compared to

an agent trained with only supervised learning on

the dataset.

Human user. We evaluate the neural agents

in live interactions with human judges for 100

episodes each. The human judges are given sce-

narios for a movie booking task and asked to talk

with the agent to complete the booking accord-

ing to the constraints. After the dialogue finishes,

the judge is asked to rate each system turn on the

same scale of 1 to 5. Fig. 4 shows the average

scores for both agents. End-to-end optimization

with RL improves the agent’s interactions with hu-

man users. The interactions with human users are

of lower quality than those with the user simula-

tor as human users may use utterances or dialogue

flows unseen by the agent. Continual training of

the agent with on-line reinforcement learning can

close this gap with more experience.

6 Related work and discussion

We presented an approach for rapidly bootstrap-

ping goal-oriented conversational agents for arbi-

trary database querying tasks, by combining dia-

logue self-play, crowd-sourcing and on-line rein-

forcement learning.

The dialogue self-play step uses a task-

independent user simulator and programmed sys-

tem agent seeded with a task-specific schema,

which provides the developer with full control

over the generated dialogue outlines. PyDial

(Ultes et al. (2017)) is an extensible open-source

toolkit which provides domain-independent im-

plementations of dialogue system modules, which

could be extended by adding dialogue self-play

functionality. We described an FSM system agent

for handling any transactional or form-filling task.

For more complex tasks, the developer can extend

the user simulator and system agents by adding

their own rules. These components could also

be replaced by machine learned generative mod-

els if available. Task Completion Platform (TCP)

(Crook et al. (2016)) introduced a task configura-

tion language for building goal-oriented dialogue

interactions. The state update and policy modules

of TCP could be used to implement agents that

generate outlines for more complex tasks.

The crowd-sourcing step uses human intelli-

gence to gather diverse natural language utter-

ances. Comparisons with the DSTC2 dataset show

that this approach can create high-quality fully an-

notated datasets for training conversational agents

in arbitrary domains. ParlAI (Miller et al. (2017)),

a dialogue research software platform, provides

easy integration with crowd sourcing for data

collection and evaluation. However, the crowd

sourcing tasks are open-ended and may result in

lower quality dialogues as described in Section

4. In M2M, crowd workers are asked to para-

phrase given utterances instead of writing new

ones, which is at a suitable difficulty level for

crowd workers.

Finally, training a neural conversational model

over the M2M generated dataset encodes the pro-

grammed policy in a differentiable neural model

which can be deployed to interact with users. This

model is amenable to on-line reinforcement learn-

ing updates with feedback from actual users of the

system (Su et al. (2016a); Liu et al. (2017)), ensur-

ing that the agent improves its performance in real

situations with more experience.

47

References

Layla El Asri, Hannes Schulz, Shikhar Sharma,
Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. arXiv preprint arXiv:1704.00057 .

Paul Crook, Alex Marin, Vipul Agarwal, Khushboo
Aggarwal, Tasos Anastasakos, Ravi Bikkula, Daniel
Boies, Asli Celikyilmaz, Senthilkumar Chandramo-
han, Zhaleh Feizollahi, et al. 2016. Task completion
platform: A self-serve multi-domain goal oriented
dialogue platform. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Demonstra-
tions. pages 47–51.

Nils Dahlbäck, Arne Jönsson, and Lars Ahren-
berg. 1993. Wizard of oz studieswhy and how.
Knowledge-based systems 6(4):258–266.

Layla El Asri, Romain Laroche, and Olivier Pietquin.
2014. Task completion transfer learning for reward
inference. Proc of MLIS .

Mehdi Fatemi, Layla El Asri, Hannes Schulz, Jing He,
and Kaheer Suleman. 2016. Policy networks with
two-stage training for dialogue systems. In Proceed-
ings of the 17th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue. pages 101–
110.

Milica Gašić, Filip Jurčı́ček, Blaise Thomson, Kai Yu,
and Steve Young. 2011. On-line policy optimisation
of spoken dialogue systems via live interaction with
human subjects. In Automatic Speech Recognition
and Understanding (ASRU), 2011 IEEE Workshop
on. IEEE, pages 312–317.

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2013. Dialog state tracking challenge 2 &
3. http://camdial.org/˜mh521/dstc/.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2006. Introduction to Automata Theory, Lan-
guages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

John F Kelley. 1984. An iterative design methodol-
ogy for user-friendly natural language office infor-
mation applications. ACM Transactions on Infor-
mation Systems (TOIS) 2(1):26–41.

Anjishnu Kumar, Arpit Gupta, Julian Chan, Sam
Tucker, Bjorn Hoffmeister, and Markus Dreyer.
2017. Just ask: Building an architecture for extensi-
ble self-service spoken language understanding. In
NIPS Conversational AI Workshop.

Jiwei Li, Alexander H Miller, Sumit Chopra,
Marc’Aurelio Ranzato, and Jason Weston. 2016a.
Dialogue learning with human-in-the-loop. arXiv
preprint arXiv:1611.09823 .

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016b. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. pages 1192–
1202.

Bing Liu and Ian Lane. 2017a. An end-to-end trainable
neural network model with belief tracking for task-
oriented dialog. In Interspeech.

Bing Liu and Ian Lane. 2017b. Iterative policy learning
in end-to-end trainable task-oriented neural dialog
models. In Proceedings of IEEE ASRU.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2017. End-to-end optimiza-
tion of task-oriented dialogue model with deep rein-
forcement learning. In NIPS Workshop on Conver-
sational AI.

Ryan Lowe, Nissan Pow, Iulian Vlad Serban, Lau-
rent Charlin, Chia-Wei Liu, and Joelle Pineau.
2017. Training end-to-end dialogue systems with
the ubuntu dialogue corpus. Dialogue & Discourse
8(1):31–65.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh, and Ja-
son Weston. 2017. Parlai: A dialog research soft-
ware platform. arXiv preprint arXiv:1705.06476 .

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the
Association for Computational Linguistics; Com-
panion Volume, Short Papers. Association for Com-
putational Linguistics, pages 149–152.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In AAAI.
volume 16, pages 3776–3784.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In
Thirty-First AAAI Conference on Artificial Intelli-
gence.

Pararth Shah, Dilek Hakkani-Tür, and Larry Heck.
2016. Interactive reinforcement learning for task-
oriented dialogue management. In NIPS Deep
Learning for Action and Interaction Workshop.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Ab-
hinav Rastogi, Ankur Bapna, Neha Nayak, and
Larry Heck. 2018. Building a conversational agent
overnight with dialogue self-play. arXiv preprint
arXiv:1801.04871 .

48

Pei-Hao Su, Paweł Budzianowski, Stefan Ultes, Mil-
ica Gasic, and Steve Young. 2017. Sample-efficient
actor-critic reinforcement learning with supervised
data for dialogue management. In Proceedings of
the 18th Annual SIGdial Meeting on Discourse and
Dialogue. pages 147–157.

Pei-Hao Su, Milica Gasic, Nikola Mrkšić, Lina M Ro-
jas Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016a. On-line active
reward learning for policy optimisation in spoken di-
alogue systems. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). volume 1, pages
2431–2441.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016b. Continu-
ously learning neural dialogue management. arXiv
preprint arXiv:1606.02689 .

Pei-Hao Su, David Vandyke, Milica Gašı́c, Dongho
Kim, Nikola Mrkšı́c, Tsung-Hsien Wen, and Steve
Young. 2015. Learning from real users: Rating di-
alogue success with neural networks for reinforce-
ment learning in spoken dialogue systems. In Pro-
ceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH. volume 2015, pages 2007–2011.

Stefan Ultes, Lina M Rojas Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Inigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
Wen, Milica Gasic, et al. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. Proceed-
ings of ACL 2017, System Demonstrations pages 73–
78.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869 .

Yushi Wang, Jonathan Berant, Percy Liang, et al. 2015.
Building a semantic parser overnight. ACL .

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. ACL .

49

Figure 5: Contextual rewrite task interface for paraphrasing a dialogue outline with natural language.

50

Figure 6: Dialogue quality evaluation task interface for rating the user and system turns of completed dialogues.

51

