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1 Introduction

Supersymmetric theories with eight supercharges in five and six dimensions are a very rich

subject that has been investigated over the past decades. Lots of recent progress in this sub-

ject have been made in the classification of 5d and 6d superconformal theories (SCFTs) [1–3]

and 6d little string theories (LSTs) [4]. Such classifications have been carried out based on

geometric properties of F-theory compactified on local elliptic Calabi-Yau (CY) three-folds.

Also, a large class of 5d SCFTs has been classified using gauge theoretic constructions [5–7]

and M-theory compactified on local CY 3-folds [6, 8–19]. These higher dimensional theo-

ries turn out to exhibit several fascinating features of quantum field theories (QFTs) such

as the existence of tensionless strings, dualities, and symmetry enhancements. Moreover,

they have played a pivotal role in constructing and studying lower dimensional QFTs via

compactifications.

Supersymmetric partition functions have provided unexpectedly powerful methods for

exploring such features of higher dimensional field theories. Of particular interest are the

partition functions on R4 × S1 in 5d and R4 × T 2 (or the elliptic genera) in 6d, which
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are the Witten indices on the Ω-deformed R4 computing the number of the BPS states

weighted by their electric charges and angular momenta. Throughout the paper, we refer

to them as the BPS partition functions, though it may be an abuse of notation. Protected

by the supersymmetry, the BPS spectra encoded in the partition function can be used to

confirm non-trivial dualities and symmetry enhancements at various points on the moduli

space [20–31]. Also, the Seiberg-Witten prepotential in the Coulomb phase can be repro-

duced from the BPS partition function by taking the limit ǫ1, ǫ2 → 0 of two Ω-deformation

parameters [32, 33]. In particular, other supersymmetric observables such as the super-

conformal index [34–37] and the S5 partition function [38–43] can be factorized into a

product of several BPS partition functions under localization, which signifies importance

of the partition function on the Ω-background as a building block for other observables

in 5d and 6d.

Various computational tools for the 5d and 6d BPS partition functions have been

developed. First, the partition function on the Ω-background for 5d N = 1 gauge theories

is closely related to Nekrasov instanton partition function counting the BPS bound states

of instantons with other charged particles on the Coulomb branch of the moduli space. The

Nekrasov instanton partition functions for gauge theories with the classical gauge groups are

computed through localization based on the ADHM constructions of the instanton moduli

space [32, 33, 44]. (See also [45–48] for various generalizations). The ADHM constructions

have also been used to compute the elliptic genera of the self-dual strings in 6d SCFTs (in

the tensor branch) [49–52]. Even though the ADHM method is systematic and applicable

for many 5d and 6d gauge theories with classical gauge groups, ADHM construction for the

exceptional gauge groups is however still missing.1 Moreover, the ADHM method is not

applicable when a gauge theory of classical group is coupled to a large number of matter

fields in generic representations. Hence, there are still challenges and difficulties in the

ADHM method when computing the BPS partition functions for other more generic gauge

theories in 5d and in 6d.

Topological vertex method [54–56]2 provides yet another systematic way of computing

the BPS partition functions when the 5d/6d theories are realized by Type IIB 5-brane

webs that are toric or toric-like [62, 63], by which we mean those 5-brane webs which

can be constructed from toric 5-brane webs through Higgsing procedures [21]. Topological

vertex has been further developed so that it is also applicable for 5-brane webs with O5-

planes [64, 65] or ON -planes [66, 67]. Though fairly many 5-brane webs are known or

discovered for 5d theories and for 6d theories on a circle [68–78], there still remain challenges

when the number of hypermultiplets is large or the Chern-Simons (CS) level is high. For

instance, 5-brane webs for the 5d SU(3)8 and SU(4)8 gauge theories are unknown, and

5-brane web realizations for gauge theories of exceptional groups are still far from clear

except for G2 gauge theories [78, 79].

In [80], Nakajima-Yoshioka formulated the so-called blowup equations to compute the

Nekrasov instanton partition functions for four-dimensional N = 2 SU(N) gauge theories.

1The ADHM-like construction for the moduli space of instantons in the G2 gauge theory with funda-

mental matters was proposed in [30, 53].
2See also the Ding-Iohara-Miki (DIM) algebra [57, 58] and its relation to topological vertex [59–61].
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The K-theoretic blowup equations were established soon in [81, 82] for five-dimensional

N = 1 SU(N) gauge theories. This blowup equation approach has been further general-

ized to compute the instanton partition functions for other simple gauge groups including

exceptional gauge groups in 5d in [83, 84]. Moreover, a geometric generalization of the

blowup equation approach was formulated for certain local Calabi-Yau 3-folds [85, 86].

This geometric formulation has been extensively studied recently for computing refined

BPS invariants of various 5d SCFTs and elliptic genera of 6d SCFTs admitting geometric

constructions in M-/F-theory on local (toric or elliptic) CY 3-folds [85–90].

Despite the fact that the blowup method is a very powerful tool for computing BPS

spectra of a broad class of 5d/6d SCFTs even beyond the scope of other computational

methods, there is as yet no complete formulation of the blowup equations that can be appli-

cable for all supersymmetric theories in five and six dimensions. For example, though the

blowup equations obtained in [84] cover a large set of 5d gauge theories with simple gauge

group including some theories whose ADHM descriptions are not known, it still requires

further studies for plenty of other interesting theories such as 5d quiver gauge theories,

5d theories with half-hypermultiplets, and 5d Kaluza-Klein (KK) theories arising from 6d

SCFTs compactified on a circle with outer-automorphism twists. In particular, there ex-

ist some 5d/6d gauge theories, for instance, the 5d SU(3)8 gauge theory, that currently

have neither ADHM constructions nor shrinkable geometric descriptions nor associated 5-

brane webs, so that all the computational methods introduced above including the blowup

method cannot be used to compute their BPS partition functions.

The main aim of this paper is to devise a complete blowup formalism that enables one to

compute BPS spectra of all supersymmetric field theories having UV completions in five or

six dimensions. In this paper, we will generalize the Nakajima-Yoshioka’s blowup equations

in [80] to arbitrary 5d/6d gauge theories (including quiver gauge theories and twisted circle

compactifications of 6d theories) with matter fields in arbitrary representations, and also

extend the work of [85, 86] for a geometric application of the blowup equations to any

local Calabi-Yau 3-folds (including elliptic and non-toric ones) based on novel geometric

constructions of 5d SCFTs/KK theories introduced in [11, 17].

The blowup equation is a functional equation identifying two partition functions on

different backgrounds, one is the Ω-deformed C2 and another one is the one point blow-up

Ĉ2 of the C2, that are related to each other by a smooth blow-up or blow-down transition.

Each 5d/6d field theory can have a number of blowup equations depending on background

magnetic fluxes residing on the blown-up P1 in Ĉ2. As we will discuss in section 3, such

blowup equations can be solved recursively by expanding them in terms of Kähler param-

eters of the theory.

The main input in our recursion process is the effective prepotential E of a given 5d/6d

SQFT evaluated on the Ω-background. The effective prepotential, as we will illustrate more

precisely in section 2, is fully determined by effective cubic and mixed Chern-Simons terms

in the low energy theory on the Coulomb branch which can be systematically calculated by

computing the induced Chern-Simons terms after integrating out charged fermions [91, 92]

(and also by collecting classical Green-Schwarz contributions for a 6d theory on a circle

with/without a twist [17]). See [93–96] for the geometric counterparts of the effective
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Chern-Simons terms. Therefore, the effective prepotential, which is one of the main ingre-

dients for our blowup formula, can be systematically computed for every 5d/6d field theory

having a UV completion. Here we assume that every UV finite 5d/6d theory either has a

gauge theory description in 5d or in 6d on a circle with/without twist, or has a geometric

description as a local (elliptic) Calabi-Yau 3-fold, or can be obtained by RG-flows thereof.

By seeding the effective prepotential as well as a consistent choice of background mag-

netic fluxes on the blown-up P1 into the blowup equations, we can bootstrap the spectrum

of charged BPS states in a given 5d/6d theory. Since the effective prepotential can be easily

prepared for any arbitrary 5d/6d field theory, we now make a bold conjecture that we can

compute BPS spectra of all 5d/6d field theories by employing our bootstrap method to

formulate and solve blowup equations in those theories.

As concrete examples for our conjecture, we will apply our method to all rank-1 and

rank-2 5d supersymmetric field theories including also KK theories to obtain their BPS

spectra explicitly. This will involve the SU(3)15/2 + 1F theory (dual to the N = 2 G2

gauge theory), the SU(3)8 theory, and new rank-1 and rank-2 5d SCFTs, which we call

the local P2 + 1Adj and the local P2 ∪ F3 + 1Sym, obtained by mass deformations of the

5d N = 2 Sp(N)π gauge theories with N = 1, 2 respectively first introduced in [97]. We

emphasize that the partition functions of these theories cannot be obtained by other means

since they have none of ADHM constructions, conventional geometric constructions, and

also brane webs (but we will introduce brane webs for the new rank-1 and rank-2 theories

in this paper).

We will also compute BPS spectra of some higher rank theories. In particular, we will

show that the blowup equations for the SU(5)8 theory can be solved. The result shows that

this theory may have no physical Coulomb branch and thus be inconsistent in UV limit.

This theory was ‘undetermined’ to exist in [98] because its existence was neither confirmed

nor ruled out with currently known techniques. Our computation provides a supporting

evidence that the SU(5)8 theory has no UV completion. In this sense, our bootstrap

approach can be used to confirm or disprove the existence of certain 5d and 6d QFTs.

The organization of the paper is as follows. In section 2, we review salient features

of 5d/6d supersymmetric gauge theories and their geometry engineering. In section 3, we

explain the blowup equation as a tool for bootstrapping BPS spectra of 5d/6d supersym-

metric theories, and discuss our main conjecture with instructive examples. Section 4 and

section 5 are devoted to cover all rank-1 and rank-2 5d theories including KK theories.

We also discuss some interesting higher rank theories, in section 6, including SU(4)8 and

SU(5)8. We then conclude with some subtle issues. In appendix A, we further discuss

1-loop partition functions of 6d SCFTs on a circle with twists. In appendix B, some new

5-brane webs associated with frozen singularity are presented.

Notation. To avoid the cluttering of theories, we denote by G+Nr r, the theory of gauge

group G with Nr number of hypermultiplets in the representation r. Gauge group G can be

any classical groups, SU(N), SO(N), Sp(N), and exceptional groups G2, F4, E6, E7, E8 as

well as a quiver gauge group. For hypermultiplets in the r representation of G, we use the

following shorthand notation: F for fundamental, bi-F for bi-fundamental, Λn for rank-n
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antisymmetric, Sym for symmetric, Adj for adjoint, S for spinor, and C for conjugate

spinor. For example, SU(2) + 8F means SU(2) gauge theory with 8 hypermultiplets in

the fundamental representation. For the Ω-deformation parameters ǫ1, ǫ2, we frequently

use ǫ+ = ǫ1+ǫ2
2 and the fugacities associated with them are denoted by p1 = e−ǫ1 and

p2 = e−ǫ2 . We also denote the set of complex, real, rational, integer numbers by C, R, Q,

Z, respectively.

2 5d theories on Ω-background

In this section, we review some basic properties of 5d N = 1 QFTs that have UV comple-

tions.

2.1 Gauge theories and effective prepotential

A large class of 5d SQFTs admits mass deformations that lead to non-Abelian gauge theory

descriptions at low energy. Consider a 5d N = 1 gauge theory with a non-Abelian gauge

group G. The theory consists of the vector multiplet Φ for the gauge group G and charged

matter hypermultiplets. The vector multiplet contains a real scalar field φ as well as the

vector field Aµ. On the Coulomb branch of the moduli space, the scalar field φ gets the

expectation value in the Cartan subalgebra of the gauge group G. This breaks the gauge

group to its Abelian subgroup U(1)r, with r = rank(G). Then the low-energy theory is

described by an effective theory with the Abelian groups. The scalar expectation values

φi, i = 1, · · · , r for the Abelian gauge groups parameterize the Coulomb branch of the

moduli space.

The effective Abelian theory is characterized by a prepotential F(Φ) which is a cubic

polynomial in the Abelian vector multiplets ΦI for both the dynamical gauge symmetry

and the non-dynamical flavor symmetry where the index I labels both the dynamical

and the background vector multiplets. The exact prepotential can be computed by 1-

loop calculations. For a general gauge group G and matter hypermultiplets in generic

representations, the cubic prepotential in terms of the scalar components is given by [6, 91]

F =
∑

a

(

ma

2
Ka

ijφa
i φa

j +
κa

6
da

ijkφa
i φa

j φa
k

)

+
1

12

(

∑

e∈R

|e · φ|3 −
∑

f

∑

w∈wf

|w · φ + mf |3
)

, (2.1)

where a runs over all non-Abelian subgroups Ga ⊂ G. Here, ma = 1/g2
a is the inverse

gauge couplings squared and κa is the classical Chern-Simons level, which is non-zero only

for Ga = SU(N) with N ≥ 3, for the group Ga. Ka
ij = Tr(T a

i T a
j ) is the Killing form of

Ga and da
ijk = 1

2TrT a
i {T a

j , T a
k } with the generator T a

i in the fundamental representation

of Ga. R and wf are the roots and the weights for the f -th hypermultiplet with mass

mf of G, respectively. The mass parameters ma and mf can be regarded as the scalar

components in the background vector multiplets for the topological symmetries and the

flavor symmetries rotating hypermultiplets respectively. We note from the prepotential

that the Coulomb branch is divided into distinct sub-chambers (or phases) distinguished

by the signs of masses inside absolute values in (2.1), and accordingly the prepotential

takes different values in the different sub-chambers.
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The prepotential F determines the gauge kinetic terms in the effective action with the

gauge coupling

τ eff
ij = (g−2

eff )ij = ∂i∂jF , (2.2)

which sets the metric on the Coulomb branch and the cubic Chern-Simons terms of the form

SCS =
CIJK

24π2

∫

AI ∧ F J ∧ F K , CIJK = ∂I∂J∂KF , (2.3)

with the level CIJK quantized as CIJK ∈ Z due to gauge invariance of the Abelian sym-

metries [91].

Other topological terms in the effective action are also important in our discussion later

on the blowup equations. First, the effective action contains the mixed gauge/gravitational

Chern-Simons terms of the form, [92, 94, 95]

Sgrav = − 1

48

∫

CG
i Ai ∧ p1(T ) , (2.4)

where p1(T ) is the first Pontryagin class of the tangent bundle on the 5d spacetime. Here

CG
i is the level for the mixed Chern-Simons term and it is quantized as CG

i ∈ Z [96, 99].

The mixed Chern-Simons terms are induced at low energy by integrating out the charged

fermions. The induced level from the fermion 1-loop calculations is [92, 95]

CG
i = −∂i

(

∑

e∈R

|e · φ| −
∑

f

∑

w∈wf

|w · φ + mf |
)

. (2.5)

There also exists the mixed gauge/SU(2)R Chern-Simons terms of the form,

SR =
1

2

∫

CR
i Ai ∧ c2(R) , (2.6)

where c2(R) is the second Chern class of the SU(2)R R-symmetry bundle. Due to the

gauge invariance, the level CR
i is quantized as CR

i ∈ 2Z. Note that the gauginos in the

vector multiplets are doublets, while the matter fermions are singlets under the SU(2)R

R-symmetry. Thus this term receives 1-loop contributions only from the charged gauginos

and therefore it is independent of the number of hypermultiplets. The mixed gauge/SU(2)R

Chern-Simons level induced from the gaugino 1-loop calculation is [100]

CR
i =

1

2
∂i

∑

e∈R

|e · φ| . (2.7)

We remark here that, in the Dynkin basis where the rows of the Cartan matrix Aij for a

gauge group G are given by the simple roots, this level in the low-energy effective theory

is fixed to be CR
i = 2 for all i’s.

In this paper, we are interested in the partition functions of 5d N = 1 theories on

Ω-deformed R4 × S1. This partition function is a Witten index counting BPS states in the

5d theory, which is defined as3 [32]

Z(φ, m; ǫ1, ǫ2) = Tr
[

(−1)F e−β{Q,Q†}e−ǫ1(J1+JR)e−ǫ2(J2+JR)e−φ·Πe−m·H
]

, (2.8)

3We can also define another Witten index as Ẑ(φ, m; ǫ1, ǫ2) ≡ Z(φ, m; ǫ1, ǫ2)|(−1)F →(−1)2JR
by replacing

(−1)F in Z by (−1)2JR . This index will be used later when a 5d theory is put on the blowup Ĉ2.
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where J1, J2 are the Cartan generators of the SO(4) Lorentz rotation and JR is the Cartan

of the SU(2)R R-symmetry, and Π and H are the gauge and the flavor charges respectively.

Q is a supercharge commuting with J1 + JR and J2 + JR, and Q† is its conjugate. β is

the radius of S1 and ǫ1, ǫ2 are the Ω-deformation parameters. We denote by φ and m

the chemical potentials for the gauge and the flavor symmetries, respectively. The index

computes the BPS spectrum annihilated by the supercharges Q and Q†. So the index is

independent of β.

The index can be represented by a path integral of the 5d theory on the Ω-background,

which can be evaluated using localization [35, 48, 101]. We will call this path integral

representation of the Witten index the partition function on the Ω-background or just

BPS partition function.

We compute the path integral on a vacuum on the Coulomb branch specified by the

expectation values φ, which are now complexified by combining the scalar vevs with the

gauge holonomies around S1 at infinity of R4. The chemical potential φ in the above index

is identified with the complexified expectation value φ in the path integral. Similarly, we

identify the chemical potential m with the complexified background gauge field for a flavor

symmetry. In the following discussions, however, we shall take the chemical potentials φ

and m to be pure real values.

In the localization, the BPS partition function receives perturbative and non-pertur-

bative instanton contributions which factorizes as

Z = Zpert · Zinst . (2.9)

The perturbative partition function Zpert consists of the classical action contribution and

the 1-loop contribution. Actually, it depends on the boundary condition at infinity of

R4. We need to consider boundary conditions preserving two supercharges Q, Q† and

being compatible with the vacuum on the Coulomb branch. We shall choose the following

boundary condition at infinity: the vector multiplets associated with the positive roots of

gauge group G survives, and the chiral halves of hypermultiplets with positive masses, i.e.,

w · φ + mf > 0 survive. With this boundary condition, the perturbative partition function

can be written as

Zpert = Zclass · Z1-loop (2.10)

= eE · PE

[

− 1 + p1p2

(1 − p1)(1 − p2)

∑

e∈R+

e−e·φ +
(p1p2)1/2

(1 − p1)(1 − p2)

∑

f

∑

w∈wf

e−|w·φ+mf |
]

,

where p1,2 ≡ e−ǫ1,2 and R+ denotes the positive roots for the gauge group, and PE means

the Plethystic exponential of a letter index f(µ) with a chemical potential µ defined as

PE [f(µ)] ≡ exp

( ∞
∑

n=1

1

n
f(nµ)

)

. (2.11)

In (2.10), E = E(φ, m; ǫ1, ǫ2) in the prefactor is a combination of the classical contribu-

tion and the Casimir energy contribution coming from regularization of infinite products
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in the 1-loop part. In fact, E is effective prepotential, which includes the cubic and mixed

Chern-Simons terms (2.3), (2.4), (2.6), and their SUSY completions, evaluated on the

Ω-background. We find, for the boundary condition we chose above,

E(φ, m; ǫ1, ǫ2) = i (SCS + Sgrav + SR + · · · ) |φ,m,ǫ1,ǫ2

=
1

ǫ1ǫ2

[

F +
1

48
CG

i φi(ǫ2
1 + ǫ2

2) +
1

2
CR

i φiǫ2
+

]

, (2.12)

where · · · denotes the SUSY completions of the Chern-Simons terms and ǫ+ ≡ ǫ1+ǫ2
2 . The

first term F in the bracket is the cubic prepotential (2.1) on the Coulomb branch, and the

other two terms are the contributions from the mixed gauge/gravitational CS terms and

the mixed gauge/SU(2)R CS terms, respectively. This factor E can also be considered as

an equivariant integral of effective Chern-Simons terms by making the replacements

p1(T ) → −(ǫ2
1 + ǫ2

2) , c2(R) → ǫ2
+ , (2.13)

with the equivariant parameters ǫ1,2 and φ, m. A similar interpretation for the Casimir

energy of superconformal indices has been proposed in [102].

The instanton contribution Zinst is in general given by a power series expansion by the

instanton numbers ka for each non-Abelian gauge group factor. It can thus be written as

Zinst =
∞
∑

ka=0

∏

a

qka
a Z{ka} , (2.14)

where qa = e−ma is the instanton fugacity for the a-th gauge group, and Z{ka} denotes

the path integral over instanton moduli space with instanton numbers {ka}. When a

UV completion for the instanton moduli space is known, for example by using ADHM

construction (see [32, 33, 46, 103] for some early works), we can use it to compute the

instanton partition function Z{ka} by localization. However, unfortunately, such ADHM

constructions for general gauge group G and matter representations are yet unknown.

Recently, there has been some progress on computation of the instanton partition func-

tions for more general gauge groups by using Nakajima-Yoshioka’s blowup equations [80].

See also [84, 86, 87] and the references therein. Still, this method is applicable only for

very limited cases. In this paper, we will propose a new and simple strategy to compute

the instanton partition functions for arbitrary gauge groups and matter representations

based on the blowup formula. We expect that our strategy can be applied to all the 5d

gauge theories that have UV completions as 5d SCFTs or 5d KK theories coming from 6d

N = (1, 0) theories on a circle with/without twists.

2.2 Geometric engineering

Many examples of 5d N = 1 theories have been engineered in M-theory on local Calabi-

Yau threefolds [6, 8, 104]. In this subsection we review some basic features of M-theory

compactification on a smooth non-compact 3-fold X which gives rise to a 5d SCFT or a

6d SCFT on S1 (possibly with twists) in a singular limit. See [11, 17] for more details.
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A smooth 3-fold X can be locally described as a neighborhood of a collection of Kähler

surfaces Si. A Kähler surface Si inside X is represented by either a local P2 or a Hirzebruch

surface with blowups Fb
n where n is the degree of the Hirzebruch surface and b is the number

of blowups. More explanation on the local P2 and Hirzebruch surfaces can be found in

appendix A of [17].

The volumes of complex p-cycles in X are controlled by Kähler deformations. There

are normalizable Kähler deformations parameterized by dynamical Kähler parameters φi

assigned for each compact surface Si. The number r of independent compact surfaces is

the rank of the CY 3-fold X. Upon M-theory compactification, the Kähler moduli space

of the dynamical parameters φi=1,··· ,r is identified with the Coulomb branch moduli in the

low-energy 5d theory, where r is the rank of the gauge group in the field theory.

There are also non-compact Kähler deformations parameterized by non-dynamical

Kähler parameters mj=1,··· ,rF
where rF = h1,1(X)−r. These non-dynamical parameters are

identified with the mass parameters in the 5d theory. For a given basis Si, Nj ∈ H1,1(X),

one can then express the Kähler form J of X as a linear sum of the Kähler parameters

J =

h1,1(X)
∑

I=1

φIDI =
r
∑

i=1

φiSi +
rF
∑

j=1

mjNj , (2.15)

where DI=1,··· ,r = Si=1,··· ,r and DI=r+1,··· ,h1,1(X) = Nj=1,··· ,rF
are the divisors for the

compact and the non-compact 4-cycles inside X, respectively. In particular, the Kähler

parameters φi for elementary surfaces Si in this geometric basis are directly mapped to the

Coulomb branch parameters φi in the Dynkin basis of the associated gauge group G. We

will only use the Dynkin basis for gauge groups in the following discussions.

The volumes of p-cycles in X are measured with respect to the Kähler form J . The

total volume of the 3-fold X is

vol(X) =
1

3!

∫

X
J3 . (2.16)

This is identified with the 5d cubic prepotential given in (2.1), i.e. F = vol(X). Therefore

the cubic Chern-Simons coefficients in the 5d theory are geometrically determined by the

triple intersections of divisors in X [91, 105–107] (See also [92, 94, 108])

CIJK = DI · DJ · DK ≡
∫

X
DI ∧ DJ ∧ DK . (2.17)

The low-energy effective action in the 5d theory is also characterized by the coefficients

of the mixed Chern-Simons terms. The mixed gauge/gravitational Chern-Simons level for

a divisor Si is determined by its intersection with c2(X) ∈ H4(X,Z), the 2nd Chern-class

of the 3-fold X, as [92, 94, 96, 105, 106]

CG
i = c2(X) · Si . (2.18)

For a local P2 and a Hirzebruch surface Fb
n with b blowups,

c2(X) · P2 = −6, c2(X) · Fb
n = −4 + 2b . (2.19)
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In addition, we propose that the level CR
i of the mixed gauge/SU(2)R Chern-Simons

term is always

CR
i = 2 , (2.20)

for all the basis surfaces Si represented by either a local P2 or a Hirzebruch surface with

blowups, in a Calabi-Yau 3-fold. This is motivated by the field theory result in (2.7); the

level CR
i is always 2 in the Dynkin basis of the gauge groups.

Therefore the cubic and the mixed Chern-Simons terms in the low-energy effective

field theory are fully expressed in terms of the topological data in the CY 3-fold X. The

effective prepotential E in (2.12) for a 5d field theory can then be readily computed from

the associated 3-fold X. As we will see below, this effective prepotential E together with

few more information about primitive 2-cycles in a CY 3-fold allows us to compute the

BPS partition function of the corresponding 5d theory by solving the blowup equations.

The BPS spectrum in the 5d SQFT involves electric particles and (dual) magnetic

strings charged under the gauge groups. In the M-theory compactification on X, these

states arise from M2-branes and M5-branes wrapping holomorphic curves and holomorphic

surfaces respectively. Their masses and tensions are determined by the volumes of the

corresponding p-cycles. The volume of a 2-cycle (or a curve) C is

vol(C) = −J · C , (2.21)

and the volume of a 4-cycle Si is given by

vol(Si) = J · J · Si ≡ ∂iF =
1

2

∫

X
J2 ∧ Si . (2.22)

The Kähler surfaces are glued to each other by identifying a pair (or multiple pairs)

of holomorphic curves at the intersections as

Cα
ij ∼ Cα

ji , (2.23)

where Cα
ij is a curve in Si and Cα

ji is a curve in Sj at the intersection of two adjacent

surfaces Si ∩ Sj , and α labels a pair of gluing curves. In order to be consistent with the

Calabi-Yau structure of X, a pair of gluing curves should satisfy the condition

(Cα
ij)2 + (Cα

ji)
2 = 2g − 2 , (2.24)

where g is the genus of curve Cα
ij and Cα

ji.

It is also possible that two curves in a single surface are glued together while satisfying

the Calabi-Yau condition (2.24). Such gluing is often called self-gluing [11]. A surface can

have multiple self-glued curves. With s self-gluings, the canonical class KS of a surface S

changes to

K ′
S = KS +

s
∑

i=1

(xi + yi) , (2.25)

where (xi, yi) is i-th pair of self-glued curves.
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The volume of a 2-cycle can in fact be written in terms of its intersection with the

canonical classes K ′
S as

vol(C) = −J · C = −
∑

I

φIDI · C = −
∑

I

φIK ′
DI

· C . (2.26)

Also, the genus g of a curve C in a surface S can be determined by the modified adjunction

formula [17, 98]:

C · (KS + C) +
s
∑

i=1

min(C · xi, C · yi) = 2g − 2 , (2.27)

where KS is the original canonical divisor class of S.

We can now easily compute the triple intersection product Si · Sj · Sk among three

surfaces in a 3-fold X. For three distinct surfaces, their intersection product is given by

Si · Sj · Sk = Cij · Cik = Cji · Cjk = Cki · Ckj for i 6= j 6= k . (2.28)

The triple intersection product of two distinct surfaces is

Si · Si · Sj = K ′
i · Cij for i 6= j . (2.29)

Lastly, the triple intersection of a single surface Si is given by

S3
i = K ′2

i . (2.30)

It is now straightforward to obtain the full effective prepotential E on the Ω-background

for the low-energy theory from a geometric construction.

2.3 6d SCFTs on S1 with/without twists

Compactification of 6d SCFTs on a circle with/without outer automorphism twists provides

concrete UV completions of a large class of 5d field theories. These 5d theories are often

called 5d Kaluza-Klein (KK) theories. The effective prepotential of such a 5d theory can

be easily obtained from the 6d classical action on the tensor branch and the action of outer

automorphism as well as matter content. The detailed procedure has been introduced

in [17]. We will now generalize this and propose full effective prepotentials for 5d KK

theories on the Ω-background including the contributions from mixed gauge/gravitational

and gauge/SU(2)R Chern-Simons terms.

5d reductions without twist. Let us first consider the compactification of a 6d SCFT

without a twist on its tensor branch. We shall also consider a generic point on the Coulomb

branch of the resulting 5d theory where both tensor scalar fields and gauge holonomies are

turned on. The effective prepotential of the 5d theory can be written in terms of the

Chern-Simons coefficients which can be exactly calculable from the classical action of the

original 6d SCFT and 1-loop computations for charged fermions.

The 6d tree-level action on the tensor branch is given by

Stree =

∫

−1

4
ΩαβGα ∧ ∗Gβ − ΩαβBα ∧ X4β , (2.31)
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and supersymmetric completions, where Ωαβ is the negative-definite, symmetric bilinear

form of T tensor fields and Gα is the gauge-invariant field strength for the 2-form tensor field

Bα. The second term in (2.31) is the Green-Schwarz term with the 4-form X4β defined as

dGα = X4α , X4α = −1

4
aαp1(T ) +

1

4

∑

a

ba,αTrF 2
a + cαc2(R) , (2.32)

where aα, ba,α, cα are fixed to cancel 1-loop gauge anomalies via the Green-Schwarz-Sagnotti

mechanism [109], the summation index a runs over all the gauge and the flavor groups, and

Fa is the field strength for the a-th symmetry group. The circle reduction of the classical

action then gives rise to the following terms

Stree =

∫

−τ

4
ΩαβFα ∧ ∗Fβ − ΩαβA0,α ∧ X4β + · · · , (2.33)

where τ ≡ 1/R is the inverse radius of the 6d circle and Fα denotes the U(1)α field strength

for the gauge field A0,α obtained by reducing the tensor field Bα on the circle.

In order to compute the matter contribution to the effective Chern-Simons terms,

we need to perform fermion 1-loop computations including Kaluza-Klein momentum

states [92, 94, 95]. The cubic Chern-Simons terms are captured by the 1-loop prepotential

which is given by

F1-loop =
1

12

∑

n∈Z





∑

e∈R

|nτ + e · φ|3 −
∑

f

∑

w∈wf

|nτ + w · φ + mf |3


 , (2.34)

where the sum for an integer n is performed over all KK charges n, R means collectively

the roots of the 6d gauge groups, wf is the weight and mf is the mass parameter for the

f -th hypermultiplet in 6d. φ’s are the gauge holonomies that become the scalar fields in

the 5d vector multiplets. The infinite sums in the prepotential can be regularized using

the zeta function regularization. In the 5d limit where τ ≫ φi, mf , the regularized cubic

prepotential is given by [92, 95]

F1-loop =
1

12





∑

e∈R

|e · φ|3 −
∑

f

∑

w∈wf

|w · φ + mf |3




− τ

24





∑

e∈R

(e · φ)2 −
∑

f

∑

w∈wf

(w · φ + mf )2



 . (2.35)

The first line comes from the zero KK momentum modes and the second line is the con-

tribution from the KK momentum states after the regularization. We omitted the terms

independent of the dynamical parameters φ.

The mixed gauge/gravitational and gauge/SU(2)R Chern-Simons terms can be com-

puted in a similar manner. Note here that the contributions from the positive and the

negative KK momentum states cancel each other. So these Chern-Simons terms receive

the contribution only from the zero modes on a circle. Therefore, the coefficients for the
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mixed Chern-Simons terms are, respectively, [92, 95]

CG
i = − ∂i





∑

e∈R

|e · φ| −
∑

f

∑

w∈wf

|w · φ + mf |


 ,

CR
i =

1

2
∂i

∑

e∈R

|e · φ| . (2.36)

Here, e and w run over all the zero modes of the vectors and the hypers, respectively, from

the 6d theory.

The effective action of a 5d KK theory on the Coulomb branch can be obtained by

collecting the above tree-level and the 1-loop Chern-Simons terms. On the Ω-background,

the full effective action is then given by

E6d = i(Stree + S1-loop + Sgrav + SR)|ǫ1,2,φ,m,τ

=
1

ǫ1ǫ2

(

Etree + F1-loop +
1

48
CG

i φi(ǫ2
1 + ǫ2

2) +
1

2
CR

i φiǫ2
+

)

, (2.37)

Etree ≡ iStree|ǫ1,2,φ,m,τ

= −τ

2
Ωαβφα,0φβ,0 − Ωαβφα,0

(

aβ

4
(ǫ2

1 + ǫ2
2) +

ba,β

2
Ka,ijφa,iφa,j + cβǫ2

+

)

,

where Ka,ij is the Killing form for the a-th symmetry group Ga. If Ga is a gauge group,

then φa,i is the Coulomb branch parameter for it, otherwise, it is the mass parameter for the

flavor symmetry. Consequently, we can compute the effective prepotentials on the Coulomb

branch evaluated on the Ω-background directly from the knowledge of the 6d SCFTs.

As discussed in [17], when we compare this effective prepotential of the 5d KK theory

with geometry, in which ba,β = δa,β for gauge groups Ga, we need to shift the Coulomb

branch parameters φα,i as

φα,i → φα,i − d∨
i φα,0 , (2.38)

for all 1 ≤ i ≤ rα as well as for all α, where d∨
i is the dual Coxeter label for the gauge

group Gα. After this shift, the tensor parameter φα,0 becomes the Kähler parameter for

the affine node of the associated affine gauge algebra ĝα.

We claim that the function E6d in (2.37) with the shift (2.38) is the full effective

prepotential on the Coulomb branch in the 5d reduction of the 6d SCFT without a twist.

This contains all the terms of the dynamical Coulomb branch parameters that do not

vanish on the Ω-background.

As an example, consider the 6d minimal SU(3) gauge theory which consists of a tensor

multiplet (so α = 1) coupled to an SU(3) vector multiplet. The 1-loop anomalies are

cancelled by the Green-Schwarz-Sagnotti mechanism with the data

Ω11 = −3 , a1 = −1

3
, b1 = 1 , c1 = 1 . (2.39)
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ĝ A
(2)
2ℓ A

(2)
2ℓ−1 D

(2)
ℓ+1 E

(2)
6 D

(3)
4

h Cℓ Cℓ Bℓ F4 G2

Table 1. Twisted affine Lie algebra ĝ and invariant subalgebra h under outer automorphism. The

superscript (p) denotes order p = 2, 3 of twist.

Thus, the effective prepotential on the Ω-background before the shift (2.38) is given by

ǫ1ǫ2 E =
3

2
τφ2

0 + 3φ0

(

− 1

12
(ǫ2

1 + ǫ2
2) +

1

2
Kijφiφj + ǫ2

+

)

+
1

6

(

8φ3
1 + 8φ3

2 − 3φ1φ2(φ1 + φ2)
)

− τ

4
Kijφiφj

− 1

12
(φ1 + φ2)(ǫ2

1 + ǫ2
2) + (φ1 + φ2)ǫ2

+ , (2.40)

where Kij is the Killing form of the SU(3) group. To compare with its geometric construc-

tion, we first shift φ0 → φ0 + τ/6 and then perform the shift (2.38), φ1,2 → φ1,2 − φ0. The

result is then

ǫ1ǫ2 E ′ =
1

6

(

9τφ2
0 + 3τ2φ0 + 8(φ3

0 + φ3
1 + φ3

2)

− 3φ2
0(φ1 + φ2) − 3φ2

1(φ0 + φ2) − 3φ2
2(φ0 + φ1) − 6φ0φ1φ2

)

− 1

12
(φ0 + φ1 + φ2)(ǫ2

1 + ǫ2
2) + (φ0 + φ1 + φ2)ǫ2

+ . (2.41)

This is in perfect agreement with the effective prepotential for the geometry for the minimal

SU(3) gauge theory that consists of three F1 surfaces glued along their −1 curves and one

non-compact surface with Kähler parameter ‘−τ ’ glued to the F1 surface for φ0 along the

base +1 curve as constructed in [9].

5d reductions with twist. When a 6d SCFT has a discrete global symmetry Γ, we can

compactify the theory on a circle with a discrete holonomy γ for the background gauge field

of the symmetry Γ. This is often called automorphism twist on Γ around the circle. Such

twists for 6d SCFTs are well described in section 3 of [17]. We will employ this prescription

to compute the effective prepotentials and the partition functions of 6d SCFTs compactified

on a circle with twists.

There are two kinds of discrete symmetries in 6d SCFTs. The first kind is the symmetry

arising from outer automorphism of gauge algebra g which permutes matter representations

of the gauge algebra. The second one is the symmetry from permutations of tensor fields.

A general discrete symmetry is generated by a combination of these two kinds of discrete

symmetries.

The twist of the first kind on a gauge algebra g splits representations of g into repre-

sentations of the invariant subalgebra h, listed in table 1, under the outer automorphism.

(If the twist does not act on a gauge algebra, then the invariant subalgebra is the same

as the original gauge algebra, i.e. h = g.) A 6d state in a representation of g is then

decomposed into several representations of the subalgebra h. The decomposed states will
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carry shifted KK momentum as n → n + r depending on their charge under the discrete

symmetry, where n ∈ Z and r is a fractional KK charge. See appendix A for more details.

For example, a 5d KK state from twisting a 6d state in the adjoint representation of

the original gauge algebra will carry the following charges [110]

A
(2)
2ℓ : Adj of A2ℓ → Adj0 ⊕ F1/4 ⊕ F3/4 ⊕ Λ2

1/2 ⊕ 11/2 of Cℓ ,

A
(2)
2ℓ−1 : Adj of A2ℓ−1 → Adj0 ⊕ Λ2

1/2 of Cℓ ,

D
(2)
ℓ+1 : Adj of Dℓ+1 → Adj0 ⊕ F1/2 of Bℓ ,

E
(2)
6 : Adj of E6 → Adj0 ⊕ F1/2 of F4 ,

D
(3)
4 : Adj of D4 → Adj0 ⊕ F1/3 ⊕ F2/3 of G2 , (2.42)

where Adjr, Fr, and Λ2
r refer to the adjoint, fundamental, and 2nd rank antisymmetric

representation of subalgebra h, carrying shifted KK charge r for the KK state.

The second kind of discrete symmetries is generated by a permutation S acting on

tensor nodes as α → S(α). The twist with S then identifies the tensor nodes α and S(α).

This brings the intersection form Ωαβ into another matrix Ωα′β′

S where α′, β′ parametrize

orbits of tensor nodes permuted by the action of S. The intersection matrix after the twist

is determined by

Ωα′β′

S =
∑

β∈β′

Ωαβ , (2.43)

where α is any node in a given orbit α′. See [17] for more details.

Now consider a 5d KK theory obtained by a twisted compactification of a 6d SCFT.

The 5d gauge group and matter content as well as their KK charges are now fully fixed

by the action of the twists discussed above. Knowing this, we can compute the effective

prepotential for any twisted KK theory. The tree-level part Ẽtree after a certain twist is

given by

Ẽtree ≡ iS̃tree|ǫ1,2,φ,m,τ

= −τ

2
Kα′β′

S φα′,0φβ′,0 − Ωα′β′

S φα′,0

(

aβ′

4
(ǫ2

1 + ǫ2
2) +

ba,β′

2
K̃a,ijφa,iφa,j + cβ′ǫ2

+

)

.

Here Kα′β′

S ≡ ∑

α∈α′,β∈β′ Ωαβ and K̃a,ij is the Killing form for an invariant subalgebra ha

and a runs over the gauge and the flavor symmetry groups.

The cubic prepotential receives contributions from the KK momentum states. We

compute, in the parameter regime τ ≫ φ, mf ,

F̃1-loop =
1

12

∑

n∈Z

(

∑

e∈⊕Rr

∣

∣(n + r)τ + e · φ
∣

∣

3 −
∑

f

∑

w∈⊕wr,f

∣

∣(n + r)τ + w · φ + mf

∣

∣

3
)

=
1

12

(

∑

e∈R0

|e · φ|3 −
∑

f

∑

w∈w0,f

|w · φ + mf |3
)

(2.44)

− τ

24

(

∑

e∈⊕Rr

(

6r(r−1)+1
)

(e · φ)2 −
∑

f

∑

w∈⊕wr,f

(

6r(r−1)+1
)

(w · φ + mf )2
)

.
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Here in the first line, the first term comes from the 6d vector multiplets decomposed into

⊕Rr representations of invariant subalgebras ⊗aha, and the second term corresponds to

the 6d hypermultiplets decomposed into ⊕wr,f representations of ⊗aha. We used the zeta

function regularization in the second and third lines. Note that the cubic terms in the

Coulomb branch parameters φ receive contributions only from the zero KK momentum

states because the contributions from other higher KK towers are all cancelled each other.

Similarly, the mixed gauge/gravitational and the mixed gauge/SU(2)R Chern-Simons co-

efficients receive contributions only from zero KK momentum states. We compute

C̃G
i = − ∂i

(

∑

e∈R0

|e · φ| −
∑

f

∑

w∈w0,f

|w · φ + mf |
)

,

C̃R
i =

1

2
∂i

∑

e∈R0

|e · φ| . (2.45)

Then the effective prepotential on the Ω-background for a 6d SCFT on a circle with

general outer automorphism twists is given by

Etwist = i(S̃tree + S̃1-loop + S̃grav + S̃R)|ǫ1,2,φ,m,τ

=
1

ǫ1ǫ2

(

Ẽtree + F̃1-loop +
1

48
C̃G

i φi(ǫ2
1 + ǫ2

2) +
1

2
C̃R

i φiǫ2
+

)

. (2.46)

Again, we need to perform the shift in (2.38) for the Coulomb branch parameters when we

compare this 6d result with the effective prepotential of a geometric description or with

the effective prepotentials of other 5d dual gauge theories.

As an example, consider the 6d minimal SU(3) theory and its twisted compactifica-

tion. This theory has discrete Z2 global symmetry acting on SU(3) representations. We

can therefore compactify this theory on a circle with twist of the Z2 symmetry. The in-

variant subalgebra under the twist is h = su(2) and the KK states in the 5d theory take

representations of su(2). The vector multiplet of the su(3) algebra in 6d reduces to the

following combination of KK momentum states.

8 of su(3) → 30 ⊕ 21/4 ⊕ 23/4 ⊕ 11/2 of su(2) . (2.47)

From this together with the data (2.39), we can compute the tree-level and the loop con-

tributions to the effective prepotential as

Ẽtree =
3

2
τφ2

0 + φ0

(

3φ2
1 − 1

4
(ǫ2

1 + ǫ2
2) + 3ǫ2

+

)

,

F̃1-loop =
4

3
φ3

1 − 5

16
τφ2

1 , (2.48)

and the mixed Chern-Simons coefficients as

C̃G
1 = −4 , C̃R

1 = 2 . (2.49)
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Plugging all these terms into the formula (2.46), one obtains the effective prepotential for

the twisted minimal SU(3) SCFT as

ǫ1ǫ2 E =
3

2
τφ2

0 + φ0

(

3φ2
1 − 1

4
(ǫ2

1 + ǫ2
2) + 3ǫ2

+

)

+
4

3
φ3

1 − 5

16
τφ2

1

− 1

12
φ1(ǫ2

1 + ǫ2
2) + φ1ǫ2

+ . (2.50)

As this theory is dual to the 5d pure SU(3) gauge theory at the Chern-Simons level κ = 9,

we can compare the effective prepotential E in (2.50) with that for the dual 5d theory.

For the comparison, we should shift the Coulomb branch parameters as φ0 → φ0 − 1
16τ

and consecutively as φ1 → φ1 − 2φ0 + τ
4 as guided by (2.38). Then the shifted effective

prepotential E ′ becomes

ǫ1ǫ2 E ′ =
τ

2
(φ2

0 − φ0φ1 + φ2
1) +

1

6

(

8φ3
0 + 8φ3

1 + 24φ2
0φ1 − 30φ0φ2

1

)

−
(

1

12
(ǫ2

1 + ǫ2
2) − ǫ2

+

)

(φ0 + φ1) , (2.51)

up to terms independent of φi. The result is precisely the effective prepotential for the

pure SU(3)9 theory with gauge coupling 1
g2 = τ

2 .

3 Blowup equations

In this section, we review and generalize the Nakajima-Yoshioka’s blowup equations which

are the main tool for computing the BPS partition functions of 5d/6d SQFTs on C2 × S1

(or C2×T 2), and propose our main claim, which enables one to compute the BPS spectrum

of any SQFT. We also present some instructive examples for computing the partition

functions.

3.1 Blowup equation review

To obtain the partition function Z defined in (2.8), we first consider the partition function

Ẑ on blowup Ĉ2, where the origin of the C2 is replaced by a compact 2-cycle P1. The

Ĉ2 can be parametrized by the projective coordinates (z0, z1, z2) ∼ (λ−1z0, λz1, λz2) for

λ ∈ C \ {0}. The Lorentz generators J1,2 act on the Ĉ2 by

(z0, z1, z2) 7→ (z0, eǫ1z1, eǫ2z2) , (3.1)

with parameters ǫ1,2 for the Cartans of the SO(4) rotations. There are now two fixed points

of the Lorentz rotations, the North pole and the South pole of the coordinates (0, 1, 0) and

(0, 0, 1) respectively on the P1. Around these fixed points, the local coordinates are given as

(z0z1, z2/z1) and (z1/z2, z0z2), and thus their weights under J1,2 actions can be represented

as (ǫ1, ǫ2 − ǫ1) and (ǫ1 − ǫ2, ǫ2) at the North and South poles respectively.

By performing the localization the partition function will be given by a sum over

magnetic fluxes ~n on the P1, which is an r-dimensional vector ~n = (n1, n2, · · · , nr) ∈ Qr

(running over the coweight lattices Γ∨ of gauge algebras), for the maximal torus U(1)r of
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the gauge symmetry group G. In geometry, such magnetic flux sum is performed for each

compact 4-cycle. Also, background magnetic fluxes ~B for the Abelian subgroup U(1)rF of

global symmetries can be turned on, but we note that they are fixed and not summed over.

Quantization conditions for each set of magnetic fluxes (~n, ~B) will be discussed shortly. In

this paper, a flux set (~n, ~B) represents a set of all allowed dynamical magnetic flux vectors

~ni and a fixed background flux vector ~B.

At each flux background labelled by ~n and ~B, the partition function is localized at

two fixed points on the P1 and the path integral near each fixed point reduces to that of

local Ω-deformed Ĉ2 with shifted chemical potentials due to the magnetic fluxes. As a

consequence, the partition function Ẑ can be written as [80–82]

Λ(mj ; ǫ1, ǫ2)Ẑ(φi, mj , Bj ; ǫ1, ǫ2) (3.2)

=
∑

~n

(−1)|~n|Ẑ(N)(φi+niǫ1, mj +Bjǫ1; ǫ1, ǫ2−ǫ1) · Ẑ(S)(φi+niǫ2, mj +Bjǫ2; ǫ1−ǫ2, ǫ2) ,

where |~n| =
∑

i ni. Here Ẑ(N) and Ẑ(S) are the partition function Ẑ with shifted chemical

potentials evaluated near the North and South poles respectively. The shifts in the chemical

potentials φi and mj reflect the fact that magnetically charged states experience angular

momentum shifts under the flux background. The prefactor Λ(mj ; ǫ1, ǫ2) does not depend

on dynamical parameters φi, but depends only on mass parameters mj as well as ǫ1,2.

Now we will smoothly blow down the P1 at the origin. This is a smooth transition

bringing the blowup geometry Ĉ2 back to the flat C2 (with Ω-deformation) without the

P1 at the origin. The claim in [80] was that for certain theories, the partition function Ẑ

after the blowdown procedure reduces to the usual BPS partition function Z on C2. In

particular, the final partition function is independent of the background fluxes ~B on the

P1. The reason for this is the following. The magnetic fluxes were supported on the P1 at

the origin, but the P1 has been blown down and disappeared. Then, nothing remains to

support these fluxes and moreover, there’s nowhere these fluxes can flow on the flat C2.

Therefore, we do not expect any remnant of the fluxes after the transition.

We would like to make a remark on a subtle point in the presence of magnetic fluxes

about the fermion number operator and some modifications of Z associated with it. Since

the partition function Ẑ was defined with magnetic fluxes on Ĉ2, the angular momentum

for a state with electric charge e is shifted by e · n where n is the magnetic flux on P1

at the origin. Recall that the fermion number operator (−1)F in the index in (2.8) can

be also defined as (−1)2J1 . In the presence of the magnetic flux n, this should change

as (−1)2J1 → (−1)2J1+e·n. This is formally equivalent to the following replacement in

the index4

(−1)F → (−1)2JR , (3.3)

with the Cartan JR of the SU(2)R charge. This indicates that the partition function Ẑ

with magnetic fluxes on Ĉ2 is in fact defined with the operator (−1)2JR instead of (−1)F .

Moreover, since blowing down the P1 is a smooth transition, this definition is still valid

4Similar replacements (−1)F → (−1)2JR in the superconformal index and in the holomorphic block for

3d SCFTs were discussed in [111, 112].
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even after the transition. Thus, the partition function (or the Witten index) in (3.2) before

and after the transition is defined with respect to the operator (−1)2JR .

One also finds that the replacement (3.3) can be implemented by a simple redefinition of

the angular momentum chemical potential as ǫ1 → ǫ1 +2πi. Therefore, after the transition

from Ĉ2 to C2, the partition function in the equation (3.2) can be written as

Ẑ(φ, m; ǫ1, ǫ2) = eE(φ,m;ǫ1,ǫ2) · ẐGV(φ, m; ǫ1, ǫ2) ,

ẐGV(φ, m; ǫ1, ǫ2) ≡ ZGV(φ, m; ǫ1 + 2πi, ǫ2) . (3.4)

Note that the prefactor E in the first equation is the same as the prefactor before the

replacement of ǫ1 because the redefinition doesn’t affect the regularization factor in the

path integral computation. Here ZGV is the index part of the BPS partition function,

which is actually the refined Gopakumar-Vafa (GV) invariant [113, 114], defined as

ZGV(φ, m; ǫ1, ǫ2) = PE





∑

jl,jr,d

(−1)2(jl+jr)Nd

jl,jr

χ
SU(2)
jl

(p1/p2) χ
SU(2)
jr

(p1p2)

(p
1/2
1 − p

−1/2
1 )(p

1/2
2 − p

−1/2
2 )

e−d·m



 ,

(3.5)

where d denotes the charge of a BPS state, m stands for the chemical potentials (or

Kähler parameters) φ, m, and Nd
jl,jr

is the degeneracy of a single-particle BPS state with

spin (jl, jr) and charge d, and χ
SU(2)
j is the SU(2) character of spin j. Also, jl ≡ J1−J2

2 and

jr ≡ J1+J2
2 . For example, the GV-invariants for a hypermultiplet with Kähler parameter φ

providing a BPS state with spin (0, 0) are given by

Zhyper
GV = PE

[ √
p1p2

(1 − p1)(1 − p2)
e−φ

]

=
∞
∏

i,j=0

1

1 − p
i+1/2
1 p

j+1/2
2 e−φ

,

Ẑhyper
GV = Zhyper

GV (φ; ǫ1 + 2πi, ǫ2) =
∞
∏

i,j=0

1

1 + p
i+1/2
1 p

j+1/2
2 e−φ

. (3.6)

The equation (3.2) with the identification (3.4) is the celebrated blowup equation for

instanton partition functions on the Ω-background introduced in [80–82]. See also [86] for

a geometric generalization of the blowup formula. The blowup equation with non-trivial

Λ is called a unity blowup equation. The prefactor Λ can also be trivial, i.e. Λ = 0, for

certain choices of fluxes, and the blowup equation in this case is called a vanishing blowup

equation [81, 86].

The purpose of this paper is to further generalize the above blowup formula such that

it can cover all the 5d supersymmetric theories which have consistent UV completions. In

addition, we will provide a systematic way to compute the BPS partition function Z for

any 5d supersymmetric theories using the blowup formula. More precisely, we propose the

following conjecture:

Conjecture. The partition function Z on the Ω-background in (2.8) for any 5d N = 1

field theory can be computed by solving the blowup equations (3.2) with (i) consistent

magnetic fluxes ~n and ~B, up to (ii) flop transitions.
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Based on this conjecture, we will present in this paper how to bootstrap BPS spectra

of 5d field theories by solving the blowup equations. The seeds for this bootstrapping are

the effective prepotential E on the Ω-background and a set (or multiple sets) of consistent

magnetic fluxes ~n and ~B. We have already introduced how to compute the effective prepo-

tential for every 5d field theory having either a gauge theory description in 5d or a 6d field

theory origin or a geometric realization in a local CY 3-fold. We will now discuss how to

choose consistent magnetic fluxes ~n and ~B, basically the points (i), (ii) in the conjecture.

3.1.1 Solving blowup equations

Let us explain how to compute the partition function Z using the blowup formula. We

first remark that the index part of the partition function Z of any 5d/6d SQFT must take

the form of the GV-invariant ZGV in (3.5). Now consider a power series expansion of the

GV-invariant with respect to the fugacities e−d·m. The BPS states captured by the GV-

invariant satisfy the BPS mass formula |M | = d ·m and at a generic point on the Coulomb

branch (with mass parameters for global symmetries turned on) they have positive masses

d · m > 0. Therefore the series expansion of ZGV in terms of the fugacities e−d·m on the

Coulomb branch is well-defined.

The blowup equation (3.2) can be expressed in terms of power series in the fugacities

and can be solved iteratively. Practically, we first recast the blowup equation as

Λ(mj ; ǫ1, ǫ2)ẐGV(φi, mj ; ǫ1, ǫ2) =
∑

~n

(−1)|~n|e−V (φi,mj ,~n, ~B;ǫ1,ǫ2)

× Ẑ
(N)
GV (φi+niǫ1, mj +Bjǫ1; ǫ1, ǫ2−ǫ1)

· Ẑ
(S)
GV(φi+niǫ2, mj +Bjǫ2; ǫ1−ǫ2, ǫ2) , (3.7)

where

V (φi, mj , ~n, ~B; ǫ1, ǫ2) ≡ E(φi, mj ; ǫ1, ǫ2) − E(N)(φi+niǫ1, mj +Bjǫ1; ǫ1, ǫ2 − ǫ1)

− E(S)(φi+niǫ2, mj +Bjǫ2; ǫ1 − ǫ2, ǫ2) . (3.8)

We expand both sides of the blowup equation (3.7) and then try to find an iterative solution

of ẐGV.

Importantly, we can use the fact that the GV-invariant should take a special form

in (3.5). Also, spins of states at each order are bounded by the maximum spin (jmax
l , jmax

r )

in the series expansion, and the characters χ
SU(2)
j with different spins are all orthogonal to

each other. Plugging the ansatz of the GV-invariant with a finite number of trial states for

a given charge d into the blowup equation and expanding it, we can iteratively solve the

equations to evaluate multiplicities Nd
jl,jr

of BPS states.

We conjecture that every 5d field theory enjoys enough number of independent blowup

equations, enabling one to compute full BPS spectrum. It appears that a generic 5d/6d

SQFT admits at least one unity blowup equation which suffices to determine all BPS

degeneracies as shown in [86]. For instance, all 5d and 6d gauge theories with only full hy-

permultiplets (without any unpaired half hypermultiplets) have a number of unity blowup
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equations. We expect that at least one of those unity equations in this case is formulated

with a set of consistent magnetic fluxes, whose definition will be given shortly, and thus the

solution to such unity equation will produce the correct BPS spectrum of the gauge theory.

There are some theories having only vanishing blowup equations, though. The 6d

theories involving unpaired half hypermultiplets on a circle with/without twists are such

theories5 [90]. An analysis of small ǫ1,2 expansion in [86] suggests that a single vanishing

blowup equation without other information may not be sufficient to determine all BPS

degeneracies. Nevertheless, we propose that those theories in fact have enough number

of vanishing blowup equations so that we can compute their BPS spectra by solving all

the vanishing equations together with other supplementary consistency conditions, like

the positivity of BPS degeneracies Nd
jl,jr

≥ 0, conformity to geometric realizations and

dualities, and the KK tower structure of KK theories, etc. As a concrete example for this,

in section 3.2, we will show that a single vanishing blowup equation for the pure SU(2)θ

gauge theories can be solved with the aid of additional consistency conditions so that BPS

spectra can be obtained, though the partition function for the SU(2)θ theory can be also

obtained from unity blowup equations as well.

Though it seems trivial, the condition Nd
jl,jr

≥ 0 turns out to be quite powerful.

While solving the blowup equations, it usually happens that degeneracies of BPS states

captured in higher orders in the expansion are fixed by BPS degeneracies appearing in lower

orders. Accordingly, the non-negativity of degeneracies Nd
jl,jr

≥ 0 for all the BPS states in

higher orders puts constraints on the possible lower order BPS degeneracies. When taking

into account higher expansion orders, one finds more and more additional constraints on

the lower order BPS degeneracies, which would strongly restrict the allowed lower order

degeneracies and hence the BPS degeneracies in a given order may be completely fixed at

a certain stage in the iteration procedure.6

Dualities and geometric realizations can also be useful for computation. When a theory

enjoys a geometric construction or dualities, we can extract from them yet another sup-

plementary information about the BPS states. In particular, when blowup equations have

more than one distinct solutions, one can use a geometric construction or dualities to pick

up the right solution for a given theory, which we will see with concrete examples below.

Consequently, we conjecture that one can compute BPS spectra of all 5d/6d field

theories using the blowup equations formulated from their geometric realizations or gauge

theory descriptions, or RG-flows thereof,7 even for the cases equipped with only vanishing

5On the other hand, we note that 5d gauge theories with half hypermultiplets can have unity blowup

equations.
6For example, the BPS spectrum of the 6d E7 gauge theory with a half hypermultiplet in the fun-

damental representation was computed in table 24 in [90] by solving vanishing blowup equations. Sev-

eral undetermined BPS degeneracies (denoted by symbol ‘?’) can actually be fixed by the condition

Nd

jl,jr
≥ 0. For instance, from the BPS spectrum given in table 24 in [90], we could fix many de-

generacies as 2(0, 1) for β = (2, 1, 1, 0, 0, 1, 2, 1, 0), (0, 1) for β = (2, 0, 1, 0, 0, 1, 2, 1, 0), (0, 0) ⊕ (0, 1) for

β = (1, 0, 1, 0, 0, 1, 2, 1, 0), 2(0, 0) ⊕ (0, 1) for β = (1, 0, 1, 0, 0, 2, 2, 1, 0), and etc. All other undetermined de-

generacies, but β = (0, 3, 3, 0, 1, 0, 0, 0, 0), are strongly constrained and actually have only few possibilities.

It seems that some higher degree computations can fix all the lower order degeneracies in the table.
7We are assuming that every 5d field theory admitting a UV completion has either a geometric realization

or gauge theory descriptions in 5d or in 6d on a circle possibly with twists, or can be obtained by an RG-flow

from a UV complete theory.
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blowup equations. A similar conjecture for refined BPS invariants of a local CY 3-fold was

given in [86]. We will provide evidences for our conjecture by explicitly solving the blowup

equations for all rank-2 theories and some interesting higher rank theories in sections 5

and 6.

3.1.2 Magnetic flux quantization

The magnetic fluxes on the P1 in the blowup Ĉ2 cannot be arbitrary. They should sat-

isfy suitable quantization conditions. Let us explain the quantization conditions for the

magnetic fluxes in three different perspectives: the geometric perspective, the 5d gauge

theoretic perspective, and the 6d gauge theoretic perspective.

Geometries. In geometry, the magnetic flux ni (or Bj) can be turned on for each (non-

)compact divisor DI in a 3-fold. The flux quantization depends on charges and spins

(jl, jr) of wrapped M2-branes on holomorphic 2-cycles. Consider an M2-brane wrapping a

primitive curve Ci. Here the primitive curve is a Mori cone generator and every holomorphic

2-cycle can be expressed as a linear combination of primitive curves Ci as C =
∑

i piCi

with non-negative integers pi. The curve Ci can consistently couple to a magnetic flux F if

the following condition is satisfied [86]

F · Ci is integral/half-integral when C2
i is even/odd , (3.9)

where C2
i is the self-intersection number of Ci. The flux F is defined in geometry as

F ≡ ∑r
i=1 niSi +

∑rF

j=1 BjNj , where Si, Nj ∈ H1,1(X) are the basis of the compact and

the non-compact surfaces inside a 3-fold X, respectively. The above condition (3.9) is

equivalent to the condition that the magnetic flux on a charged M2-brane state of spin

(jl, jr) wrapping on Ci satisfies

F · Ci is integral/half-integral, when 2(jl + jr) is odd/even. (3.10)

This is because the spin of a curve Ci is related to the self-intersection as 2(jl +jr) = C2
i +1

mod 2. From this we claim that the flux F, or equivalently (~n, ~B), must be quantized such

that all the primitive curves Ci in a 3-fold satisfy the condition (3.9). In general the

solution to this quantization condition is not unique. The proper choices of magnetic

fluxes associated to spectrum of unitary BPS states will be discussed below.

5d gauge theories. We can easily translate the above geometric quantization condition

to physical conditions in 5d gauge theories. W-bosons and hypermultiplet states in a 5d

gauge theory correspond to primitive curves with C2 = 0 and C2 = −1, respectively. The

charges of these elementary fields in the classical Lagrangian are all known. Based on

the classical information, we can first quantize the magnetic fluxes ~n and ~B coupled to

the elementary fields. The geometric quantization condition implies that the total fluxes

on the W-bosons of the gauge group should be integral and those on the perturbative

hypermultiplets should be half-integral. Namely,

~n · e ∈ Z , ~n · wf + Bf ∈ Z +
1

2
, (3.11)
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for all roots e, the weights wf associated with all hypermultiplets f , and the fluxes Bf for

flavor symmetries.

We will use the first condition of (3.11) to fix the quantization of fluxes ~n, and use

the second condition to quantize the background fluxes Bf .8 Depending on the gauge

algebra, there are several possibilities of magnetic fluxes satisfying (3.11). Since a state in

a given representation is obtained by subtracting roots from its highest weight state, the

quantization of ~n · wf is the same for every wf in a fixed representation.

To find all possible quantizations for ~n, it is convenient to introduce the fundamental

weight µi which is a dual basis of the coroots α∨
i of the gauge algebra.9 Consider a lattice

Λ = ⊕Zµi and the corresponding root lattice Λr which is a sublattice of Λ. The lattice

Λ contains not only root lattice but also all possible weight vectors. Thus, the number of

possible quantizations of ~n with ~n · e ∈ Z is counted by the number of elements in Λ/Λr.

This group is isomorphic to the center of simply connected Lie group corresponding to

gauge algebra [115, 116]:

Ar Bℓ Cℓ Dℓ,odd Dℓ,even E6 E7 E8 F4 G2

Zr+1 Z2 Z2 Z4 Z2 × Z2 Z3 Z2 {1} {1} {1} . (3.12)

More explicitly, for the gauge algebra of type Aℓ, the possible quantization for ~n is

given by

ni ∈ Z +
h

ℓ + 1
i (1 ≤ i ≤ ℓ) , (3.13)

where ni ≡ ~n · µi and h is a fixed integer subject to 0 ≤ h ≤ ℓ. For the gauge algebra of

type Bℓ, there are two quantizations,

ni ∈ Z (1 ≤ i ≤ ℓ − 1) , nℓ ∈ Z +
h

2
, (3.14)

where h = 0, 1. For type Cℓ,

ni ∈ Z +
h

2
for i odd , ni ∈ Z for i even, (3.15)

where h = 0, 1. The set of the quantizations of types Bℓ and Cℓ has a Z2 structure. For

type Dℓ with ℓ odd,

ni ∈ Z +
h

2
(i = 1, 3, · · · , ℓ − 3) ,

ni ∈ Z (i = 2, 4, · · · , ℓ − 2) , (3.16)

nℓ−1 ∈ Z +
h

4
, nℓ ∈ Z +

h + 2

4
,

8There is one exception. A half hypermultiplet does not admit its mass parameter, so there is no

corresponding Bf . In this case, the second condition of (3.11) associated with the half-hyper further

constrains the quantization of ~n.
9For a root α in Euclidean space E, the coroot αvee is a map from E to R, defined to be 〈α∨, x〉 =

2(x, α)/(α, α), where (·, ·) is an inner product in E. The fundamental weight µi is dual basis of α∨
i , i.e.,

〈α∨
i , µj〉 = δij . The general weight vector can be written as a linear combination of µi. For example, write

a simple root αi =
∑

k
aijµj . Then

〈

α∨
j , αi

〉

= aij so that aij is an element of the Cartan matrix. The

details can be found in many textbooks about Lie algebras, for example, [115] or [116].
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where h = 0, 1, 2, 3. The set of the quantization for Dℓ,odd hence has a Z4 structure. For

type Dℓ with ℓ even, there are four quantizations:

ni ∈ Z +
h1 + h2

2
(i = 1, 3, · · · , ℓ − 3) ,

ni ∈ Z (i = 2, 4, · · · , ℓ − 2) , (3.17)

nℓ−1 ∈ Z +
h1

2
, nℓ ∈ Z +

h2

2
,

where (h1, h2) ∈ Z2 × Z2. For type E6,

(n1, n2, n3, n4, n5, n6) ∈ Z6 +
h

3
(2, 1, 0, 2, 1, 0) , (3.18)

with h = 0, 1, 2, which has a Z3 structure. For type E7,

(n1, n2, n3, n4, n5, n6, n7) ∈ Z7 +
h

2
(0, 0, 0, 1, 0, 1, 1) , (3.19)

with h = 0, 1, which has a Z2 structure. The remaining exceptional algebras E8, F4 and

G2 admit only canonical flux quantization defined as

ni ∈ Z , Bf ∈ Z +
1

2
. (3.20)

This canonical flux quantization holds for any gauge and flavor symmetry groups except for

the cases where the theory contains unpaired half hypermultiplets. Most of the examples

we will discuss below use the canonical flux quantization.

The quantization of fluxes Ba for topological symmetries of gauge groups is more

involved because in general we do not know spins of instanton states. Let us first discuss

the quantization condition on Ba when fluxes for the gauge group Ga satisfy the canonical

flux quantization. In this case, a single instanton state carries a unit charge under U(1)a

topological symmetry for the a-th gauge group. The charges of the instanton state under

other global symmetries can be computed by summing over contributions from the zero

modes of charged hypermultiplets on the instanton background. For a hypermultiplet in

a representation r of a gauge group Ga, the zero mode contribution to the flavor charge

of a 1-instanton state on the Coulomb branch is given by its Dynkin index, i.e. Ta(r).

Therefore, it follows from (3.9) that the ground state of a single instanton for gauge group

Ga should induce a quantization condition

Ba −
∑

f

Bf Ta(rf ) ∈ Z or Z + 1/2 , (3.21)

depending on the spin of the state. This will quantize the flux Ba provided that Bf ’s

have already been quantized by (3.20). Here, we denote by f all hypermultiplets in the

representation rf of the gauge group Ga collectively. Since the canonical gauge fluxes

ni bring about only integral shifts, the gauge fluxes do not affect the above quantization

condition.

When na
i ’s for a gauge group Ga are not canonical, we can fix Ba by requiring the

corresponding blowup equation to be solvable. We first expand the blowup equation in
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terms of the instanton fugacity e−ma for a gauge group Ga, assuming that it is a unity

equation. The terms in the leading order in this expansion are given by a set of magnetic

flux vectors ~n that minimize

∂maV =
1

2
(~n, ~n)a ≡ 1

2
Ka

ijna
i na

j , (3.22)

for all gauge groups, where V is defined in (3.8). We call this set Min(~n). Since the GV-

invariant ẐGV starts with 1 in the fugacity expansion and the prefactor Λ is independent

of the Coulomb branch parameters φi, the right-hand side in the blowup equation given

in (3.7) must start with terms independent of φi. This means that for a given Ba, there

must exist at least a magnetic flux vector ~n ∈ Min(~n) such that

∂φa
i
V = 0 at (~n, ~B) for all i of Ga . (3.23)

This condition then fixes the background flux Ba when the gauge fluxes na
i are non-

canonical ones. We note that when the fluxes na
i are all canonical ones, this condition

is trivially satisfied since na
i ∈ Min(~n) are all zero and V is independent of φa

i when na
i = 0.

On the other hand, a vanishing blowup equation can be solved if there exists at least

a pair of minimal flux vectors ~n1, ~n2 ∈ Min(~n) with |~n1| − |~n2| = 1, which is a necessary

condition for that two leading terms cancel each other in the expansion, satisfying

∂φa
i
V at (~n1, ~B) = ∂φa

i
V at (~n2, ~B) , (3.24)

for all φa
i .

The conditions (3.23) and (3.24) will then leave only a finite number of allowed fluxes

Ba for the topological symmetry of Ga in the unity and vanishing blowup equations, re-

spectively, for non-canonical magnetic fluxes na
i .

6d gauge theories with/without twists. Lastly, we will discuss the flux quantization

conditions for the 5d KK theories in terms of the associated 6d field theory data. Upon a

circle compactification, the 6d multiplets reduce to 5d vector multiplets and hypermultiplets

taking representations of the 6d gauge algebra g, or the invariant subalgebra h when g is

twisted. In the 5d reduction of a 6d gauge theory, the magnetic fluxes for the gauge group

and those for the flavor group acting on 5d gauge and matter fields satisfy the quantization

condition in (3.11). Also, the magnetic flux Bτ of the KK U(1) symmetry should be an

integer because all KK states from a single 6d state should have the same (half-)integrality

of fluxes. So it is natural to fix

Bτ = 0 . (3.25)

We then need to determine the quantization conditions on the tensor fluxes nα (or

nα′ when the α-th tensor node is twisted) for tensor symmetries. Self-dual strings are

charged under the tensor symmetries. Their tensor charges are determined by the classical

Green-Schwarz terms evaluated on self-dual string backgrounds. The ground state of a

single string associated to the β′-th (or β-th without twist) tensor field carries charges for

the α′-th tensor symmetry as

Ωα′β′

S ba,β′ , (3.26)
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when the string is an instantonic string of the a-th gauge group. If the β′-th tensor supports

no gauge algebra, then ba,β′ = 1.

Let us first consider the cases where magnetic fluxes for a gauge group Ga coupled to

the α′-th tensor fields, so when ba,α′ 6= 0, satisfy the canonical flux quantization condition

in (3.20). The flavor and the KK charges for a single string can be computed by counting

the zero mode contributions from KK states on the string background, which is the same

computation we did above for instanton states in 5d gauge theories. Collecting all the zero

mode contributions, we claim that the tensor flux, which we denote by nα′ ≡ ñα′ + Bα′

with ñα′ ∈ Z, should satisfy the following quantization condition: given the spin (jl, jr) of

the ground state,

Ωα′β′

S Bα′ba,β′ +
∑

f0

Bf0Ta(rf0)− 1

6
Bτ

∑

r

(6r(r−1)+1)
(

Ta(Rr)−
∑

f

Ta(wr,f )
)

∈
{

Z for 2(jl + jr) odd ,

Z + 1
2 for 2(jl + jr) even .

(3.27)

This is essentially the quantization condition for Bα′ . Here, f0 runs over hypermultiplets

with KK-charge 0, and r runs over all fractional KK-charge shifts including r = 0. Rr and

wr,f denote representations of the vector multiplets and the hypermultiplets with fractional

shift r of KK charges, respectively. Note that since gauge and tensor charges of the ground

state on a self-dual string are quantized to be integers and the associated fluxes na and ñα′

are all integers as well, they have no effect on this quantization condition.

Now consider non-canonical magnetic fluxes for a gauge group Ga. Let us first expand

the blowup equation in terms of the fugacities e−φα′ of tensor symmetries. The leading

power of these fugacities in this expansion is determined by the minimum of

∂φα′ V = Ωα′β′

S ba,β′K̃a,ijna
i na

j . (3.28)

This is non-zero with non-integral gauge fluxes na
i . This means that when gauge fluxes

na
i do not satisfy the canonical flux quantization condition for any Ga, then the blowup

equation written in terms of a 6d field theory description is always a vanishing-type, i.e.

Λ = 0.

As we discussed for 5d gauge theories above, the vanishing blowup equation can be

solved only if we can find at least a pair of minimal flux vectors ~n1, ~n2 ∈ Min(~n) and

background fluxes ~B subject to the condition given in (3.24), where Min(~n) is a set of

magnetic flux vectors minimizing (~n, ~n)a for all Ga and ~B here involves the tensor fluxes

Bα′ as well as other flavor fluxes. We can use this fact to fix the background magnetic

fluxes Bα′ of tensor symmetries.

We remark that if a 6d gauge theory involves unpaired half hypermultiplets and thus

the background flavor flux acting on the hypermultiplet cannot be turned on, then we

cannot choose the canonical flux quantization (3.20) for the fluxes of the gauge group Ga

coupled to the half hypermultiplet. Therefore, we have only vanishing blowup equations

in such cases, as discussed in [90].
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3.1.3 Consistent magnetic fluxes

The above quantization conditions are a necessary condition but not a sufficient one for the

BPS partition functions Z of a 5d theory to satisfy the blowup equation (3.2) with chosen

magnetic fluxes. Among the magnetic fluxes satisfying the quantization conditions, only

few of them can provide consistent blowup equations whose solution correctly produces

BPS spectrum of a 5d field theory. We call such magnetic fluxes leading to the consistent

blowup equations consistent magnetic fluxes. With a wrong set of fluxes, one would find

an inconsistent blowup equation: the blowup equation has no solution or the solution

to the blowup equation does not take the form of a GV-invariant, or the solution involves

unphysical states and thus differs from the desired BPS spectrum for a 5d theory. Therefore,

in order to correctly compute BPS spectrum using the blowup equations, it is crucial to

know how to choose proper consistent magnetic fluxes. We now present a set of criteria

for the consistent magnetic fluxes.

As discussed, all the BPS particles on the Coulomb branch must satisfy the BPS mass

formula. It is expressed as |M | =
∑

i eiφi, when we turned off mass parameters for global

symmetries in strong coupling limit near the UV fixed point. Here ei denotes the charge

of a state under the i-th U(1) gauge group. In geometry, these masses are identified with

the volumes of holomorphic 2-cycles for the BPS states as
∑

i eiφi = vol(C) measured with

respect to the normalizable Kähler parameters φi. It then follows that the mass
∑

i eiφi (or

vol(C)) must be non-negative on the Coulomb branch, i.e.
∑

i eiφi ≥ 0 for all BPS states.

In fact, the Coulomb branch C is the space of the dynamical Kähler moduli φi defined

as [7, 11]

C =

{

φi, i = 1, · · · , r | e · φ ≡
∑

i

eiφi ≥ 0

}

, (3.29)

with φi > 0 when all mass parameters for global symmetries are switched off. The Coulomb

branch C must exist for a UV finite 5d theory equipped with dynamical Kähler parameters.

Otherwise, unitarity of the theory will be violated at some point on the Coulomb branch

and the theory cannot have a consistent UV completion.

The Coulomb branch C is a collection of sub-chambers Ci that are connected by so-

called flop transitions. It is possible that a BPS hypermultiplet becomes massless M = 0

at the boundary between two sub-chambers. If then, two sub-chambers are connected by

a flop transition flipping the mass sign of the hypermultiplet as M > 0 → M < 0. The

effective Chern-Simons terms in the low energy theory take different expressions in the

two sub-chambers because the CS terms depend on mass signs of hypermultiplets. More

precisely, the prepotential and the gauge/gravitational Chern-Simons coefficients alter their

forms under a flop transition related to a hypermultiplet as

F → F +
1

6
M3 , CG

i → CG
i − ∂iM , CR

i → CR
i , (3.30)

where M here is the mass for the hypermultiplet before the flop transition. In geometry,

the flop transition corresponds to a geometric transition X → X ′ between two CY 3-folds

X and X ′ described by blowing down a −1 curve C ⊂ X and blowing up a different −1

curve C ′ ⊂ X ′.
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The partition function Z computes degeneracies of BPS states on the Coulomb branch

of a 5d theory. Suppose that we solve the blowup equations for Z in the fugacity expansion

and the BPS states are identified up to a certain order. One can easily read off the masses

for the BPS states up to that order. For a consistent 5d field theory having dynamical

Kähler parameters, there must exist a non-vanishing Coulomb branch C defined in (3.29),

possibly after a finite number of flop transitions, where the masses of the BPS states are all

non-negative, i.e. e·φ ≥ 0, when all non-dynamical parameters are turned off. If one cannot

find a non-trivial Coulomb branch, then it implies that the 5d theory is inconsistent in UV.

Note however that the partition function Z is defined and computed in a particu-

lar sub-chamber on the (extended) Coulomb branch with mass parameters mj for global

symmetries turned on. In the limit mj → 0, some of hypermultiplets captured in the

partition function can be massless and then flop transitions should take place before their

masses become negative. Since this can generically happen, we should carefully examine

the existence of Coulomb branch by testing e · φ ≥ 0 for all the states in Z, except for

hypermultiplets (or states with spin (jl, jr) = (0, 0)). We note that for hypermultiplets,

either e · φ ≥ 0 or e · φ < 0 is allowed, as flop transitions can happen. If one finds a non-

trivial Coulomb branch where e · φ ≥ 0 for all the states in Z except for a hypermultiplet

which is of e · φ < 0, then this means that there must be a flop transition associated to the

hypermultiplet as we approach the UV fixed point. In this case we should first perform

flop transitions for the hypermultiplets with e · φ < 0 and then test again e · φ ≥ 0 for all

states including the hypermultiplets.

If one finds a chamber with e · φ ≥ 0 for all the states including hypermultiplets,

after a sequence of such flop transitions, it is a strong indication that the theory has a

UV completion with non-trivial Coulomb branch and the solution Z (or Ẑ) of the blowup

equations computes the BPS spectrum on the Coulomb branch around the UV fixed point.

In this case, we will refer to the set of magnetic fluxes as consistent magnetic fluxes for

the 5d theory on the blowup Ĉ2. We conjecture that there exist enough sets of consistent

magnetic fluxes for every UV finite 5d theory and therefore we can compute its BPS

spectrum using the blowup equations.

Examining e · φ ≥ 0 for all BPS states is a formidable task as there are infinitely many

BPS states but the partition function Z is computed up to a certain order in the fugacity

expansion. Practically we can check this non-negativity of masses of BPS states only up

to a certain higher order. This however would not be very harmful from the perspective of

geometry. Recall that all holomorphic 2-cycles C =
∑

i niCi can be written as a linear sum

of primitive curves Ci with non-negative integers ni and the number of the primitive curves

is finite for a local CY 3-fold. The primitive curves (or associated BPS states) are usually

captured at some lower orders in the expansion. We then need to check non-negativity of

volumes only for such primitive curves in lower orders. We expect this holds also for general

5d theories. Hence one can in principle identify consistent magnetic fluxes by computing

the BPS partition function up to certain leading orders.

We now have all the ingredients for solving the blowup equations and thus are ready

for bootstrapping BPS spectrum of any 5d field theory. In the followings we will explicitly

illustrate the bootstrap procedure with a large number of interesting examples.
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3.2 Instructive examples

In this section, we present instructive examples which illustrate our proposal in section 3.1

for bootstrapping the BPS partition functions.

3.2.1 5d pure SU(2)θ with θ = 0, π

As the simplest example, consider the 5d N = 1 pure SU(2)θ gauge theory with a discrete

theta angle θ = 0 or π. As the perturbative descriptions of two theories are the same, they

have the same prepotential. It follows from (2.1) that the cubic prepotential is given by

6F = 6mφ2 + 8φ3 , (3.31)

where m = 1/g2 is the gauge coupling and φ is the Coulomb branch parameter for the

SU(2) gauge symmetry. The effective prepotential defined in (2.12) evaluated on the Ω-

background for both theories takes the form of

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
φ + ǫ2

+φ

)

, (3.32)

where the second term comes from the mixed gauge/gravitational CS term with CG
φ = −4

in (2.18), and the third term comes from the mixed gauge/SU(2)R CS term with CR
φ = 2.

The mixed CS terms are also insensitive to the discrete theta angle.

We now use the effective prepotential E as an initial input for the blowup equation to

obtain BPS spectrum of this theory. Recall that though E for both SU(2)0 and SU(2)π

theories are the same, they have different UV fixed points and thus they have different BPS

spectra. This is reflected in the blowup equation by two distinct choices of background

magnetic flux Bm for the topological U(1) symmetry:

Bm ∈
{

Z for SU(2)0

Z + 1/2 for SU(2)π
. (3.33)

To choose the flux Bm properly, it is convenient to consider geometric construction

of two theories. The SU(2)0 theory is geometrically engineered by a CY 3-fold containing

a single Hirzebruch surface F0, while the SU(2)π theory is engineered by another 3-fold

containing a Hirzebruch surface F1. The primitive 2-cycles (or Mori cone generators) in

a Hirzebruch surface are the fiber f and the base e. The volumes of these 2-cycles are

given by

{

F0 : vol(f) = 2φ, vol(e) = 2φ + m ,

F1 : vol(f) = 2φ, vol(e) = φ + m .
(3.34)

Here m is a Kähler parameter for a non-compact 4-cycle that is identified with the gauge

coupling in the gauge theory. This implies that the curve e in each geometry carries charge

+1 for the U(1) topological symmetry.

Let us consider a canonically quantized magnetic flux n ∈ Z for the SU(2) gauge

symmetry in both F0 and F1 theories. This magnetic flux can suitably couple to the state
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f

e

(a) F0

f

e

h

(b) F1

Figure 1. Geometric constructions of (a) SU(2)0 and (b) SU(2)π. The fiber P1 in a Hirzebruch

surface Fn is denoted by f , the base P1 is denoted by e, and h = e + f for F1.

coming from a wrapped M2-brane on the fiber curve f . This state is a W-boson with

gauge charge +2 and it feels an integer magnetic flux 2n, which is compatible with the

quantization condition in (3.9).

Two theories have different quantization conditions on the background flux Bm for the

U(1) topological symmetry. Consider first the theory of F0. The e curve in this geometry

gives rise to a vector multiplet with charge +2 for the gauge symmetry and charge +1

for the topological symmetry. From the quantization condition (3.9) with n ∈ Z, the

background flux should be quantized as Bm ∈ Z. On the other hand, the state associated

to the e curve in the theory of F1 is a hypermultiplet with gauge charge +1 and topological

charge +1. Then the quantization condition (3.9) requires the background flux to be half-

integrally quantized, Bm ∈ Z + 1/2. Hence we find the following quantizations for the

magnetic fluxes:
{

F0 : n ∈ Z , Bm ∈ Z

F1 : n ∈ Z , Bm ∈ Z + 1/2 .
(3.35)

We note however that not all integer/half-integer fluxes Bm are allowed in the blowup

equations; the blowup equations only with the consistent magnetic fluxes can be solved to

produce the correct BPS spectrum, as discussed in the previous subsection. If one uses

other sets of magnetic fluxes, then the solution to the blowup equation will contain some

BPS states with negative volumes vol(C) < 0 on the Coulomb branch, which is surely

inconsistent. So we first need to identify the consistent magnetic fluxes Bm.

Let us try to solve the blowup equation with magnetic fluxes n ∈ Z and some Bm.

The magnetic fluxes result in the shifts of parameters in the North and the South poles

as φ → φ + n ǫ1,2, m → m + Bm ǫ1,2. The GV-invariant (or the Witten index) can be

decomposed into two parts, the perturbative and the instanton parts, as

ZGV(φ, m; ǫ1, ǫ2) = Zpert(φ; ǫ1, ǫ2) · Zinst(φ, m; ǫ1, ǫ2) ,

Zpert(φ; ǫ1, ǫ2) = PE

[

− 1 + p1p2

(1 − p1)(1 − p2)
e−2φ

]

,

Zinst(φ, m; ǫ1, ǫ2) =
∞
∑

k=0

qkZk(φ; ǫ1, ǫ2) , (3.36)

with the instanton fugacity q ≡ e−m and Z0 = 1. The perturbative part comes from the

W-boson (or the M2-brane state on f) on the Coulomb branch. Plugging the GV-invariant
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into (3.7), one finds a unity blowup equation that can be expanded in terms of the instanton

fugacity as

∞
∑

k,k′=0

qk+k′

Λk′Ẑk(φ; ǫ1, ǫ2) =
∑

n∈Z

∞
∑

k1,k2=0

(−1)ne−V Ẑ(N)
pertẐ

(S)
pert

Ẑpert

(q pBm
1 )k1(q pBm

2 )k2 (3.37)

× Ẑ
(N)
k1

(φ + nǫ1; ǫ1, ǫ2 − ǫ1) · Ẑ
(S)
k2

(φ + nǫ2; ǫ1 − ǫ2, ǫ2) ,

with V defined in (3.8), where Λ0 = 1 which is fixed by the zeroth order equation in the

expansion. Here, the hatted functions are defined with the shift in the parameter ǫ1 as

f̂(φ, m; ǫ1, ǫ2) ≡ f(φ, m; ǫ1 + 2πi, ǫ2) . (3.38)

One can extract the k-th order of the instanton expansion of this equation, which can

be schematically written as

Λk(ǫ1, ǫ2) + Ẑk(φ; ǫ1, ǫ2) = pkBm
1 Ẑk(φ; ǫ1, ǫ2 − ǫ1) + pkBm

2 Ẑk(φ; ǫ1 − ǫ2, ǫ2)

+ (terms with Ẑr<k and Λr<k) . (3.39)

Here the k-instanton partition function Ẑk at the k-th order in the expansion is indepen-

dent of the background magnetic flux Bm and appears only with a trivial gauge flux n = 0.

All φ independent terms in the second line (first by expanding it in e−φ) will be absorbed

into Λk. This equation can be solved once we know the solutions Zr at the lower orders

r < k. In particular, since Ẑk is independent of Bm, when there exist 3 (or more) distinct

consistent fluxes Bm, we can exactly solve three linearly independent equations for 3 un-

known functions, Ẑk, Ẑ
(N)
k , and Ẑ

(S)
k , and hence find a closed expression for the k-instanton

partition function Ẑk at each k.

The first order of the blowup equation can be written explicitly as

Λ1 + Ẑ1 = pBm
1 Ẑ

(N)
1 + pBm

2 Ẑ
(S)
1 − (p1p2)Bm+1e−2(2+Bm)φ1

(1 − e−2φ)(1 − p1e−2φ)(1 − p2e−2φ)(1 − p1p2e−2φ)

− (p1p2)Bm−1e−2(2−Bm)φ1

(1 − e−2φ1)(1 − p−1
1 e−2φ1)(1 − p−1

2 e−2φ1)(1 − (p1p2)−1e−2φ1)
. (3.40)

The last two terms on the right-hand side come from the perturbative parts with the gauge

fluxes n = 1 and n = −1 respectively. One can then easily see that if Bm > 2 or Bm < −2,

then the last two terms will start with a negative power of e−φ in the expansion. This means

that the solution Ẑ1 to the above equation will involve a BPS state of mass |M | = m + aφ

with a negative coefficient a. This is problematic because this state violates the unitarity

condition on its mass, i.e. aφ ≥ 0, on the Coulomb branch parametrized by φ > 0 in the

UV limit where m → 0. In addition, one can check that this state is not a hypermultiplet

and thus there is no associated flop transition. Thus the solution is inconsistent due to the

states with negative masses (or volumes) in the UV limit. This tells us that solving the

blowup equations with flux |Bm| > 2 cannot give the correct BPS partition function for

the pure SU(2)θ gauge theory.
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On the other hand, if −2 ≤ Bm ≤ 2, then the solution will not contain any states with

e · φ < 0. Therefore we conclude that the consistent magnetic fluxes for the SU(2)0 and

SU(2)π theories are
{

F0 : SU(2)0 n ∈ Z , Bm = −2, −1, 0, 1, 2

F1 : SU(2)π n ∈ Z , Bm = −3
2 , −1

2 , 1
2 , 3

2 .
(3.41)

Since we have more than three sets of consistent fluxes (n, Bm) for both cases, we can

compute a closed expression of the partition function at each instanton order. For example,

the 1-instanton partition functions are given as follows:

Z
SU(2)0

1 (φ; ǫ1, ǫ2) =
p1p2(1 + p1p2)e−2φ

(1 − p1)(1 − p2)(1 − p1p2e−2φ)(e−2φ − p1p2)
, (3.42)

Z
SU(2)π

1 (φ; ǫ1, ǫ2) = − p
3/2
1 p

3/2
2 (1 + e−2φ)e−φ

(1 − p1)(1 − p2)(1 − p1p2e−2φ)(e−2φ − p1p2)
. (3.43)

By repeating this procedure for the blowup equations to higher orders in q, it is straight-

forward to obtain the k-instanton partition functions Zk.

We note that though there are many theories which possess three different sets of con-

sistent magnetic fluxes, many of which are discussed in [84], a much larger class of theories

do not allow such three distinct sets. However, as discussed in the previous subsection and

also in [86, 89], a single unity blowup equation with the consistent magnetic fluxes (~n, ~B) is

enough to compute the BPS partition function. We will now illustrate this by computing

the BPS spectra of the pure SU(2)θ theories, using only a single background flux Bm giving

a unity blowup equation.

Solving a unity blowup equation. Let us start with the following ansatz for the GV-

invariant.

ZGV(φ, m; ǫ1,2) = PE





∑

jl,jr

∞
∑

d1,d2=0

(−1)2(jl+jr)N
(d1,d2)
jl,jr

Ajl,jr (ǫ1, ǫ2)e−d1vol(e)−d2vol(f)





Ajl,jr (ǫ1, ǫ2) ≡
χ

SU(2)
jl

(p1/p2)χ
SU(2)
jr

(p1p2)

(p
1/2
1 − p

−1/2
1 )(p

1/2
2 − p

−1/2
2 )

. (3.44)

Here d = (d1, d2) denotes the degrees d1 and d2 of 2-cycles e and f respectively. The BPS

states with d1 = 0 at 0-instanton sector are all captured by the perturbative spectrum of

the SU(2) theory. The perturbative spectrum then fixes N
(0,1)

0, 1
2

= 1 and N
(0,d2)
jl,jr

= 0 for

d2 > 1.

We shall now put the ansatz to the blowup equation and solve it order by order in d1

expansion. Let us first consider the SU(2)0 theory with the background flux Bm = 0. The

equation at d1 = 1 order is given in (3.40). To solve this equation, we further expand the

equation in d2 as

Λ1 = Ẑ
(N)
1 + Ẑ

(S)
1 − Ẑ1 − (

p1p2 + (p1p2)−1)e−4φ

− (1 + p1)(1 + p2)(1 + p3
1p3

2)

p2
1p2

2

e−6φ + O(e−8φ) . (3.45)

This equation can be easily solved order by order in d2 or in the powers of e−φ.
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0) N
(1,0)

0, 1

2

(

0, 1
2

)

(1, 1) N
(1,1)

0, 1

2

(

0, 1
2

)

⊕
(

0, 3
2

)

(1, 2) N
(1,2)

0, 1

2

(

0, 1
2

)

⊕
(

0, 5
2

)

(1, 3) N
(1,3)

0, 1

2

(

0, 1
2

)

⊕
(

0, 7
2

)

Table 2. The result of solving the SU(2)0 blowup equation at d1 = 1 order for the background

flux Bm = 0.

d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0)
(

0, 1
2

)

(1, 1)
(

0, 3
2

)

(1, 2)
(

0, 5
2

)

(1, 3)
(

0, 7
2

)

(2, 1)
(

0, 5
2

)

(2, 2)
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕
(

1
2 , 4
)

(2, 3)
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕ 2
(

0, 9
2

)

⊕
(

1
2 , 4
)

⊕
(

1
2 , 5
)

⊕
(

1, 11
2

)

Table 3. BPS spectrum of the SU(2)0 theory for d1 ≤ 2, d2 ≤ 3, where d = (d1, d2) labels the

states from an M2-brane wrapping d1e + d2f curve in F0.

It turns out that this equation uniquely determines all the degeneracies N
(1,d2)
jl,jr

, except

for the degeneracies N
(1,d2)

0, 1
2

for all d2 ≥ 0. The result is listed in table 2.

The degeneracies N
(1,d2)

0, 1
2

are not determined in the 1st order computation because

they vanish in the combination Ẑ
(N)
1 + Ẑ

(S)
1 − Ẑ1 and thus do not appear in the above

equation. These undetermined degeneracies at d1 = 1 order are all fixed by solving the

blowup equation in the next order or higher orders: N
(1,0)

0, 1
2

= 1 and N
(1,d2)

0, 1
2

= 0 for d2 > 0.

We can solve the blowup equation iteratively and compute the degeneracies of higher

degree curves. The resulting BPS spectra for d1 ≤ 2, d2 ≤ 3 are summarized in table 3.

One can readily see that this result agrees with the above result obtained by solving three

blowup equations in (3.42).

Next, consider the SU(2)π theory with a background magnetic flux Bm = 1
2 . The

computation is basically the same as the previous case with θ = 0. The blowup equation

at d1 = 1 order is expanded as

Λ1 = p
1/2
1 Ẑ

(N)
1 + p

1/2
2 Ẑ

(S)
1 − Ẑ1 − (p1p2)1/2e−3φ

− 1 + (1 + p1)(1 + p2)p2
1p2

2

(p1p2)3/2
e−5φ + O(e−7φ) . (3.46)

All the degeneracies N
(1,d2)
jl,jr

are uniquely determined by solving this equation, except for the

degeneracies N
(1,d2)
0,0 for all d2 ≥ 0. The undetermined degeneracies N

(1,d2)
0,0 are also fixed

uniquely by solving the equations in higher orders. We list the result for d1 ≤ 2, d2 ≤ 3 in

table 4. Like the SU(2)0 case, this result agrees with the expansion of (3.43).
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0) (0, 0) (1, 1) (0, 1)

(1, 2) (0, 2) (1, 3) (0, 3)

(2, 2)
(

0, 5
2

)

(2, 3)
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕
(

1
2 , 4
)

Table 4. BPS spectrum of the SU(2)π theory for d1 ≤ 2, d2 ≤ 3, where d = (d1, d2) labels the

states from an M2-brane wrapping d1e + d2f curve in F1.

Solving a vanishing blowup equation. In the SU(2) gauge theories, it is possible

to turn on non-canonically quantized magnetic flux as n ∈ Z + 1/2 because the W-boson

carries charge +2 for the gauge symmetry. Then we can choose Bm ∈ Z which is a consistent

quantization for the instanton state corresponding to the curves e in both F0 and F1. So

the magnetic fluxes

n ∈ Z + 1/2 , Bm = 0 , (3.47)

satisfy the quantization conditions for both θ = 0 and π. These fluxes with the effective

prepotential for the SU(2) theories lead to a vanishing blowup equation. We will now show

that this vanishing blowup equation alone can be solved with additional geometric data.

In fact, we find two independent solutions to the blowup equation and they correspond to

respectively the BPS spectrum of the SU(2)0 theory and that of the SU(2)π theory.

Solving the vanishing blowup equation is much harder than solving unity equations

because of huge cancellations in the expansion and also non-uniqueness of solutions. Let

us start with an ansatz for the GV-invariant as

ZGV = PE





∑

jl,jr

∞
∑

d1,d2=0

(−1)2(jl+jr)N
(d1,d2)
jl,jr

Ajl,jr (ǫ1, ǫ2)e−(d1m+d2φ)



 . (3.48)

As discussed in [85], the spins of a degree (d1, d2) state are bounded as

2jl ≤ C2+KS · C

2
+1 =

d1d2−2d2
1−d2+2

2
,

2jr ≤ C2−KS · C

2
=

d1d2−2d2
1+d2

2
, (3.49)

where C is a curve with volume d1m + d2φ and KS is the canonical class in F0 or F1.

The zeroth-order in the expansion of the blowup equation is

∑

n∈{±1/2}

(−1)ne−V Ẑ(N)
pertẐ

(S)
pert

Ẑpert

= 0 , (3.50)

which is automatically satisfied by the perturbative spectrum N
(0,2)
0,1/2 = 1. The 1st order

blowup equation with d1 = 1 is then given by

∑

n∈{±1/2}

(−1)ne−V Ẑ(N)
pertẐ

(S)
pert

Ẑpert

(

Ẑ
(N)
1 + Ẑ

(S)
1

)

= 0 . (3.51)
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This equation for each d2 can be rephrased in terms of the multiplicities N
(1,d2)
jl,jr

as

∑

jl,jr

(−1)2(jl+jr)N
(1,d2)
jl,jr

(

Ajl,jr (ǫ1, ǫ2/ǫ1)p
−d2/2
1 + Ajl,jr (ǫ1/ǫ2, ǫ2)p

−d2/2
2 − Ajl,jr (ǫ1, ǫ2)

)

=
∑

jl,jr

(−1)2(jl+jr)N
(1,d2)
jl,jr

(

Ajl,jr (ǫ1, ǫ2/ǫ1)p
d2/2
1 + Ajl,jr (ǫ1/ǫ2, ǫ2)p

d2/2
2 − Ajl,jr (ǫ1, ǫ2)

)

.

(3.52)

It turns out that this equation is not enough to fix the multiplicities N
(1,d2)
jl,jr

, and in fact it

has infinitely many solutions. For example, if N
(1,d2)
jl,jr

= c(d2) with an integer number c(d2)

is a solution, then N
(1,d2)
jl,jr

= 2c(d2) is also another solution. We thus need to solve higher

order equations to determine them.

The 2nd order of the blowup equation can be written as

∑

n∈{±1/2}

(−1)ne−V Ẑ(N)
pertẐ

(S)
pert

Ẑpert

(

Ẑ
(N)
2 + Ẑ

(S)
2 + Ẑ

(N)
1 Ẑ

(S)
1

)

+
∑

n∈{±3/2}

(−1)ne−V Ẑ(N)
pertẐ

(S)
pert

Ẑpert

= 0 . (3.53)

Unfortunately, this equation does not help us to fix the degeneracies N
(1,d2)
jl,jr

because they

do not appear in this order. We need the blowup equation at higher orders to fully fix

N
(1,d2)
jl,jr

. We find that at the order of the blowup equation involving N
(4,10)
jl,jr

, the degeneracy

N
(1,1)
jl,jr

is first fixed to be

N
(1,1)
jl,jr

= 0 , except for N
(1,1)
0,0 =

{

1 when θ = π

0 when θ = 0
. (3.54)

Here we fixed the discrete theta angles from the geometric information: N
(1,1)
jl,jr

= 0 for the

SU(2)0 theory, while N
(1,1)
0,0 = 1 for the SU(2)π theory.

Now consider the SU(2)0 theory. Solving the blowup equation at the order having

terms of N
(4,12)
jl,jr

again gives two sets of solutions: one with N
(1,2)
jl,jr

= 0 for all (jl, jr) and

the other with N
(1,2)
jl,jr

= 0 but N
(1,2)

0, 1
2

= 1. However, the geometric realization suggests that

there exists a BPS state with charge m+2φ, so only the second solution is acceptable. The

next order blowup equation which contains N
(4,13)
jl,jr

gives N
(1,3)
jl,jr

= 0 for all (jl, jr). Now

to fix N
(1,4)
jl,jr

, instead of calculating higher order equations, one can use other consistency

conditions. First, we know from geometry that there are effective curves with volume

m + 4φ. In addition, the blowup equation yields that N
(1,4)
jl,jr

= 0 for (jl, jr) 6= (0, 3
2) and

N
(3,12)

1, 15
2

= 1 − N
(1,4)

0, 3
2

. Notably, N
(3,12)

1, 15
2

must be a non-negative integer and N
(1,4)

0, 3
2

6= 0 from

geometry. Therefore the only possible solution is N
(1,4)

0, 3
2

= 1. This result reproduces all the

BPS states of the SU(2)0 theory up to (d1, d2) = (1, 4). In this way, a vanishing blowup

equation together with other consistency conditions can determine the BPS spectrum in
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this theory. We expect other higher degree states can also be captured by solving higher

order blowup equations in this manner.

Next, consider the SU(2)π theory. The blowup equation at the order containing N
(4,11)
jl,jr

fixes N
(1,2)
jl,jr

= 0 for all (jl, jr). The higher order equations containing N
(4,14)
jl,jr

has two sets

of solutions: one with N
(1,3)
jl,jr

= 0 for all (jl, jr), and the other one with N
(1,3)
jl,jr

= 0 but

N
(1,3)
0,1 = 1. Also, the geometry of F1 says that there is a state with charge m + 3φ, so only

the second one is acceptable. The next order equation containing N
(4,15)
jl,jr

fixes N
(1,4)
jl,jr

= 0.

It is also possible to fix N
(1,4)
jl,jr

by consistency conditions instead of calculating higher order

equations. The blowup equation fixes N
(1,4)
jl,jr

= 0 for (jl, jr) 6= (0, 3
2), and N

(3,12)

1, 15
2

= −N
(1,4)

0, 3
2

,

from which the only possible solution is N
(1,4)

0, 3
2

= 0. This result agrees with the spectrum

of the SU(2)π theory that we computed above using unity bloup equations.

These computations show that, although the BPS spectrum is not completely deter-

mined only by solving vanishing blowup equations, we may be able to uniquely determine

the BPS degeneracies by requiring the solution of the vanishing blowup equations to be

physically or geometrically consistent.

3.2.2 5d pure SU(3)κ≤7

Let us now discuss rank-2 theories. A non-trivial example is the pure SU(3) gauge theory

at the Chern-Simons level κ. When κ is even, it is geometrically engineered as

Fκ+1

∣

∣

1

e
F1

∣

∣

2
.

h+( κ
2

−1)f

(3.55)

Whereas, if κ is odd, it is engineered by

Fκ+1

∣

∣

1

e
F0

∣

∣

2
.

h+ κ−1
2

f

(3.56)

Each geometry contains three primitive curves: the fiber f1 in Fn1 |1, the fiber f2 and the

base e2 in Fn2 |2. The volumes of the primitive 2-cycles are

vol(f1) = 2φ1 − φ2, vol(f2) = −φ1 + 2φ2,

vol(e2) =

{

(

1 − κ
2

)

φ1 + φ2 + m for even κ
1−κ

2 φ1 + 2φ2 + m for odd κ
. (3.57)

These theories with CS level |κ| ≤ 9 have UV completions [11, 97]. The 5-brane webs for

|κ| ≤ 7 and |κ| = 9 have been constructed in [76].

Surprisingly the BPS spectra of the SU(3)κ theories for all |κ| ≤ 9 can be computed

by employing our bootstrapping approach explained above. The SU(3)8 theory is of par-

ticular interest. Unlike other κ, this theory at κ = 8 has no consistent geometric real-

ization [11, 97, 98] and also its 5-brane web is unknown yet. Moreover the usual ADHM

construction for instantons in this theory does not work. So it was a quite challenging task

to compute its BPS partition function. The SU(3)8 theory and its blowup equations will
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be discussed separately in subsection 5.2.5. The SU(3)9 theory, which is a KK theory, will

be discussed in subsection 3.2.3.

In this subsection, we will illustrate how to bootstrap the BPS spectra of |κ| ≤ 7

theories and their dual theories using the blowup equations as well as their geometric

descriptions.

Consider the SU(3)κ theory put on the blowup Ĉ2. We turn on the magnetic flux

F = (n1, n2, Bm) for two Hirzebruch surfaces and a non-compact divisor of the non-

normalizable Kähler parameter m. The quantization conditions for the fluxes are given

by their intersections with the primitive 2-cycles as

F · f1 = 2n1 − n2 ∈ Z , F · f2 = 2n2 − n1 ∈ Z ,

F · e2 =

{

(

1 − κ
2

)

n1 + n2 + Bm ∈ Z + 1
2 for even κ

1−κ
2 n1 + 2n2 + Bm ∈ Z for odd κ

, (3.58)

which follow from the geometric quantization condition (3.9) together with the self-

intersections of the curves, f2
1 = f2

2 = 0 and e2
2 = −1 for even κ and e2

2 = 0 for odd

κ. Each theory has 3 or more sets of magnetic fluxes satisfying the quantization condi-

tions. We can use, for example, the following fluxes for solving the blowup equations:

n1, n2 ∈ Z and Bm =

{

−1
2 , 1

2 , 3
2 κ = 0, 2, 4, 6

−1, 0, 1 κ = 1, 3, 5, 7 .
(3.59)

Let us now consider the Coulomb branch of the theory where 2φ1 − φ2 ≥ 0 and

2φ2 − φ1 ≥ 0 with φ1, φ2 > 0. The effective prepotential E on the Coulomb branch takes

the following form

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
(φ1 + φ2) + ǫ2

+(φ1 + φ2)

)

, (3.60)

6 F = 6m(φ2
1 − φ1φ2 + φ2

2) + 3κφ1φ2(φ1 − φ2) + 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ3

2 ,

where m is the gauge coupling. The GV-invariant of this theory can be factorized as

ZGV(φi, m; ǫ1, ǫ2) = Zpert(φi; ǫ1, ǫ2) · Zinst(φi, m; ǫ1, ǫ2) ,

Zpert(φi; ǫ1, ǫ2) = PE

[

− 1 + p1p2

(1 − p1)(1 − p2)

(

e−(2φ1−φ2) + e−(2φ2−φ1) + e−(φ1+φ2)
)

]

,

Zinst(φi, m; ǫ1, ǫ2) =
∞
∑

k=0

qkZk(φ; ǫ1, ǫ2) , (3.61)

with the instanton fugacity q = e−m and Z0 = 1.

We can then write the blowup equation for the SU(3)κ theory as

∞
∑

k,k′=0

qk+k′

Λk′Ẑk =
∑

~n∈Z2

∞
∑

k1,k2=0

(−1)|~n|e−V Z(N)
pertZ

(S)
pert

Zpert
(q pBm

1 )k1Ẑ
(N)
k1

· (q pBm
2 )k2Ẑ

(S)
k2

.

(3.62)
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Again, the blowup equation at the k-th order can be written as

Λk(m; ǫ1, ǫ2) + Ẑk(φi, ǫ1, ǫ2) = pkBm
1 Ẑk(φi, ǫ1, ǫ2 − ǫ1) + pkBm

2 Ẑk(φi, ǫ1 − ǫ2, ǫ2)

+ (terms with Zr<k and Λr<k) . (3.63)

The Λ0 factor is then fixed to be 1 from the zeroth order expansion. In q1 order, the blowup

equation is given by

Λ1 + Ẑ1(φi, ǫ1, ǫ2) = pBm
1 Ẑ1(φi, ǫ1, ǫ2 − ǫ1) + pBm

2 Ẑ1(φi, ǫ1 − ǫ2, ǫ2)

+
∑

~n∈S1

q−1e−V Z(N)
pertZ

(S)
pert

Zpert
, (3.64)

where the last term comes from the contribution with k1 = k2 = 0 and n2
1 − n1n2 + n2

2 = 1

which is solved for (n1, n2) ∈ S1 = {±(1, 1), ±(1, 0), ±(0, 1)}.

The three choices of Bm given in (3.59) provide three linearly independent algebraic

equations for Ẑk(φi, ǫ1, ǫ2) at each k-th order. They allow us to find a closed form of

Ẑk(φi, ǫ1, ǫ2). Thus, the k-instanton partition function Zk(φi, ǫ1, ǫ2) for the SU(3)κ theory

at |κ| ≤ 7 can be computed by recursively solving three blowup equations with Bm’s

in (3.59). In [84], the partition functions for |κ| ≤ 3 were computed in this manner and

checked against the results from the ADHM calculations.

The instanton partition function for the SU(3)4 theory can be computed by solving

the blowup equations similarly to the |κ| ≤ 3 cases. Using the effective prepotential (3.60)

and consistent magnetic fluxes (3.59), we solve the blowup equations in terms of volumes

of primitive 2-cycles

vol(f1) = 2φ1 − φ2 , vol(f2) = −φ1 + 2φ2 , vol(e2) = −φ1 + φ2 + m . (3.65)

Instead of giving an explicit form of the partition function, we list some BPS states in

table 5.10

The SU(3)5 theory is dual to the Sp(2)π gauge theory, so they can provide a non-trivial

check for the validity of the blowup equations. In the geometry (3.56) with κ = 5, this

duality is realized as the base-fiber duality exchanging two curve classes e2 and f2 in F0. The

map between the parameters in the SU(3)5 theory and those in the Sp(2)π theory can be

easily found from the geometric realization. The volumes of 2-cycles in the SU(3) frame are

vol(f1) = 2φ1 − φ2, vol(f2) = −φ1 + 2φ2, vol(e2) = −2φ1 + 2φ2 + m , (3.66)

while those in the Sp(2) frame after exchanging e2 and f2 are

vol(f1) = 2φ1 − φ2, vol(f2) = −2φ1 + 2φ2, vol(e2) = −φ1 + 2φ2 + m . (3.67)

10As the BPS spectrum in table 5 is expressed as the expansion of 2-cycles, one can reconstruct the

partition function given in terms of dynamical variables, by substituting the 2-cycles with (3.65). Likewise,

one can also rewrite the partition function given in terms of dynamical variables as the BPS spectrum, by

first converting them into the 2-cycles and then expanding the 2-cycles.

– 38 –



J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0, 0) (0, 0) (1, 0, 1) (0, 1)

(1, 0, 2) (0, 2) (1, 0, 3) (0, 3)

(1, 1, 0) (0, 0) (1, 1, 1) (0, 0) ⊕ (0, 1)

(1, 1, 2) (0, 1) ⊕ (0, 2) (1, 1, 3) (0, 2) ⊕ (0, 3)

(1, 2, 1) (0, 1) (1, 2, 2) (0, 0) ⊕ (0, 1) ⊕ (0, 2)

(1, 2, 3) (0, 1) ⊕ (0, 2) ⊕ (0, 3) (1, 3, 2) (0, 1) ⊕ (0, 2)

(1, 3, 3) (0, 0)⊕ (0, 1)⊕ (0, 2)⊕ (0, 3) (2, 0, 2)
(

0, 5
2

)

(2, 0, 3)
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕
(

1
2 , 4
)

(2, 1, 2)
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 1, 3)

(

0, 3
2

)

⊕ 3
(

0, 5
2

)

⊕
2
(

0, 7
2

)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 2, 2)
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 2, 3)

(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
4
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 3, 2)
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 3, 3)

3
(

0, 1
2

)

⊕ 4
(

0, 3
2

)

⊕
4
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 1
)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(3, 0, 3) (0, 3) ⊕
(

1
2 , 9

2

)

(3, 1, 3)
(0, 2) ⊕ 2 (0, 3) ⊕ (0, 4) ⊕

(

1
2 , 7

2

)

⊕
(

1
2 , 9

2

) (3, 2, 3)

(0, 1) ⊕ 2 (0, 2) ⊕ 3 (0, 3) ⊕
(0, 4) ⊕

(

1
2 , 5

2

)

⊕
(

1
2 , 7

2

)

⊕
(

1
2 , 9

2

)

(3, 3, 3)
(0, 0) ⊕ 2 (0, 1) ⊕ 3 (0, 2) ⊕ 3 (0, 3) ⊕ (0, 4) ⊕

(

1
2 , 3

2

)

⊕
(

1
2 , 5

2

)

⊕
(

1
2 , 7

2

)

⊕
(

1
2 , 9

2

)

Table 5. BPS spectrum of SU(3)4 for di ≤ 3. Here, d = (d1, d2, d3) labels the BPS states with

charge d1e2 + d2f1 + d3f2.

From this, we find a natural map between the parameters in two dual frames as [25, 27, 76]

φSU
1 = φSp

1 +
1

3
mSp , φSU

2 = φSp
2 +

2

3
mSp , mSU = −2

3
mSp . (3.68)

The effective prepotential of the Sp(2)π theory on the Coulomb branch is written as

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
(φ1 + φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 6m(2φ2
1 − 2φ1φ2 + φ2

2) + 8φ3
1 + 12φ2

1φ2 − 18φ1φ2
2 + 8φ3

2 , (3.69)

where m is the Sp(2) gauge coupling. One can easily check that this E of the Sp(2)π theory

coincides with that of the SU(3)5 theory in (3.60) under the above parameter map up to

terms independent of the dynamical Kähler parameters. The perturbative GV-invariants
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of the Sp(2)π gauge theory is

Zpert = PE

[

− 1 + p1p2

(1 − p1)(1 − p2)

(

e−2φ1 + e−φ2 + e−(2φ2−2φ1) + e−(2φ1−φ2)
)

]

. (3.70)

In the Sp(2) frame, there are three (and more) sets of consistent fluxes respecting the

Sp(2) structure:

n1, n2 ∈ Z , Bm = −1, 0, 1 . (3.71)

The three sets of unity blowup equations from these magnetic fluxes can be easily solved

and the solution provides a closed expression of the instanton partition function of the

Sp(2)π theory at each instanton order. We checked that the result perfectly matches the

BPS states captured by the SU(3)5 calculation under the parameter map (3.68) in the

Kähler parameter expansion. Instead of giving explicit forms of the instanton partition

functions, we list BPS spectrum up to 3-instanton order in table 6.

In the case of κ = 6, one should be careful about the Λ factor. When background

magnetic flux is Bm = 3/2, the last term of (3.64) in the Kähler parameter expansion

contains a φi independent term:

−p
1/2
1 p

1/2
2 ∈

∑

~n∈S1

q−1e−V Z(N)
pertZ

(S)
pert

Zpert
. (3.72)

This term should be absorbed into Λ1 on the left side of (3.64). Thus we have

Λ1 = 0 for Bm = ±1
2 , Λ1 = −p

1/2
1 p

1/2
2 for Bm = 3

2 . (3.73)

Then the solution Z1(φi; ǫ1, ǫ2) does not contain φi independent terms in the expansion.

Similarly, the last term of the blowup equation at q2 order

Λ2(m; ǫ1, ǫ2) + Ẑ2(φi, ǫ1, ǫ2) = p2Bm
1 Ẑ2(φi, ǫ1, ǫ2 − ǫ1) + p2Bm

2 Ẑ2(φi, ǫ1 − ǫ2, ǫ2)

+ (terms from Ẑ1 and Λ1) (3.74)

contains φi independent terms for three magnetic fluxes Bm = −1
2 , 1

2 , 3
2 as

−2p1p2

(1 − p1)(1 − p2)(p1 − p2)2
,

−2p2
1p2

2

(1 − p1)(1 − p2)(p1 − p2)2
,

−F (p1, p2)

(1 − p1)(1 − p2)(p1 − p2)2

(3.75)

respectively, where

F (p1, p2) = p1p2(−p2
1 − p4

1 + 2p1p2 + p3
1p2 + p4

1p2 − p2
2

+ 2p2
1p2

2 − p3
1p2

2 + p1p3
2 − p2

1p3
2 − p4

2 + p1p4
2) . (3.76)

After absorbing these terms into Λ2, the blowup equation at q2 order is solved consistently.

However, when we take the plethystic logarithm and extract single particle states from the
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)
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(
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)
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2

)

(1, 1, 1)
(
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2

)

⊕
(
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2

)

(1, 1, 2)
(

0, 3
2

)

⊕
(
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2

)

(1, 2, 0)
(
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2

)

(1, 2, 1)
(

0, 1
2

)

⊕
(

0, 3
2

)

(1, 2, 2)
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 0, 1)
(

0, 5
2

)

(2, 0, 2)
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕
(

1
2 , 4
)

(2, 1, 1)
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 1, 2)

(

0, 3
2

)

⊕ 3
(

0, 5
2

)

⊕
2
(

0, 7
2

)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 2, 1)
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 2, 2)

(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
4
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(3, 0, 1)
(

0, 7
2

)

(3, 0, 2)

(

0, 5
2

)

⊕
(

0, 7
2

)

⊕ 2
(

0, 9
2

)

⊕
(

1
2 , 4
)

⊕
(

1
2 , 5
)

⊕
(

1, 11
2

)

(3, 1, 1)
(

0, 5
2

)

⊕
(

0, 7
2

)

(3, 1, 2)

(

0, 3
2

)

⊕ 3
(

0, 5
2

)

⊕ 5
(

0, 7
2

)

⊕
3
(

0, 9
2

)

⊕
(

1
2 , 3
)

⊕ 3
(

1
2 , 4
)

⊕
2
(

1
2 , 5
)

⊕
(

1, 9
2

)

⊕
(

1, 11
2

)

(3, 2, 1)
(

0, 3
2

)

⊕
(

0, 5
2

)

⊕
(

0, 7
2

)

(3, 2, 2)

(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕ 8
(

0, 5
2

)

⊕ 7
(

0, 7
2

)

⊕ 4
(

0, 9
2

)

⊕
(

1
2 , 2
)

⊕ 3
(

1
2 , 3
)

⊕
4
(

1
2 , 4
)

⊕ 2
(

1
2 , 5
)

⊕
(

1, 7
2

)

⊕
(

1, 9
2

)

⊕
(

1, 11
2

)

Table 6. BPS spectrum of SU(3)5 for d1 ≤ 3 and d2, d3 ≤ 2. Here, d = (d1, d2, d3) labels the BPS

states with charge d1e2 + d2f1 + d3f2.

resulting partition function, it turns out that the partition function contain unexpected φi

independent term given by

− p1p2q2

(1 − p1)2(1 − p2)2
∈ PLog

[

1 + qZ1(φi; ǫ1, ǫ2) + q2Z2(φi; ǫ1, ǫ2)
]

, (3.77)

where PLog denotes the plethystic logarithm. The PE of this term provides some φi

independent terms and again we put them into the Λ2 factor. After all, we find that the

Λ2 factor is given by

Λ2 = 0 for Bm = ±1
2 ,

Λ2 = −p1p2(p1 + p2) for Bm = 3
2 . (3.78)

In this way, we can solve the blowup equation iteratively while absorbing all φi independent

terms into the Λ factor. The resulting BPS spectrum of the SU(3)6 theory is given in table 7.
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(2, 0, 2)
(

0, 5
2

)

(2, 0, 3)
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕
(

1
2 , 4
)

(2, 1, 2)
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 1, 3)

(

0, 3
2

)

⊕ 3
(

0, 5
2

)

⊕
2
(

0, 7
2

)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 2, 1)
(

0, 1
2

)

(2, 2, 2)
(

0, 1
2

)

⊕ 2
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 2, 3)

(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
5
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 3, 1)
(

0, 1
2

)

(2, 3, 2) 2
(

0, 1
2

)

⊕ 2
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 3, 3)

3
(

0, 1
2

)

⊕ 5
(

0, 3
2

)

⊕
5
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 1
)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(3, 0, 3) (0, 3) ⊕
(

1
2 , 9

2

)

(3, 1, 3)
(0, 2) ⊕ 2 (0, 3) ⊕ (0, 4) ⊕

(

1
2 , 7

2

)

⊕
(

1
2 , 9

2

)

(3, 2, 2) (0, 2) (3, 2, 3)

(0, 1) ⊕ 3 (0, 2) ⊕ 5 (0, 3) ⊕
(0, 4) ⊕

(

1
2 , 5

2

)

⊕ 2
(

1
2 , 7

2

)

⊕
(

1
2 , 9

2

)

(3, 3, 2) (0, 1) ⊕ (0, 2) (3, 3, 3)

(0, 0) ⊕ 3 (0, 1) ⊕ 7 (0, 2) ⊕
6 (0, 3) ⊕ (0, 4) ⊕

(

1
2 , 3

2

)

⊕
2
(

1
2 , 5

2

)

⊕ 2
(

1
2 , 7

2

)

⊕
(

1
2 , 9

2

)

Table 7. BPS spectrum of the SU(3)6 theory for di ≤ 3. Here, d = (d1, d2, d3) labels the BPS

states with charge d1e2 + d2f1 + d3f2.

When κ = 7, the fiber-base duality of F0 in the geometry (3.56) gives the G2 gauge

theory description. The G2 instanton partition function can be calculated using the ADHM-

like method in [30] or using the topological vertex in [79]. Here, we will present the partition

function computation of this theory using blowup equations in both the SU(3) and G2

descriptions. In the SU(3) frame, the volumes of 2-cycles in the geometry are

vol(f1) = 2φ1 − φ2 , vol(f2) = −φ1 + 2φ2 , vol(e2) = −3φ1 + 2φ2 + m . (3.79)

On the other hand, in the G2 frame after exchanging the fiber and the base of F0, the

volumes are

vol(f1) = 2φ1 − φ2 , vol(f2) = −3φ1 + 2φ2 , vol(e2) = −φ1 + 2φ2 + m . (3.80)
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The parameters in these two descriptions are thus mapped each other as [76]

φSU
1 = φG2

1 +
1

3
mG2

0 , φSU
2 = φG2

2 +
2

3
mG2

0 , mSU = −1

3
mG2 . (3.81)

In the G2 description, the effective prepotential on the Coulomb branch where 2φ1 −
φ2 > 0 and 2φ2 − 3φ1 > 0 with φ1, φ2 > 0 is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
(φ1 + φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 6m
(

3φ2
1 − 3φ1φ2 + φ2

2

)

+ 8φ3
1 + 18φ2

1φ2 − 24φ1φ2
2 + 8φ2

2 . (3.82)

One can check that this agrees with the SU(3)7 effective prepotential under the above

parameter map up to terms independent of φi. The perturbative GV-invariants of the G2

gauge theory is

Zpert = PE

[

− 1 + p1p2

(1 − p1)(1 − p2)

(

e−φ1 + e−φ2 + e−(3φ1−φ2) + e−(2φ1−φ2)

+e−(φ2−φ1) + e−(2φ2−3φ1)
)

]

. (3.83)

There are again three sets of consistent magnetic fluxes respecting the G2 structure:

n1, n2 ∈ Z , Bm = −1, 0, 1 . (3.84)

We computed the unity blowup equations built from these fluxes and checked that two

results from the SU(3)7 theory and the G2 theory perfectly agree with each other in the

Kähler parameter expansion. The BPS spectrum of this theory can be found in table 8.

3.2.3 6d minimal SU(3) SCFT on a circle with Z2 twist: 5d SU(3)9

Elliptic genera of many 6d theories, for instance, E-string, M-string, or 6d SCFTs compact-

ified on a circle without twist, have been evaluated using the blowup equations [87–90].

In this subsection, we will demonstrate with a simple example of how to bootstrap BPS

partition functions (or elliptic genera) for 6d SCFTs on a circle with outer automorphism

twists by solving the blowup equations.

We will consider a circle compactification of the 6d minimal SU(3) SCFT with Z2

automorphism twist. This theory is dual to the 5d SU(3) gauge theory at CS-level κ = 9 [7],

SU(3)9 =
su(3)(2)

3 (3.85)

We follow the notations in [17] to denote 6d theories. It is geometrically engineered by

gluing F10 and F0 [11]:

F10

∣

∣

1

e
F0

∣

∣

2

h+4f

(3.86)
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⊕
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⊕
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⊕
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⊕
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⊕
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⊕
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⊕
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⊕
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(2, 2, 2)
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)
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)

⊕
4
(
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2

)

⊕ 2
(
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2

)

⊕
(

1
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)
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)

⊕
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)
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(
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(
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)

⊕
(
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)
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)
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⊕
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)
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⊕
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⊕ 3
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⊕
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⊕
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⊕
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⊕
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⊕
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2

)

(3, 2, 2)
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2

)

⊕ 3
(
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2

)

⊕ 8
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0, 5
2

)

⊕ 7
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2

)

⊕ 4
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0, 9
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⊕
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1
2 , 2
)

⊕ 3
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1
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⊕
4
(

1
2 , 4
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⊕ 2
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1
2 , 5
)

⊕
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2
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⊕
(

1, 9
2

)

⊕
(

1, 11
2

)

Table 8. BPS spectrum of the SU(3)7 theory for d1 ≤ 3 and d2, d3 ≤ 2. Here, d = (d1, d2, d3)

labels the BPS states with charge d1e2 + d2f1 + d3f2.

In geometry, the duality is simply the exchange of the base and the fiber classes in F0. We

will solve the blowup equations for this theory in both 5d and 6d frames and compare the

results.

In the 5d SU(3)9 theory, the effective prepotential E is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
(φ1 + φ2) + ǫ2

+(φ1 + φ2)

)

, (3.87)

6F = 6m
(

φ2
1 − φ1φ2 + φ2

2

)

+ 8φ3
1 + 24φ2

1φ2 − 30φ1φ2
2 + 8φ2

2 ,

where m is the gauge coupling. The GV-invariant of this theory takes the same form

of (3.61). It is convenient to use volumes of three independent 2-cycles in the geome-

try (3.86) as the basis of states in the GV-invariant,

vol(f1) = 2φ1 − φ2, vol(f2) = −φ1 + 2φ2, vol(e2) = −4φ1 + 2φ2 + m . (3.88)
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⊕
(

0, 3
2

)

⊕
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⊕
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⊕
(
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⊕
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⊕
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2

)

⊕
(

0, 5
2

)
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2

)

⊕ 3
(

0, 5
2

)

⊕
2
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0, 7
2

)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 2, 2)
(

0, 1
2

)

⊕ 3
(
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2

)

⊕ 4
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

Table 9. BPS spectrum of SU(3)9 theory for di ≤ 2. Here, d = (d1, d2, d3) labels BPS states with

charge d1e2 + d2f1 + d3f2 cycle.

Unlike the other SU(3)κ theories with |κ| ≤ 7, this theory has only one set of consistent

magnetic fluxes respecting the SU(3) structure:

n1, n2 ∈ Z , Bm = 0 . (3.89)

This set of fluxes gives rise to a unity blowup equation. As we discussed already, a single

unity blowup equation is enough to compute the BPS invariants. By solving the unity

blowup equation, we find the BPS spectrum of the SU(3)9 theory listed in table 9.

We now perform a similar computation in the perspective of the 6d SU(3) gauge theory

with Z2 twist. In the 6d frame, the volumes of 2-cycles in the geometry are

vol(f1) =
τ

4
− φ1 , vol(f2) = 2φ1 , vol(e2) = 3φ0 + 2φ1 − τ

2
. (3.90)

The effective prepotential in this frame is given in (2.50) with a shift φ0 → φ0 − 1
16τ .

The GV-invariant for this 6d theory can be written as

ZGV(Φ, φ1, τ ; ǫ1,2) = Zpert(φ1, τ ; ǫ1,2)

(

1 +
∞
∑

k=1

e−kΦZk(φ1, τ, ǫ1,2)

)

, (3.91)

where Zk(φ1, τ, ǫ1,2) is the k-string elliptic genus and Φ ≡ 3φ0 − τ/2 which is the string

number fugacity. Here, the perturbative part can be read off from the 6d SU(3) vector

multiplets under the Z2 automorphism twist, which is given by

Zpert = PE

[

− 1 + p1p2

(1 − p1)(1 − p2)

1

1 − q

(

e−2φ1 + (q1/4 + q3/4)(e−φ1 + eφ1) + qe2φ1

)

]

, (3.92)

where q = e−τ . See appendix A for more details.
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There are three sets of consistent magnetic fluxes preserving the affine A
(2)
2 algebra

structure:

n1 ∈ Z , Bτ = 0 , n0 ∈ Z + B0 with B0 = 0, 1/3, 2/3 . (3.93)

Then the elliptic genus can be found by solving three unity blowup equations from these

three flux sets. For example, the blowup equations at 1-string order are

Λ(τ ; ǫ1, ǫ2)Ẑ1(φ1, τ ; ǫ1, ǫ2)

=
∑

~n=(n,2n)

e−V Ẑ(N)
pertẐ

(S)
pert

Ẑpert

(

p3n+B0
1 Ẑ1(φ1, ǫ1, ǫ2 − ǫ1) + p3n+B0

2 Ẑ1(φ1, ǫ1 − ǫ2, ǫ2)
)

+
∑

~n=(n,2n±1)

eΦe−V Ẑ(N)
pertẐ

(S)
pert

Ẑpert

. (3.94)

Here the prefactor can be computed by collecting all φi independent terms in the blowup

equation as follows:

Λ(τ ; ǫ1, ǫ2) =
∑

~n=(n,2n)

e−V . (3.95)

The solution at 1-instanton string is then given by

Z1(φ1, τ ; ǫ1, ǫ2) =
e−2φ1p1p2(1 + p1p2)

(1 − p1)(1 − p2)(e−2φ1 − p1p2)(1 − e−2φ1p1p2)

+
e−φ1(1 + e−2φ1)p1p2(1 + p1p2)

(1 − p1)(1 − p2)(e−2φ1 − p1p2)(1 − e−2φ1p1p2)
q1/4

+
e−2φ1(1 + 2p1p2 + 2p2

1p2
2 + p3

1p3
2)

(1 − p1)(1 − p2)(e−2φ1 − p1p2)(1 − e−2φ1p1p2)
q1/2 + · · · . (3.96)

This is in perfect agreement with the BPS spectrum of the SU(3)9 theory given in table 9

and also topological vertex as well as the ADHM calculations [117].

4 Rank 1 theories

In this section, we will compute the BPS partition functions of rank-1 5d theories by

bootstrapping with the blowup equations. All rank-1 theories can be obtained via RG

flows, which integrate out massive hypermultiplets, from three KK theories that come from

6d SCFTs compactified on a circle with/without twists. When a theory admits solvable

blowup equations with consistent magnetic fluxes, all the IR theories descending from this

UV theory by RG flows are guaranteed to have solvable blowup equations. So we will show

that the blowup equations for all the rank-1 KK theories can be solved and the solutions

are consistent with the BPS spectra computed by other methods. This will prove that the

BPS spectra of all rank-1 5d theories can be computed by solving the blowup equations.

We will also compute the BPS partition function of a new rank-1 theory, which we call

the local P2 + 1Adj theory, obtained from the N = 2 SU(2) gauge theory at θ = π by

integrating out an instantonic hypermultiplet.
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4.1 KK theories

There are three rank-1 KK theories: the SU(2) gauge theory with 8 fundamental hyper-

multiplets, the N = 2 SU(2) gauge theory at θ = 0, π. We discuss them one by one.

4.1.1 SU(2) + 8F

The SU(2) gauge theory with 8 fundamental hypermultiplets is a KK theory arising from

the 6d rank-1 E-string theory compactified on a circle [5, 118, 119].

SU(2) + 8F =
sp(0)(1)

1 (4.1)

The BPS partition function for this theory was computed in [48, 50] using the ADHM

instanton string construction and also in [64, 68] based in its 5-brane webs using topological

vertex. It was also shown in [89] that the elliptic genus of the 6d E-string theory is consistent

with the blowup equation.

We shall here solve the blowup equation in perspective of the 5d gauge theory. The

prepotential on the Coulomb branch is given by

6F = 6m0φ2 + 8φ3 − 1

2

8
∑

i=1

(

(φ + mi)
3 + (φ − mi)

3
)

, (4.2)

where m0 is the gauge coupling and mi=1,··· ,8 are the mass parameters of fundamental

hypermultiplets. Collecting the gauge/gravitational and the gauge/SU(2)R Chern-Simons

terms, the effective prepotential on the Ω-background is expressed as

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48

(

4φ −
8
∑

i=1

(

(φ + mi) + (φ − mi)
)

)

+ ǫ2
+φ

)

=
1

ǫ1ǫ2

(

F +
ǫ2
1 + ǫ2

2

4
φ + ǫ2

+φ

)

. (4.3)

The perturbative part of the GV-invariant is

Zpert(φ, mi; ǫ1,2) = PE

[

− 1 + p1p2

(1 − p1)(1 − p2)
e−2φ +

√
p1p2

(1 − p1)(1 − p2)

8
∑

i=1

e−(φ±mi)

]

. (4.4)

For this theory, we find a set of the consistent magnetic fluxes

n ∈ Z , Bm0 = 0 , Bmi
= 1/2 for 1 ≤ i ≤ 8 , (4.5)

which leads to a unity blowup equation. The unity blowup equation with the magnetic

fluxes can be solved and the solution is summarized in table 10. This result matches the

elliptic genus of the rank-1 E-string theory computed in [50].
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 1) 128 (0, 0) (1, 2) 128
(

0, 1
2

)

(1, 3) 128 (0, 1) (2, 1) 576 (0, 0) ⊕ 16
(

1
2 , 1

2

)

(2, 2)
1942

(

0, 1
2

)

⊕
(

1
2 , 0
)

⊕
121

(

1
2 , 1
)

⊕
(

1, 3
2

) (2, 3)

560 (0, 0) ⊕ 4960 (0, 1) ⊕
16
(

1
2 , 1

2

)

⊕ 576
(

1
2 , 3

2

)

⊕
16 (1, 2)

Table 10. BPS spectrum of SU(2) + 8F theory for d1 ≤ 2 and d2 ≤ 3. Here, d = (d1, d2) labels

BPS states with charge d1m0 + d2φ. For convenience, we set all flavor mass parameters mi=1,··· ,8

to zero.

4.1.2 SU(2)0 + 1Adj

The compactification of the 6d rank-1 M-string theory on a circle gives rise to the 5d SU(2)

gauge theory at θ = 0 with an adjoint hypermultiplet preserving N = 2 supersymmetry,

SU(2)0 + 1Adj =
su(1)(1)

2 (4.6)

The validity of the blowup equation for this theory was previously checked in [89].

The cubic prepotential on the Coulomb branch where 2φ ± m1 ≥ 0 with φ > 0 is

6F = 6m0φ2 + 8φ3 − 1

2

(

(2φ + m1)3 + (2φ − m1)3
)

, (4.7)

where m0 is the gauge coupling and m1 is the mass parameter of the adjoint hypermultiplet.

The effective prepotential on Ω-background is then given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48

(

4φ − (

(2φ + m1) + (2φ − m1)
)

)

+ ǫ2
+φ

)

=
1

ǫ1ǫ2

(

F + ǫ2
+φ
)

. (4.8)

The perturbative part of the GV-invariant is

Zpert(φ, m1; ǫ1,2) = PE

[

− 1 + p1p2

(1 − p1)(1 − p2)
e−2φ +

√
p1p2

(1 − p1)(1 − p2)
e−(2φ±m1)

]

. (4.9)

One can formulate a unity blowup equation for this theory using the following consis-

tent magnetic fluxes.

n ∈ Z , Bm0 = 0 , Bm1 = 1/2 . (4.10)

The solution to the blowup equation is presented in table 11. The result indeed matches

the N = 2 SU(2)0 instanton partition function computed using the ADHM calculus in [48].

– 48 –



J
H
E
P
0
4
(
2
0
2
1
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 2, −2)
(

0, 1
2

)

(1, 2, −1) (0, 0) ⊕ (0, 1) ⊕
(

1
2 , 1

2

)

(1, 2, 0) 2
(

0, 1
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(1, 4, −2)
(

0, 3
2

)

(1, 4, −1) (0, 1) ⊕ (0, 2) ⊕
(

1
2 , 3

2

)

(1, 4, 0) 2
(

0, 3
2

)

⊕
(

1
2 , 1
)

⊕
(

1
2 , 2
)

(2, 2, −3) (0, 0) (2, 2, −2) 2
(

0, 1
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(2, 2, −1)
4 (0, 0) ⊕ 2 (0, 1) ⊕

3
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

⊕ (1, 1)
(2, 2, 0)

5
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕3
(

1
2 , 0
)

⊕
3
(

1
2 , 1
)

⊕
(

1, 1
2

)

⊕
(

1, 3
2

)

(2, 4, −3) (0, 1) ⊕ (0, 2) ⊕
(

1
2 , 3

2

)

(2, 4, −2)

2
(

0, 1
2

)

⊕ 4
(

0, 3
2

)

⊕
(

0, 5
2

)

⊕ 3
(

1
2 , 1
)

⊕
3
(

1
2 , 2
)

⊕
(

1, 3
2

)

⊕
(

1, 5
2

)

(2, 4, −1)

(0, 0) ⊕ 7 (0, 1) ⊕ 6 (0, 2) ⊕
3
(

1
2 , 1

2

)

⊕ 8
(

1
2 , 3

2

)

⊕
3
(

1
2 , 5

2

)

⊕ 2 (1, 1) ⊕
3 (1, 2) ⊕ (1, 3) ⊕

(

3
2 , 5

2

)

(2, 4, 0)

5
(

0, 1
2

)

⊕ 10
(

0, 3
2

)

⊕
3
(

0, 5
2

)

⊕
(

1
2 , 0
)

⊕
8
(

1
2 , 1
)

⊕ 8
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1, 1
2

)

⊕ 4
(

1, 3
2

)

⊕
3
(

1, 5
2

)

⊕
(

3
2 , 2
)

⊕
(

3
2 , 3
)

Table 11. BPS spectrum of SU(2)0 + 1Adj theory for d1 ≤ 2 and d2 ≤ 4. Here, d = (d1, d2, d3)

labels the BPS states with charge d1m0+d2φ+d3m1. The states related by the symmetry d3 ↔ −d3

are omitted in the table.

4.1.3 SU(2)π + 1Adj

The 5d KK-theory SU(2)π + 1Adj is obtained by a circle compactification of the 6d N =

(2, 0) A2 theory with Z2 outer automorphism twist [120],

SU(2)π + 1Adj =
su(1)(1)

2

(4.11)

This theory has no conventional geometric description [17].

The perturbative spectrum cannot distinguish whether θ = 0 or θ = π for the SU(2)

gauge group. Thus the effective prepotential and the perturbative GV-invariant of this

theory are the same as (4.8) and (4.9), respectively, for the SU(2)0 +1Adj theory. Naively,

this means that the blowup equation of this theory is the same as that of the theory at

θ = 0. However, it turns out that there are two independent blowup equations from the

same effective prepotential but distinguished by two different sets of consistent magnetic

fluxes. Instead of the fluxes given in (4.10) for the theory at θ = 0, this theory at θ = π

has another set of consistent magnetic fluxes quantized as

n ∈ Z + 1/2 , Bm0 = 0 , Bm1 = 1/2 . (4.12)

These magnetic fluxes provide a unity blowup equation. Some leading BPS invariants

we computed using the blowup equation are listed in table 12, which are indeed different
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1
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6
1

d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 1, −2) (0, 0) (1, 1, −1)
(

0, 1
2

)

⊕
(

1
2 , 0
)

(1, 1, 0) 2 (0, 0) ⊕
(

1
2 , 1

2

)

(1, 3, −2) (0, 1)

(1, 3, −1)
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

1
2 , 1
)

(1, 3, 0) 2 (0, 1) ⊕
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

(2, 2, −2)
(

0, 1
2

)

⊕
(

1
2 , 1
)

(2, 2, −1)
(0, 0) ⊕ 2 (0, 1) ⊕

2
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

⊕ (1, 1)

(2, 2, 0)
3
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕
3
(

1
2 , 1
)

⊕
(

1, 1
2

)

⊕
(

1, 3
2

)

(2, 4, −3) (0, 0) ⊕ (0, 2) ⊕
(

1
2 , 3

2

)

(2, 4, −2)

2
(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
(

0, 5
2

)

⊕
(

1
2 , 0
)

⊕2
(

1
2 , 1
)

⊕
3
(

1
2 , 2
)

⊕
(

1, 3
2

)

⊕
(

1, 5
2

)

(2, 4, −1)

4 (0, 0)⊕4 (0, 1)⊕6 (0, 2)⊕
3
(

1
2 , 1

2

)

⊕ 7
(

1
2 , 3

2

)

⊕
3
(

1
2 , 5

2

)

⊕ 2 (1, 1) ⊕
3 (1, 2) ⊕ (1, 3) ⊕

(

3
2 , 5

2

)

(2, 4, 0)
5
(

0, 1
2

)

⊕ 8
(

0, 3
2

)

⊕ 3
(

0, 5
2

)

⊕ 3
(

1
2 , 0
)

⊕ 6
(

1
2 , 1
)

⊕ 8
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1, 1
2

)

⊕ 4
(

1, 3
2

)

⊕ 3
(

1, 5
2

)

⊕
(

3
2 , 2
)

⊕
(

3
2 , 3
)

Table 12. BPS spectrum of SU(2)π + 1Adj theory for d1 ≤ 2 and d2 ≤ 4. Here, d = (d1, d2, d3)

labels BPS states with charge d1m0 + d2φ + d3m1. The states related by the symmetry d3 ↔ −d3

are omitted in the table.

from the BPS spectrum of the theory at θ = 0. This result also matches the instanton

partition function using the ADHM quantum mechanics in [48]. This is our first example

showing that our bootstrap approach can be applied for the BPS spectrum computation

for non-geometric theories.

4.2 5d SCFTs: non-Lagrangian theories

The BPS partition functions of all the rank-1 5d SCFTs which have no gauge theory

descriptions, can be computed by solving the blowup equations. To show this we will

consider two simple examples: a local P2 theory and a local P2 + 1Adj theory.

4.2.1 Local P2

This theory is a rank-1 SCFT with no mass parameter, which is engineered by compacti-

fication of M-theory on a local P2 embedded in a CY 3-fold. This theory is also called the

E0 theory. The blowup equation for the SCFT of a local P2 was solved in [86]. We shall

briefly review this.

The effective prepotential of this theory on the Ω-background is simply given by

E =
1

ǫ1ǫ2

(

9φ3 − (ǫ2
1 + ǫ2

2)φ

8
+ ǫ2

+φ

)

. (4.13)

The CY 3-fold of a local P2 contains only one primitive curve class ℓ with ℓ2 = +1. The

volume of this curve is vol(ℓ) = 3φ. Thus the magnetic fluxes that couple to the curve
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2
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2
1
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d ⊕Nd
jl,jr

(jl, jr) d ⊕Nd
jl,jr

(jl, jr)

1 (0, 1) 2
(

0, 5
2

)

3 (0, 3) ⊕
(

1
2 , 9

2

)

4

(

0, 5
2

)

⊕
(

0, 9
2

)

⊕
(

0, 13
2

)

⊕
(

1
2 , 4
)

⊕
(

1
2 , 5
)

⊕
(

1
2 , 6
)

⊕
(

1, 11
2

)

⊕
(

3
2 , 7
)

Table 13. BPS spectrum of a local P2 for d ≤ 4. Here, d labels the BPS states wrapping the

degree d curve in P2.

should be quantized as

n ∈ Z ± 1/6 or n ∈ Z + 1/2 . (4.14)

These are all the consistent magnetic fluxes. The blowup equation with n ∈ Z + 1/2 is a

vanishing blowup equations, whereas the other choices of fluxes lead to unity blowup equa-

tions [86], and they are all solvable. The solution to these blowup equations is summarized

in table 13.

4.2.2 Local P2 + 1Adj

The local P2 + 1Adj (or “SU(2)π + 1Adj − 1F”) theory was first proposed in [97]. This

theory can be obtained by an RG flow from the UV SU(2)π +1Adj theory after integrating

out an instantonic hypermultiplet.

One way to see the existence of this theory is as follows. Recall that the SCFT of a local

P2 (or the E0 theory) can be obtained by blowing down an exceptional curve in a Hirzebruch

surface F1. This corresponds to integrating out an instantonic hypermultiplet in the pure

SU(2)π theory. In this regard, the E0 theory can be thought of as “SU(2)π − 1F” since we

are “subtracting” a hypermultiplet. Likewise, the SU(2)π + 1Adj theory we discussed in

section 4.1.3 has a hypermultiplet with charge d = (1, 1, −2) at the 1-instanton sector and

integrating out this hypermultiplet induces an RG flow to a consistent rank-1 SCFT with

one mass parameter. We will call this IR SCFT the local P2 + 1Adj theory. This theory is

a non-Lagrangian theory. Here +1Adj simply means this theory contains a hypermultiplet

originating from the adjoint hypermultiplet in its parent SU(2)π+1Adj theory. The adjoint

hypermultiplet in this SCFT can also be integrated out to give the SCFT of a local P2.

This theory is also a non-geometric theory. However, there is a 5-brane web for this

theory with an O7+-plane where the hypermultiplet associated with an O7+-plane is in

the symmetric representation of SU(2) that is equivalent to the adjoint of the UV SU(2)

gauge symmetry. A simple way to construct the corresponding 5-brane web is to attach an

O7+-plane to a 5-brane web for the pure SU(2)π theory, as depicted in figure 2. (See also

appendix B for more details of obtaining a 5-brane web for the SU(2)π + 1Adj theory.)

The hypermultiplet which we will integrate out is the (p, q)-string state associated with

the edge of the length −φ−m0 +2m1 in the brane web. Integrating out this hypermultiplet

corresponds to taking the infinite length limit of the edge −φ − m0 + 2m1 → ∞ while the

lengths of other edges are kept finite. After this, we will get a 5-brane web for the local
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m1 − 2φ

O7+

Figure 2. A 5-brane web for SU(2)π + 1Adj, where a flop transition associated with the e curve

in P2 is performed.

P2 + “1Adj” theory. In this 5-brane web diagram, one can also see that by taking another

limit m1 − 2φ → ∞, after taking the limit −φ − m0 + 2m1 → ∞, the diagram reduces to

the brane web for a local P2, which is consistent with the expected RG flow for this theory.

We will now compute the partition function using the chamber for the brane web of

the SU(2)π + 1Adj theory depicted in figure 2. It is convenient to reparameterize the

parameters in the brane web as follows:

φ̃ = φ +
1

3
m0 − 2

3
m1 , m̃ =

2

3
m0 − 1

3
m1 , (4.15)

so that the volumes of 2-cycles in figure 2 become

φ + m0 − 2m1 = 3φ̃ , m1 − 2φ = m̃ − 2φ̃ ,

−φ − m0 + 2m1 = −φ̃ + 2m0 − 4m̃ . (4.16)

In order to get the IR local P2 + 1Adj theory, we take the limit m0 → ∞ while φ̃ and

m̃ are kept finite. The cubic prepotential and the mixed gravitational Chern-Simons level

of the IR theory can be obtained from those of the parent theory as

FIR = FUV +
1

6
(φ + m0 − 2m1)3 , CG

IR = CG
UV − 2(φ + m0 − 2m1) , (4.17)

whereas the mixed gauge/SU(2)R level CR remains the same along the RG flow. Thus the

effective prepotential of a local P2 + 1Adj on the extended Coulomb branch where φ̃ > 0

and m̃ − 2φ̃ ≥ 0 becomes

E =
1

ǫ1ǫ2

(

3

2
φ̃3 − (ǫ2

1 + ǫ2
2)φ̃

8
+ ǫ2

+φ̃

)

, (4.18)

up to the terms independent of φ̃. Interestingly, this prepotential is the same as that of

a local P2. However, they are different theories because the P2 + 1Adj theory contains

an additional hypermultiplet coming from the adjoint hypermultiplet of the parent theory,

while the E0 theory has no hypermultiplet. The GV-invariant for this hypermultiplet is

thus a key input for solving the blowup equation

Zhyper(φ̃, m̃; ǫ1,2) = PE

[ √
p1p2

(1 − p1)(1 − p2)
e−(m̃−2φ̃)

]

. (4.19)
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(jl, jr)

(1, −2) (0, 0) (1, 1)
(

0, 1
2

)

⊕
(

1
2 , 0
)

(1, 4) (0, 0) ⊕ (0, 2) ⊕
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)

(1, 7)

(

0, 3
2

)

⊕
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

⊕
(

1, 7
2

)

(2, 2)
(

0, 1
2

)

⊕
(

1
2 , 1
)

(2, 5)

2 (0, 1) ⊕ (0, 2) ⊕ (0, 3) ⊕
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

⊕
2
(

1
2 , 5

2

)

⊕ (1, 2) ⊕ (1, 3)

(2, 8)

2
(

0, 1
2

)

⊕ 2
(

0, 3
2

)

⊕ 6
(

0, 5
2

)

⊕ 3
(

0, 7
2

)

⊕ 4
(

0, 9
2

)

⊕ 2
(

1
2 , 1
)

⊕
4
(

1
2 , 2
)

⊕6
(

1
2 , 3
)

⊕6
(

1
2 , 4
)

⊕2
(

1
2 , 5
)

⊕
(

1, 3
2

)

⊕3
(

1, 5
2

)

⊕5
(

1, 7
2

)

⊕
4
(

1, 9
2

)

⊕
(

1, 11
2

)

⊕
(

3
2 , 3
)

⊕ 2
(

3
2 , 4
)

⊕ 2
(

3
2 , 5
)

⊕
(

2, 9
2

)

⊕
(

2, 11
2

)

Table 14. BPS spectrum of P2 + 1Adj theory with d1 ≤ 2 and d2 ≤ 9. Here, d = (d1, d2) labels

the BPS states with charge d1m̃ + d2φ̃.

The feasible magnetic fluxes that one can turn on are

n ∈ Z + 1/6 , Bm̃ = −1/6 . (4.20)

The blowup equation with this flux choice is a unity blowup equation. We solve this

equation and find the BPS spectrum of the local P2 + 1Adj theory listed in table 14. As

expected, this result also agrees with the RG flow from the BPS spetrum in the SU(2)π +

1Adj theory given in table 12 in the limit −φ̃ + 2m0 − 4m̃ → ∞ while φ̃ and m̃ are

kept finite.

5 Rank 2 theories

In this section, we will compute the BPS spectra of all rank-2 KK theories by employing

our bootstrap approach. The computations will then guarantee that all rank-2 5d and

6d QFTs have solvable blowup equations and their BPS spectra can be obtained by the

bootstrap method. To support our claim, we will present computations of the BPS spectra

of three non-geometric 5d SCFTs: SU(3)8, P2 ∪ F3 + 1Sym, and P2 ∪ F6 + 1Sym.

5.1 KK theories

In this subsection, we solve the blowup equations for all rank-2 5d KK theories classified

in [7, 11, 17].

5.1.1 Sp(2) + 3Λ2

The 5d Sp(2) gauge theory with 3 anti-symmetric hypermultiplets (Sp(2) + 3Λ2) is the

KK-theory arising from the twisted compactification of the 6d SU(3) gauge theory with 6

fundamental hypermultiplets,

Sp(2) + 3Λ2 =
su(3)(2)

2 (5.1)
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This theory has a geometric description [11] as

F6

∣

∣

1

e
F3

0

∣

∣

2

2h+4f−2
∑

xi

(5.2)

and the fiber-base duality of F3
0 exchanges two dual descriptions: the 5d Sp(2) gauge theory

with 3 anti-symmetric hypers and the 6d SU(3) gauge theory with 6 fundamentals on a

circle with Z2 twist.

In 5d Sp(2) gauge theory description, the cubic prepotential on the chamber described

by the above geometry is

6F = 8φ3
1 + 12φ2

1φ2 − 18φ1φ2
2 + 8φ3

2 + 6m0(2φ2
1 − 2φ1φ2 + φ2

2) (5.3)

− 1

2

3
∑

i=1

(

(φ2 + mi)
3 + (2φ1 − φ2 + mi)

3 + (−2φ1 + φ2 + mi)
3 + (φ2 − mi)

3
)

,

where m0 is the gauge coupling and mi=1,2,3 are mass parameters for the 3 antisymmetric

hypermultiplets. The full effective prepotential on the Ω-background is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 2φ2) + ǫ2

+(φ1 + φ2)

)

. (5.4)

The volumes of the primitive 2-cycles in the geometry (5.2) in terms of the Sp(2) gauge

theory parameters can be written as

vol(f1) = 2φ1 − φ2 , vol(f2) = −2φ1 + 2φ2 ,

vol(e2) = −4φ1 + 2φ2 + m0 , vol(xi) = −2φ1 + φ2 + mi (i = 1, 2, 3) . (5.5)

From this information, we can choose a set of magnetic fluxes as

ni ∈ Z , Bm0 = 0 , Bmi
= 1/2 (i = 1, 2, 3) , (5.6)

which gives rise to a unity blowup equation. The unity blowup equation can be easily

solved and the resulting BPS spectrum is summarized in table 15.

Now we consider the 6d SU(3) gauge theory. Under the Z2 twist, the vector multiplet

and the hypermultiplets in 6d are decomposed into the representations of the invariant

subalgebra su(2) as

8 of su(3) → 30 ⊕ 21/4 ⊕ 23/4 ⊕ 11/2 of su(2) ,

3 ⊕ 3̄ of su(3) → 20 ⊕ 11/4 ⊕ 21/2 ⊕ 13/2 of su(2) , (5.7)

where the subscripts denote the shifted KK charges due to the Z2 twist. Collecting the

1-loop contributions from these KK states and the classical Green-Schwarz contributions,

we obtain the full effective prepotential on the Ω-background as

E =
1

ǫ1ǫ2

(

Etree + F1-loop +
ǫ2
1 + ǫ2

2

24
φ1 + ǫ2

+φ1

)

,

Etree = τφ2
0 + 2φ0

(

φ2
1 − 1

2

3
∑

i=1

m2
i +

3

2
ǫ2
+

)

,

F1-loop =
5

6
φ3

1 − 3

16
τφ2

1 − 1

2

3
∑

i=1

m2
i φ1 . (5.8)
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(
2
0
2
1
)
1
6
1

d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0, 0, −1) 3 (0, 0) (1, 0, 0, 0)
(

0, 1
2

)

(1, 0, 1, −3) (0, 0) (1, 0, 1, −2) 3
(

0, 1
2

)

(1, 0, 1, −1) 3 (0, 1) (1, 0, 1, 0)
(

0, 3
2

)

(1, 1, 0, 0)
(

0, 1
2

)

(1, 1, 1, −2) 3
(

0, 1
2

)

(1, 1, 1, −1) 3 (0, 0) ⊕ 3 (0, 1) (1, 1, 1, 0)
(

0, 1
2

)

⊕
(

0, 3
2

)

(2, 0, 1, −3) (0, 1) (2, 0, 1, −2) 3
(

0, 3
2

)

(2, 0, 1, −1) 3 (0, 2) (2, 0, 1, 0)
(

0, 5
2

)

(2, 1, 1, −3) (0, 0) ⊕ (0, 1) (2, 1, 1, −2) 3
(

0, 1
2

)

⊕ 3
(

0, 3
2

)

(2, 1, 1, −1) 3 (0, 1) ⊕ 3 (0, 2) (2, 1, 1, 0)
(

0, 3
2

)

⊕
(

0, 5
2

)

Table 15. BPS spectrum of Sp(2) + 3Λ2 for d1 ≤ 2, d2 ≤ 1, d3 ≤ 1. Here, d = (d1, d2, d3, d4)

labels the BPS states with charge d1e2 + d2f1 + d3f2 + d4xi and d4 counts collective degrees of all

anti-symmetric hypermultiplets.

Here, the Kähler parameters in the 6d gauge theory description can be converted to the

parameters in the 5d Sp(2) gauge theory description simply by the following reparametriza-

tion:

φ0 → φ1 +
m0

16
− 1

4

3
∑

i=1

mi , φ1 → φ2 − 2φ1 +
m0

2
, τ → 2m0 , mi → mi − m0

2
. (5.9)

One can easily check that the effective prepotential of the 6d theory with this reparametriza-

tion reproduces that of the 5d theory given above up to terms independent of φi.

It is convenient in the 6d perspective to use the 6d parameters shifted as

φ0 → φ0 − 5

32
τ − 1

4

3
∑

i=1

mi , φ1 → φ1 − 2φ0 . (5.10)

The volumes of 2-cycles in the geometry (5.2) can be written in terms of the shifted 6d

parameters as

vol(f1) = 2φ0 − φ1 +
τ

4
, vol(f2) = −4φ0 + 2φ1 ,

vol(e2) = −2φ0 + 2φ1 − τ

2
, vol(xi) = −2φ0 + φ1 + mi . (5.11)

One finds a pair of consistent magnetic fluxes as

n1 ∈ Z , Bτ = 0 , Bmi
= 1/2 , n0 ∈ Z + B0 with B0 = 0, 1/2 , (5.12)

which lead to unity blowup equations. We checked that the solutions to the blowup equa-

tions match the result in table 15 from the 5d Sp(2) gauge theory.
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5.1.2 SU(3)4 + 6F, Sp(2) + 2Λ2 + 4F, G2 + 6F

This theory is a KK theory coming from the 6d SU(3) gauge theory with 12 fundamental

hypermultiplets on a circle with Z2 twist. It has three different 5d gauge theory descrip-

tions: SU(3)4 + 6F, Sp(2) + 2Λ2 + 4F, and G2 + 6F,

SU(3)4 + 6F = G2 + 6F = Sp(2) + 2Λ2 + 4F =
su(3)(2)

1 (5.13)

This theory is geometrically engineered by gluing F2 and F6
0 as [11]

F2

∣

∣

1

e
F6

0

∣

∣

2

e+2f−
∑4

i=1
xi

(5.14)

We shall solve the blowup equations by using the SU(3) and G2 frames. We first

compute the cubic prepotential of the SU(3) gauge theory on the chamber φ2 ≥ φ1 > 0 as

6F = 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ2

2 + 12φ1φ2(φ1 − φ2) (5.15)

− 1

2

6
∑

i=1

(

(φ2 − mi)
3 + (φ2 − φ1 + mi)

3 + (φ1 + mi)
3
)

+ 6m0(φ2
1 − φ1φ2 + φ2

2) ,

where m0 is the SU(3) gauge coupling and mi=1,··· ,6 are mass parameters of 6 fundamentals.

The full effective prepotential is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 8φ2) + ǫ2

+(φ1 + φ2)

)

. (5.16)

A choice of magnetic fluxes

ni ∈ Z , Bm0 = −1/2 , Bmi
= 1/2 (1 ≤ i ≤ 6) (5.17)

provides a solvable unity blowup equation. We solve the blowup equation and find the

BPS spectrum of the SU(3)4 + 6F theory listed in table 16.

On the other hand, the full effective prepotential in the G2 gauge theory in the same

chamber is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 8φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 8φ3
1 + 18φ2

1φ2 − 24φ1φ2
2 + 8φ3

2 + 6m0(3φ2
1 − 3φ1φ2 + φ2

2)

− 1

2

6
∑

i=1

(

(φ1 + mi)
3 + (−φ1 + φ2 + mi)

3 + (2φ1 − φ2 + mi)
3

+ (−2φ1 + φ2 + mi)
3 + (−φ1 + φ2 − mi)

3 + (φ1 − mi)
3 + m3

i

)

. (5.18)

Here, m0 is the G2 gauge coupling and mi=1,··· ,6 are mass parameters of the G2 fundamental

hypers.
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(

1, − 4
3 , 1

3

) (

0, 1
2

) (

1, − 4
3 , 4

3

) (

0, 3
2

)

(1, −1, 0) 6 (0, 0) (1, −1, 1) 6 (0, 1)

(1, −1, 2) 6 (0, 2)
(

1, − 2
3 , 2

3

)

15
(

0, 1
2

)

(

1, − 2
3 , 5

3

)

15
(

0, 3
2

) (

1, − 1
3 , 1

3

)

20 (0, 0) ⊕
(

0, 1
2

)

(

1, − 1
3 , 4

3

) (

0, 1
2

)

⊕ 20 (0, 1) ⊕
(

0, 3
2

)

(1, 0, 1)
6 (0, 0) ⊕ 15

(

0, 1
2

)

⊕
6 (0, 1)

(1, 0, 2)
6 (0, 1) ⊕ 15

(

0, 3
2

)

⊕
6 (0, 2)

(

1, 1
3 , 2

3

)

6 (0, 0) ⊕ 15
(

0, 1
2

)

(

1, 1
3 , 5

3

)

15
(

0, 1
2

)

⊕ 6 (0, 1) ⊕
15
(

0, 3
2

)

(

1, 2
3 , 1

3

)

20 (0, 0) ⊕
(

0, 1
2

)

(

1, 2
3 , 4

3

)

20 (0, 0) ⊕ 2
(

0, 1
2

)

⊕
20 (0, 1) ⊕

(

0, 3
2

)

(1, 1, 0) 6 (0, 0)

(1, 1, 1)
6 (0, 0) ⊕ 15

(

0, 1
2

)

⊕
6 (0, 1)

(1, 1, 2)

6 (0, 0) ⊕ 15
(

0, 1
2

)

⊕
6 (0, 1) ⊕ 15

(

0, 3
2

)

⊕
6 (0, 2)

(2, −2, 1) 15
(

0, 3
2

) (

2, − 5
3 , 2

3

)

20 (0, 1)
(

2, − 4
3 , 1

3

)

15
(

0, 1
2

)

(2, −1, 0) 6 (0, 0)

(2, −1, 1)

6 (0, 0) ⊕ 15
(

0, 1
2

)

⊕
96 (0, 1) ⊕ 15

(

0, 3
2

)

⊕
6
(

1
2 , 3

2

)

(

2, − 2
3 , 2

3

) 20 (0, 0) ⊕ 37
(

0, 1
2

)

⊕
20 (0, 1) ⊕

(

1
2 , 1
)

(

2, − 1
3 , 1

3

)

12 (0, 0) ⊕ 15
(

0, 1
2

)

(2, 0, 1)

102 (0, 0) ⊕ 66
(

0, 1
2

)

⊕
102 (0, 1) ⊕ 15

(

0, 3
2

)

⊕
6
(

1
2 , 1

2

)

⊕ 6
(

1
2 , 3

2

)

Table 16. BPS spectrum of the SU(3)4 + 6F theory for (d1 = 1, d2 ≤ 1, d3 ≤ 2) and (d1 = 2, d2 ≤
0, d3 ≤ 1) where d = (d1, d2, d3) labels the BPS states with charge d1m0 + d2α1 + d3α2 for simple

roots α1 = 2φ1 − φ2, α2 = −φ1 + 2φ2 of su(3) algebra, and 6 flavor charges are blindly summed

over.

Under the duality between the SU(3) and G2 descriptions, the Kähler parameters in

two theories have a natural map [76] given by

φSU
1 = φG2

1 +
1

3
mG2

0 − 1

3

6
∑

j=1

mG2
j , φSU

2 = φG2
2 +

2

3
mG2

0 − 2

3

6
∑

j=1

mG2
j , (5.19)

mSU
0 =

2

3
mG2

0 − 1

6

6
∑

j=1

mG2
j , mSU

i = −1

3
mG2

0 − mG2
i +

1

3

6
∑

j=1

mG2
j (1 ≤ i ≤ 6) .
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The magnetic flux quantization is satisfied by

ni ∈ Z , Bm0 = 0 , Bmi
= 1/2 (1 ≤ i ≤ 6) . (5.20)

This choice of magnetic fluxes provides a solvable unity blowup equation. We check that

the solution to the equation matches the BPS spectrum of the SU(3) theory in table 16

under the above parameter map.

5.1.3 SU(3) 3
2

+ 9F, Sp(2) + 1Λ2 + 8F

This theory comes from the circle compactification of the 6d rank-2 E-string theory. This

theory can also be described by two 5d gauge theories: SU(3)3/2 +9F and Sp(2)+1Λ2 +8F,

SU(3)3/2 + 9F = Sp(2) + 1Λ2 + 8F =
sp(0)(1)

1

su(1)(1)

2 (5.21)

The geometric construction for this theory is given by

F0

∣

∣

1

f+e
F9

4

∣

∣

2

e

(5.22)

The validity of the blowup equations for the 6d rank-2 E-string was checked in [89].

Here, we will solve the blowup equations from the perspective of two dual 5d gauge theories.

First, the full effective prepotential of the SU(3) theory on the Coulomb branch where

φ2 ≥ φ1 > 0 is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 14φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ2

2 +
9

2
φ1φ2(φ1 − φ2) + 6m0(φ2

1 − φ1φ2 + φ2
2)

− 1

2

9
∑

i=1

(

(φ2 − mi)
3 + (φ2 − φ1 + mi)

3 + (φ1 + mi)
3
)

, (5.23)

where m0 is the SU(3) gauge coupling and mi=1,··· ,9 are mass parameters of the fundamental

hypermultiplets. A set of consistent magnetic fluxes

ni ∈ Z , Bm0 = −3/4 , Bmi
= 1/2 (1 ≤ i ≤ 9) . (5.24)

provides a solvable unity blowup equation. By solving the blowup equation, we obtain the

BPS spectrum given in table 17.

On the other hand, in the Sp(2) theory, the full effective prepotential in the same

chamber is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 14φ2) + ǫ2

+(φ1 + φ2)

)

, (5.25)

6F = 8φ3
1 + 12φ2

1φ2 − 18φ1φ2
2 + 8φ3

2 + m0(2φ2
1 − 2φ1φ2 + φ2

2)

− 1

2

8
∑

i=1

(

(φ1 + mi)
3 + (−φ1 + φ2 + mi)

3 + (−φ1 + φ2 − mi)
3 + (φ1 − mi)

3
)

− 1

2

(

(φ2 + m9)3 + (2φ1 − φ2 + m9)3 + (−2φ1 + φ2 + m9)3 + (φ2 − m9)3
)

,
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2
0
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1
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6
1

d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, −1, 0) (0, 0) (1, −1, 1) (0, 1)

(1, −1, 2) (0, 2)
(

1, − 2
3 , 2

3

)

9
(

0, 1
2

)

(

1, − 2
3 , 5

3

)

9
(

0, 3
2

) (

1, − 1
3 , 1

3

)

36 (0, 0)
(

1, − 1
3 , 4

3

)

36 (0, 1) (1, 0, 1) (0, 0) ⊕ 84
(

0, 1
2

)

⊕ (0, 1)

(1, 0, 2) (0, 1) ⊕ 84
(

0, 3
2

)

⊕ (0, 2)
(

1, 1
3 , 2

3

)

126 (0, 0) ⊕ 9
(

0, 1
2

)

(

1, 1
3 , 5

3

)

9
(

0, 1
2

)

⊕ 126 (0, 1) ⊕
9
(

0, 3
2

)

(

1, 2
3 , 1

3

)

45 (0, 0)

(

1, 2
3 , 4

3

) 36 (0, 0) ⊕ 126
(

0, 1
2

)

⊕
36 (0, 1)

(1, 1, 0) (0, 0) ⊕
(

0, 1
2

)

(1, 1, 1)
85 (0, 0) ⊕ 85

(

0, 1
2

)

⊕
(0, 1)

(1, 1, 2)

(0, 0) ⊕ 84
(

0, 1
2

)

⊕
85 (0, 1) ⊕ 84

(

0, 3
2

)

⊕
(0, 2)

(2, −1, 1) 84 (0, 1)
(

2, − 2
3 , 2

3

)

126
(

0, 1
2

)

(

2, − 1
3 , 1

3

)

126 (0, 0) (2, 0, 1)
85 (0, 0) ⊕ 1219

(

0, 1
2

)

⊕
85 (0, 1) ⊕ 84

(

1
2 , 1
)

(

2, 1
3 , 2

3

) 801 (0, 0) ⊕ 135
(

0, 1
2

)

⊕
36
(

1
2 , 1

2

)

(

2, 2
3 , 1

3

) 162 (0, 0) ⊕ 9
(

0, 1
2

)

⊕
9
(

1
2 , 0
)

(2, 1, 0) (0, 0) ⊕ (0, 1) ⊕
(

1
2 , 1

2

)

(2, 1, 1)

1465 (0, 0)⊕1387
(

0, 1
2

)

⊕
168 (0, 1) ⊕ (0, 2) ⊕

84
(

1
2 , 0
)

⊕ 83
(

1
2 , 1

2

)

⊕
84
(

1
2 , 1
)

⊕
(

1
2 , 3

2

)

⊕ (1, 1)

Table 17. BPS spectrum of the SU(3)3/2 + 9F theory for d1 = 1, d2 ≤ 1, d3 ≤ 2 and d1 = 2,

d2, d3 ≤ 1. All flavor mass parameters mi=1,··· ,9 are turned off and d = (d1, d2, d3) labels the BPS

states with charge d1m0 + d2α1 + d3α2 for the simple roots α1 and α2 of su(3) algebra.

where m0 is the Sp(2) gauge coupling, mi=1,··· ,8 are mass parameters of the Sp(2) funda-

mentals and m9 denotes the mass parameter of the antisymmetric hyper.

The Kähler parameters in the Sp(2) theory are mapped to those in the SU(3) theory as

φSp
1 = φSU

1 +
1

2
mSU

0 +
1

4

8
∑

j=1

mSU
j − 1

4
mSU

9 , φSp
2 = φSU

2 + mSU
0 +

1

2

8
∑

j=1

mSU
j − 1

2
mSU

9 ,

mSp
0 =

3

2
mSU

0 +
1

4

9
∑

i=1

mSU
i , mSp

i =
1

2
mSU

0 − mSU
i +

1

4

8
∑

j=1

mSU
j − 1

4
mSU

9 (1 ≤ i ≤ 7) ,

mSp
8 = −1

2
mSU

0 + mSU
8 − 1

4

8
∑

j=1

mSU
j +

1

4
mSU

9 , mSp
9 = mSU

0 +
1

2

9
∑

j=1

mSU
j . (5.26)

In the Sp(2) frame, we find a set of consistent magnetic fluxes

ni ∈ Z , Bm0 = 0 , Bmi
= 1/2 (1 ≤ i ≤ 9) . (5.27)
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This leads to a solvable unity blowup equation. We have checked that the solution to the

blowup equation agrees with the BPS spectrum of the dual SU(3) gauge theory given in

table 17.

The instanton partition function of the Sp(2)+1Λ2 +8F theory can also be calculated

using the ADHM construction introduced in [35, 48, 121]. We checked that our result from

the blowup formula is in perfect agreement with the ADHM result in the Kähler parameter

expansion.

5.1.4 SU(3)0 + 10F, Sp(2) + 10F

The 5d SU(3)0 + 10F theory and the Sp(2) + 10F theory are two dual 5d descriptions for

the KK theory arising from the circle compactification of the 6d Sp(1) gauge theory with

10 fundamental hypermultiplets,

SU(3)0 + 10F = Sp(2) + 10F =
sp(1)(1)

1 (5.28)

This theory is geometrically engineered by gluing F10
6 and F0 [11].

F0

∣

∣

1

e+2f
F10

6

∣

∣

2

e

(5.29)

The blowup equation for this theory from the 6d gauge theory perspective was checked to

be satisfied by substituting the known one-string elliptic genus into the blowup equation

in [90].

We will now compute the BPS spectrum of this theory using the blowup equations in

the 5d gauge theory descriptions. First, the full prepotential of the SU(3) gauge theory on

the chamber φ2 ≥ φ1 > 0 is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 16φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ2

2 + 6m0(φ2
1 − φ1φ2 + φ2

2)

− 1

2

10
∑

i=1

(

(φ2 − mi)
3 + (φ2 − φ1 + mi)

3 + (φ1 + mi)
3
)

. (5.30)

We find a set of consistent magnetic fluxes

ni ∈ Z , Bm0 = 0 , Bmi
= 1/2 (1 ≤ i ≤ 5) , Bmi

= −1/2 (6 ≤ i ≤ 10) , (5.31)

which provides a solvable unity blowup equation.

In the Sp(2) gauge theory, on the other hand, the full effective prepotential on the

same chamber takes the form of

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 16φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 8φ3
1 + 12φ2

1φ2 − 18φ1φ2
2 + 8φ3

2 + m0(2φ2
1 − 2φ1φ2 + φ2

2)

− 1

2

10
∑

i=1

(

(φ1 ± mi)
3 + (−φ1 + φ2 ± mi)

3
)

, (5.32)
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 1, 1) 512 (0, 0)
(

1, 1, 3
2

)

512
(

0, 1
2

)

(1, 1, 2) 512 (0, 1)
(

1, 2, 3
2

)

512
(

0, 1
2

)

(1, 2, 2) 512 (0, 0) ⊕ 512 (0, 1) (2, 0, −1)
(

0, 1
2

)

(

2, 0, − 1
2

)

20 (0, 0)
(

2, 0, 1
2

)

20 (0, 0)

(2, 0, 1)
(

0, 1
2

)

(2, 1, −1)
(

0, 3
2

)

(

2, 1, − 1
2

)

20 (0, 1) (2, 1, 0)
192

(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(

2, 1, 1
2

) 1180 (0, 0) ⊕ 20 (0, 1) ⊕
20
(

1
2 , 1

2

) (2, 1, 1)
192

(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(2, 2, −1)
(

0, 5
2

) (

2, 2, − 1
2

)

20 (0, 2)

(2, 2, 0)

(

0, 1
2

)

⊕ 192
(

0, 3
2

)

⊕
(

0, 5
2

)

⊕
(

1
2 , 1
)

⊕
(

1
2 , 2
)

(

2, 1, 1
2

)

20 (0, 0) ⊕ 1180 (0, 1) ⊕
20 (0, 2) ⊕ 20

(

1
2 , 1

2

)

⊕
20
(

1
2 , 3

2

)

(2, 2, 1)
5230

(

0, 1
2

)

⊕ 192
(

0, 3
2

)

⊕
(

0, 5
2

)

⊕ 192
(

1
2 , 0
)

⊕ 193
(

1
2 , 1
)

⊕
(

1
2 , 2
)

⊕
(

1, 1
2

)

⊕
(

1, 3
2

)

Table 18. BPS spectrum of the Sp(2)+10F theory for d1 = 1, d2, d3 ≤ 2 and d1 = 2, d2 ≤ 2, d3 ≤ 1.

Here, d = (d1, d2, d3) labels BPS states with charge d1m0 + d2α1 + d3α2, where α1 = 2φ1 − φ2,

α2 = −2φ1 + 2φ2 are the simple roots of sp(2) algebra, and 10 flavor charges are blindly summed

over.

where m0 is the Sp(2) gauge coupling and mi=1,··· ,10 are mass parameters of the funda-

mental hypers. One possible choice of consistent magnetic fluxes in the Sp(2) theory is

ni ∈ Z , Bm0 = 0 , Bmi
= 1/2 (1 ≤ i ≤ 10) . (5.33)

The Kähler parameters in two 5d theories are mapped to each other by the relations [27]

φSp
1 = φSU

1 +
1

2
mSU

0 +
1

4

10
∑

i=1

mSU
i , φSp

2 = φSU
2 + mSU

0 +
1

2

10
∑

i=1

mSU
i , mSp

0 = mSU
0 ,

mSp
i =

1

2
mSU

0 − mSU
j +

1

4

10
∑

j=1

mSU
j (1 ≤ i ≤ 9) , mSp

10 = −1

2
mSU

0 − 1

4

9
∑

j=1

mSU
j +

3

4
mSU

10 .

(5.34)

We list in table 18 some leading BPS states computed by solving the blowup equation

in the Sp(2) + 10F theory. We checked that this solution agrees with the result from the

SU(3)0 + 10F description and also agree with the ADHM result for the Sp(2) + 10F theory

computed in [28] as well as topological vertex [27] in series expansion of Kähler parameters.
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0, 1, −1, −1) 2(0, 0) (1, 0, 1, 1, −1) 2(0, 0)

(1, 0, 2, −2, 0)
(

0, 1
2

)

(1, 0, 2, 0, −2)
(

0, 1
2

)

(1, 0, 2, 0, 0) 4
(

0, 1
2

)

(1, 0, 2, 2, 0)
(

0, 1
2

)

(1, 1, −1, 1, −1) 2 (0, 0) (1, 1, 0, 2, −2) 4
(

0, 1
2

)

(1, 1, 0, 2, 0)
10
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(1, 1, 1, −1, −1) 2 (0, 0)

(1, 1, 1, 1, −3) 2 (0, 0) (1, 1, 1, 1, −1)
14 (0, 0) ⊕ 4 (0, 1) ⊕

2
(

1
2 , 1

2

)

(1, 1, 2, 0, −2) 4
(

0, 1
2

)

(1, 1, 2, 0, 0)
10
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(1, 1, 2, 2, −2)
10
(

0, 1
2

)

⊕ 5
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
) (1, 1, 2, 2, 0)

25
(

0, 1
2

)

⊕14
(

0, 3
2

)

⊕
(

0, 5
2

)

⊕ 4
(

1
2 , 0
)

⊕
5
(

1
2 , 1
)

⊕
(

1
2 , 2
)

Table 19. BPS spectrum of the SU(2) × SU(2) theory with 2 bifundamentals. Here, d =

(d1, d2, d3, d4, d5) labels the BPS states with charge d1m1 + d2m2 + d3φ1 + d4φ2 + d5mi where

d5 counts collective degrees of two bi-fundamental matters with masses mi=3,4. There is a symme-

try exchanging (d1, d2, d3, d4, d5) ↔ (d2, d1, d4, d3, d5) and d5 ↔ −d5, so we list BPS states up to

(d3, d4) ≤ (2, 2) and d5 ≤ 0 for (1, 0) and (1, 1) instantons.

5.1.5 SU(2) × SU(2) + 2 bi-F

We will now give an example for 5d quiver gauge theories. The 5d theory with SU(2)×SU(2)

gauge group and 2 bi-fundamental hypermultiplets (bi-F) is the KK theory obtained from

a circle compactification of the 6d SU(2) gauge theory with 4 fundamental hypermultiplets.

The full effective prepotential of the SU(2) × SU(2) gauge theory on the Coulomb

branch where φ2 ≥ φ1 > 0 is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
(φ1 − φ2) + ǫ2

+(φ1 + φ2)

)

, (5.35)

6F = 8φ3
1 + 8φ3

2 + 6m1φ2
1 + 6m2φ2

2 − 1

2

4
∑

i=3

(

(φ1 + φ2 ± mi)
3 + (−φ1 + φ2 ± mi)

3
)

,

where m1 and m2 are the gauge couplings for two SU(2) gauge groups respectively, while

m3 and m4 are the mass parameters of two bi-fundamentals.

A unity blowup equation can be formulated with a set of the consistent magnetic fluxes

given by

ni ∈ Z , Bm1 = 0 , Bm2 = 0 , Bm3,4 = 1/2 . (5.36)

The solution to the blowup equation is given in table 19. We also computed the partition

function of this theory using the ADHM method and confirmed that the result agrees with

the BPS spectrum in table 19.
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5.1.6 SU(3)0 + 1Adj

The 5d SU(3)0 gauge theory with one adjoint hypermultiplet is equivalent to a circle

reduction of the 6d N = (2, 0) A2 theory [17],

SU(3)0 + 1Adj =
su(2)(1)

2

su(2)(1)

2 (5.37)

The cubic prepotential of this theory on the chamber where 2φ2 > φ1 > 1
2φ2 is

6F = 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ3

2 + 6m0(φ2
1 − φ1φ2 + φ2

2)

− 1

2

(

(φ1 + φ2 ± m1)3 + (−φ1 + 2φ2 ± m1)3 + (2φ1 − φ2 ± m1)3
)

, (5.38)

where m0 is the gauge coupling and m1 is the mass parameter of the adjoint matter. The

effective prepotential is

E =
1

ǫ1ǫ2

(

F + ǫ2
+(φ1 + φ2)

)

. (5.39)

We find that a set of consistent magnetic fluxes

ni ∈ Z , Bm0 = 0 , Bm1 = 1/2 (5.40)

gives rise to a solvable unity blowup equation. The BPS spectrum obtained by solving the

blowup equation is listed in table 20. We also computed the instanton partition function

for SU(3)0 + 1Adj independently using the ADHM construction and confirmed that our

result agrees with the result from the ADHM method.

5.1.7 Sp(2)0 + 1Adj

There are two Sp(2)θ gauge theories with an adjoint hypermultiplet in 5d distinguished by

two distinct theta angles θ = 0 or θ = π. In this subsection, we discuss the case with θ = 0.

The 5d Sp(2)0 + 1Adj theory is the KK-theory obtained by the Z2 twisted compacti-

fication of the 6d N = (2, 0) A3 theory [120],

Sp(2)0 + 1Adj =
su(1)(1)

2

su(1)(1)

22 (5.41)

This is a non-geometric theory. This theory on the other hand has a 5-brane web realization

with an O7+ plane (or frozen singularity) which will be discussed in appendix B.

The BPS spectrum of this theory can be obtained by solving the blowup equation as

follows. The full effective prepotential of this theory on the chamber where 2φ1 > φ2 >

φ1 > 0 is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 2φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 8φ3
1 + 12φ2

1φ2 − 18φ1φ2
2 + 8φ3

2 + m0(2φ2
1 − 2φ1φ2 + φ2

2) (5.42)

− 1

2

(

(2φ1 ± m1)3 + (φ2 ± m1)3 + (−2φ1 + 2φ2 ± m1)3 + (±(2φ1 − φ2) + m1)3
)

,
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1
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0, 1
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⊕
(

1
2 , 0
)
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(
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2
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(1, 1, 1, 0)
6
(
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1
2 , 0
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⊕
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(

1
2 , 1
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(

0, 1
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)

⊕2
(

0, 3
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)

⊕
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1
2 , 1
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(1, 1, 2, −1)
(0, 0) ⊕ 5 (0, 1) ⊕ (0, 2) ⊕

2
(

1
2 , 1

2

)

⊕ 2
(

1
2 , 3

2

) (1, 1, 2, 0)
4
(

0, 1
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)

⊕ 4
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕ 4
(
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2 , 1
)
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2 , 2
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4
(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(1, 2, 2, −1)

5 (0, 0) ⊕ 7 (0, 1) ⊕
2 (0, 2) ⊕ 4

(

1
2 , 1

2

)

⊕
3
(

1
2 , 3

2

)

(1, 2, 2, 0)

8
(

0, 1
2

)

⊕ 6
(

0, 3
2

)

⊕
4
(

1
2 , 0
)

⊕ 6
(

1
2 , 1
)

⊕
2
(

1
2 , 2
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(2, 0, 1, −3) (0, 0) (2, 0, 1, −2) 2
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0, 1
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⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
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(2, 0, 1, −1)
4 (0, 0) ⊕ 2 (0, 1) ⊕

3
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

⊕ (1, 1)
(2, 0, 1, 0)

5
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
3
(

1
2 , 0
)

⊕ 3
(

1
2 , 1
)

⊕
(

1, 1
2

)

⊕
(

1, 3
2

)

(2, 1, 1, −3) 5 (0, 0)⊕2 (0, 1)⊕3
(

1
2 , 1

2

)

(2, 1, 1, −2)

14
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
9
(

1
2 , 0
)

⊕ 7
(

1
2 , 1
)

⊕
2
(

1, 1
2

)

(2, 1, 1, −1)

22 (0, 0) ⊕ 14 (0, 1) ⊕
22
(

1
2 , 1

2

)

⊕ 4
(

1
2 , 3

2

)

⊕
4 (1, 0) ⊕ 5 (1, 1)

(2, 1, 1, 0)

31
(

0, 1
2

)

⊕ 5
(

0, 3
2

)

⊕
21
(

1
2 , 0
)

⊕ 17
(

1
2 , 1
)

⊕
9
(

1, 1
2

)

⊕ 3
(

1, 3
2

)

Table 20. BPS spectrum of SU(3)0 + 1Adj theory for d1 = 1, d2, d3 ≤ 2 and d1 = 2, d2, d3 ≤ 1.

Here d = (d1, d2, d3, d4) labels the BPS states with charge d1m0 +d2α1 +d3α2 +d4m1, where α1 and

α2 are simple roots of su(3) algebra. The states related by the symmetries d2 ↔ d3 and d4 ↔ −d4

are omitted.

where m0 is the gauge coupling and m1 is the adjoint mass parameter. One can choose

the consistent magnetic fluxes as

ni ∈ Z , Bm0 = 0 , Bm1 = 1/2 , (5.43)

and formulate a unity blowup equation. The solution to the blowup equation is given in

table 21. We checked that this result matches the instanton partition function of the 5d

N = 2 Sp(2)0 gauge theory computed in [46, 122] using the ADHM construction.
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⊕
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⊕
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2
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6
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⊕ 4
(

1
2 , 0
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⊕
2
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1
2 , 1
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⊕
(
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2

)

(2, 1, 1, −1)

11 (0, 0) ⊕ 5 (0, 1) ⊕
10
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

⊕
2 (1, 0) ⊕ 2 (1, 1)
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14
(

0, 1
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(

0, 3
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)

⊕
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(

1
2 , 0
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⊕ 7
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1
2 , 1
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⊕
4
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1, 1
2

)

⊕
(

1, 3
2

)

Table 21. BPS spectrum of the Sp(2)0 + 1Adj theory for d1 = 1, 2 and d2 ≤ 1, d3 ≤ 1. Here,

d = (d1, d2, d3, d4) labels the BPS states with charge d1m0+d2α1+d3α2+d4m1 where α1 = 2φ1−φ2,

α2 = −2φ1+2φ2 are simple roots of sp(2) algebra. The theory has a symmetry exchanging d4 ↔ −d4

which provides BPS states with flipped charge d4 → −d4.

5.1.8 SU(3) 3
2

+ 1Sym, Sp(2)π + 1Adj

The 5d Sp(2)π + 1Adj theory is the KK-theory obtained by Z2 twisted compactification of

the 6d N = (2, 0) A4 theory. This theory is also dual to the SU(3)3/2 + 1Sym theory [7],

SU(3)3/2 + 1Sym = Sp(2)π + 1Adj =
su(1)(1)

2

su(1)(1)

2

(5.44)

This theory has no geometric construction, but it can be realized by a 5-brane web with

an O7+ plane as discussed in [76]. See also appendix B for more details.

In the SU(3) description, the effective prepotential on the Coulomb branch where

φ2 ≥ φ1 > 0 is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 2φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ2

2 +
9

2
φ1φ2(φ1 − φ2) + m0(φ2

1 − φ1φ2 + φ2
2)

− 1

2

(

(2φ1 + m1)3 + (φ2 + m1)3 + (−2φ1 + 2φ2 + m1)3

+ (−φ1 + φ2 − m1)3 + (φ1 − m1)3 + (2φ2 − m1)3) , (5.45)
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where m0 is the gauge coupling and m1 is the mass parameter of the symmetric matter.

The following magnetic fluxes give a solvable unity blowup equation for this theory,

ni ∈ Z , Bm0 = −1/4 , Bm1 = 1/2 . (5.46)

On the other hand, the blowup equation from the Sp(2) theory perspective is rather

subtle. The effective prepotentials and the 1-loop GV-invariant of Sp(2)π + 1Adj theory

are the same as those of the θ = 0 case. Therefore the form of the blowup equation for the

Sp(2)θ theory at θ = π is expected to be determined by another choice of magnetic fluxes

different from the fluxes used for the theory at θ = 0 in the previous subsection. Indeed,

there exists another set of consistent magnetic fluxes given by

n1 ∈ Z + 1/2 , n2 ∈ Z , Bm0 = 0 , Bm1 = 1/2 . (5.47)

Rather surprisingly, we notice that the blowup equation coming from this set of fluxes

has two distinct solutions. While solving the blowup equation, we always find two inde-

pendent solutions at each order in the expansion. For example, N
(1,1,1,−3)
(0,0) at 1-instanton

order has two solutions, either 1 or 0. Interestingly, it turns out that these two solutions of

the single blowup equation correspond to the θ = 0 and θ = π cases respectively. Indeed,

we checked up to 3-instantons that the instanton partition functions of the N = 2 Sp(2)θ

gauge theories both at θ = 0, π computed using their ADHM constructions satisfy the

same blowup equation formulated with the fluxes in (5.47). This example tells us that

two Sp(N) gauge theories with different theta angles can be distinguished by flux choices

leading to different blowup equations, or by distinct solutions of a single blowup equation.

The map between Kähler parameters of the SU(3) and Sp(2) theories is

φSU
1 = φSp

1 +
1

3

(

mSp
0 − 3mSp

1

)

, φSU
2 = φSp

2 +
2

3

(

mSp
0 − 3mSp

1

)

,

mSU
0 = mSp

0 − 1

2
mSp

1 , mSU
1 = −2

3
mSp

0 + mSp
1 . (5.48)

Under this map, the BPS spectrum from the solution to the blowup equation in the SU(3)

description agrees with that from the dual Sp(2) description. Some leading BPS states of

the SU(3) theory are listed in table 22. We also confirmed that this result agrees with the

ADHM result for the Sp(2)π + 1Adj theory.

5.1.9 SU(3)0 + 1Sym + 1F

The 5d SU(3) gauge theory at CS-level 0 with a symmetric and a fundamental hypermul-

tiplets is the KK-theory obtained by a twisted compactification of the 6d rank-2 (A1, A1)

conformal matter theory introduced in [123],

SU(3)0 + 1Sym + 1F =
su(2)(1)

2

(5.49)
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(

1, −1, 0, 3
2

)

(0, 0)
(

1, −1, 1, 3
2

)

(0, 1)
(

1, − 2
3 , 2

3 , 5
2

) (

0, 1
2

) (

1, − 1
3 , 1

3 , 1
2

) (

0, 1
2

)

⊕
(

1
2 , 0
)

(

1, 0, 1, 3
2

)
2 (0, 0) ⊕ 2 (0, 1) ⊕

(

1
2 , 1

2

)

(

1, 1
3 , 2

3 , − 1
2

)

2 (0, 0) ⊕
(

1
2 , 1

2

)

(

1, 1
3 , 2

3 , 5
2

) (

0, 1
2

) (

1, 2
3 , 1

3 , − 5
2

)

(0, 0)
(

1, 2
3 , 1

3 , 1
2

) (

0, 1
2

)

⊕
(

1
2 , 0
) (

1, 1, 0, − 3
2

) (

0, 1
2

)

(

1, 1, 0, 3
2

)

(0, 0)
(

1, 1, 1, − 3
2

)

2
(

0, 1
2

)

⊕
(

1
2 , 0
)

(

1, 1, 1, 3
2

)
2 (0, 0) ⊕ 2 (0, 1) ⊕

(

1
2 , 1

2

)
(2, −1, 1, 3)

(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

1
2 , 1
)

(

2, − 2
3 , 2

3 , 1
) (

0, 1
2

)

⊕
(

1
2 , 1
) (

2, − 2
3 , 2

3 , 4
)

(0, 0)

(

2, − 1
3 , 1

3 , 2
)

2 (0, 0) ⊕
(

1
2 , 1

2

)

(2, 0, 1, 0)
2 (0, 0) ⊕ 3 (0, 1) ⊕

2
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

⊕(1, 1)

(2, 0, 1, 3)
5
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
2
(

1
2 , 0
)

⊕ 2
(

1
2 , 1
)

(

2, 1
3 , 2

3 , 1
) 6

(

0, 1
2

)

⊕ 4
(

1
2 , 0
)

⊕
2
(

1
2 , 1
)

⊕
(

1, 1
2

)

(

2, 1
3 , 2

3 , 4
)

(0, 0)
(

2, 2
3 , 1

3 , −1
)

2
(

0, 1
2

)

⊕ 2
(

1
2 , 0
)

(

2, 2
3 , 1

3 , 2
)

2 (0, 0) ⊕
(

1
2 , 1

2

)

(2, 1, 0, 0) (0, 0) ⊕ (0, 1) ⊕
(

1
2 , 1

2

)

(2, 1, 1, 0)

11 (0, 0) ⊕ 9 (0, 1) ⊕
(0, 2) ⊕ 10

(

1
2 , 1

2

)

⊕
2
(

1
2 , 3

2

)

⊕ 2 (1, 0) ⊕
2 (1, 1)

(2, 1, 1, 3)
5
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
2
(

1
2 , 0
)

⊕ 2
(

1
2 , 1
)

Table 22. BPS spectrum of the SU(3)3/2 + 1Sym for d1 ≤ 2 and d2, d3 ≤ 1. Here, d =

(d1, d2, d3, d4) labels the BPS states with charge d1m0 + d2α1 + d3α2 + d4m1 for simple roots α1

and α2 of su(3) algebra.

This is another non-geometric rank-2 theory that can be realized by a brane web with O7+

plane. The associated brane web will be given in appendix B.

We can compute the BPS spectrum of this theory using the blowup formula. The

effective prepotential of this theory on the chamber φ2 ≥ φ1 > 0 is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 − 4φ2) +

(ǫ1 + ǫ2

2

)2
(φ1 + φ2)

)

,

6F = 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ3

2 + 6m0(φ2
1 − φ1φ2 + φ2

2)

− 1

2

(

(2φ1+m1)3+ (φ2+m1)3+ (−2φ1+2φ2 + m1)3+ (−φ1+φ2 − m1)3+ (φ1−m1)3)

− 1

2

(

(φ1 + m2)3 + (−φ1 + φ2 + m2)3 + (φ2 − m2)3), (5.50)

where m0 is the gauge coupling, m1 and m2 are mass parameters of the symmetric and
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(

1, − 2
3 , 2

3 , 3
2 , 1

2

) (

0, 1
2

) (

1, − 1
3 , 1

3 , 3
2 , − 1

2

)

(0, 0)

(

1, − 1
3 , 1

3 , 5
2 , 1

2

)

(0, 0)
(

1, 0, 1, 1
2 , 1

2

) (0, 0) ⊕ (0, 1) ⊕
(

1
2 , 1

2

)

(

1, 0, 1, 5
2 , − 1

2

) (

0, 1
2

) (

1, 1
3 , − 1

3 , − 5
2 , − 1

2

)

(0, 0)
(

1, 1
3 , − 1

3 , − 3
2 , 1

2

)

(0, 0)
(

1, 1
3 , 2

3 , − 5
2 , − 1

2

)

(0, 0)
(

1, 1
3 , 2

3 , − 3
2 , 1

2

)

(0, 0)
(

1, 1
3 , 2

3 , 1
2 , − 1

2

) (

0, 1
2

)

⊕
(

1
2 , 0
)

(

1, 1
3 , 2

3 , 3
2 , 1

2

)

2
(

0, 1
2

)

⊕
(

1
2 , 0
) (

1, 2
3 , − 2

3 , − 3
2 , − 1

2

) (

0, 1
2

)

(

1, 2
3 , 1

3 , − 3
2 , − 1

2

)

2
(

0, 1
2

)

⊕
(

1
2 , 0
) (

1, 2
3 , 1

3 , − 1
2 , 1

2

) (

0, 1
2

)

⊕
(

1
2 , 0
)

(

1, 2
3 , 1

3 , 3
2 , − 1

2

)

(0, 0)
(

1, 2
3 , 1

3 , 5
2 , 1

2

)

(0, 0)

(

1, 1, 0, − 5
2 , 1

2

) (

0, 1
2

) (

1, 1, 0, − 1
2 , − 1

2

) (0, 0) ⊕ (0, 1) ⊕
(

1
2 , 1

2

)

(

1, 1, 1, − 5
2 , 1

2

) (

0, 1
2

) (

1, 1, 1, − 1
2 , − 1

2

) 3 (0, 0) ⊕ (0, 1) ⊕
2
(

1
2 , 1

2

)

(

1, 1, 1, 1
2 , 1

2

)
3 (0, 0) ⊕ (0, 1) ⊕

2
(

1
2 , 1

2

)

(

1, 1, 1, 5
2 , − 1

2

) (

0, 1
2

)

Table 23. BPS spectrum of the SU(3)0 + 1Sym + 1F theory. Here, d = (d1, d2, d3, d4, d5) labels

the BPS states with charge d1m0 + d2α1 + d3α2 + d4m1 + d5m2 where α1 and α2 are simple roots

of su(3).

fundamental hypers, respectively. One finds a set of consistent magnetic fluxes

ni ∈ Z , Bm0 = 0 , Bm1 = 1/2 , Bm2 = 1/2 , (5.51)

which provides a solvable unity blowup equation. The BPS spectrum from the solution of

the blowup equation is given in table 23.

5.1.10 SU(3) 15
2

+ 1F, G2 + 1Adj

The last rank-2 KK theory is the theory obtained by Z3 twisted compactification of the

6d N = (2, 0) D4 theory. This theory has two 5d gauge theory descriptions: one is the G2

gauge theory with an adjoint hypermultiplet [120] and another one is the SU(3)15/2 + 1F

theory [97],

G2 + 1Adj = SU(3)15/2 + 1F =
su(1)(1)

2

su(1)(1)

23 (5.52)
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It can be geometrically described by

F8

∣

∣

1

e
F1

0

∣

∣

2

f+3h

. (5.53)

However, this geometry is not shrinkable and there is no known shrinkable geometric phase

for this theory [11]. Nonetheless, it is expected that a series of flop transitions give rise to

a phase for the unitary KK theory [97]. As we will see below, this expectation is consistent

with the BPS spectrum which we can compute by solving the blowup equations.

We shall solve the blowup equations from both the G2 and SU(3) theory perspectives.

The effective prepotential for the SU(3) theory on the Coulomb branch where φ2 ≥ φ1 > 0

is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48

(

4φ1 + 2φ2
)

+ ǫ2
+(φ1 + φ2)

)

,

6F = 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ3

2 +
45

2
φ1φ2(φ1 − φ2) + 6m0(φ2

1 − φ1φ2 + φ2
2)

− 1

2

(

(φ2 − m1)3 + (φ2 − φ1 + m1)3 + (φ1 + m1)3
)

, (5.54)

where m0 is the SU(3) gauge coupling and m1 is the mass parameter of the fundamental

hyper.

In the G2 gauge theory, the effective prepotential in the same chamber is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(4φ1 + 2φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 8φ3
1 + 18φ2

1φ2 − 24φ1φ2
2 + 8φ3

2 + 6m0(3φ2
1 − 3φ1φ2 + φ2

2)

− 1

2

(

(φ2 ± m1)3 + (±(3φ1 − φ2) + m1)3 + (±φ1 + m1)3 + (±(φ2 − φ1) + m1)3

+ (±(−3φ1 + 2φ2) + m1)3 + (±(2φ1 − φ2) + m1)3)
)

, (5.55)

where m0 is the G2 gauge coupling and m1 is the mass parameter of the adjoint matter.

Under the duality, the Kähler parameters in the G2 + 1Adj and in the SU(3)15/2 + 1F

theories are mapped to each other as follows:

φG2
1 = φSU

1 + mSU
0 − 1

2
mSU

1 , φG2
2 = φSU

2 + 2m
SU(3)
0 − mSU

1 ,

mG2
0 = 5mSU

0 +
3

2
mSU

1 , mG2
1 = 2mSU

0 . (5.56)

One can check with this map that the effective prepotentials of two dual gauge theories

match well up to constant terms.

We first solve the blowup equation from the perspective of G2 gauge theory. A set of

consistent magnetic fluxes

ni ∈ Z , Bm0 = 0 , Bm1 = 1/2 (5.57)

provides a solvable blowup equation. By solving the blowup equation, we find the BPS

spectrum of the G2 gauge theory given in table 24.
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0, 1, 0) 2
(

0, 1
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(1, 0, 1, 1) (0, 0) ⊕ (0, 1) ⊕
(

1
2 , 1

2

)

(1, 0, 1, 2)
(

0, 1
2

)

(1, 0, 2, 0) 2
(

0, 3
2

)

⊕
(

1
2 , 1
)

⊕
(

1
2 , 2
)

(1, 0, 2, 1) (0, 1) ⊕ (0, 2) ⊕
(

1
2 , 3

2

)

(1, 0, 2, 2)
(

0, 3
2

)

(1, 1, 1, 0) 4
(

0, 1
2

)

⊕ 3
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(1, 1, 1, 1) 4 (0, 0) ⊕ (0, 1) ⊕ 2
(

1
2 , 1

2

)

(1, 1, 1, 2) 2
(

0, 1
2

)

⊕
(

1
2 , 0
)

(1, 1, 1, 3) (0, 0)

(1, 1, 2, 0)
4
(

0, 1
2

)

⊕ 4
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕ 4
(

1
2 , 1
)

⊕
(

1
2 , 2
)

(1, 1, 2, 1)
(0, 0) ⊕ 5 (0, 1) ⊕ (0, 2) ⊕

2
(

1
2 , 1

2

)

⊕ 2
(

1
2 , 3

2

)

(1, 1, 2, 2) 2
(

0, 1
2

)

⊕ 2
(

0, 3
2

)

⊕
(

1
2 , 1
)

(1, 1, 2, 3) (0, 1)

(1, 2, 1, 0) 4
(

0, 1
2

)

⊕ 3
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(1, 2, 1, 1) 4 (0, 0) ⊕ (0, 1) ⊕ 2
(

1
2 , 1

2

)

(1, 2, 1, 2) 2
(

0, 1
2

)

⊕
(

1
2 , 0
)

(1, 2, 1, 3) (0, 0)

(1, 2, 2, 0)
8
(

0, 1
2

)

⊕ 4
(

0, 3
2

)

⊕
4
(

1
2 , 0
)

⊕ 5
(

1
2 , 1
)

⊕
(

1
2 , 2
) (1, 2, 2, 1)

5 (0, 0) ⊕ 6 (0, 1) ⊕
(0, 2) ⊕ 4

(

1
2 , 1

2

)

⊕ 2
(

1
2 , 3

2

)

(1, 2, 2, 2)
4
(

0, 1
2

)

⊕ 2
(

0, 3
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(1, 2, 2, 3) (0, 0) ⊕ (0, 1)

(2, 0, 1, 0)

5
(

0, 1
2

)

⊕ 1
(

0, 3
2

)

⊕
3
(

1
2 , 0
)

⊕ 3
(

1
2 , 1
)

⊕
(

1, 1
2

)

⊕
(

1, 3
2

)

(2, 0, 1, 1)
4 (0, 0) ⊕ 2 (0, 1) ⊕

3
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

⊕ (1, 1)

(2, 0, 1, 2) 2
(

0, 1
2

)

⊕
(

1
2 , 0
)

⊕
(

1
2 , 1
)

(2, 0, 1, 3) (0, 0)

(2, 1, 1, 0)

12
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
10
(

1
2 , 0
)

⊕ 6
(

1
2 , 1
)

⊕
4
(

1, 1
2

)

⊕
(

1, 3
2

)

(2, 1, 1, 1)

10 (0, 0) ⊕ 4 (0, 1) ⊕
9
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

⊕
2 (1, 0) ⊕ 2 (1, 1)

(2, 1, 1, 2)
5
(

0, 1
2

)

⊕ 4
(

1
2 , 0
)

⊕
2
(

1
2 , 1
)

⊕
(

1, 1
2

)

(2, 1, 1, 3) 2 (0, 0) ⊕
(

1
2 , 1

2

)

Table 24. BPS spectrum of the G2 + 1Adj for d1 = 1, d2, d3 ≤ 2 and d1 = 2, d2, d3 ≤ 1.

Here, d = (d1, d2, d3, d4) labels the BPS states with charge d1m0 + d2α1 + d3α2 + d4m1, where

α1 = 2φ1 −φ2 and α2 = −3φ1 +2φ2 are simple roots of G2. The theory has a symmetry exchanging

d4 ↔ −d4.

In the SU(3) description, one can use the same magnetic fluxes to formulate a unity

blowup equation. The duality map (5.56) implies that the above fluxes in the G2 perspective

are converted into the magnetic fluxes in the SU(3) gauge theory given by

n1 ∈ Z + 1/3 , n2 ∈ Z + 2/3 , Bm0 = 1/4 , Bm1 = −5/6 . (5.58)

We checked that the blowup equation with these fluxes in the SU(3) perspective can be

solved and the solution perfectly agrees with the result from the G2 + 1Adj description.
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The BPS spectrum tells us how to move on to the unitary phase where all the BPS

states have non-negative masses in the UV limit. First note that the geometric phase (5.53)

is non-shrinkable due to an exceptional curve f2 − x whose volume cannot be non-negative

while keeping volumes of all other curves non-negative at the same time. This implies that

we need to flop the f2 − x curve in the UV limit. Unfortunately, this transition leads to a

phase which cannot be described by a smooth CY 3-fold.

However, we are able to trace all the phase transitions toward the unitary phase relying

on the BPS spectrum we computed. To move on to the unitary phase, we need to flop 4

curves associated with 4 hypermultiplets with the masses, consecutively as,

m1 − 3φ1 + φ2 → m1 − φ1 → m1 + φ1 − φ2 → m1 + 3φ1 − 2φ2 (5.59)

in the G2 description. In the SU(3) description, these hypermultiplets are all instantonic

states. In the geometry (5.53), the flop transitions performed on the exceptional curves as

f2 − x → f1 + f2 − x → 2f1 + f2 − x → 3f1 + f2 − x , (5.60)

will lead to the unitary phase smoothly connected to the UV fixed point. One can check

that in the final phase all the BPS states have non-negative masses. This result provides

a strong evidence that the flop transitions in (5.60) in the geometric description (5.53)

are physically well-established transitions, though the phases after the flop transitions are

non-geometrical.

5.2 Rank 2 5d SCFTs

5.2.1 P2 ∪ F3

The local P2∪F3 theory is a rank-2 analog of the SCFT engineered by a local P2. It is a non-

Lagrangian theory with no mass parameter. Its geometric construction is represented by

P2
∣

∣

1

ℓ
F3|2

e

. (5.61)

The volumes of two primitive 2-cycles are given by

vol(ℓ) = 3φ1 − φ2 , vol(f2) = −φ1 + 2φ2 , (5.62)

where ℓ is a curve with ℓ2 = 1 in P2 and f2 is the fiber in F3. The geometry can be obtained

by blowing down an exceptional cycle of F1 in geometry F1 − F3, which implies that this

theory can be obtained by an RG flow from the pure SU(3)2 theory by integrating out an

instantonic hypermultiplet. The web diagram for this theory is depicted in figure 3.

The effective prepotential on the Ω-background is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(6φ1 + 4φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 9φ3
1 − 9φ2

1φ2 + 3φ1φ2
2 + 8φ3

2 . (5.63)
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Figure 3. A 5-brane web construction for P2 ∪F3. Starting from the web diagram of SU(3)2 theory

(a), flop transition for an instantonic hypermultiplet gives (b). Integrating out the hypermultiplet

gives a web diagram of P2 ∪ F3 depicted in (c).
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Table 25. BPS spectrum of P2 ∪ F3 for di ≤ 3. Here, d = (d1, d2) labels the BPS states with

charge d1ℓ + d2f2.

For a unity blowup equation, we choose the magnetic fluxes as

n1 ∈ Z + 1/5 , n2 ∈ Z + 1/10 , (5.64)

which assign half-integral fluxes for ℓ and integral fluxes for f2. The BPS spectrum obtained

by solving the blowup equation is given in table 25. We checked that the result matches

the spectrum after taking an RG flow from the BPS spectrum of the pure SU(3)2 theory

by integrating out the instantonic hypermultiplet.

5.2.2 P2 ∪ F6

The local P2 ∪F6 theory is another non-Lagrangian rank-2 theory with no mass parameter.

Its geometric construction is given by

P2
∣

∣

1

2ℓ
F6|2

e

. (5.65)

The volumes of two primitive 2-cycles are

vol(ℓ) = 3φ1 − 2φ2 , vol(f2) = −φ1 + 2φ2 (5.66)

– 72 –



J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

(a) (b) (c)

Figure 4. A 5-brane web construction for P2 ∪F6. Starting from the web diagram of SU(3)4 theory

(a), flop transition of two instantonic hypermultiplets gives (b). Integrating out the hypermultiplet

gives a web diagram of P2 ∪ F6 depicted in (c).

where ℓ is the curve class in P2 and f2 is the fiber in F6. This theory can be obtained by an

integrating out an instantonic hypermultiplet of the pure SU(3)4 theory. The web diagram

and the RG flow of this theory are given in figure 4.

The effective prepotential is

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

48
(6φ1 + 4φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 9φ3
1 − 18φ2

1φ2 + 12φ1φ2
2 + 8φ3

2 . (5.67)

We choose the magnetic fluxes

n1 ∈ Z + 1/4 , n2 ∈ Z + 1/8 , (5.68)

to get a solvable unity blowup equation. The BPS spectrum obtained by solving the

blowup equation is given in table 26. We checked that the result matches the spectrum

after taking an RG flow from the BPS spectrum of the pure SU(3)4 theory given in table 5

by integrating out the instantonic hypermultiplet.

5.2.3 P2 ∪ F3 + 1Sym

The P2 ∪F3 + 1Sym theory is a rank-2 analog of the local P2 + 1Adj theory. As proposed

in [97], we can obtain this theory from the UV Sp(2)π + 1Adj theory or SU(3)3/2 + 1Sym

theory by integrating out an instantonic hypermultiplet. See appendix B.5 for their 5-brane

constructions.

More precisely, there is a hypermultiplet with d = (1, 2
3 , 1

3 , −5
2) which has mass m0 +

φ1 − 5
2m1 in the UV parent theory, as listed in table 22. We flop this hypermultiplet and

integrate it out to get the P2 ∪ F3 + 1Sym theory in IR. This RG flow is realized in the

5-brane web in figure 5 as taking a limit −m0 − φ1 + 5
2m1 → ∞ while the lengths of other

edges are kept finite.
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Table 26. BPS spectrum of P2 ∪F6 for di ≤ 3. Here, d = (d1, d2) labels the BPS state with charge

d1ℓ + d2f2.

−m0 − φ1 + 5
2

m1

m0 + 3φ1 − φ2 − 5
2

m1

−φ1 + 2φ2

m1 − 2φ2

O7+

Figure 5. A 5-brane web for SU(3)3/2 + 1Sym and Sp(2)π + 1Adj, where a flop transition for the

edge with length φ1 + m0 − 5
2 m1 is performed.

To compute the effective prepotential and the BPS partition function of this theory,

it is convenient to redefine the parameters in the web diagram in figure 5 as

φ̃1 = φ1 +
2

5
m0 − m1 , φ̃2 = φ2 +

m0

5
− m1

2
, m̃ =

2

5
m0 . (5.69)

Then the volumes of 2-cycles in figure 5 become

−m0 − φ1 +
5

2
m1 = −φ̃1 − 3

2
m̃ +

3

2
m1 , −φ1 + 2φ2 = −φ̃1 + 2φ̃2 ,

m0 + 3φ1 − φ2 − 5

2
m1 = 3φ̃1 − φ̃2 , m1 − 2φ2 = m̃ − 2φ̃2 . (5.70)

Hence, the RG flow corresponds to the limit m1 → ∞, while keeping φ̃i and m̃ finite.
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The cubic prepotential and mixed gravitational Chern-Simons term in the IR P2 ∪F3 +

1Sym theory can be obtained from those of the UV SU(3)3/2 + 1Sym theory as follows:

FIR = FUV +
1

6

(

m0 + φ1 − 5

2
m1

)3

, CIR = CUV − 2

(

m0 + φ1 − 5

2
m1

)

, (5.71)

whereas the mixed gauge/SU(2)R Chern-Simons term remains the same. In terms of the

parameters in (5.69), the effective prepotential in the IR theory takes the form

E =
1

ǫ1ǫ2

(

FIR − ǫ2
1 + ǫ2

2

48
(6φ̃1 + 4φ̃2) + ǫ2

+(φ̃1 + φ̃2)

)

,

6FIR = 9φ̃3
1 − 9φ̃2

1φ̃2 + 3φ̃1φ̃2
2 + 8φ̃3

2 , (5.72)

up to constant terms. One may notice that the prepotential is the same as that of P2 ∪F3.

However, this theory has an additional hypermultiplet coming from the symmetric matter

of the parent theory. The GV-invariant for this hypermultiplet

Zhyper(φ̃i, m̃; ǫ1,2) = PE

[

(p1p2)1/2

(1 − p1)(1 − p2)
e−(m̃−2φ̃2)

]

(5.73)

is an additional input for the blowup equation of the IR theory.

We find a set of consistent magnetic fluxes

ñ1 ∈ Z − 3/5 , ñ2 ∈ Z − 3/10 , Bm̃ = −1/10 (5.74)

which leads to a unity blowup equation. The solution of the blowup equation provides the

BPS spectrum of the theory, summarized in table 27. This solution matches the spectrum

that we can obtain indirectly from the RG flow of the BPS spectrum in SU(3)3/2 + 1Sym

in table 22 after integrating out the hypermultiplet.

5.2.4 P2 ∪ F6 + 1Sym

The theory P2 ∪ F6 + 1Sym is a non-Lagrangian theory obtained from the KK-theory

SU(3)0 +1Sym+1F by integrating out the fundamental hypermultiplet and an instantonic

hypermultiplet together [97]. The corresponding 5-brane web is given in figure 6. This

theory can also be obtained from a non-perturbative Higgsing on SU(4)0 + 1Sym. See

appendix B.7 for 5-brane construction and generalizations.

From SU(3)0 +1Sym+1F, we can first integrate out the fundamental matter. The IR

theory then becomes the SU(3)−1/2 +1Sym theory, whose effective prepotential is given by

ESU(3) =
1

ǫ1ǫ2

(

FSU(3) − ǫ2
1 + ǫ2

2

24
(2φ1 + 2φ2 − 3m1) + ǫ2

+(φ1 + φ2)

)

,

6FSU(3) = 8φ3
1 − 3φ2

1φ2 − 3φ1φ2
2 + 8φ3

2 − 3

2
φ1φ2(φ1 − φ2) + 6m0(φ2

1 − φ1φ2 + φ2
2)

− 1

2

(

(2φ1 + m1)3 + (φ2 + m1)3 + (−2φ1 + 2φ2 + m1)3

+ (φ1 − φ2 + m1)3 + (−φ1 + m1)3 + (−2φ1 + m1)3
)

, (5.75)

where m0 is the gauge coupling and m1 is the mass parameter of the symmetric matter.
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Table 27. BPS spectrum of P2 ∪ F3 + 1Sym for d1 ≤ 2, d2, d3 ≤ 3. Here, d = (d1, d2, d3) labels

the BPS state with charge d1(m̃ − 2φ̃2) + d2(3φ̃1 − φ̃2) + d3(−φ̃1 + 2φ̃2). The d1 = 0 sector is the

same with that of P2 ∪ F3.

This theory has a set of consistent magnetic fluxes

ni ∈ Z , Bm0 = −1/4 , Bm1 = 1/2 , (5.76)

which gives a unity blowup equation. Solving the blowup equation yields the BPS spectrum

of this theory.

Among the BPS states in SU(3)−1/2 + 1Sym theory, there are instantonic hyper-

multiplets whose masses are m0 + φ1 − φ2 − 5
2m1 and m0 + φ2 − 5

2m1. In terms of

SU(3)0 + 1Sym + 1F theory given in table 23, they correspond to d = (1, 1
3 , −1

3 , −5
2 , −1

2)

and d = (1, 1
3 , 2

3 , −5
2 , −1

2), respectively. We can perform flop transitions for these two

hypermultiplets to get a 5-brane web shown in figure 6.

The SU(3)−1/2 + 1Sym theory has an RG flow to the P2 ∪F6 + 1Sym theory. The RG

flow is generated by integrating out the instantonic hypermultiplet corresponding to the

limit −m0 − φ2 + 5
2m1 → ∞, while keeping the lengths of other edges finite, in the brane

web. To see this, it is convenient to use the parameters as

φ̃1 = φ1 +
m0

2
− 5

4
m1 , φ̃2 = φ2 +

m0

4
− 5

8
m1 , m̃ =

m0

2
− m1

4
. (5.77)

Then volumes of 2-cycles in figure 6 become

−m0 − φ2 +
5

2
m1 = −φ̃2 + 3m0 − 15

2
m̃ , m0 + 3φ1 − 2φ2 − 5

2
m1 = 3φ̃1 − 2φ̃2 ,

−φ1 + 2φ2 = −φ̃1 + 2φ̃2 , m1 − 2φ2 = m̃ − 2φ̃2 . (5.78)

The RG-flow amounts to the limit m0 → ∞ while φ̃i and m̃ are kept finite.
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−m0 − φ2 + 5
2

m1

−φ1 + 2φ2

m0 + 3φ1 − 2φ2 − 5
2

m1

m1 − 2φ2

Figure 6. A 5-brane web for SU(3)−1/2 + 1Sym, after flopping the edges with lengths m0 + φ1 −
φ2 − 5

2 m1 and m0 + φ2 − 5
2 m1.

The cubic prepotential and mixed gravitational Chern-Simons term of the P2 ∪ F6 +

1Sym theory after the RG flow can be obtained from those of the UV SU(3)−1/2 + 1Sym

theory as follows:

FIR = FSU(3) +
1

6

(

m0 + φ1 − φ2 − 5

2
m1

)3

+
1

6

(

m0 + φ2 − 5

2
m1

)3

, (5.79)

CIR = CSU(3) − 2

(

m0 + φ1 − φ2 − 5

2
m1

)

− 2

(

m0 + φ2 − 5

2
m1

)

. (5.80)

The mixed gauge/SU(2)R Chern-Simons term is unchanged along the RG flow. So, in

terms of the parameters in (5.77), the effective prepotential of the IR theory is

EIR =
1

ǫ1ǫ2

(

FIR − ǫ2
1 + ǫ2

2

48
(6φ̃1 + 4φ̃2) + ǫ2

+(φ̃1 + φ̃2)

)

,

6FIR = 9φ̃3
1 − 18φ̃2

1φ̃2 + 12φ̃1φ̃2
2 + 8φ̃3

2 . (5.81)

This prepotential is the same as that of the P2 ∪ F6 theory, but one should remember that

this theory has an additional hypermultiplet coming from the symmetric matter of the

parent theory whose GV-invariant is given by

Zhyper(φ̃i, m̃; ǫ1,2) = PE

[

(p1p2)1/2

(1 − p1)(1 − p2)
e−(m̃−2φ̃2)

]

. (5.82)

We find a unity blowup equation for this SCFT with the magnetic fluxes

n1 ∈ Z − 3/4 , n2 ∈ Z − 3/8 , Bm̃ = −1/4 . (5.83)

The solution to the blowup equation is listed in table 28. We checked that this result

matches the BPS spectrum that can be obtained from the RG flow of the SU(3)−1/2+1Sym

spectrum after integrating out an instantonic hypermultiplet.
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Table 28. BPS spectrum of P2 ∪ F6 + 1Sym for d1 ≤ 2 and d2, d3 ≤ 3. Here, d = (d1, d2, d3)

labels the BPS state with charge d1(m̃ − 2φ̃2) + d2(3φ̃1 − 2φ̃2) + d3(−φ̃1 + 2φ̃2). The d1 = 0 sector

is the same with that of P2 ∪ F6.

5.2.5 SU(3)8

The SU(3) gauge theory with the CS-level 8 is geometrically realized as

F9

∣

∣

1

e
F1

∣

∣

2

h+3f

(5.84)

This geometry is non-shrinkable because the volumes of the primitive curves

vol(f1) = 2φ1 − φ2 , vol(f2) = −φ1 + 2φ2 , vol(e2) = −3φ1 + φ2 + m , (5.85)

cannot all be non-negative at the same time in the limit m → 0, and thus this theory

cannot have a UV completion in the geometric phase [11]. However, it was pointed out

in [97] that this theory can be obtained from an RG flow of the UV SU(3)15/2 + 1F theory

and the UV theory is dual to the N = 2 G2 gauge theory (or G2 +1Adj). So the duality of

its parent theory ensures that the SU(3)8 theory has a consistent UV completion though it

has no unitary geometric realization having non-trivial Coulomb branch in the UV limit.

We will now compute the BPS spectrum of this theory by solving blowup equations

in the geometric (and also gauge theory) phase and show that this theory has a unitary

phase with non-trivial Coulomb branch which can be directly connected to the UV fixed

point. The effective prepotential is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
(φ1 + φ2) + ǫ2

+(φ1 + φ2)

)

,

6F = 8φ3
1 + 21φ2

1φ2 − 27φ1φ2
2 + 8φ3

2 + 6m(φ2
1 − φ1φ2 + φ2

2) . (5.86)
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1

d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0, 0) (0, 0) (1, 0, 1) (0, 1)

(1, 0, 2) (0, 2) (1, 0, 3) (0, 3)

(1, 1, 0) (0, 0) (1, 1, 1) (0, 0) ⊕ (0, 1)

(1, 1, 2) (0, 1) ⊕ (0, 2) (1, 1, 3) (0, 2) ⊕ (0, 3)

(1, 2, 0) (0, 0) (1, 2, 1) (0, 0) ⊕ (0, 1)

(1, 2, 2) (0, 0) ⊕ (0, 1) ⊕ (0, 2) (1, 2, 3) (0, 1) ⊕ (0, 2) ⊕ (0, 3)

(1, 3, 0) (0, 0) (1, 3, 1) (0, 0) ⊕ (0, 1)

(1, 3, 2) (0, 0) ⊕ (0, 1) ⊕ (0, 2) (1, 3, 3) (0, 0)⊕ (0, 1)⊕ (0, 2)⊕ (0, 3)

(2, 0, 2)
(

0, 5
2

)

(2, 0, 3)
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕
(

1
2 , 4
)

(2, 1, 2)
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 1, 3)

(

0, 3
2

)

⊕ 3
(

0, 5
2

)

⊕
2
(

0, 7
2

)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 2, 1)
(

0, 1
2

)

(2, 2, 2)
(

0, 1
2

)

⊕ 2
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 2, 3)

(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
5
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 3, 1) 2
(

0, 1
2

)

⊕
(

1
2 , 0
)

(2, 3, 2)
3
(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
(

0, 5
2

)

⊕
(

1
2 , 1
) (2, 3, 3)

3
(

0, 1
2

)

⊕ 6
(

0, 3
2

)

⊕
6
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 1
)

⊕
2
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

Table 29. BPS spectrum of SU(3)8 for d1 ≤ 2 and d2, d3 ≤ 3. Here, d = (d1, d2, d3) labels the

state wrapping curve d1e2 + d2f1 + d3f2.

We find a set of consistent magnetic fluxes given by

n1 ∈ Z + 1/3 , n2 ∈ Z + 2/3 , Bm = −1/6 . (5.87)

This set can be used to formulate a unity blowup equation. The solution to the blowup

equation is listed in table 29. Here, we have fixed N
(1,1,0)
0,0 using the RG flow from the

spectrum of the SU(3)15/2 + 1F theory since it remains undetermined until e−3m order,

though it will possibly be fixed in higher order computations. All other states are fixed by

solving the blowup equation and the result is consistent with the expected RG flow from

the spectrum of the parent theories, the SU(3)15/2 + 1F theory and the N = 2 G2 theory.

From the BPS spectrum, one finds that three hypermultiplets with degree (1, 0, 0),

(1, 1, 0) and (1, 2, 0) have negative masses, in the limit m → 0, when we take masses of

all other BPS states to be non-negative. This implies that once we flop these three hy-

permultiplets, we can attain a unitary chamber where all BPS states including the three

flopped hypermultiplets have non-negative masses. This suggests that the SU(3)8 theory

actually has a consistent UV fixed point, and the unitary chamber we obtained by flop tran-

sitions describes the Coulomb branch of the moduli space of the CFT fixed point (without

mass deformations). Thus, our computation of the BPS spectrum strongly supports the

existence of the UV completion for the SU(3)8 theory.
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6 Theories of higher ranks

In this section, we apply our bootstrap approach for some interesting higher rank theories

and compute their BPS spectra.

6.1 SU(4)8

The first example is the 5d SU(4) gauge theory with the CS level 8. This theory can be

obtained from Z3 automorphism twist of the 6d minimal SO(8) SCFT [124]

SU(4)8 =
so(8)(3)

4 (6.1)

It has a geometric realization as [17]

F10|1 F8|2 F0|3
e h e h+3f

(6.2)

It is convenient to use the volumes of primitive 2-cycles in the geometry (6.2) as the basis

in the computation below,

vol(f1) = 2φ1 − φ2, vol(f2) = −φ1 + 2φ2 − φ3,

vol(f3) = −φ2 + 2φ3, vol(e3) = −3φ2 + 2φ3 + m0. (6.3)

We will now solve the blowup equations in both the 5d SU(4) and 6d SO(8) descrip-

tions. In the 5d description, the effective prepotential on the Ω-background is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
(φ1 + φ2 + φ3) + ǫ2

+(φ1 + φ2 + φ3)

)

,

6F = 8φ3
1 + 24φ2

1φ2 − 30φ1φ2
2 + 8φ3

2 + 18φ2
2φ3 − 24φ2φ2

3 + 8φ3
3

+ m0(φ2
1 − φ1φ2 + φ2

2 − φ2φ3 + φ2
3) , (6.4)

where m0 is the SU(4) gauge coupling. We find a set of consistent magnetic fluxes as

ni ∈ Z , Bm0 = 0 , (6.5)

which provides a solvable unity blowup equation. The solution to the blowup equation is

summarized in table 30.

We now turn to the 6d description. The subalgebra G2 of so(8) is invariant under

the Z3 twist. So in the 5d reduction the 6d SO(8) vector multiplet is decomposed into a

G2 adjoint with KK charge 0 and two G2 fundamentals with KK charges τ/3, 2τ/3. The

perturbative contribution to the GV-invariant is thus given by

Z1-loop = PE

[

− 1 + p1p2

(1 − p1)(1 − p2)

1

1 − q

(

∑

e∈R+

e−e·φ + q1/3
∑

w∈F

e−w·φ

+ q2/3
∑

w∈F

e−w·φ + q
∑

e∈R+

ee·φ
)

]

, (6.6)
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where R+ denotes the positive roots and F denotes the weights in the fundamental repre-

sentation of G2 algebra. See appendix A for more details.

The effective prepotential in the 6d description reads

E =
1

ǫ1ǫ2

(

Ftree + F1-loop − ǫ2
1 + ǫ2

2

12
(φ1 + φ2) + ǫ2

+(φ1 + φ2)

)

,

Ftree = 2τφ2
0 + φ0

(

12φ2
1 − 12φ1φ2 + 4φ2

2 − ǫ2
1 + ǫ2

2

2
+ 6ǫ2

+

)

,

F1-loop =
4

3
φ3

1 + 3φ2
1φ2 − 4φ1φ2

2 +
4

3
φ3

2 − 5

9
τ(3φ2

1 − 3φ1φ2 + φ2
2) . (6.7)

One can check that after taking the shifts φ1 → φ1 − 2φ0, φ2 → φ2 − 3φ0, where the

coefficients of φ0 are the dual Coxeter labels of affine D
(3)
4 algebra, the cubic prepotential

F1-loop reproduces the triple intersection numbers of compact 4-cycles in the geometry (6.2).

Also, the 5d effective prepotential in (6.4) agrees with this 6d effective prepotential after

redefining the 5d parameters as

φ1 → φ0 +
τ

9
, φ2 → φ1 + 2φ0 − τ

9
, φ3 → φ2 + 3φ0 − τ

3
, m0 → τ

3
, (6.8)

up to constant terms.

To compute the BPS spectrum (or the elliptic genus), we can use three unity blowup

equations with three sets of consistent magnetic fluxes given by

n1,2 ∈ Z , Bτ = 0 , n0 ∈ Z + B0 (B0 = −1/4, 0, 1/4) , (6.9)

which preserve the affine D
(3)
4 structure. We can expand the three blowup equations

in terms of the instanton string number and solve them at each order to find a closed

expression for the elliptic genus of k-instanton strings, which is a similar procedure we did

for the 6d SU(3) gauge theory with Z2 twist in section 3.2.3. We checked in the Kähler

parameter expansion that the 6d solution perfectly agrees with the 5d result in table 30.

6.2 6d SO(8) gauge theory with Z2 twist

We can also consider Z2 twisted compactification of the 6d minimal SO(8) SCFT. This

theory has no 5d gauge theory description, but it has a geometric realization given by [17]

F6|0 F1|1 F1|2 F6|3
e 2h e e 2h e

(6.10)

Upon this compactification, the 6d SO(8) gauge field is decomposed into a 5d gauge

field in the adjoint representation and another 5d field carrying KK-charge 1
2 in the fun-

damental representation of the invariant subalgebra so(7). The perturbative part of the

GV-invariant in this theory can then be written as

Z1−loop = PE



− 1 + p1p2

(1 − p1)(1 − p2)

1

1 − q





∑

e∈R+

e−w·φ + q1/2
∑

w∈F

e−w·φ + q
∑

e∈R+

ew·φ







 ,

(6.11)
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0, 0, 0)
(

0, 1
2

)

(1, 0, 0, 1)
(

0, 3
2

)

(1, 0, 0, 2)
(

0, 5
2

)

(1, 0, 1, 0)
(

0, 1
2

)

(1, 0, 1, 1)
(

0, 1
2

)

⊕
(

0, 3
2

)

(1, 0, 1, 2)
(

0, 3
2

)

⊕
(

0, 5
2

)

(1, 0, 2, 0)
(

0, 1
2

)

(1, 0, 2, 1)
(

0, 1
2

)

⊕
(

0, 3
2

)

(1, 0, 2, 2)
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

0, 5
2

)

(1, 1, 1, 0)
(

0, 1
2

)

(1, 1, 1, 1)
(

0, 1
2

)

⊕
(

0, 3
2

)

(1, 1, 1, 2)
(

0, 3
2

)

⊕
(

0, 5
2

)

(1, 1, 2, 1) 2
(

0, 1
2

)

⊕
(

0, 3
2

)

(1, 1, 2, 2)
(

0, 1
2

)

⊕ 2
(

0, 3
2

)

⊕
(

0, 5
2

)

(1, 2, 2, 0)
(

0, 1
2

)

(1, 2, 2, 1)
(

0, 1
2

)

⊕
(

0, 3
2

)

(1, 2, 2, 2)
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 0, 0, 1)
(

0, 5
2

)

(2, 0, 0, 2)
(

0, 5
2

)

⊕
(

0, 7
2

)

⊕
(

1
2 , 4
)

(2, 0, 1, 1)
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 0, 1, 2)

(

0, 3
2

)

⊕ 3
(

0, 5
2

)

⊕
2
(

0, 7
2

)

⊕1
(

1
2 , 3
)

⊕
(

1
2 , 4
) (2, 0, 2, 1)

(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 0, 2, 2)

(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
4
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 1, 1, 1)
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 1, 2, 1)
(

0, 1
2

)

⊕ 2
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 1, 2, 2)

(

0, 1
2

)

⊕ 5
(

0, 3
2

)

⊕
7
(

0, 5
2

)

⊕ 3
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕ 2
(

1
2 , 3
)

⊕
(

1
2 , 4
)

(2, 2, 2, 1)
(

0, 1
2

)

⊕
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 2, 2, 2)

(

0, 1
2

)

⊕ 3
(

0, 3
2

)

⊕
4
(

0, 5
2

)

⊕ 2
(

0, 7
2

)

⊕
(

1
2 , 2
)

⊕
(

1
2 , 3
)

⊕
(

1
2 , 4
)

Table 30. BPS spectrum of the pure SU(4)8 theory for di ≤ 2. Here, d = (d1, d2, d3, d4) labels the

state with charge d1e3 + d2f1 + d3f2 + d4f3.

where R+ denotes the positive roots and F denotes the fundamental weights of the so(7)

algebra.

The effective prepotential on the Ω-background reads

E =
1

ǫ1ǫ2

(

Ftree + F1-loop − ǫ2
1 + ǫ2

2

12
(φ1 + φ2 + φ3) + ǫ2

+(φ1 + φ2 + φ3)

)

,

Ftree = 2τφ2
0 + φ0

(

4φ2
1 − 4φ1φ2 + 4φ2

2 − 8φ2φ3 + 8φ2
3 − ǫ2

1 + ǫ2
2

2
+ 6ǫ2

+

)

,

F1-loop =
4

3
φ3

1 − 1

2
φ2

1φ2 − 1

2
φ1φ2

2 +
4

3
φ3

2 − 3φ2
2φ3 + 2φ2φ2

3 +
4

3
φ3

3

− 3

4
τ(φ2

1 − φ1φ2 + φ2
2 − 2φ2φ3 + 2φ2

3) . (6.12)

One can easily check that the cubic prepotential reproduces the triple intersection numbers
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0, 2, 3, 3) (0, 0) (1, 0, 3, 3, 3) (0, 1)
(

1, 1
2 , 2, 2, 2

)

(0, 0) ⊕ (0, 1)
(

1, 1
2 , 2, 3, 2

)

(0, 0) ⊕ (0, 1)
(

1, 1
2 , 2, 3, 3

)

(0, 0) ⊕ (0, 1)
(

1, 1
2 , 3, 2, 2

)

(0, 1) ⊕ (0, 2)
(

1, 1
2 , 3, 3, 2

)

(0, 0) ⊕ 2 (0, 1) ⊕ (0, 2)
(

1, 1
2 , 3, 3, 3

)

(0, 0) ⊕ 2 (0, 1) ⊕ (0, 2)

(1, 1, 1, 1, 1) (0, 1) (1, 1, 1, 2, 1) (0, 0) ⊕ (0, 1)

(1, 1, 1, 2, 2) (0, 0) ⊕ (0, 1) (1, 1, 1, 2, 3) (0, 0) ⊕ (0, 1)

(1, 1, 1, 3, 1) (0, 1) ⊕ (0, 2) (1, 1, 1, 3, 2) (0, 0) ⊕ 2 (0, 1) ⊕ (0, 2)

(1, 1, 1, 3, 3) 2 (0, 0)⊕3 (0, 1)⊕(0, 2) (1, 1, 2, 1, 1) (0, 0) ⊕ (0, 1) ⊕ (0, 2)

(1, 1, 2, 2, 1) 2 (0, 0)⊕3 (0, 1)⊕(0, 2) (1, 1, 2, 2, 2) 2 (0, 0)⊕3 (0, 1)⊕(0, 2)

(1, 1, 2, 2, 3) 2 (0, 0)⊕3 (0, 1)⊕(0, 2) (1, 1, 2, 3, 1) 2 (0, 0)⊕3 (0, 1)⊕2 (0, 2)

(1, 1, 2, 3, 2) 4 (0, 0)⊕6 (0, 1)⊕2 (0, 2) (1, 1, 2, 3, 3)
9 (0, 0) ⊕ 11 (0, 1) ⊕

3 (0, 2) ⊕
(

1
2 , 1

2

)

(1, 1, 3, 1, 1) (0, 1) ⊕ (0, 2) ⊕ (0, 3) (1, 1, 3, 2, 1)
(0, 0) ⊕ 3 (0, 1) ⊕
3 (0, 2) ⊕ (0, 3)

(1, 1, 3, 2, 2)
(0, 0) ⊕ 3 (0, 1) ⊕
3 (0, 2) ⊕ (0, 3)

(1, 1, 3, 2, 3)
(0, 0) ⊕ 3 (0, 1) ⊕
3 (0, 2) ⊕ (0, 3)

(1, 1, 3, 3, 1)
2 (0, 0) ⊕ 5 (0, 1) ⊕

3 (0, 2) ⊕ (0, 3)
(1, 1, 3, 3, 2)

4 (0, 0) ⊕ 8 (0, 1) ⊕
5 (0, 2) ⊕ (0, 3)

(1, 1, 3, 3, 3) 8 (0, 0) ⊕ 17 (0, 1) ⊕ 10 (0, 2) ⊕ 2 (0, 3) ⊕
(

1
2 , 1

2

)

⊕
(

1
2 , 3

2

)

Table 31. BPS spectrum of SO(8) gauge theory with Z2 twist for d1 = 1, d2 ≤ 1 and d3,4,5 ≤ 3.

Here, d = (d1, d2, d3, d4, d5) labels BPS states with charge d1Φ + d2τ + d3α1 + d4α2 + d5α3, where

α1 = 2φ1 − φ2, α2 = −φ1 + 2φ2 − 2φ3, α3 = −φ2 + 2φ3 are simple roots of so(7) algebra.

of compact 4-cycles in the geometry (6.10) by shifting φ1 → φ1 − 2φ0, φ2 → φ2 − 2φ0 and

φ3 → φ3 − φ0.

We find three unity blowup equations from the 3 sets of consistent magnetic fluxes:

n1,2,3 ∈ Z , Bτ = 0 , n0 ∈ Z + B0 (B0 = −1/8, 1/8, 3/8) . (6.13)

One can solve these three blowup equations together at each string order and compute a

closed expression of the elliptic genus of the 6d SO(8) gauge theory with Z2 twist. The

solution is shown in table 31. We checked that this result agrees with the BPS spectrum

computed using topological vertex as well as the ADHM calculations in [117].

6.3 SU(5)8: undetermined

Our last example is the 5d SU(5) gauge theory with the CS level 8. This theory was clas-

sified as an ‘undetermined theory’ in [98] since its UV completion has not been identified.

Following our bootstrapping procedure, we found that this theory may have no consistent

UV completion. We now explain it below.
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To begin with, the geometric realization of this theory is given by

F11|1 F9|2 F7|3 F1|4
e h e h e h+2f

. (6.14)

However, this geometry is not shrinkable because it does not have non-trivial Coulomb

branch where the volumes of primitive 2-cycles

vol(f1) = 2φ1 − φ2, vol(f2) = −φ1 + 2φ2 − φ3, vol(f3) = −φ2 + 2φ3 − φ4,

vol(f4) = −φ3 + 2φ4, vol(e4) = −2φ3 + φ4 + m0, (6.15)

are all non-negative simultaneously in the UV limit where m0 → 0. Thus, from the

geometric perspective, it is unclear whether this theory is UV completable or not.

Let us try to solve blowup equations and compute the BPS spectrum of this theory.

The effective prepotential for the theory is given by

E =
1

ǫ1ǫ2

(

F − ǫ2
1 + ǫ2

2

12
(φ1 + φ2 + φ3 + φ4) + ǫ2

+(φ1 + φ2 + φ3 + φ4)

)

,

6F = 8φ3
1 + 27φ2

1φ2 − 33φ1φ2
2 + 8φ3

2 + 21φ2
2φ3 − 27φ2φ2

3 + 8φ3
3 + 15φ2

3φ4

− 21φ3φ2
4 + 8φ3

4 + 6m0(φ2
1 − φ1φ2 + φ2

2 − φ2φ3 + φ2
3 − φ3φ4 + φ2

4) . (6.16)

We can set a (trial) unity blowup equation using the following set of magnetic fluxes:

ni ∈ Z , Bm0 = 1/2 . (6.17)

The solution to the blowup equation is summarized in table 32. The solution involves many

negative volume hypermultiplet states at one- and three-instanton orders. As explained,

we should flop such states to move on to a unitary chamber where all the BPS states have

non-negative masses. For instance, the instantonic hypermultiplets with charges e4, e4 +f3,

and e4 + f2 + f3 in table 32 should be flopped.

After a series of flop transitions, we find that all the BPS states up to certain higher

orders can be written as non-negative linear combinations of basis curves given by

{ − e4 − 2f1 − 2f2 − 2f3, −3e4 − 2f2 − 4f3 − f4, −3e4 − f1 − f2 − 4f3 − f4,

3e4 + 2f2 + 5f3 + f4, 6e4 + f1 + 4f2 + 8f3 + 2f4} . (6.18)

Here the minus signs in the first three curves indicate that the associated hypermultiplets,

which exist in the spectrum, are flopped. The spectrum also involves a BPS hypermultiplet

wrapping the fourth curve 3e4 + 2f1 + 5f3 + f4.

The higher order solution shows that there exists a vector multiplet wrapping the

last curve 6e4 + f1 + 4f2 + 8f3 + 2f4. One can then check that the volume of this curve

cannot be non-negative while satisfying the non-negative volume conditions vol(fi) ≥ 0 for

the perturbative vector multiplets. Unfortunately we cannot flop vector multiplets. This

implies that the theory with the spectrum we obtained from the blowup equation has no

unitary chamber where masses of all the BPS states are non-negative. One may wonder

if the SU(5)8 theory has other choices of magnetic fluxes leading to physically consistent

BPS spectrum, but we could not find any other solvable blowup equation for this theory.

Thus our computation suggests that the 5d SU(5)8 theory may have no UV completion.
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d ⊕Nd

jl,jr
(jl, jr) d ⊕Nd

jl,jr
(jl, jr)

(1, 0, 0, 0, 0) (0, 0) (1, 0, 0, 0, 1) (0, 1)

(1, 0, 0, 0, 2) (0, 2) (1, 0, 0, 1, 0) (0, 0)

(1, 0, 0, 1, 1) (0, 0) ⊕ (0, 1) (1, 0, 0, 1, 2) (0, 1) ⊕ (0, 2)

(1, 0, 1, 1, 0) (0, 0) (1, 0, 1, 1, 1) (0, 0) ⊕ (0, 1)

(1, 0, 1, 1, 2) (0, 1) ⊕ (0, 2) (1, 1, 1, 1, 0) (0, 0)

(1, 1, 1, 1, 1) (0, 0) ⊕ (0, 1) (2, 0, 0, 0, 2)
(

0, 5
2

)

(2, 0, 0, 1, 2)
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 0, 1, 1, 2)
(

0, 3
2

)

⊕
(

0, 5
2

)

(2, 1, 1, 1, 2)
(

0, 3
2

)

⊕
(

0, 5
2

) ...
...

...
... (6, 1, 4, 8, 2)

(

0, 1
2

)

Table 32. BPS spectrum of the pure SU(5)8 theory up to d1, d5 ≤ 2, d2, d3, d4 ≤ 1 together with

the negative volume state of d = (6, 1, 4, 8, 2). Here, d = (d1, d2, d3, d4, d5) labels state with charge

d1e4 + d2f1 + d3f2 + d4f3 + d5f4.

7 Conclusion

In this paper, we proposed a systematic bootstrap method for BPS spectra of 5d N = 1

field theories including KK theories, based on the Nakajima-Yoshioka’s blowup equation.

As the main input, we introduced the effective prepotential E and the consistent magnetic

fluxes. The effective prepotential incorporates the usual cubic prepotential, the mixed

gauge/gravitational, and the mixed gauge/SU(2)R Chern-Simons terms, which can be read-

ily obtained for every 5d SQFT, as discussed in section 2. The consistent magnetic fluxes

that one can turn on should satisfy the quantization condition. We discussed possible

quantization conditions in section 3.1. Equipped with these inputs, one can formulate

blowup equations and solve them recursively to obtain BPS spectrum for a 5d QFT. We

conjecture that our method applies to all the 5d N = 1 theories and 6d theories on a circle

with/without a twist. To support this we explicitly showed how to bootstrap for all rank-1

and rank-2 theories as well as some of interesting higher rank theories. In particular, we

computed BPS spectra of the theories whose partition functions still remain as challenges

from other methods such as the ADHM or topological vertex method, for instance, SU(3)8,

SU(4)8, and some non-Lagrangian theories.

There are some open questions that beg to be resolved. The first question concerns

our main conjecture which asserts that BPS spectra of all UV finite theories in 5d and 6d

can be obtained by solving blowup equations. The bootstrapping method proposed in this

paper allows us to build a collection of blowup equations for any arbitrary supersymmetric

field theory in 5d or 6d. However, physical or mathematical proofs for our conjecture that

the blowup equations must be solved to compute the correct BPS spectrum of a QFT are

currently lacking. The proof may require a physical derivation of blowup equations and

further studies on the structure of blowup equations for general 5d and 6d field theories.

We would like to provide more discussions about this in the future.
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A related question is whether the blowup equations can always be solved. As shown

in [86], the blowup equations are solvable if there exists at least one unity blowup equation.

There is however a class of theories only admitting blowup equations of the vanishing type,

for example, 6d SCFTs with half hypermultiplets. Unfortunately, it is not proven yet

whether the vanishing blowup equations are enough to compute full BPS spectra of those

theories. Nevertheless, we claimed without proof that though vanishing blowup equations

may not be solved by themselves, we can still compute full BPS spectra for those theories

from them provided that they are supplemented with other additional constraints such

as non-negativity of BPS degeneracies and KK tower structure for 6d theories as well as

dualities, geometric descriptions. We have checked this claim for several examples including

the 6d minimal E7 SCFT with a half hypermultiplet up to certain lower orders, but we

leave the proof of solvability of vanishing blowup equations to future study.

In section 6, we saw that the SU(5)8 theory has a solvable blowup equation, but its

solution shows that this theory has inconsistent BPS spectrum, by which we mean that

the theory does not have physical Coulomb branch where all BPS states have non-negative

masses in UV. This theory was classified as an ‘undetermined’ theory in [98] as its existence

couldn’t be proved or disproved yet. Our computation for this theory supports that this

theory has no UV completion. Similarly, one can try to compute BPS spectra for other

‘undetermined’ theories and see if they can have non-trivial Coulomb branches. If not,

such theories are inconsistent in UV with singularities on their Coulomb branches. Thus

we suggest that BPS spectra computed by our bootstrap method for such ‘undetermined’

theories can be used to distinguish UV completable theories.

Partition functions on other supersymmetric backgrounds are also important observ-

ables in 5d/6d field theories. Many of them can be factorized into a product of partition

functions on the Ω-background localized at fixed points of spatial Lorentz rotations un-

der supersymmetric localization. For instance, a superconformal index which counts BPS

operators in a 5d CFT can be understood as a partition function on S4 × S1 and a super-

symmetric localization factorizes it into a product of two partition functions on R4 × S1,

each of which we can compute by solving the blowup equations, around the north and the

south poles of S4 [35]. This implies that in principle the blowup equations can be used

to compute the superconformal index as well. We notice however that the superconformal

index is usually expressed as a power series expansion of the fugacity x ≡ e−ǫ+ related to

conformal dimensions of local operators, and thus it is calculated in the parameter regime

where the Ω-parameter ǫ+ is much bigger than Kähler parameters φi and mj in the theory.

On the other hand, we have solved the blowup equations in a different parameter regime

where all the Kähler parameters are bigger than the Ω-deformation parameters. It would

be interesting to see if the blowup equations can be solved in the other parameter regimes,

in particular where ǫ+ ≫ φi, mj , so that we can also compute superconformal indices and

other observables having similar factorization structures by applying the blowup method.

Lastly, it is intriguing to ask whether the blowup equations can capture asymptotics of

BPS partition functions in the large N limit (or in the large rank limit) of 5d and 6d field

theories. Asymptotic behavior of supersymmetric partition functions at a large number of

degrees of freedom has been playing a crucial role in studying holographic dual theories.
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Holographic interpretation of the blowup formula in the large N limit, if well-defined, can

give us a new implication on physics of dual gravity theories.
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A 1-loop prepotentials of 6d SCFTs on a circle with twist

A.1 Affine root system and 1-loop prepotential of W-bosons

In this appendix, we determine KK-momentum shifts for perturbative states in 6d theories.

When a 6d gauge theory is compactified on a circle, the periodic boundary condition

imposed on the gauge algebra g defines a map from S1 to g. The space of such map is

generated by T a
n = T a ⊗ zn for n ∈ Z where T a are the generators of g and z is the

coordinate along S1. The natural commutation relation is given by

[T a
n , T b

m] =
[

T a, T b
]

⊗ zn+m = fabc T c
n+m , (A.1)

where fabc is the structure constant of g. This defines a loop algebra of g, and its central

extension is called an untwisted affine Lie algebra. Thus, a 6d gauge theory compactified

on S1 naturally has an affine Lie algebra structure. The untwisted affine Lie algebra for

a simple Lie algebra of type Xℓ is denoted by X
(1)
ℓ . Dynkin diagrams of the untwisted

affine Lie algebras X
(1)
ℓ are drawn in figure 7, where the nodes of the Dynkin diagrams are

labeled by the simple roots αi (i = 1, · · · , ℓ), while the affine node is labeled by α0.

There is another type of affine Lie algebras. Lie algebras of types Aℓ, Dℓ and E6

have nontrivial outer automorphisms. Here, an outer automorphism on a Lie algebra g

is an automorphism which is not an inner automorphism, i.e., conjugation. An outer

automorphism of Lie algebras can be viewed as a symmetry of their Dynkin diagrams.

For Lie algebras of type Aℓ, their Dynkin diagrams have a Z2 outer automorphism which

exchanges the simple roots αi and αℓ−i+1. For Lie algebras of type Dℓ, Dynkin diagrams

have a Z2 outer automorphism exchanging the simple roots αℓ−1 and αℓ. In particular,

the Dynkin diagram of D4 has a triality and thus D4 algebra additionally has a Z3 outer

automorphism whose action on the simple roots is given by α1 → α2 → α3 → α1. For

the Lie algebra of type E6, its Dynkin diagram has a Z2 outer automorphism exchanging

α1 ↔ α5 and α2 ↔ α4.

Instead of imposing periodic boundary condition along S1, one can impose twisted

boundary condition using an outer automorphism of a simple Lie algebra g associated

with a gauge group of a 6d theory. That is to say, instead of considering a function
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1 1

α0 α1

(a) A
(1)
1

· · ·
1 1 1 1

1

α0

α1 α2 αℓ−1 αℓ

(b) A
(1)
ℓ (ℓ ≥ 2)

· · ·
1 2 2 2 1

1

2

α0

α1 α2 α3 αℓ−1 αℓ

(c) B
(1)
ℓ (ℓ ≥ 3)

· · ·
1 1 1 1

2 2

α0 α1 αℓ−1 αℓ

(d) C
(1)
ℓ (ℓ ≥ 2)

· · ·
1 2 2 2 1

1 1α0

α1 α2 α3 αℓ−2

αℓ−1

αℓ

(e) D
(1)
ℓ (ℓ ≥ 4)

1 2 3 2 1

2

1α0

α1 α2 α3 α4 α5

α6

(f) E
(1)
6

1 2 3 4 3 2 1

2

α0 α1 α2 α3 α4 α5 α6

α7

(g) E
(1)
7

1 2 3 4 5 6 4 2

3

α0 α1 α2 α3 α4 α5 α6 α7

α8

(h) E
(1)
8

1 2 3 2 1
4 2

α0 α1 α2 α3 α4

(i) F
(1)
4

1 2 1
3

α0 α2 α1

(j) G
(1)
2

Figure 7. Dynkin diagrams of untwisted affine Lie algebras X
(1)
ℓ . The number for each node is

the dual Coxeter label (comark) d∨

i . If a Coxeter label (mark) di differs from d∨

i , it is represented

as a red number. Dynkin diagrams without the affine node α0 reduce to the Dynkin diagrams of

simple Lie algebras Xℓ.

f : R → g with f(x + 2π) = f(x), we introduce f(x + 2π) = σ(f(x)), where σ : g → g is an

automorphism. When σ is a non-trivial outer automorphism, the resultant loop algebra

with central extension differs from untwisted affine Lie algebra. Such affine algebra is

called a twisted affine Lie algebra, denoted by X
(r)
ℓ , where r = 2, 3 is the order of the

automorphism in the Dynkin diagram. Dynkin diagrams of twisted affine Lie algebras are

drawn in figure 8.
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1 2
2 1

α0 α1

(a) A
(2)
2

· · ·
1 2 2 2
2 1

α0 α1 αℓ−1 αℓ

(b) A
(2)
2ℓ (ℓ ≥ 2)

· · ·
1 2 2 2 2

1

1

α0

α1 α2 α3 αℓ−1 αℓ

(c) A
(2)
2ℓ−1 (ℓ ≥ 3)

· · ·
1 2 2 1

1 1

α0 α1 αℓ−1 αℓ

(d) D
(2)
ℓ+1 (ℓ ≥ 2)

1 2 3 4 2
2 1

α0 α1 α2 α3 α4

(e) E
(2)
6

1 2 3
1

α0 α1 α2

(f) D
(3)
4

Figure 8. Dynkin diagrams of twisted affine Lie algebras X
(r=2,3)
ℓ . The number assigned each

node is the dual Coxeter label (comark) d∨

i . If a Coxeter label (mark) di is different from d∨

i , it is

represented as a red number.

The 1-loop contribution to the prepotential of a 6d gauge theory on a circle is deter-

mined by matter representations of (twisted-)affine Lie algebras. Let us discuss the affine

root systems. A root α is called real if there exists an element w in the Weyl group such

that w(α) is a simple root. A root which is not real is called an imaginary root. It is

known that there is no imaginary root for a simple Lie algebra [125]. To describe a root

system of affine Lie algebras, let ĝ be an affine Lie algebra of type X
(r)
ℓ and ∆̂ be its root

system. We also define a simple Lie algebra h obtained by removing the affine node α0 in

the Dynkin diagram of ĝ and its root system ∆. When ĝ = X
(1)
ℓ is untwisted, h = g = Xℓ,

but if ĝ = X
(r)
ℓ is twisted, then h is different from g = Xℓ. The root system of ĝ can be

written in terms of the roots of h [125]. First, define

δ =
ℓ
∑

i=0

diαi , (A.2)

where di are the Coxeter labels of ĝ algebra. The set of imaginary roots of ĝ is

∆̂im = {nδ | n ∈ Z \ {0}} . (A.3)
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The multiplicities of imaginary roots are as follows:

ĝ = X
(1)
ℓ multiplicity of nδ is ℓ

ĝ = A
(2)
2ℓ multiplicity of nδ is ℓ

ĝ = A
(2)
2ℓ−1 multiplicity of 2nδ is ℓ, (2n + 1)δ is ℓ − 1

ĝ = D
(2)
ℓ+1 multiplicity of 2nδ is ℓ, (2n + 1)δ is 1

ĝ = E
(2)
6 multiplicity of 2nδ is 4, (2n + 1)δ is 2

ĝ = D
(3)
4 multiplicity of 3nδ is 2, (3n ± 1)δ are 1 . (A.4)

On the other hand, sets of real roots are given as follows: if ĝ = X
(1)
ℓ , then

∆̂re = {α + nδ | α ∈ ∆, n ∈ Z} . (A.5)

If ĝ = X
(r=2,3)
ℓ and ĝ 6= A

(2)
2ℓ , then

∆̂re = {α + nδ | α ∈ ∆s, n ∈ Z} ∪ {α + nrδ | α ∈ ∆l, n ∈ Z} , (A.6)

where ∆l and ∆s denote the long and the short roots of h, respectively. If ĝ = A
(2)
2ℓ , then

∆̂re =

{

1

2

(

α + (2n − 1)δ
)

∣

∣

∣ α ∈ ∆l, n ∈ Z

}

∪ {α + nδ | α ∈ ∆s, n ∈ Z} ∪ {α + 2nδ | α ∈ ∆l, n ∈ Z} . (A.7)

The multiplicities of real roots are 1. The total root system of an affine Lie algebra ĝ is

then given by ∆̂re ∪ ∆̂im.

Using the affine root system we can compute the 1-loop contributions of 6d vector

multiplets to the effective prepotential. We first identify rδ as a KK-momentum for ĝ =

X
(r)
ℓ . The reason for r factor is as follows: from the real root system (A.5)–(A.7), the total

root system ∆ of the underlying simple Lie algebra h is repeated for every rδ. This reflects

that rδ is a KK-momentum.

For an untwisted affine algebra ĝ = X
(1)
ℓ , (A.4) and (A.5) implies that the 1-loop

prepotential is given by

F1-loop =
1

12

∑

n∈Z

∑

α∈∆

|α · φ + nτ |3 , (A.8)

where ∆ is the root system of Xℓ algebra and φ denotes gauge holonomies and τ is the

inverse of 6d circle radius. The ℓ imaginary roots can be understood as Cartan elements

in the adjoint representation of Xℓ algebra and their contribution to the prepotential are

discarded because they only carry KK-charges and thus they provide only constant shifts

to the prepotential.
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Let us now discuss the twisted cases. For ĝ = X
(2)
ℓ and ĝ 6= A

(2)
2ℓ , one can read

from (A.6) that

F1-loop =
1

12

∑

n∈Z





∑

α∈∆s

∣

∣

∣

∣

α · φ +
nτ

2

∣

∣

∣

∣

3

+
∑

α∈∆l

|α · φ + nτ |3




=
1

12

∑

n∈Z





∑

α∈∆

|α · φ + nτ |3 +
∑

α∈∆s

∣

∣

∣

∣

α · φ +

(

n +
1

2

)

τ

∣

∣

∣

∣

3


 , (A.9)

where ∆, ∆l and ∆s are sets of all the roots, the long roots and the short roots of h

algebra respectively. The first term carrying integral KK-charges forms the root system

of h algebra. The second term carrying half-integral KK-charges amounts to the rank-2

antisymmetric representation of Cℓ for A
(2)
2ℓ−1 and the fundamental representation of Bℓ and

F4 for D
(2)
ℓ+1 and E

(2)
6 , respectively. The imaginary roots correspond to Cartan elements in

each representation. This situation can be interpreted as

A2ℓ−1 → Cℓ Dℓ+1 → Bℓ E6 → F4

Adj → Adj0 ⊕ Λ2
1/2 , Adj → Adj0 ⊕ F1/2 , Adj → Adj0 ⊕ F1/2 ,

(A.10)

which are branching rules of the adjoint representation of g to h. Here, the subscript

in a representation r stands for KK-momentum shift. For instance, the vector multiplet

contribution in the Z2 twisted compactification of su(4) = so(6) gauge theory is given by

F1-loop =
1

12

∑

n∈Z

∑

e∈R

|nτ + e · φ|3 +
1

12

∑

n∈Z

∑

w∈Λ2

∣

∣

∣

∣

(

n +
1

2

)

τ + w · φ

∣

∣

∣

∣

3

, (A.11)

where R and Λ2 are the root system and the rank-2 anti-symmetric representation of

sp(2) algebra, respectively. By evaluating the 1-loop contribution explicitly using the zeta

function regularization, one can compute

F1-loop =
4

3
φ3

1 + 2φ2
1φ2 − 3φ1φ2

2 +
4

3
φ3

2 − 11

24
τ(2φ2

1 − 2φ1φ2 + φ2
2) , (A.12)

up to constant terms.

For ĝ = D
(3)
4 , the l-loop contribution can be obtained in a similar fashion with r = 3:

F1-loop =
1

12

∑

n∈Z





∑

α∈∆s

∣

∣

∣

∣

α · φ +
nτ

3

∣

∣

∣

∣

3

+
∑

α∈∆l

|α · φ + nτ |3


 (A.13)

=
1

12

∑

n∈Z





∑

α∈∆

|α · φ + nτ |3 +
∑

α∈∆s

(

∣

∣

∣α · φ+
(

n+ 1
3

)

τ
∣

∣

∣

3
+
∣

∣

∣α · φ+
(

n+ 2
3

)

τ
∣

∣

∣

3
)



 .

The first term carrying integer KK-charge forms the root system of h = G2 algebra, while

the second and third terms amount to the fundamental representation of G2. This can be

summarized as

D4 → G2

Adj → Adj0 + F1/3 + F2/3 . (A.14)
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The prepotential in (A.13) after performing the zeta function regularization reduces to

F1-loop =
4

3
φ3

1 + 3φ2
1φ2 − 4φ1φ2

2 +
4

3
φ3

2 − 5

9
τ(3φ2

1 − 3φ1φ2 + φ2
2) , (A.15)

which is used in subsection 6.1.

For ĝ = A
(2)
2ℓ , one can read from the root system (A.7) that

F1-loop =
1

12

∑

n∈Z





∑

α∈∆l

∣

∣

∣

∣

α · φ

2
+

2n−1

4
τ

∣

∣

∣

∣

3

+
∑

α∈∆s

∣

∣

∣

∣

α · φ +
nτ

2

∣

∣

∣

∣

3

+
∑

α∈∆l

|α · φ + nτ |3




=
1

12

∑

n∈Z





∑

α∈∆

|α · φ + nτ |3 +
∑

α∈∆l

∣

∣

∣

∣

α · φ

2
+

(

n +
1

4

)

τ

∣

∣

∣

∣

3

+
∑

α∈∆l

∣

∣

∣

∣

α · φ

2
+

(

n +
3

4

)

τ

∣

∣

∣

∣

3

+
∑

α∈∆s

∣

∣

∣

∣

α · φ +

(

n +
1

2

)

τ

∣

∣

∣

∣

3


 . (A.16)

The first term in the second line forms the root system of Cℓ algebra. The second and

third terms carrying τ/4 and 3τ/4 are half of the long roots of Cℓ, so they amount to the

fundamental representation of Cℓ algebra. The last term carrying half-integral KK-charges

amounts to the rank-2 antisymmetric representation. There is one more singlet carrying

half-integral KK-momentum which arises from the imaginary root, so we can understand

the situation as a branching of A2ℓ algebra into Cℓ algebra

A2ℓ → Cℓ

Adj → Adj0 ⊕ F1/4 ⊕ F3/4 ⊕ Λ2
1/2 ⊕ 11/2 . (A.17)

As an example, the vector multiplet contribution in Z2 twist compactification of a SU(3)

gauge field is given by

F1-loop =
1

12

∑

n∈Z

∑

e∈R

|e · φ + nτ |3 +
1

12

∑

n∈Z

∑

w∈F

∣

∣

∣

∣

w · φ +

(

n +
1

4

)

τ

∣

∣

∣

∣

3

+
1

12

∑

n∈Z

∑

w∈F

∣

∣

∣

∣

w · φ +

(

n +
3

4

)

τ

∣

∣

∣

∣

3

=
4

3
φ3

1 − 5

16
τφ2

1 . (A.18)

This is used in subsection 3.2.3.

A.2 Graded representations and 1-loop prepotential

To find a KK-momentum shift for a hypermultiplet, we first reinterpret the KK-momentum

shifts for W-bosons we discussed in the previous subsection. Let g = Xℓ be a simple Lie

algebra, r = 2, 3 be an order of automorphism in a Dynkin diagram, s = (s0, s1, · · · , sℓ)

be non-negative relatively prime integers, and m = r
∑ℓ

i=0 disi for the Coxeter labels di.

For a given s, there is a unique outer automorphism σs,r of g up to conjugation such that
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σm
s,r = 1 [125]. r is the smallest integer for which σr

s,r is an inner automorphism. An order

m outer automorphism σs,r naturally induces the grading

g =
⊕

j∈Zm

gj , (A.19)

with [gi, gj ] ⊂ gi+j , where an element of gj has an eigenvalue e2πij/m under σs,r. Thus,

under twisted compactification of a 6d theory with gauge algebra g, the W-boson states

in gj acquire additional fractional KK-charge j/m. In particular, W-boson states in the

invariant subalgebra g0 of σs,r have integral KK-charges. The affine root system demands

g0 to be h defined in appendix A.1. It is known that when s = (1, 0, 0, · · · , 0), the invariant

subalgebra g0 is isomorphic to h, and g0-module g1 is isomorphic to an irreducible module

with the highest weight −α0 [125].

We now reproduce the branching rules with KK-momentum shifts of the adjoint rep-

resentations in appendix A.1, using the automorphism σs,r and grading (A.19). As a

representative example, consider g = A2ℓ−1 with s = (1, 0, · · · , 0), r = 2. Under the

corresponding outer automorphism σs,r, g is graded by

g = g0 ⊕ g1 , (A.20)

where g0 is Cℓ algebra and g1 corresponds to the rank-2 antisymmetric representation of Cℓ

algebra. We can also explicitly construct g0 and g1. Let Eα be a ladder operator of A2ℓ−1

algebra associated with a root α. We write Ei = Eαi
for a simple root αi. The Cartan

generators Hi are given as Hi = α∨
i = [Eαi

, E−αi
] . Note that [Hi, Ej ] = 〈αj , α∨

i 〉 Ej =

aijEj , where aij is a Cartan matrix element. An automorphism µ in a Dynkin diagram

acts on the simple roots by µ(αi) = α2ℓ−i, so we can use the outer automorphism σs,r

as the induced map σs,r(Hi) = H2ℓ−i and σs,r(Ei) = E2ℓ−i by uniqueness. The invariant

combinations of the Cartan generators under σs,r are

H̃i = Hi + H2n−i (1 ≤ i ≤ ℓ − 1), H̃ℓ = Hℓ , (A.21)

and they become the Cartan generators of g0. In the case of the ladder operators cor-

responding to the simple roots, invariant and non-invariant combinations under σs,r are

given as follows:

{Ei + E2ℓ−i, Eℓ | 1 ≤ i ≤ ℓ − 1} ⊂ g0 , {Ei − E2ℓ−i | 1 ≤ i ≤ ℓ − 1} ⊂ g1 . (A.22)

The eigenvalues of such elements in g0 under the Cartan generators H̃i amount to the simple

root of g0 = Cℓ algebra, and hence the collection of charges makes the Cartan matrix of g0,

in this case sp(ℓ), as shown in table 33. For a general root α of A2ℓ−1, σs,r(Eα) = uαEµ(α),

where uα = ±1. If α 6= µ(α), then

Eα + uαEµ(α) ∈ g0, Eα − uαEµ(α) ∈ g1 . (A.23)

When α = µ(α), then Eα ∈ g0 and there is no corresponding element in g1. By considering

the eigenvalues of all such elements in g0 and g1 under H̃i defined in (A.21), one can
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g0 g1 Charge

E1 + E2ℓ E1 − E2ℓ (2, −1, 0, 0, · · · , 0)

E2 + E2ℓ−1 E2 − E2ℓ−1 (−1, 2, −1, 0, · · · , 0)
...

...
...

Eℓ−1 + Eℓ+1 Eℓ−1 − Eℓ+1 (0, · · · , 0, −1, 2, −1)

Eℓ (0, 0, · · · , 0, −2, 2)

Table 33. Classification of the ladder operators corresponding to the simple roots of A2ℓ−1 under

order 2 outer automorphism σ. The charge implies the eigenvalues under the Cartan generators H̃i

of g0.

confirm that charges of the elements in g0 and g1 form the weight systems of the adjoint

representation and the rank-2 antisymmetric representation, respectively. For g = Dℓ+1

and E6, one can treat them in a similar way as the A2ℓ−1 case and obtain the corresponding

branching rules.

As discussed for the affine root system in appendix A.1, the g = A2ℓ case is rather

involved. By setting s = (1, 0, · · · , 0) to construct an outer automorphism that leaves

h = Cℓ invariant, we get order 4 automorphism σs,r since the Coxeter label d0 = 2. This

map σs,r induces the grading

g = g0 ⊕ g1 ⊕ g2 ⊕ g3 , (A.24)

where g0 is Cℓ algebra. To find g1,2,3, we consider the following choice of σs,r [120]:

σs,r(x) = −Ω xT Ω−1 , (A.25)

where x is a traceless (2ℓ + 1) × (2ℓ + 1) matrix and

Ω =







1 0 0

0 0 I2ℓ

0 −I2ℓ 0






, (A.26)

with a 2ℓ × 2ℓ identity matrix I2ℓ. Explicitly, the action of σs,r on x in the matrix repre-

sentation is as follows:






x11 ~y1 ~y2

~z1
T A B

~z2
T C D







σs,r7−→







−x11 −~z2 ~z1

−~y2
T −DT BT

~y1
T CT −AT







σs,r7−→







x11 −~y1 −~y2

−~z1
T A B

−~z2
T C D







(A.27)

where ~y1 = (x12, · · · , x1,ℓ+1), ~y2 = (x1,ℓ+2, · · · , x1,2ℓ+1), ~z1 = (x21, · · · , xℓ+1,1), ~z2 =

(xℓ+2,1, · · · , x2ℓ+1,1) and A, B, C, D are ℓ × ℓ matrices. The invariant subalgebra g0 lies

in the 2ℓ × 2ℓ matrix (the lower right part of (A.27)) which consists of A, B, C, D, satisfy-

ing D = −AT , B = BT and C = CT . This naturally identifies with Cℓ algebra. Suitable

linear combinations of (~y1, ~y2) and (~z1, ~z2) are in g1 and g3, and they form two fundamental

representations of Cℓ. The remaining g2 is identified with the rank-2 anti-symmetric repre-

sentation of Cℓ, because the lower right 2ℓ×2ℓ matrix is nothing but an embedding of A2ℓ−1
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algebra and it is decomposed to the adjoint and rank-2 anti-symmetric representations of

Cℓ algebra. As the adjoint representation belongs to g0, this reproduces (A.17).

We extend the above argument to general representations. When a Lie algebra is

graded as (A.19), the representation π : g → gl(V ) is said to be compatible with the

grading, if the vector space V is decomposed as

V =
⊕

j∈Zm

Vj , (A.28)

such that

π(xi)Vj ⊂ Vi+j , (A.29)

for each i, j ∈ Zm and any xi ∈ gi [126]. Consequently, for matter fields, the states in a

representation space Vj acquire additional fractional KK-charge j/m, similar to the adjoint

representation. As an example, consider a twisted compactification of g = A2ℓ−1 type gauge

theory coupled with matter in the (anti-)fundamental representation. Let π : g → gl(C2ℓ)

be the fundamental representation and {|µi〉 | 1 ≤ i ≤ 2ℓ} be the basis of the representation

space C2ℓ whose charges under the Cartan generators π(Hi) form the weight system of the

fundamental representation:

π(Hi) |µ1〉 = δi,1 |µ1〉 ,

π(Hi) |µj〉 = (−δi,j−1 + δi,j) |µj〉 (1 < j < 2ℓ) ,

π(Hi) |µ2ℓ〉 = −δi,2ℓ−1 |µ2ℓ〉 . (A.30)

We note that |µi+1〉 = E−αi
|µi〉. An outer automorphism σs,r induced by Dynkin diagram

automorphism acts on the Cartan generators as σs,r(Hi) = H2ℓ−i, so the charges of basis

vectors |µi〉 under the Cartan generators π∗(Hi) := π ◦ σs,r(Hi) = π(σs,r(Hi)) form the

weight system of antifundamental representation:

π∗(Hi) |µ1〉 = δi,2ℓ−1 |µ1〉 ,

π∗(Hi) |µj〉 = (δi,2ℓ−j − δi,2ℓ+1−j) |µj〉 (1 < j < 2ℓ) ,

π∗(Hi) |µ2ℓ〉 = −δi,1 |µ2ℓ〉 . (A.31)

Hence, the representation π∗ is naturally identified to the anti-fundamental representation.

The representation π ⊕ π∗ which is of the representation space C4ℓ is then compatible with

the grading (A.20). To see it, let |µi〉 be an embedding of the basis of π representation

space C2ℓ into C4ℓ satisfying (A.30). Similarly, let |νi〉 be an embedding of the basis of π∗

representation space C2ℓ into C4ℓ satisfying (A.31). Then we find that charges of |µi〉±|νi〉
under the Cartan generators π ⊕ π∗(H̃i) of the invariant subalgebra g0 are given as

(π ⊕ π∗(H̃i))(|µ1〉 ± |ν1〉) = δi,1(|µ1〉 ± |ν1〉) ,

(π ⊕ π∗(H̃i))(|µj〉 ± |νj〉) = (−δi,j−1 + δi,j)(|µj〉 ± |νj〉) (1 < j ≤ ℓ) ,

(π ⊕ π∗(H̃i))(|µj〉 ± |νj〉) = (δi,2ℓ−j − δi,2ℓ+1−j)(|µj〉 ± |νj〉) (ℓ < j < 2ℓ) ,

(π ⊕ π∗(H̃i))(|µ2ℓ〉 ± |ν2ℓ〉) = −δi,1(|µ2ℓ〉 ± |ν2ℓ〉) . (A.32)
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Here, we see that the representation space C4ℓ of π ⊕ π∗ is decomposed into C2ℓ ⊕ C2ℓ

spanned by {|µi〉 + |νi〉} and {|µi〉 − |νi〉}, respectively. Therefore, the eigenvalues of the

basis vectors form the weight system of the fundamental representation of the invariant

subalgebra g0 = Cℓ. Moreover, if one applies element π ⊕ π∗(E−αi
− E−α2ℓ−i

) in g1 to

|µi〉 ± |νi〉, then

(π ⊕ π∗(E−αi
− E−α2ℓ−i

))(|µi〉 ± |νi〉) = |µi+1〉 ∓ |νi+1〉 (1 ≤ i < ℓ) . (A.33)

Thus, the representation π⊕π∗ is compatible with the grading. If we identify one fundamen-

tal representation of Cℓ to integer KK-momentum modes, then the other one corresponds

to half-integer KK-momentum modes,

A2ℓ−1 → Cℓ

F ⊕ F → F0 ⊕ F1/2 . (A.34)

Next, consider the twisted compactification of g = A2ℓ type gauge algebra coupled

with (anti-)fundamental matter. To use the explicit definition of σs,r (A.25), we note that

a matrix representation of Hi of g is given by

(Hi)αβ = δiαδiβ − δi+1,αδi+1,β , (A.35)

where 1 ≤ α, β ≤ 2ℓ + 1. The automorphism σs,r acts on them by

σs,r(H1) = −
ℓ+1
∑

i=1

Hi , σs,r(Hj) = −Hℓ+j (2 ≤ j ≤ ℓ) ,

σs,r(Hℓ+1) =
2ℓ
∑

i=2

Hi , σs,r(Hj) = −Hj−ℓ (ℓ + 2 ≤ j ≤ 2ℓ) . (A.36)

The Cartan generators of the invariant subalgebra g0 = Cℓ are

H̃i = Hi+1 − Hℓ+i+1 (1 ≤ i ≤ ℓ − 1) , H̃ℓ =
2ℓ
∑

i=ℓ+1

Hi . (A.37)

Now, let π : g → gl(C2ℓ+1), π(x) = x be the fundamental representation and {|µi〉 | 1 ≤ i ≤
2ℓ + 1} be a basis of C2ℓ+1 whose eigenvalues form the weight system of the representation

π(Hi) |µ1〉 = δi,1 |µ1〉 ,

π(Hi) |µj〉 = (−δi,j−1 + δi,j) |µj〉 (1 < j < 2ℓ + 1) ,

π(Hi) |µ2ℓ+1〉 = −δi,2ℓ |µ2ℓ+1〉 . (A.38)

Explicitly, (|µi〉)α = δiα for 1 ≤ α ≤ 2ℓ+1. The composition π◦σs,r is the anti-fundamental

representation:

π(σ(Hi)) |µ1〉 = −δi,1 |µ1〉 ,

π(σ(Hi)) |µj〉 = (δi,ℓ+j−1 − δi,ℓ+j) |µj〉 (2 ≤ j ≤ ℓ) ,

π(σ(Hi)) |µℓ+1〉 = δi,2ℓ |µℓ+1〉 ,

π(σ(Hi)) |µj〉 = (δi,j−ℓ−1 − δi,j−ℓ) |µj〉 (ℓ + 2 ≤ j ≤ 2ℓ) . (A.39)
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Similar to the A2ℓ−1 case, the direct sum representation π ⊕ π∗ is compatible with the

grading (A.24). To see it, let |µi〉 be an embedding of the basis of the fundamental rep-

resentation space C2ℓ+1 into the direct sum representation space C4ℓ+2 satisfying (A.38).

Likewise, let |νi〉 be an embedding of the basis of the anti-fundamental representation space

into C4ℓ+2 satisfying (A.39). Following [126], define a (4ℓ + 2) × (4ℓ + 2) matrix

R =

(

0 I2ℓ+1

Ω2 0

)

, (A.40)

which satisfies

(π ⊕ π∗(σ(x))) = R(π ⊕ π∗(x))R−1 , (A.41)

where

π ⊕ π∗(x) =

(

x 0

0 −ΩxT Ω−1

)

∈ gl(C4ℓ+2) . (A.42)

Since R4 is an identity matrix, it decomposes C4ℓ+2 as

C4ℓ+2 =
⊕

j∈Z4

Vj , (A.43)

where an element of Vj has an eigenvalue e2πi(n+j)/4 for some fixed integer n under R.

Moreover, for xj ∈ gj and vk ∈ Vk,
(

π ⊕ π∗(σ(xj)
)

)

Rvk = e2πi(n+j+k)/4(π ⊕ π∗(xj)
)

vk = R
(

π ⊕ π∗(xj)
)

vk , (A.44)

from (A.41). This shows that (π ⊕ π∗(xj))vk ∈ Vj+k, so the grading on representation

space is compatible with Lie algebra grading. The remaining thing is to identify each Vj

into a representation of the invariant subalgebra. The states |µ1〉 ± |ν1〉 have eigenvalues

±1 under R, and |µj〉 ± i |νj〉 have eigenvalues ±i for j > 1. The charges of these states

under the Cartan generators of the invariant subalgebra are

(π ⊕ π∗(H̃k))(|µ1〉 ± |ν1〉) = 0 , (A.45)

(π ⊕ π∗(H̃k))(|µ2〉 ± i |ν2〉) = δk,1(|µ2〉 ± i |ν2〉) ,

(π ⊕ π∗(H̃k))(|µj〉 ± i |νj〉) = (−δk,j−2 + δk,j−1)(|µj〉 ± i |νj〉) (2 ≤ j ≤ ℓ + 1) ,

(π ⊕ π∗(H̃k))(|µℓ+2〉 ± i |νℓ+2〉) = −δk,1(|µℓ+2〉 ± i |νℓ+2〉) ,

(π ⊕ π∗(H̃k))(|µj〉 ± i |µj〉) = (δk,j−ℓ−2 − δk,j−ℓ−1)(|µj〉 ± i |νj〉) (ℓ + 3 ≤ j ≤ 2ℓ + 1) .

Thus, the representation space spanned by {|µ1〉 + |ν1〉} and {|µ1〉 − |ν1〉} correspond

to two singlets, while {|µj〉 + i |νj〉} and {|µj〉 − i |νj〉} correspond to two fundamental

representations of Cℓ. We choose n = −1 in the eigenvalue e2πi(n+j)/4 of the elements Vj

in (A.43) so that V0 and V2 correspond to fundamental matter, while V1 and V3 become

singlets. This is because the 5d reduction of the theory contains fundamental matter. In

other words, under twisted compactification,

A2ℓ → Cℓ

F ⊕ F → F0 ⊕ 11/4 ⊕ F1/2 ⊕ 13/4 . (A.46)

We summarize such rules for twisted compactifications in table 34.

– 97 –



J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

ĝ h Rg → Rh

A
(2)
2ℓ

Cℓ
Adj → Adj0 ⊕ F1/4 ⊕ Λ2

1/2 ⊕ 11/2 ⊕ F3/4

F ⊕ F → F0 ⊕ 11/4 ⊕ F1/2 ⊕ 13/4

A
(2)
2ℓ−1

Cℓ

Adj → Adj0 ⊕ Λ2
1/2

F ⊕ F → F0 ⊕ F1/2

Λ2 ⊕ Λ2 → Λ2
0 ⊕ Λ2

1/2 ⊕ 10 ⊕ 11/2

D
(2)
ℓ+1

Bℓ

Adj → Adj0 ⊕ F1/2

F → F0 ⊕ 11/2

S ⊕ C → S0 ⊕ S1/2

E
(2)
6 F4

Adj → Adj0 ⊕ F1/2

F ⊕ F → F0 ⊕ F1/2 ⊕ 10 ⊕ 11/2

D
(3)
4 G2

Adj → Adj0 ⊕ F1/3 ⊕ F2/3

F ⊕ S ⊕ C → F0 ⊕ 10 ⊕ F1/3 ⊕ 11/3 ⊕ F2/3 ⊕ 12/3

Table 34. Summary of KK-momentum shifts on each representation under twisted compactifi-

cation. When ĝ = X
(r)
ℓ , Rg and Rh denote representation in g = Xℓ and h, respectively. The

subscript in the representations of Rh denotes KK-momentum shift.

B 5-brane webs for theories of frozen singularities

In this section, we present 5-brane webs for some theories of frozen singularities, which

contain an O7+-plane.

B.1 5-brane webs for SU(2)π + 1Adj and local P2 + “1Adj”

A 5-brane configuration for SU(2)π + 1Adj is depicted in figure 9(a). A little bit of de-

formation of this 5-brane web leads to a 5-brane web given in figure 9(b). By taking the

(1, −1) 7-brane painted in red through the cut of an O7+-plane, one gets a 5-brane web

in figure 9(c). Notice here that on the left hand side, the 5-brane configuration looks like

dP1 geometry locally. Hence, if one decouples the adjoint hypermultiplet by taking an O7+

far away, then one obtains a 5-brane web for the pure SU(2)π theory as expected. On the

other hand, recalling that dP1 has an O(−1) curve, we can flop this −1 curve, which gives

a 5-brane web given in figure 9(d). By taking this flopped part away, one finds that the

remaining part is a local P2 with the adjoint hypermultiplet inherited from SU(2)π +1Adj,

as depicted in figure 9(e). which we have referred to as P2 +“1Adj”. One can also view this

decoupling as decoupling the ‘instantonic’ hypermultiplet as discussed in the main text.

B.2 5-brane web for SU(2)0 + 1Adj

SU(2)0 +1Adj is a KK theory which is also referred to as the M-string. The corresponding

web, depicted in figure 10(c), was discussed in [127]. We note that one also depicts it with

an O7+-plane as given in figure 10(a). It is not difficult to see that the Kähler parameters

of these two 5-brane webs are equivalent as shown in figure 10(b) and figure 10(c).
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(c)

O7
+

(a)

(d)

(e)

(b)

Figure 9. (a) A 5-brane web for SU(2)π +1Adj. (b) An equivalent 5-brane web for SU(2)π +1Adj

where the D5 brane located on the right hand side of an O7+-plane in figure (a) is moved to the left

hand side. (c) Hanany-Witten transition associated with the (1,1) 7-brane painted in blue in figure

(b), going through the cut of the O7+-plane. (d) A flop transition. (e) Decoupling the flopped

‘instantonic’ hypermultiplet, giving rise to a 5-brane web for the local P2 + “1Adj” theory. Clearly

putting an O7+-plane far away leads to a local P2 which corresponds to decoupling “1Adj”.

O7
+

(c)

(a)

(b)
2φ

2φ+m0 − 2m1

−2φ+m1

2φ
2φ−m1

m1

2φ+m0 − 2m1

Figure 10. (a) A 5-brane web for SU(2)0 + 1Adj. (b) The reflected image of (a) is included. (c)

A 5-brane configuration for the M-string.
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(c)

(a)

(b)

D6

NS5 NS5 NS5 NS5

D6 D6

O7
−

O7
+

O7
+

Figure 11. (a) Type IIA configuration for 6d SU(1) − SU(1) − SU(1) theory or equivalently SU(4)

theory. (b) A Z2 twisted compactification of (a), where 1/2 D5-branes are stuck along the cut of an

O7+-plane. (c) Type IIB 5-brane configuration after resolving an O7− into two 7-branes of charge

(1, 1) and (1, −1). Here a blue dot refers to a (1, 1) 7-brane while a red dot refers to a (1, −1)

7-brane.

B.3 5-brane web for Sp(2)0 + 1Adj

A 5-brane web for 5d Sp(2)0 + 1Adj can be obtained by a Z2 twisting of the 6d N = (2, 0)

A3 theory whose brane configuration can be realized as a D6 brane suspended between

4 NS5 branes, as depicted in figure 11(a). The procedure of a Z2 twisting of the 6d

N = (2, 0) AN theory is already considered in [73]. Such twisted compactification on 5-

brane gives rise to a pair of O7−- and O7+-planes and the number of D6 branes in Type

IIA brane configuration is halved to yield half the number of D5-branes. For this A3 case,

the resulting 5-brane configuration is given in figure 11(b), where a half D5 is stuck along

the cut of an O7+-plane. By resolving an O7− into two 7-branes of charges (1, 1) and

(1, −1), one gets a 5-brane configuration for Sp(2)0 + 1Adj as depicted in figure 11(c). We

note that in figure 11(c), we moved two half D5-branes on the right hand side of an O7+

to the left to form a full D5-brane so that they then can be away from the O7+ cut at the

bottom, which allows us to give the mass of the adjoint hypermultiplet.

B.4 5-brane web for Sp(2)π + 1Adj, SU(3) 3
2

+ 1Sym

A 5-brane web for Sp(2)π + 1Adj can be obtained a Z2 twisted compactification of the 6d

N = (2, 0) A4 theory. The resulting web is given in figure 12, where two half D5 branes

are suspended either between an O7+ and (1, 1) 5-brane or between an O7+ and (−2, 1)

5-brane. As before, two half D5-branes can be put together to form a full D5-brane. It

can be then easily recognized that the resulting 5-brane configuration is nothing but that

for SU(3) 3
2

+ 1Sym as given in figure 13(a).

B.5 5-brane web for P2 ∪ F3 + “1Sym” or “SU(3) 3
2

+ 1Sym − 1F”

In a similar way as done for the 5-brane configuration for P2 + 1Adj, one can easily get

a 5-brane configuration for P2 ∪ F3 + “1Sym” or “SU(3) 3
2

+ 1Sym − 1F” as depicted in
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O7
+

Figure 12. A 5-brane web for Sp(2)π + 1Adj or SU(3) 3

2

+ 1Sym.

O7
+

(c)

(a)

(b)

Figure 13. (a) A 5-brane web for SU(3) 3

2

+1Sym which has a −1 curve on the left hand side of an

O7+-plane. (b) A flop transition and allocating a D5-brane from the right to the left. (c) Decoupling

the ‘instantonic’ hypermultiplet, which leads to a 5-brane configuration for a non-Lagrangian theory,

P2 ∪ F3 + “1Sym”.

O7
+

Figure 14. A 5-brane configuration for SU(3)0 + 1Sym + 1F.

figure 13. Given a 5-brane configuration for SU(3) 3
2

+ 1Sym in figure 13(a), which has a

−1 curve, one performs a flop transition to yield 5-brane web in figure 13(b). Decoupling

this ‘instantonic’ hypermultiplet gives rise to P2 ∪F3 +“1Sym” whose 5-brane web is given

in figure 13(c), which we may be referred to as “SU(3) 3
2

+ 1Sym − 1F”.

B.6 5-brane web for SU(3)0 + 1Sym + 1F

A 5-brane configuration for SU(3)0 +1Sym+1F is depicted in figure 14, which is discussed

in detail in [76].

B.7 5-brane web for local P2 ∪ F6 + “1Sym”

A 5-brane web for P2 ∪ F6 + “1Sym” is depicted in figure 16(e). It is worthy of noting

that this 5-brane web can be obtained from a non-perturbative Higgsing of SU(4)0 +
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O7
+

(a) (b)

O7
+

Figure 15. (a) A 5-brane web for SU(4)0 +1Sym. (b) A non-perturbative Higgsing by putting two

NS5-branes together and perform a Higgsing such that the NS5-brane ending two (0, 1) 7-branes

is taken away along the x7,8,9-directions.

O7
+

(c)

(a)

(b)

(d)

(e)

(−3, 1)

Figure 16. Deformations of the 5-brane web given in figure 15(b) leading to a 5-brane web for

P2 ∪ F6 + “1Sym”.

1Sym in figure 15. By taking a non-perturbative Higgsing11 shown in figure 15(b), we

get a new rank-2 non-Lagrangian theory, P2 ∪ F6 + “1Sym”. To see local geometry apart

from the frozen singularity, consider a series of deformations of the 5-brane web given in

figure 16. Lowering the D5-brane on the right side of an O7+-plane leads to a transition

like figure 16(a) discussed in [129] giving rise to a 5-brane web in figure 16(b). A further

lowering of the D5-brane allocates the D5-brane from the right to the bottom left as

depicted in figure 16(c). The resulting 5-brane configuration then looks like locally P2 ∪F6.

Taking into account 1Sym inherited from SU(4)0 + 1Sym, we call this P2 ∪F6 + “1Sym”.

11A simple non-perturbative Higgsing procedure is from SU(3)0 + 5F to SU(2) + 5F where two parallel

NS5-branes are bound together in such a way that the resulting 5-brane web preserves the S-rule [21, 128].
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(a)

(b)

(2−N, 1) (N − 6, 1)

O7
+

(N − 4, 1)

} N − 5

O7
+

} N − 5 (−3, 1)

(c)

(1,−1)

O7
+

} N − 3

Figure 17. (a) A 5-brane web for SU(N) 4−N

2

+ 1Sym, where there are N D5-branes in total. (b)

A non-perturbative Higgsing. (c) 5-brane web for P2 ∪F6 ∪F8 ∪ · · · ∪ F2N + “1Sym” which is rank

of N − 2.

(c)

(a) (b)

(d)

Figure 18. Various phases of 5-brane web for local P2 + “1Adj”.

We note that it is straightforward to implement this kind of non-perturbative Higgsing

to SU(N) 4−N
2

+1Sym to yield rank N −1 non-Lagrangian theory with a frozen singularity,

P2 ∪ F6 ∪ F8 ∪ · · · ∪ F2N + “1Sym”, as shown in figure 17. In particular, when N = 2,

it provides yet another way of obtaining a 5-brane web for the local P2 + “1Adj” theory

giving rise to various phases for the theory as depicted in figure 18(a)–(d). Note that a

5-brane configuration in figure 18(a) looks as if all W-bosons are legitimate so that the

resulting theory is a Lagrangian theory, but it appears that some of the W-bosons would

be annihilated so that the corresponding system is that of non-Lagrangian theory.

Equivalence between P2
∪ F6 + “1Sym + 2F” and SU(3)0 + 1Sym + 1F. We can

show that P2 ∪F6 +“1Sym+2F” and SU(3)0 +1Sym+1F are equivalent by transforming

a 5-brane web for P2 ∪ F6 + “1Sym + 2F” into that of SU(3)0 + 1Sym + 1F that is given

in figure 14. Consider a 5-brane web for P2 ∪F6 + “1Sym + 2F” which is to add two flavor

D7-branes to P2 ∪ F6 + “1Sym” in figure 15(b). This resulting 5-brane web is depicted

in figure 19(a). The deformations given in figure 19(b) to 19(d) lead to a 5-brane web for

SU(3)0 + 1Adj + 1F in figure 19(e) which is the same as the one in figure 14. This clearly

suggests that there is a new RG flow from SU(3)0+1Sym+1F to local P2∪F6+“1Sym+1F”.
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(c)
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O7
+

(−3, 1)

Figure 19. From 5-brane web for local P2 ∪ F6 + “1Sym + 2F” to that for SU(3)0 + 1Sym + 1F.

(a) A 5-brane web for local P2 ∪ F6 + “1Sym + 2F”. (b) Locating D5-brane on the right-hand side

of O7+ to the left. (c) Pull down the (0, 1) 7-brane (in red) in figure (b) toward the cut of O7+

and perform an SL(2,Z) transformation. (d) With some mass deformations, Hanany-Witten move

with the (−3, 1) 7-brane in figure (c) which gives rise to an 5-brane web for SU(3)0 + 1Sym + 1F.

(d) A little deformation leading to the same web for SU(3)0 + 1Sym + 1F given in figure 14.

The above equivalence relation is readily generalized to the following SU(N)0 KK

theory,

SU(N)0 + 1Sym + (N − 2)F

is equivalent to

local P2 ∪ F6 ∪ F8 ∪ · · · ∪ F2N−2 ∪ F2N + “1Sym + (N − 1)F′′. (B.1)

We note that when N = 2, the equivalence reads

SU(2)π + 1Adj ⇐⇒ local P2 + 1Adj + 1F. (B.2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and

Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017]

[arXiv:1312.5746] [INSPIRE].

– 104 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP05(2014)028
https://arxiv.org/abs/1312.5746
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.5746


J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

[2] J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D

SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].

[3] L. Bhardwaj, Classification of 6d N = (1, 0) gauge theories, JHEP 11 (2015) 002

[arXiv:1502.06594] [INSPIRE].

[4] L. Bhardwaj, M. Del Zotto, J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa,

F-theory and the Classification of Little Strings, Phys. Rev. D 93 (2016) 086002 [Erratum

ibid. 100 (2019) 029901] [arXiv:1511.05565] [INSPIRE].

[5] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string

dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

[6] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge

theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56

[hep-th/9702198] [INSPIRE].

[7] P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single

Gauge Node, arXiv:1705.05836 [INSPIRE].

[8] M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and

type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].

[9] M. Del Zotto, J.J. Heckman and D.R. Morrison, 6D SCFTs and Phases of 5D Theories,

JHEP 09 (2017) 147 [arXiv:1703.02981] [INSPIRE].

[10] D. Xie and S.-T. Yau, Three dimensional canonical singularity and five dimensional N = 1

SCFT, JHEP 06 (2017) 134 [arXiv:1704.00799] [INSPIRE].

[11] P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs,

JHEP 04 (2018) 103 [arXiv:1801.04036] [INSPIRE].

[12] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Rank one, JHEP 07

(2019) 178 [Addendum ibid. 01 (2020) 153] [arXiv:1809.01650] [INSPIRE].

[13] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Arbitrary rank, JHEP

10 (2019) 282 [arXiv:1811.10616] [INSPIRE].

[14] F. Apruzzi, L. Lin and C. Mayrhofer, Phases of 5d SCFTs from M-/F-theory on Non-Flat

Fibrations, JHEP 05 (2019) 187 [arXiv:1811.12400] [INSPIRE].

[15] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, 5d Superconformal Field

Theories and Graphs, Phys. Lett. B 800 (2020) 135077 [arXiv:1906.11820] [INSPIRE].

[16] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, Fibers add Flavor, Part

I: Classification of 5d SCFTs, Flavor Symmetries and BPS States, JHEP 11 (2019) 068

[arXiv:1907.05404] [INSPIRE].

[17] L. Bhardwaj, P. Jefferson, H.-C. Kim, H.-C. Tarazi and C. Vafa, Twisted Circle

Compactifications of 6d SCFTs, JHEP 12 (2020) 151 [arXiv:1909.11666] [INSPIRE].

[18] F. Apruzzi, S. Schäfer-Nameki and Y.-N. Wang, 5d SCFTs from Decoupling and Gluing,

JHEP 08 (2020) 153 [arXiv:1912.04264] [INSPIRE].

[19] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki and Y.-N. Wang, Fibers add Flavor, Part

II: 5d SCFTs, Gauge Theories, and Dualities, JHEP 03 (2020) 052 [arXiv:1909.09128]

[INSPIRE].

[20] L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-Branes, Toric Diagrams and Gauge Theory

Duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].

– 105 –

https://doi.org/10.1002/prop.201500024
https://arxiv.org/abs/1502.05405
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.05405
https://doi.org/10.1007/JHEP11(2015)002
https://arxiv.org/abs/1502.06594
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.06594
https://doi.org/10.1103/PhysRevD.93.086002
https://arxiv.org/abs/1511.05565
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.05565
https://doi.org/10.1016/S0370-2693(96)01215-4
https://arxiv.org/abs/hep-th/9608111
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9608111
https://doi.org/10.1016/S0550-3213(97)00279-4
https://arxiv.org/abs/hep-th/9702198
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9702198
https://arxiv.org/abs/1705.05836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.05836
https://doi.org/10.1016/S0550-3213(97)00281-2
https://arxiv.org/abs/hep-th/9609071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9609071
https://doi.org/10.1007/JHEP09(2017)147
https://arxiv.org/abs/1703.02981
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.02981
https://doi.org/10.1007/JHEP06(2017)134
https://arxiv.org/abs/1704.00799
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.00799
https://doi.org/10.1007/JHEP04(2018)103
https://arxiv.org/abs/1801.04036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.04036
https://doi.org/10.1007/JHEP07(2019)178
https://doi.org/10.1007/JHEP07(2019)178
https://arxiv.org/abs/1809.01650
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.01650
https://doi.org/10.1007/JHEP10(2019)282
https://doi.org/10.1007/JHEP10(2019)282
https://arxiv.org/abs/1811.10616
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10616
https://doi.org/10.1007/JHEP05(2019)187
https://arxiv.org/abs/1811.12400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.12400
https://doi.org/10.1016/j.physletb.2019.135077
https://arxiv.org/abs/1906.11820
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11820
https://doi.org/10.1007/JHEP11(2019)068
https://arxiv.org/abs/1907.05404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05404
https://doi.org/10.1007/JHEP12(2020)151
https://arxiv.org/abs/1909.11666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.11666
https://doi.org/10.1007/JHEP08(2020)153
https://arxiv.org/abs/1912.04264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.04264
https://doi.org/10.1007/JHEP03(2020)052
https://arxiv.org/abs/1909.09128
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.09128
https://doi.org/10.1007/JHEP04(2012)105
https://arxiv.org/abs/1112.5228
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.5228


J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

[21] H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d TN partition functions,

JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].

[22] M. Taki, Seiberg Duality, 5d SCFTs and Nekrasov Partition Functions, arXiv:1401.7200

[INSPIRE].

[23] V. Mitev, E. Pomoni, M. Taki and F. Yagi, Fiber-Base Duality and Global Symmetry

Enhancement, JHEP 04 (2015) 052 [arXiv:1411.2450] [INSPIRE].

[24] H. Hayashi and G. Zoccarato, Exact partition functions of Higgsed 5d TN theories, JHEP

01 (2015) 093 [arXiv:1409.0571] [INSPIRE].

[25] D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d N = 1 theories, JHEP 01 (2017)

019 [arXiv:1506.03871] [INSPIRE].

[26] H. Hayashi and G. Zoccarato, Topological vertex for Higgsed 5d TN theories, JHEP 09

(2015) 023 [arXiv:1505.00260] [INSPIRE].

[27] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Equivalence of several descriptions for 6d

SCFT, JHEP 01 (2017) 093 [arXiv:1607.07786] [INSPIRE].

[28] Y. Yun, Testing 5d-6d dualities with fractional D-branes, JHEP 12 (2016) 016

[arXiv:1607.07615] [INSPIRE].

[29] H. Hayashi and K. Ohmori, 5d/6d DE instantons from trivalent gluing of web diagrams,

JHEP 06 (2017) 078 [arXiv:1702.07263] [INSPIRE].

[30] H.-C. Kim, J. Kim, S. Kim, K.-H. Lee and J. Park, 6d strings and exceptional instantons,

Phys. Rev. D 103 (2021) 025012 [arXiv:1801.03579] [INSPIRE].

[31] J. Chen, B. Haghighat, H.-C. Kim and M. Sperling, Elliptic quantum curves of class Sk,

JHEP 03 (2021) 028 [arXiv:2008.05155] [INSPIRE].

[32] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[33] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math.

244 (2006) 525 [hep-th/0306238] [INSPIRE].

[34] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal

Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435]

[INSPIRE].

[35] H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global

Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].

[36] H.-C. Kim, S. Kim, S.-S. Kim and K. Lee, The general M5-brane superconformal index,

arXiv:1307.7660 [INSPIRE].

[37] A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse Dimensions,

Phys. Rev. D 90 (2014) 105031 [arXiv:1210.3605] [INSPIRE].

[38] J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D

Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008]

[INSPIRE].

[39] H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013)

144 [arXiv:1206.6339] [INSPIRE].

– 106 –

https://doi.org/10.1007/JHEP06(2014)014
https://arxiv.org/abs/1310.3854
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.3854
https://arxiv.org/abs/1401.7200
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.7200
https://doi.org/10.1007/JHEP04(2015)052
https://arxiv.org/abs/1411.2450
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.2450
https://doi.org/10.1007/JHEP01(2015)093
https://doi.org/10.1007/JHEP01(2015)093
https://arxiv.org/abs/1409.0571
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.0571
https://doi.org/10.1007/JHEP01(2017)019
https://doi.org/10.1007/JHEP01(2017)019
https://arxiv.org/abs/1506.03871
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.03871
https://doi.org/10.1007/JHEP09(2015)023
https://doi.org/10.1007/JHEP09(2015)023
https://arxiv.org/abs/1505.00260
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.00260
https://doi.org/10.1007/JHEP01(2017)093
https://arxiv.org/abs/1607.07786
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.07786
https://doi.org/10.1007/JHEP12(2016)016
https://arxiv.org/abs/1607.07615
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.07615
https://doi.org/10.1007/JHEP06(2017)078
https://arxiv.org/abs/1702.07263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.07263
https://doi.org/10.1103/PhysRevD.103.025012
https://arxiv.org/abs/1801.03579
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03579
https://doi.org/10.1007/JHEP03(2021)028
https://arxiv.org/abs/2008.05155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.05155
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206161
https://doi.org/10.1007/0-8176-4467-9_15
https://doi.org/10.1007/0-8176-4467-9_15
https://arxiv.org/abs/hep-th/0306238
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0306238
https://doi.org/10.1088/1126-6708/2008/02/064
https://arxiv.org/abs/0801.1435
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.1435
https://doi.org/10.1007/JHEP10(2012)142
https://arxiv.org/abs/1206.6781
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.6781
https://arxiv.org/abs/1307.7660
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.7660
https://doi.org/10.1103/PhysRevD.90.105031
https://arxiv.org/abs/1210.3605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.3605
https://doi.org/10.1007/JHEP08(2012)157
https://arxiv.org/abs/1206.6008
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.6008
https://doi.org/10.1007/JHEP05(2013)144
https://doi.org/10.1007/JHEP05(2013)144
https://arxiv.org/abs/1206.6339
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.6339


J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

[40] J. Kallen, J.A. Minahan, A. Nedelin and M. Zabzine, N3-behavior from 5D Yang-Mills

theory, JHEP 10 (2012) 184 [arXiv:1207.3763] [INSPIRE].

[41] G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative

Topological Strings, JHEP 10 (2018) 051 [arXiv:1210.5909] [INSPIRE].

[42] Y. Imamura, Perturbative partition function for squashed S5, PTEP 2013 (2013) 073B01

[arXiv:1210.6308] [INSPIRE].

[43] H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes,

arXiv:1211.0144 [INSPIRE].

[44] M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of Instantons,

Phys. Lett. A 65 (1978) 185 [INSPIRE].

[45] M. Mariño and N. Wyllard, A Note on instanton counting for N = 2 gauge theories with

classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].

[46] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359

[hep-th/0404225] [INSPIRE].

[47] F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP

10 (2004) 037 [hep-th/0408090] [INSPIRE].

[48] C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP

07 (2015) 063 [Addendum ibid. 04 (2016) 094] [arXiv:1406.6793] [INSPIRE].

[49] B. Haghighat, C. Kozcaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev. D

89 (2014) 046003 [arXiv:1310.1185] [INSPIRE].

[50] J. Kim, S. Kim, K. Lee, J. Park and C. Vafa, Elliptic Genus of E-strings, JHEP 09 (2017)

098 [arXiv:1411.2324] [INSPIRE].

[51] B. Haghighat, A. Klemm, G. Lockhart and C. Vafa, Strings of Minimal 6d SCFTs, Fortsch.

Phys. 63 (2015) 294 [arXiv:1412.3152] [INSPIRE].

[52] A. Gadde, B. Haghighat, J. Kim, S. Kim, G. Lockhart and C. Vafa, 6d String Chains,

JHEP 02 (2018) 143 [arXiv:1504.04614] [INSPIRE].

[53] H.-C. Kim, S. Kim and J. Park, 6d strings from new chiral gauge theories,

arXiv:1608.03919 [INSPIRE].

[54] M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The Topological vertex, Commun. Math.

Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].

[55] A. Iqbal, C. Kozcaz and C. Vafa, The Refined topological vertex, JHEP 10 (2009) 069

[hep-th/0701156] [INSPIRE].

[56] H. Awata and H. Kanno, Refined BPS state counting from Nekrasov’s formula and

Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].

[57] J.-t. Ding and K. Iohara, Generalization and deformation of Drinfeld quantum affine

algebras, Lett. Math. Phys. 41 (1997) 181 [INSPIRE].

[58] K. Miki, a(q, γ) analog of the w1+∞ algebra, J. Math. Phys. 48 (2007) 123520.

[59] M. Aganagic and S. Shakirov, Refined Chern-Simons Theory and Topological String,

arXiv:1210.2733 [INSPIRE].

[60] H. Awata, B. Feigin and J. Shiraishi, Quantum algebraic approach to refined topological

vertex, JHEP 03 (2012) 041 [arXiv:1112.6074] [INSPIRE].

– 107 –

https://doi.org/10.1007/JHEP10(2012)184
https://arxiv.org/abs/1207.3763
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.3763
https://doi.org/10.1007/JHEP10(2018)051
https://arxiv.org/abs/1210.5909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.5909
https://doi.org/10.1093/ptep/ptt044
https://arxiv.org/abs/1210.6308
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.6308
https://arxiv.org/abs/1211.0144
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.0144
https://doi.org/10.1016/0375-9601(78)90141-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CA65%2C185%22
https://doi.org/10.1088/1126-6708/2004/05/021
https://arxiv.org/abs/hep-th/0404125
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0404125
https://doi.org/10.1007/s00220-004-1189-1
https://arxiv.org/abs/hep-th/0404225
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0404225
https://doi.org/10.1088/1126-6708/2004/10/037
https://doi.org/10.1088/1126-6708/2004/10/037
https://arxiv.org/abs/hep-th/0408090
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0408090
https://doi.org/10.1007/JHEP07(2015)063
https://doi.org/10.1007/JHEP07(2015)063
https://arxiv.org/abs/1406.6793
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.6793
https://doi.org/10.1103/PhysRevD.89.046003
https://doi.org/10.1103/PhysRevD.89.046003
https://arxiv.org/abs/1310.1185
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1185
https://doi.org/10.1007/JHEP09(2017)098
https://doi.org/10.1007/JHEP09(2017)098
https://arxiv.org/abs/1411.2324
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.2324
https://doi.org/10.1002/prop.201500014
https://doi.org/10.1002/prop.201500014
https://arxiv.org/abs/1412.3152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3152
https://doi.org/10.1007/JHEP02(2018)143
https://arxiv.org/abs/1504.04614
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.04614
https://arxiv.org/abs/1608.03919
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.03919
https://doi.org/10.1007/s00220-004-1162-z
https://doi.org/10.1007/s00220-004-1162-z
https://arxiv.org/abs/hep-th/0305132
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0305132
https://doi.org/10.1088/1126-6708/2009/10/069
https://arxiv.org/abs/hep-th/0701156
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0701156
https://doi.org/10.1142/S0217751X09043006
https://arxiv.org/abs/0805.0191
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.0191
https://doi.org/10.1023/A:1007341410987
https://inspirehep.net/search?p=find+J%20%22Lett.Math.Phys.%2C41%2C181%22
https://doi.org/10.1063/1.2823979
https://arxiv.org/abs/1210.2733
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.2733
https://doi.org/10.1007/JHEP03(2012)041
https://arxiv.org/abs/1112.6074
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.6074


J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

[61] J.-E. Bourgine, M. Fukuda, K. Harada, Y. Matsuo and R.-D. Zhu, (p, q)-webs of DIM

representations, 5d N = 1 instanton partition functions and qq-characters, JHEP 11 (2017)

034 [arXiv:1703.10759] [INSPIRE].

[62] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field

theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[63] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal

field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].

[64] S.-S. Kim and F. Yagi, Topological vertex formalism with O5-plane, Phys. Rev. D 97 (2018)

026011 [arXiv:1709.01928] [INSPIRE].

[65] H. Hayashi and R.-D. Zhu, More on topological vertex formalism for 5-brane webs with

O5-plane, arXiv:2012.13303 [INSPIRE].

[66] J.-E. Bourgine, M. Fukuda, Y. Matsuo and R.-D. Zhu, Reflection states in

Ding-Iohara-Miki algebra and brane-web for D-type quiver, JHEP 12 (2017) 015

[arXiv:1709.01954] [INSPIRE].

[67] S.-S. Kim and X.-Y. Wei, Refined topological vertex with ON-planes, in preparation.

[68] S.-S. Kim, M. Taki and F. Yagi, Tao Probing the End of the World, PTEP 2015 (2015)

083B02 [arXiv:1504.03672] [INSPIRE].

[69] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type

minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].

[70] O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015)

163 [arXiv:1507.03860] [INSPIRE].

[71] G. Zafrir, Brane webs, 5d gauge theories and 6d N = (1, 0) SCFT’s, JHEP 12 (2015) 157

[arXiv:1509.02016] [INSPIRE].

[72] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d Dualities and Tao Web Diagrams,

JHEP 05 (2019) 203 [arXiv:1509.03300] [INSPIRE].

[73] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, More on 5d descriptions of 6d SCFTs,

JHEP 10 (2016) 126 [arXiv:1512.08239] [INSPIRE].

[74] G. Zafrir, Brane webs and O5-planes, JHEP 03 (2016) 109 [arXiv:1512.08114] [INSPIRE].

[75] G. Zafrir, Brane webs in the presence of an O5−-plane and 4d class S theories of type D,

JHEP 07 (2016) 035 [arXiv:1602.00130] [INSPIRE].

[76] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2

SCFTs, JHEP 12 (2018) 016 [arXiv:1806.10569] [INSPIRE].

[77] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Rank-3 antisymmetric matter on 5-brane webs,

JHEP 05 (2019) 133 [arXiv:1902.04754] [INSPIRE].

[78] H.-C. Kim, S.-S. Kim and K. Lee, Higgsing and twisting of 6d DN gauge theories, JHEP 10

(2020) 014 [arXiv:1908.04704] [INSPIRE].

[79] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 5-brane webs for 5d N = 1 G2 gauge theories,

JHEP 03 (2018) 125 [arXiv:1801.03916] [INSPIRE].

[80] H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., Invent. Math. 162 (2005)

313 [math/0306198] [INSPIRE].

– 108 –

https://doi.org/10.1007/JHEP11(2017)034
https://doi.org/10.1007/JHEP11(2017)034
https://arxiv.org/abs/1703.10759
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.10759
https://doi.org/10.1088/1126-6708/1998/01/002
https://arxiv.org/abs/hep-th/9710116
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9710116
https://doi.org/10.1088/1126-6708/2009/09/052
https://arxiv.org/abs/0906.0359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.0359
https://doi.org/10.1103/PhysRevD.97.026011
https://doi.org/10.1103/PhysRevD.97.026011
https://arxiv.org/abs/1709.01928
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.01928
https://arxiv.org/abs/2012.13303
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.13303
https://doi.org/10.1007/JHEP12(2017)015
https://arxiv.org/abs/1709.01954
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.01954
https://doi.org/10.1093/ptep/ptv108
https://doi.org/10.1093/ptep/ptv108
https://arxiv.org/abs/1504.03672
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.03672
https://doi.org/10.1007/JHEP08(2015)097
https://arxiv.org/abs/1505.04439
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.04439
https://doi.org/10.1007/JHEP12(2015)163
https://doi.org/10.1007/JHEP12(2015)163
https://arxiv.org/abs/1507.03860
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.03860
https://doi.org/10.1007/JHEP12(2015)157
https://arxiv.org/abs/1509.02016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.02016
https://doi.org/10.1007/JHEP05(2019)203
https://arxiv.org/abs/1509.03300
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.03300
https://doi.org/10.1007/JHEP10(2016)126
https://arxiv.org/abs/1512.08239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.08239
https://doi.org/10.1007/JHEP03(2016)109
https://arxiv.org/abs/1512.08114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.08114
https://doi.org/10.1007/JHEP07(2016)035
https://arxiv.org/abs/1602.00130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.00130
https://doi.org/10.1007/JHEP12(2018)016
https://arxiv.org/abs/1806.10569
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.10569
https://doi.org/10.1007/JHEP05(2019)133
https://arxiv.org/abs/1902.04754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.04754
https://doi.org/10.1007/JHEP10(2020)014
https://doi.org/10.1007/JHEP10(2020)014
https://arxiv.org/abs/1908.04704
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04704
https://doi.org/10.1007/JHEP03(2018)125
https://arxiv.org/abs/1801.03916
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03916
https://doi.org/10.1007/s00222-005-0444-1
https://doi.org/10.1007/s00222-005-0444-1
https://arxiv.org/abs/math/0306198
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0306198


J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

[81] H. Nakajima and K. Yoshioka, Instanton counting on blowup. II. K-theoretic partition

function, math/0505553 [INSPIRE].

[82] L. Gottsche, H. Nakajima and K. Yoshioka, K-theoretic Donaldson invariants via instanton

counting, Pure Appl. Math. Quart. 5 (2009) 1029 [math/0611945] [INSPIRE].

[83] C.A. Keller and J. Song, Counting Exceptional Instantons, JHEP 07 (2012) 085

[arXiv:1205.4722] [INSPIRE].

[84] J. Kim, S.-S. Kim, K.-H. Lee, K. Lee and J. Song, Instantons from Blow-up, JHEP 11

(2019) 092 [Erratum ibid. 06 (2020) 124] [arXiv:1908.11276] [INSPIRE].

[85] J. Gu, M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, Refined BPS invariants of 6d

SCFTs from anomalies and modularity, JHEP 05 (2017) 130 [arXiv:1701.00764]

[INSPIRE].

[86] M.-x. Huang, K. Sun and X. Wang, Blowup Equations for Refined Topological Strings,

JHEP 10 (2018) 196 [arXiv:1711.09884] [INSPIRE].

[87] J. Gu, B. Haghighat, K. Sun and X. Wang, Blowup Equations for 6d SCFTs. I, JHEP 03

(2019) 002 [arXiv:1811.02577] [INSPIRE].

[88] J. Gu, A. Klemm, K. Sun and X. Wang, Elliptic blowup equations for 6d SCFTs. Part II.

Exceptional cases, JHEP 12 (2019) 039 [arXiv:1905.00864] [INSPIRE].

[89] J. Gu, B. Haghighat, A. Klemm, K. Sun and X. Wang, Elliptic blowup equations for 6d

SCFTs. Part III. E-strings, M-strings and chains, JHEP 07 (2020) 135

[arXiv:1911.11724] [INSPIRE].

[90] J. Gu, B. Haghighat, A. Klemm, K. Sun and X. Wang, Elliptic Blowup Equations for 6d

SCFTs. IV: Matters, arXiv:2006.03030 [INSPIRE].

[91] E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195

[hep-th/9603150] [INSPIRE].

[92] F. Bonetti, T.W. Grimm and S. Hohenegger, One-loop Chern-Simons terms in five

dimensions, JHEP 07 (2013) 043 [arXiv:1302.2918] [INSPIRE].

[93] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12

(1997) 002 [hep-th/9711053] [INSPIRE].

[94] F. Bonetti and T.W. Grimm, Six-dimensional (1, 0) effective action of F-theory via

M-theory on Calabi-Yau threefolds, JHEP 05 (2012) 019 [arXiv:1112.1082] [INSPIRE].

[95] T.W. Grimm and A. Kapfer, Anomaly Cancelation in Field Theory and F-theory on a

Circle, JHEP 05 (2016) 102 [arXiv:1502.05398] [INSPIRE].

[96] S. Katz, H.-C. Kim, H.-C. Tarazi and C. Vafa, Swampland Constraints on 5d N = 1

Supergravity, JHEP 07 (2020) 080 [arXiv:2004.14401] [INSPIRE].

[97] L. Bhardwaj, On the classification of 5d SCFTs, JHEP 09 (2020) 007 [arXiv:1909.09635]

[INSPIRE].

[98] L. Bhardwaj and G. Zafrir, Classification of 5d N = 1 gauge theories, JHEP 12 (2020) 099

[arXiv:2003.04333] [INSPIRE].

[99] C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Proving the 6d Cardy Formula and

Matching Global Gravitational Anomalies, arXiv:1910.10151 [INSPIRE].

– 109 –

https://arxiv.org/abs/math/0505553
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0505553
https://doi.org/10.4310/PAMQ.2009.v5.n3.a5
https://arxiv.org/abs/math/0611945
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0611945
https://doi.org/10.1007/JHEP07(2012)085
https://arxiv.org/abs/1205.4722
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.4722
https://doi.org/10.1007/JHEP11(2019)092
https://doi.org/10.1007/JHEP11(2019)092
https://arxiv.org/abs/1908.11276
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.11276
https://doi.org/10.1007/JHEP05(2017)130
https://arxiv.org/abs/1701.00764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.00764
https://doi.org/10.1007/JHEP10(2018)196
https://arxiv.org/abs/1711.09884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.09884
https://doi.org/10.1007/JHEP03(2019)002
https://doi.org/10.1007/JHEP03(2019)002
https://arxiv.org/abs/1811.02577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02577
https://doi.org/10.1007/JHEP12(2019)039
https://arxiv.org/abs/1905.00864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.00864
https://doi.org/10.1007/JHEP07(2020)135
https://arxiv.org/abs/1911.11724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11724
https://arxiv.org/abs/2006.03030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03030
https://doi.org/10.1016/0550-3213(96)00212-X
https://arxiv.org/abs/hep-th/9603150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603150
https://doi.org/10.1007/JHEP07(2013)043
https://arxiv.org/abs/1302.2918
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.2918
https://doi.org/10.1088/1126-6708/1997/12/002
https://doi.org/10.1088/1126-6708/1997/12/002
https://arxiv.org/abs/hep-th/9711053
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711053
https://doi.org/10.1007/JHEP05(2012)019
https://arxiv.org/abs/1112.1082
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.1082
https://doi.org/10.1007/JHEP05(2016)102
https://arxiv.org/abs/1502.05398
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.05398
https://doi.org/10.1007/JHEP07(2020)080
https://arxiv.org/abs/2004.14401
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.14401
https://doi.org/10.1007/JHEP09(2020)007
https://arxiv.org/abs/1909.09635
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.09635
https://doi.org/10.1007/JHEP12(2020)099
https://arxiv.org/abs/2003.04333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.04333
https://arxiv.org/abs/1910.10151
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.10151


J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

[100] P. Benetti Genolini, M. Honda, H.-C. Kim, D. Tong and C. Vafa, Evidence for a

Non-Supersymmetric 5d CFT from Deformations of 5d SU(2) SYM, JHEP 05 (2020) 058

[arXiv:2001.00023] [INSPIRE].

[101] H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of

M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].

[102] N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the Anomaly

Polynomial, JHEP 09 (2015) 142 [arXiv:1507.08553] [INSPIRE].

[103] S. Shadchin, On certain aspects of string theory/gauge theory correspondence, other thesis,

2, 2005 [hep-th/0502180] [INSPIRE].

[104] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric

field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].

[105] A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity

compactified on Calabi-Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144]

[INSPIRE].

[106] S. Ferrara, R.R. Khuri and R. Minasian, M theory on a Calabi-Yau manifold, Phys. Lett. B

375 (1996) 81 [hep-th/9602102] [INSPIRE].

[107] S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on

Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].

[108] T.W. Grimm and H. Hayashi, F-theory fluxes, Chirality and Chern-Simons theories, JHEP

03 (2012) 027 [arXiv:1111.1232] [INSPIRE].

[109] A. Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B

294 (1992) 196 [hep-th/9210127] [INSPIRE].

[110] V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, Cambridge U.K.

(1990).

[111] T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys.

17 (2013) 975 [arXiv:1112.5179] [INSPIRE].

[112] C. Beem, T. Dimofte and S. Pasquetti, Holomorphic Blocks in Three Dimensions, JHEP 12

(2014) 177 [arXiv:1211.1986] [INSPIRE].

[113] R. Gopakumar and C. Vafa, M theory and topological strings. 1., hep-th/9809187

[INSPIRE].

[114] R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127

[INSPIRE].

[115] J.E. Humphreys, Graduate Texts in Mathematics. Vol. 9: Introduction to Lie Algebras and

Representation Theory, third edition, Springer-Verlag, Heidelberg Germany (1972).

[116] D. Bump, Graduate Texts in Mathematics. Vol. 225: Lie Groups, second edition,

Springer-Verlag, Heidelberg Germany (2013).

[117] H.-C. Kim, M. Kim and S.-S. Kim, Topological vertex for 6d SCFTs with Z2-twist, JHEP

03 (2021) 132 [arXiv:2101.01030] [INSPIRE].

[118] E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541

[hep-th/9511030] [INSPIRE].

– 110 –

https://doi.org/10.1007/JHEP05(2020)058
https://arxiv.org/abs/2001.00023
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.00023
https://doi.org/10.1007/JHEP12(2011)031
https://arxiv.org/abs/1110.2175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.2175
https://doi.org/10.1007/JHEP09(2015)142
https://arxiv.org/abs/1507.08553
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08553
https://arxiv.org/abs/hep-th/0502180
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0502180
https://doi.org/10.1016/S0550-3213(96)00592-5
https://arxiv.org/abs/hep-th/9609070
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9609070
https://doi.org/10.1016/0370-2693(95)00891-N
https://arxiv.org/abs/hep-th/9506144
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9506144
https://doi.org/10.1016/0370-2693(96)00270-5
https://doi.org/10.1016/0370-2693(96)00270-5
https://arxiv.org/abs/hep-th/9602102
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602102
https://doi.org/10.1016/0550-3213(96)00268-4
https://arxiv.org/abs/hep-th/9604097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9604097
https://doi.org/10.1007/JHEP03(2012)027
https://doi.org/10.1007/JHEP03(2012)027
https://arxiv.org/abs/1111.1232
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.1232
https://doi.org/10.1016/0370-2693(92)90682-T
https://doi.org/10.1016/0370-2693(92)90682-T
https://arxiv.org/abs/hep-th/9210127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9210127
https://doi.org/10.4310/ATMP.2013.v17.n5.a3
https://doi.org/10.4310/ATMP.2013.v17.n5.a3
https://arxiv.org/abs/1112.5179
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.5179
https://doi.org/10.1007/JHEP12(2014)177
https://doi.org/10.1007/JHEP12(2014)177
https://arxiv.org/abs/1211.1986
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.1986
https://arxiv.org/abs/hep-th/9809187
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9809187
https://arxiv.org/abs/hep-th/9812127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812127
https://doi.org/10.1007/JHEP03(2021)132
https://doi.org/10.1007/JHEP03(2021)132
https://arxiv.org/abs/2101.01030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.01030
https://doi.org/10.1016/0550-3213(95)00625-7
https://arxiv.org/abs/hep-th/9511030
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9511030


J
H
E
P
0
4
(
2
0
2
1
)
1
6
1

[119] O.J. Ganor and A. Hanany, Small E8 instantons and tensionless noncritical strings, Nucl.

Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].

[120] Y. Tachikawa, On S-duality of 5d super Yang-Mills on S1, JHEP 11 (2011) 123

[arXiv:1110.0531] [INSPIRE].

[121] O. Aharony, M. Berkooz, S. Kachru and E. Silverstein, Matrix description of (1,0) theories

in six-dimensions, Phys. Lett. B 420 (1998) 55 [hep-th/9709118] [INSPIRE].

[122] S. Shadchin, Saddle point equations in Seiberg-Witten theory, JHEP 10 (2004) 033

[hep-th/0408066] [INSPIRE].

[123] M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02

(2015) 054 [arXiv:1407.6359] [INSPIRE].

[124] S.S. Razamat and G. Zafrir, Compactification of 6d minimal SCFTs on Riemann surfaces,

Phys. Rev. D 98 (2018) 066006 [arXiv:1806.09196] [INSPIRE].

[125] V.G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, third edition,

Cambridge University Press, Cambridge U.K. (2003).

[126] M. Havlíček, E. Pelantová and J. Tolar, On representations of Lie algebras compatible with

a grading, arXiv:0901.2300.

[127] B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart and C. Vafa, M-Strings, Commun. Math.

Phys. 334 (2015) 779 [arXiv:1305.6322] [INSPIRE].

[128] S.-S. Kim and F. Yagi, 5d En Seiberg-Witten curve via toric-like diagram, JHEP 06 (2015)

082 [arXiv:1411.7903] [INSPIRE].

[129] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Discrete theta angle from an O5-plane, JHEP

11 (2017) 041 [arXiv:1707.07181] [INSPIRE].

– 111 –

https://doi.org/10.1016/0550-3213(96)00243-X
https://doi.org/10.1016/0550-3213(96)00243-X
https://arxiv.org/abs/hep-th/9602120
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9602120
https://doi.org/10.1007/JHEP11(2011)123
https://arxiv.org/abs/1110.0531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.0531
https://doi.org/10.1016/S0370-2693(97)01503-7
https://arxiv.org/abs/hep-th/9709118
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9709118
https://doi.org/10.1088/1126-6708/2004/10/033
https://arxiv.org/abs/hep-th/0408066
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0408066
https://doi.org/10.1007/JHEP02(2015)054
https://doi.org/10.1007/JHEP02(2015)054
https://arxiv.org/abs/1407.6359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.6359
https://doi.org/10.1103/PhysRevD.98.066006
https://arxiv.org/abs/1806.09196
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.09196
https://arxiv.org/abs/0901.2300
https://doi.org/10.1007/s00220-014-2139-1
https://doi.org/10.1007/s00220-014-2139-1
https://arxiv.org/abs/1305.6322
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.6322
https://doi.org/10.1007/JHEP06(2015)082
https://doi.org/10.1007/JHEP06(2015)082
https://arxiv.org/abs/1411.7903
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.7903
https://doi.org/10.1007/JHEP11(2017)041
https://doi.org/10.1007/JHEP11(2017)041
https://arxiv.org/abs/1707.07181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07181

	Introduction
	5d theories on Omega-background
	Gauge theories and effective prepotential
	Geometric engineering
	6d SCFTs on S1 with/without twists

	Blowup equations
	Blowup equation review
	Solving blowup equations
	Magnetic flux quantization
	Consistent magnetic fluxes

	Instructive examples
	5d pure SU2theta with theta0pi
	5d pure SU(3)k
	6d SU(3) gauge theory with Z2 twist


	Rank 1 theories
	KK theories
	SU(2) + 8F
	SU(2)0 + 1Adj
	SU(2)pi + 1Adj

	5d SCFTs: non-Lagrangian theories
	LocalP2
	Local P2 + 1Adj


	Rank 2 theories
	KK theories
	Sp(2) + 3AS
	SU(3)4 + 6F
	SU(3)3/2 + 9F
	SU(3)0 + 10F
	SU(2)*SU(2) + 2bifund
	SU(3)0 + 1Adj
	Sp(2)0 + 1Adj
	SU(3) + 1Sym
	SU(3) + 1Sym + 1F
	G2 + 1Adj

	Rank 2 5d SCFTs
	P2 U F3
	P2 U F6
	P2 U F3 + 1Sym
	P2 U F6 + 1Sym
	SU(3)8


	Theories of higher ranks
	SU(4)8
	6d SO(8) gauge theory with Z2 twist
	SU(5)8

	Conclusion
	1-loop prepotentials of 6d SCFTs on a circle with twist
	Affine root system and 1-loop prepotential of W-bosons
	Graded representations and 1-loop prepotential 

	5-brane webs for theories of frozen singularities
	5-brane webs for SU(2)pi + 1Adj and local P2 + 1Adj
	5-brane web for SU(2)0 + 1Adj
	5-brane web for Sp(2)0 + 1Adj
	5-brane web for Sp(2)pi + 1Adj
	5-brane web for P2 U F3 + 1Sym
	5-brane web for SU(3)0 + 1Sym + 1F
	5-brane web for P2 U F6 + 1Sym


