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ABSTRACT

Bootstrapping is a resampling technique that requires 
computer time than simulation does. Bootstrapping -
simulation- must be defined for each type of application. T
paper defines bootstrapping for random simulations w
replicated runs. The focus is on linear regress
metamodels. The metamodel’s parameters are estimated
through Generalized Least Squares. Its fit is meas
through Rao’s lack-of-fit F-statistic. The distributions of th
statistic is estimated through bootstrapping. The m
conclusions are (i) not the regression residuals shoul
bootstrapped; instead the deviations that also occur in
standard deviation, should be bootstrapped (ii) bootstrap
Rao's lack-of-fit statistic is a good alternative to the F-tes
gives virtually identical results when the assumptions of
F-test are known to apply, and somewhat better res
otherwise.

1 INTRODUCTION   

In this paper we examine the validation of a linear regres
model used as a metamodel or response surface (an appro
mation of the input/output or I/O transformation implied 
the underlying simulation model).Different types 
metamodels and their validation are surveyed in Kleijnen
Sargent (1997). We, however, introduce bootstrapping as a
technique for this validation. Bootstrapping outsi
simulation is studied in the seminal book, Efron a
Tibshirani (1993), which we abbreviate to E & T. In genera
bootstrapping means that the data (say) zj in the original
sample of size s are randomly resampled with replacemenj
= 1, ..., s). E & T (pp. 115, 383) comment that ‘bootstrappi
is not a uniquely defined concept ... alternative boots
methods may coexist’. We shall give our interpretation of
bootstrapping for our problem.

 We focus on Rao’s lack-of-fit F-statistic, but we plan
study several other popular statistics, namely the coeffic
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of determination ( ), possibly adjusted for the number oR2

parameters ( ), the linear correlation coefficient, alsR2
adj

known as Pearson’s rho ( ), and  cross-validation givin'
Studentized prediction errors and using Bonferroni’
inequality (resulting in, say, ). These various statistict̃max
can be studied through a Monte Carlo experiment. This pa
gives preliminary results (at the WSC ‘98 conference mo
extensive results will be presented; see §5 on futu
research).

The literature gives the following picture. Stine (1985)
also examines bootstrapping in regression analysis, but
assumes that the regression model is correct; moreover
assumes constant response variances, whereas simula
applications show variance heterogeneity, in gener
Breiman (1992) investigates the selection of the corre
regression model, but he assumes no replications (mi = 1),
constant response variances, and a particular parame
bootstrap of a particular statistic different from ours
Bootstrapping has not yet been applied frequently in syste
simulation; two academic examples are provided in Friedm
and Friedman (1995), including references to software th
permits bootstrapping (they mention SAS and SPSS; we use
S-Plus). Kim, Willemain, Haddock, and Runger (1993
formulate their so-called ‘threshold’ bootstrap for the
analysis of autocorrelated simulation outputs. Barton an
Schruben (1996), Cheng and Holland (1997), and  Che
(1995) investigate bootstrapping of empirical inpu
distributions in simulation.

The main conclusions are (i) not the regression residualsê
should be bootstrapped; instead the deviations w 	 w̄
should be bootstrapped (ii) bootstrapping Rao's lack-of-
statistic is a good alternative to the F-test: it gives virtual
identical results when the assumptions of the F-test a
known to apply, and somewhat better results otherwise.

We organize the remainder of this paper as follows. In
§2 we summarize linear regression metamodels wi
parameters estimated through Least Squares (LS); we def
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Rao’s lack-of-fit F-statistic. In §3 we discuss how t
distribution of this statistic can be estimated throu
bootstrapping. In §4 we present preliminary Monte Ca
results. In §5 we briefly discuss future research. In §6
summarize the main conclusions.

Note: Bootstrapping in simulation raises an interes
question. Instead of using the computer to generate resp
through bootstrapping, the computer may be used to gen
more simulation responses, either for old factor combinat
or for new combinations. In practice, many simulation
models require much more computer time than regres
analysis does. In those situations it makes sense inde
bootstrap. Breiman (1992, p. 750) also discus
bootstrapping versus replicating, but not in a simula
context.

2 LINEAR REGRESSION METAMODELS IN
SIMULATION

We first define some symbols. We use Greek letters
parameters; bold face for matrixes and vectors. We sup
that the simulation model has k factors, denoted by dj with j
= 1, ..., k so We assume a singd 
 (d1, d2, ..., dk).
type of simulation response, denoted by w (e.g. average
waiting time). We let n denote the total number of factor
combinations actually simulated. Factor combination i with
i = 1, ..., n is replicated  times using non-overlappimi
pseudo-random number streams. This yields simula

response  with r = 1, .., . Hence, N = wi; r mi M
n
i 
 1 mi

denotes the total number of simulation observations. Lew̄
denote the n-dimensional vector of average simulati
outputs that can be obtained from . Denote the twi; r
number of parameters in the regression metamodel by q. For
example, a first-order polynomial regression metamode
k factors has parameters ��  = (�0, �1, ...,�k)' so q = k + 1. Let
X  denote the n×q matrix of  simulated independe
regression variables; for example, its first column consis
ones; its first row of x1 = (1, x1; 2, ... x1; q - 1). We further
assume that the n combinations of simulation factors a
selected though application of the statistical theory on De
Of Experiments (DOE); for example, a 2k - p design may be
used. Hence X is controlled by the n×k design matrix D =
(di) and the form of the metamodel assumed. Conseque
in our situation the original (non-bootstrapped) data Z (see
§1) consist of (X, w). Finally, let y denote the output for th
correct (adequate, valid) metamodel, so

where e denotes the additive random residual with zero m
and covariance matrix .cov(y)
702
�̂ 
 (X�

1X1)
	1X�

1w̄. (2)

si; i � (w) 


M
m

r 
 1
(wi; r	w̄i)(wi �; r	w̄i �)

(mi 	 1)

with i, i � 
 1, ..., n .

(3)

�̃ �

(X ��S		1
w X)	1X ��S		1

w w̄ .
(4)
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An example of such a metamodel is a second-ord
polynomial. This metamodel has (i) one grand or over
mean , (ii) k main effects , (iii) k (k - 1)/2 two-factor�0 �j
interactions  (j < j' and j' = 2, ..., k ), and (iv) k quadratic�j; j �

effects, . Metamodel validation often concerns th�j; j
selection of the correct degree of the polynomial. Cheng a
Kleijnen (1997) gives a Bayesian approach, whereas t
paper gives a bootstrap approach. Kleijnen and Standri
(1987) applies a popular ad hoc approach.

First suppose that the metamodel is fitted applyin

ordinary LS or OLS. Then the OLS estimator (say)  for �̂
first-order polynomial (meta)model is

This formula assumes that the inverse exists; DOE ensu
that is indeed not collinear. For example, if k = 3 and aX1
first-order polynomial is assumed, then a 23 - 1 design gives an
orthogonal , assuming the factors are standardized; X1
Kleijnen and Bettonvil (1990).

Generalized LS (GLS) estimates �� accounting for variance
heterogeneity (resulting in WLS) and -in case of comm
random numbers- correlations among simulation respon
These variances and covariances can be estimated by

Sometimes we shall abbreviate si;i’  (w) to  si;i’  ; further s i;i’  =
s i';i  and  si;i  � ; in case of common random numbers ws2

i
have constant replication numbers, mi = m. E & T (p. 53) use
‘plug in’ estimators with denominators mi , but we prefer
unbiased estimators.

Using the covariance estimators in (3), we define t
n×n matrix = (si; i1). This random matrix is used inSw
Estimated GLS or EGLS:

Notice that this is a non-linear estimator since it uses 
random variables and .Sw w̄

To explain Rao’s test we start as follows. The literature
on DOE often assumes replications, and the concomit
Analysis of Variance (ANOVA) assumes normally
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 w̄i 	 ŷi

(i 
 1, ..., n)
(5)

Fn 	 q, m 	 n � q 


ẽ��S		1
w ẽ

m(m 	 n � q)
[(n 	 q)(m 	 1)]

.
(6)

independently, and identically (NID) distributed residua
with zero mean: ; see (1). ANOVA thene � NID(0, )2)
uses the classical F lack-of-fit test, which compares two

estimators of the common response variance , as follo)2

(i) The first estimator uses with i = 1, ..., n, which are thes2
i

classic variance estimators based on replication define
(3). Because the true response variance  is constant, t)2

n estimators are averaged or pooled:  = . s2
M

n
i 
 1 s2

i /n

mi is not constant, then a weighted average is used, with
degrees of freedom mi - 1 as weights.)
(ii) The second estimator uses the n estimated residuals
where the linear regression model (1) together with O

gives the predictor or forecast . These residuŷi 
 x ��

i �̂
g i v e  t h e  s e c o n d  v a r i a n c e  e s t i m a t o

This estimator is unbiased if andM
n
i 
 1 ē2

i m/(n 	 q)
only if (iff) the regression model is specified correctly;
otherwise this estimator overestimates the true variance
(iii) Finally, these two estimators are compared statistica
through the F-statistic . The lack of fit isFn 	 q, N 	 n

declared significant if this statistic exceeds its upper 1 �

quantile.
Rao (1959) extends this test from OLS to EGL

assuming a constant number of correlated replications, as is
the case for common random numbers. Let  denote thn-ẽ
dimensional vector with estimated EGLS residuals. Then
test statistic becomes

Kleijnen (1992) shows that this test performs well f
symmetrically distributed simulation responses; for examp
it works for normally or uniformly distributed, but not fo
lognormally distributed simulation responses. In queue
simulations the responses may indeed be asymmetric
distributed; also see Cheng and Kleijnen (1997). Fortunat
bootstrapping permits the estimation of any statistic includ
(6), for any distribution.
70
z�j � F̂

where F̂ 
 1/s
(j 
 1, ..., s) .

(7)

di; r 
 wi; r 	 w̄i . (8)
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3 BOOTSTRAPPING RAO’S LACK-OF-FIT F-
STATISTIC

 
E & T describe the real world by z � P where z is an
independently and identically distributed (i.i.d.) variab
(possibly, multi-variate), and P is its distribution
function.(Hence, each individual observation zj  may be
sampled 0, 1, ..., s times; so this sampling follows 
multinomial probability function). Let  denote thF̂
estimated probability function. Then the bootstrap samp

Bootstrapping supposes that the data are summarize
a statistic (say)  = s(z). E & T gives as examples the mea�̂
variance, linear correlation coefficient, and eigenvalues;
focus on Rao’s statistic (6).

If no common random numbers are used, then we a
different replication numbers mi g m. Such unequa
replication numbers are used in, for example, Cheng 
Kleijnen (1997, 1998), assuming that queueing systems 
n different traffic rates are simulated with more custom
when traffic rates are high.

Common random numbers create positive correlation
between the components of wr with wr = 
(w1; r, w2; r, ..., wn; r  and r = 1, .., m; that is, we assume )�
constant number of replications mi = m.

Note: E & T (p. 111) considers regression analy
without DOE, so there are no replications:  mi = 1 so N = n.
In our proposed bootstrap, a restriction is that the resu
matrix X be non-singular. This restriction, however, is
satisfied as DOE guarantees a non-singular n×q matrix X.

We present one bootstrap technique, namely a n
parametric version. We ensure that in our bootstrap
metamodel is correct, so that we obtain a boots
distribution of Rao’s statistic under the null-hypothesis o
valid metamodel. With the resulting bootstrap distribution we
can confront the original statistic F computed for the
metamodel from the original I/O simulation data (X, w). We
expect this statistic to fall below the upper 1 - � quantile of
the bootstrap distribution.

Technically this means that - unlike Breiman (199
p.740) and E & T (pp. 113-117) - we do not use the orig
estimated residuals  = ( , ..., : some thouẽr ẽr: 1 ẽr; n)

�

shows that when the metamodel is false, then bootstrap
these residuals is wrong! Instead we use the deviations.
3
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i; r . (9)

These variables have zero means, whatever the f
metamodel is. We use these variables as follows.

First we consider the classic case, namely simula
responses that are independent and have constant va

.  Then we resample N values from the N original)2

deviations defined in the last equation, (8). This yields 
bootstrapped simulation responses assuming the metam
is valid:

We might refine this bootstrap because only for la
replication numbers m do the deviations have the sam
variance as the residuals have, namely  (i.e., we m)2

multiply .by an appropriate constant). We point out td�

i; r
no bootstrap simulation response in the last equation (
identical to any of the original simulation responses!

The second case allows for variance heterogeneity o
simulation responses. Given the value , we then resax i
only the   values of the corresponding .mi di; r

The third and final case allows for common seeds. T
we have m independent vectors, each with n correlated
simulation responses. Now  we resample the m vectors of
deviations  =  ( ,  ...,  with replacement, so �dr dr: 1 dr; n)

� F̂
1/m ; see (7).

From these bootstrapped I/O data ( ) we compX , w�

the EGLS estimators , , , and ; see (3) throuS�

w �̃
� ẽ� F �

(6). Repeating this bootstrap B times gives the bootstra
distribution of . If the original statistic does not faF �

within the interval that ranges from zero to the estima
upper 1 - � quantile of this bootstrap distribution, then w
reject the null-hypothesis of a valid metamodel. Note tha
keep the original input data X unchanged; also see Breima
(1992) and E & T. 

Note: The pseudorandom number stream may be atyp
resulting in a value w that has extremely low probability
outlier. For example, the event of a sequence of 1,
consecutive pseudorandom numbers all below 0.01
possible, but highly unlikely. Therefore the analysts m
wish to eliminate this value w when fitting the metamodel
See the general regression literature. In bootstrapp
outliers are automatically removed when they are 
resampled.

4 MONTE CARLO STUDY

Consider the best-known queueing model, namely M/M
which has Poisson arrival and service processes, one s
(implicit assumptions: first-in-first-out or FIFO priority rule
unlimited size of buffer or waiting room). Suppose t
simulated response is the steady-state expected waiting
of customers (say) µ. For low traffic rates (say) � a first-
order polynomial is an adequate approximation; for hig
704
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traffic rates a second-order polynomial might be adequate
(better metamodels are proposed in Cheng and Kleijnen
(1998).

However, to improve the efficiency and effectiveness of
our study on bootstrapping and validation, we proceed as
follows. To simulate the M/M/1 model such that accurate
estimates of the response parameter µ result, requires
extremely long runs. The resulting computer time would be
a waste, given the goal of our study. Moreover, we would not
know for which traffic rates � a first or second-order
polynomial is adequate. Therefore we make sure that in some
Monte Carlo experiments a first-order polynomial with zero
intercept (  = 0) is adequate. In the other experiments we�0
guarantee that the second-order effect is important relative to
the first-order effect: see the marginal effect .2�1; 1x1/�1
Kleijnen (1992, p. 1172) explains that when estimating the
type I errors, the values of the true regression parameters do
not matter; so they are all taken equal to zero (  = 0,  =�0 �1
0, ...). We, however, take  = 1, because of the marginal�1
effect . We examine  is 0.25 in this study.2�1; 1x1/�1 �1; 1

Here we report on Monte Carlo experiments with a
design partly taken from Kleijnen (1992, pp. 1170-3). So we
examine a single factor (k = 1), a true metamodel that is
either a first-order or a second-order polynomial (so q is 2 or
3), a number of factor combinations that is small,  namely n
= 3, where the standardized factor values are -1, 0, and 1, 
number of simulation replications that is maximal (say) n +
50 = 53, true residuals that are either Gaussian or lognormal
ly distributed with zero means, standard deviations

 , and common seeds which we)
 (1.0, 1.818, 0.182)�

assume to give  = 0.9,  = 0.20, and 100'(wi, wi �) �
macroreplications. We use a bootstrap sample size of B =
1000,  to estimate the distribution of the various validation
statistics. (Similar extensive experiments are performed in
Breiman 1992). 

 We first consider normally distributed errors; in this
case Rao's lack-of-fit statistic is known to have an Fn-q, m-n+q

distribution in case of a valid metamodel.  In the simulation
experiments we fit a first-order polynomial to the data, so q=
2. Rao's lack-of-fit statistic is compared to F1,52 ; 0.2= 1.6849
and to the 80th percentile of the bootstrap distribution
respectively. This allows us tot determine whether the
bootstrap gives good results in a analytically tractable case
The simulation results for = 0 (no specification error)�1; 1
are depicted in Table 1. (A= Accept, R= Reject, B=
Bootstrap, F= F-test).
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Table 1: = 0, Normal Errors�1; 1

From these results we estimate and . Under HO�̂F 
 0.19
: � = 0.2 both results have a p-value of 0.9007 (using and
exact binomial test and a two-sided alternative).

To test  HO : �B = �F against a two sided alternative only
the cases on which they differ are of interest (the R-A and A-
R cells in the table). Under  HO each case on which they
differ has probability 0.5 of landing in the R-A and A-R cell
respectively. We (arbitrarily) define a case in the A-R cell as
a "succes", and obtain a binomial test with 2 trials, 1 success
and probability of success = 0.5. This gives us a p-value of
1 so we cannot reject the null hypothesis.

Next we consider the case with�1;1 
 0.25
(misspecified model) and normal errors. The results are
summarized in Table 2.

Table 2: = 0.25, Normal Errors�1; 1

The estimated power of the bootstrap in this case is 0.58
and for the F-test 0.57.  Clearly we cannot reject HO : power
B = power F (p-value = 1).

Next we consider log-normal errors and no specification
error .  The simulation results are summarized(�1;1 
 0)
in Table 3.

Table 3: = 0, Log-normal Errors�1; 1
705
;

From Table 3 we calculate  and�̂B 
 0.24
, with p-values (HO : � = 0.2) of 0.3176 and�̂F 
 0.27

0.1027 respectively. The test of  yields a p-HO : �B 
 �F
value of 0.25 on the data in Table 3.

Finally we consider log-normal errors with a
misspecified model ( = 0.25).�1; 1

The simulation results are summarized in Table 4.

Table 4: = 0.25, Log-normal Errors�1; 1

The estimated power of the bootstrap in this case is 0.63,
for the F-test the estimate is 0.68. The test of  HO : power B =
power F yields a p-value of 0.0625.

5 FUTURE RESEARCH 

Popular statistics for measuring the fit of estimated
regression metamodels are: the coefficient of determinatio
denoted as R-square, possibly adjusted for the number 
parameters, and the linear correlation coefficient, also know
as Pearson’s rho.  One more alternative is cross-validatio
giving Studentized prediction errors and using Bonferroni’s
inequality.

Several more validation statistics will be considered
such as the relative absolute errors, considering either the
average or their maximum.  These various fitting and
validation procedures and different statistics will be studie
through an extensive Monte Carlo experiment.  Queuein
examples will provide further illustrations of the practical use
of these procedures and statistics. 

6 CONCLUSIONS

The main conclusions are (i) Not the regression residuals ê
should be bootstrapped; instead the deviations w 	 w̄
should be bootstrapped (ii) bootstrapping Rao's lack-of-f
statistic is a good alternative to the F-test. In case th
assumptions of the F-test are known to apply (normal errors
the bootstrap gives virtually identical results. In case th
assumptions of the F-test are violated (log-normal errors)
both tend to give a somewhat high Type I error probability
but the bootstrap less so. Further experiments are required
draw more definitive conclusions.



Kleijnen, Feelders and Cheng

or

f
.

s

er

f
ta

ns

no

.

.

r
to

r
n
.
4

t

n

,
.
k
al

t
f

.

a

ty

e:
n

ACKNOWLEDGMENT

Cheng and Kleijnen thank the ‘NATO Collaborative
Research Grants Programme’ for the financial support f
their joint project on 'Sensitivity analysis for improved
simulation modeling'.

REFERENCES

Barton, R.R. and L.W. Schruben (1996), Resampling o
empirical distributions for simulation output analysis
Working Paper, PennState, 1996

Breiman, L. (1992), The little bootstrap and other method
for dimensionality selection inregression: x-fixed
prediction error. Journal American Statistical
Association, 87, no. 419, pp. 738-754

Cheng, R.C.H. (1995),  Bootstrap methods for comput
simulation experiments. Proceedings of the 1995 Winter
Simulation Conference, edited by C. Alexopoulos, K.
Kang, W.R. Lilegdon, and D. Goldsman.

Cheng, R.C.H. and W. Holland (1997), Sensitivity o
computer simulation experiments to errors in input da
Journal Statistical Computation and Simulation, 57,
numbers 1-4.

Cheng, R.C.H. and J.P.C. Kleijnen (1998), Improved desig
of queueing simulation experiments with highly
heteroscedastic responses Operations Research (Earlier
version: Optimal design of simulation experiments with
nearly saturated queues, Discussion Paper, CentER, 
9567).

Cheng, R.C.H. and J.P.C. Kleijnen  (1997) The use of
Bayesian methods in regression metamodelling
Working Paper.

Efron, B. and R.J. Tibshirani (1993), Introduction to the
Bootstrap. Chapman & Hall, New York.

Friedman, L.W. and H.H. Friedman (1995), Analyzing
simulation output using the bootstrap method
Simulation, 64, no. 2, February 1995, pp. 95-100.

Kim, Y.B., T.R. Willemain, J. Haddock, and G.C. Runge
(1993), The threshold bootstrap: a new approach 
simulation output analysis. Proceedings of the 1993
Winter Simulation Conference, edited by G.W. Evans,
M. Mollaghasemi, E.C. Russell, and W.E. Biles, pp.
498-502.

Kleijnen, J.P.C. (1992), Regression metamodels fo
simulation with common random numbers: compariso
of validation tests and confidence intervals
Management Science, 38, no. 8, August 1992, pp. 116
1185.

Kleijnen, J.P.C. and B. Bettonvil (1990), Measuremen
scales and resolution IV designs. American Journal of
Mathematical and Management Sciences 10, nos. 3 & 4,
pp. 309-322.
706
.

-

 Kleijnen, J.P.C. and Sargent (1997), A methodology for the
fitting and validation of metamodels in simulation,
Working Paper.

Kleijnen, J.P.C. and Standridge (1987), Experimental desig
and regression analysis: an FMS case study. European
Journal of Operational Research, 33, no. 3, pp. 257-
261.

Rao, C.R. (1959), Some problems involving linear
hypothesis in multivariate analysis. Biometrika, 46, pp.
49-58.

Stine, R.A. (1985), Bootstrap prediction intervals for
regression.  Journal American Statistical Association,
80, no. 392, pp. 1026-1031.

AUTHOR BIOGRAPHIES

JACK P.C. KLEIJNEN  is Professor of Simulation and
Information Systems. His research interests are simulation
mathematical statistics, information systems, and logistics
He published six books and nearly 160 articles; one boo
was also translated into Russian. He consulted sever
organizations, and was on many editorial boards and
scientific committees. He spent several years in the USA, a
universities and companies. He was awarded a number o
international fellowships and awards. 

AD FEELDERS is an Assistant Professor at the Department
of Economics and Business Administration of Tilburg
University in the Netherlands. He received his PhD in
Artificial Intelligence from the same university, where he
currently participates in the Data Mining research program
He worked as a consultant for a Data Mining company. His
current research interests include the application of dat
mining in finance and marketing. His articles appeared in
Computer Science in Economics and Management and IEEE
Transactions on Systems, Man and Cybernetics. He is a
member of the editorial board of the International Journal of
Intellligent Systems in Accounting, Finance, and
Management.

RUSSELL C. H. CHENG is Professor of Operational
Research in the Canterbury Business School at the Universi
of Kent at Canterbury. He has an M.A. from Cambridge
University, England. He obtained his Ph.D. from Bath
University. He is Chairman of the U.K. Simulation Society,
a Fellow of the Royal Statistical Society, Member of the
Operational Research Society. His research interests includ
variance reduction methods and parametric estimatio
methods. He is Joint Editor of the IMA Journal on
Mathematics Applied to Business and Industry, and an
Associate Editor for Management Science.


