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BOOTSTRAPPING K-MEANS CLUSTERING

Myoungshic Jhun 1

Abstract

   Independent observations Xl, X2, •E•E•E,X. are made on a distribution F on Rd. To 

devide these observations into k clusters, fast choose a vector of optimal cluster centers 

bn = (bn1, bn2•E•E•E,b4) to minimize Wn(a) == 1 min1<j<4 Xt - aj 2 as a func-

tion of a = (a1,a2,•E•E•E ak.), then assign each observation to its nearest cluster center. 

Each bn, is the mean of observations in its cluster. Pollard (1982) obtained a central 

limit theorem for the means of the k-clusters. In this paper, it is shown that the boot-

strap distribution of the centered b„ has the same limiting distribution ; the argument 

rests on asymptotic behavior of empirical processes on Vapnik-Chervonenkis classes in 

triangular array setting. Advantages of the Bootstrap methods are discussed and the 

performance of bootstrap confidence sets is compared with Pollard's confidence sets by 

Monte Carlo simulation. 2

1. Introduction 

  Independent obsevations X1, X2,.. . , X, are made on a distribution F on Rd. The k-
means clustering procedure prescribes a criterion for partitioning these observations into k 
clusters. To devide the observations X,, X2,'. • , X,~ in Rd according to this criterion, first 
choose a vector of optimal cluster centers b,, = (b7, 6n2,.. . , b,~) to minimize

as a function of the vector a = (a, , a2,• .. , a4), then assign each X; to its nearest cluster 
center. Associated with each cluster center b,~ is the convex polyhedral region A,~ of 
all points in Rd closer to b,~, than to any other cluster center. These polyhedral regions 

partition the observations X1, X2, ... , X, into optimal clusters. Each b~ is the mean of the 
observations in its cluster a otherwise W,,(a) could be decreased by replacing b,; by that 
cluster mean and then, if necessary, reassigning some of the Xt's to new centers. 

  Cox (1957) considered a classification of an individual into one of the k groups us-
ing an observation X under the associated loss F{X - (X)}2 where ~(X) is a group-
ing function. MacQueen (1957) showed that the population variance within the sam-

ple cluster converges to population variance within a locally optimal clustering of the
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population. Hartigan (1975) obtained some asymptotic distributions for k-means cluster-
ing in the one-dimensional case. Pollard (1982) generalized Hartigan's result to a multi-
dimensional setting. Let b = (b1 t b2i ... , bk) minimize the population cluster sum of squares 

f minl <, ~ k IX - a j I f 2 dF (x ). By using the ` equicontinuity of empirical process ', Pollard 
(1982) showed that n1/2(bn - b) converges weakly to N(o,E(F)) under some conditions. 

  Efron (1979) discussed a ` bootstrap method ' for approximating the sampling distri-
bution of a function of the observations and the underlying distribution F. We call the 
approximation the bootstrap distribution ; it is obtained by replacing the unknown distri-
bution F of the data by the empirical distribution F,~ of the sample in the definition of the 
statistical function, and then resampling the data from F,,, with replacement to obtain a 
Monte Carlo distribution for the resulting random variable. The feasibility and advantages 
of the bootstrap method have been discussed in Efron (1979), Bickel and Freedman (1981), 
Beran (1985), and other papers. 

  In this paper, ` consistency of the bootstrap method 'for k-means clustering will be 
shown, in the sense that the bootstrap distribution has the same limiting distribution 
as the actual distribution. It implies that the bootstrap confidence regions for k-means 
b = (b1, b2,. .. , bk) have the correct asymptotic levels. ( cf. Beran (1985)). Arguments are 
analogous to Pollard (1982), and the proof depends on a triangular array version of a central 
limit theorem for empirical measures on V4nik-Chervonenkis class. In getting confidence 
regions for k-means b = (b1, b2, ... , bk), the direct asymptotic distribution requires estima-
tion of the covariance matrix E(F), which involves estimating density function 1(x) of the 
underlying distribution F(x) and Aj = {x E Rd ~x is closer to b, than any other b;, I ~ j}. 
But the bootstrap method does not require estimation of the covariance matrix E(F), which 
is a clear advantage. Performance of both the bootstrap method and an asymptotic method 
based directly on Pollard's results are compared empirically in a Monte Carlo study for two 
examples. 

2. Consistency 

  We will discuss the asymptotic method first, and then describe the bootstrap method 
with its consistency. 

2.1 Asymptotic Method 

  Suppose X1, X2,. . •, X,,, are independent identically ditributed random vectors on Rd 
with unknown cumulative distribution function F(x). As in the previous section, given 

             we can obtain a vector b~ = , l k) which minimizes

(1)

as a function of the vector a = (a1, a2, ... , ak) where

Consider a quantity n'I2(b - b) where b minimizes f b(•, a)dF. Under some conditions, we 
have a central limit theorem for the quantity &I2(b,~ - b) as follows.
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Theorem 1 (Follard (1982)) 

  Let b5 be the vector of optimal k-means cluster centers for independent sampling from 
a distribution F on Rd. 

Suppose 

(1) the vector b that minimizes the population within cluster sum of squares f tb(•, a)dF is 
    unique ( up to relabelling of its coordinates ) ; 

(ii) f (IxII2dF(x) < oo ; 

(lii) the distribution function F has a continuous density function , f with respect to Lebesque 
    measure a on Rd ; 

(iv) there exists a dominating function g(•) with 1(x) < g(((x((), for all x E Rd, and Tdg(r) 
    integrable with respect to Lebesque measure on [0, oo} ; 

(v) the matrix I' defined by evaluating (3) at a = b is positive definite.

Then

~1~2 (bn - b) converges weakly to N(0, r~ 1 VF 1) (z)

Here V is the kd x kd diagonal matrix with

as its ith diagonal block and Ms denotes the set of points in Rd closer to b than any other 
b3 for j i, and I' is made up of d x d blocks

(3)

where r, = ((at - a, (~, of) is a (d -1) dimensional Lebesque measure, F1, denotes the face 

(possibly empty) common to A; and A, (A1 is the convex polyhedra associated with the 
center a; for i = 1, 2, • • • , k), and Id denotes d x d identity matrix. 

2.2 Bootstrap procedure 

  Given X1, X2, • .. , X,~ we have an empirical distribution function F,~ of these obser-
vations. Draw n independent random observations X, X2, X (bootstrap sample) 
with replacement from F,~. Let F,~ be the empirical distribution function of the bootstrap 
sample, and B(•) be the empirical process n1/2(F,(.) -w F~(.)). We can obtain a vector 
bn = (14l142 ~ , ... ,1%) which minimizes

as a function of the vector a = (a1, • , a) where t/i(•, a) is described previously. Then 
we have a bootstrap quantity ra 1 / 2 (bn - b). We will show that this quantity has the same

-3.
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limiting distribution as n1/2(b,~ - b) which justifies the use of bootstrap distribution for 
approximating sampling distribution (cf. Beran (1985)). 

Theorem 2 (Main result) 

  Let b be the vector of optimal k-means cluster centers for independent sampling from 

an empirical distribution function Fn of the observations X1, X2,.. , X,~ on Rd . Suppose 

(i) the vector b that minimizes f t/(•, a)dF is unique (up to relabelling of its coordinates); 

(ii) f IJxlJ2dF < oo ; 

(ffl) the distribution function F has a continuous density function f with respect to Lebesque 
    measure ) on Rd ; 

(iv) there exists a dominating function g(.) with f (z) < g(IIx11), for all x E Rd, and rdg(r) 
    integrable with respect to Lebesque measure on [0, oo] ; 

(v) the matrix r~ defined by evaluating (3) at a = b,~ is positive definite. 

Then n112(bn -- b,~) converges weakly to N(0, r--1 vr-1). 

proof 

  Conditions (i) to (v) are discussed in Pollard (1982), and we do not have any improve-
ments on them. 

  We will use Lemmas 1 through 4, which are in the Appendix 1 with proofs. First, it 
will be shown that IIb; - b~ II = o~ (1), By using the argument in Section 3 of Pollard 
(1982) applied to a triangular array, we can show that b,~ will lie in some closed ball B(K) 
centered at the origin and radius K. Since the graphs (cf. Definition 2 in Appendix 2) 
of elements of ijr = {b); b E B(K)} form a Vapnik-Chervonenkis class (cf. Definition 
1 in Appendix 2), we can apply Proposition 3 and Proposition 4 in Appendix 2 to obtain 
sup* E f b(., b)d(F~ - F)( --~ 0 in probability. Then f t/'(•, bin )dF,~ - f b(., 14 )dFn -~ 
o and f t,b(., b )dF,~ f t,b(., b~ )dF,, where f t,b(', bn)dF~ converges to f b(., b,a)dF~ < 

f(.,b)dF. ,~,~Thus I fb(,!4)dF,~ * f ~b(., b,~)dF,j -* 0 and from the uniqueness of b,~ we 
have 11b;~ -- bin I I = o, (1). 

  Put . = I Ib - b,~ 11, and then apply Lemma 4, with a;~ = b and a~ = b,, . f tfr(., bm )d B < 

f/'(.b)dJ3 +, ,~ and (14) implies

- nr112Z (bin - bin) + (l/2)(bn - bn)'rn(bn -- b) + or(n~112\ ) + o,( .\2) o (4)

  Positive definiteness of Pin implies the existence of x such that (b -- bn)'r~ (bin - bin) ? 
rya 2. (20) leads to K.~ 2 or(n"1/2)1) + or(nr1'2\ ) + o~(X, 2) which forces ) 
o,(n-112). For simplicity, set n1/2(b~, - b) = 8. Then (15) becomes

S('bn)dBn -- f(•, b)dB --1 Zn9 + (1/2)n'1(8;)'T`,~8 + or(n-1 ) } 

z 

            f(.,b)dB n ~ + (1/2)n-1 I Ir /2e - rn 1/2Z,11               -(112)n-1Z,.r-1Z + o(n) 
              ft(.,b,~ + n~112P; 1 Z,~ )dBn 
  + 1 2 n-1 x129 _r;1/2z((2+ o n_1
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as may be seen by setting a = b,~ + n`'12r 1 Z, in (15).

f h(',bm)d$m~ f ~'? + n-1/2F 1
forces (l/2)n-~ ~fi n n - rn 1~2Zn ~j = op(n-1) or 9;~ = T'n 1 Zn + Op(1).

3. Simulation results 

  To study and compare the performance of bootstrap method and asymptotic method a 
Monte Carlo simulation was performed. 

3.1 K-Means Algorithm 

  We use the 'K-Means Algorithm' (Hartigan (1975)), which is described as follows. 

Preliminaries 

  Let X1 = (X11, Xti2, ... , X,), i = 1, 2, ... , n. The ith case of the jth variable has value 
z,~ . The partition P(n, k) is composed of the clusters 1, 2, • • • , k. Each of the n observations 
lies in just one of the k clustrers. The mean of the jth variable over the cases in the lth cluster 
is denoted by The number of observations in the lth cluster is n(1). The distance between 

the ith observation and the center of the lth cluster is D(1,1) - { ~ (x; j - )2}1/2. The 
error of the partition is

where 1(i) is the cluster to which the ith case belongs. 

step 1 Assume initial clusters 1, 2, • • • , k. Complete the cluster means bra and the initial 
   error e[P(n, k)] = 1 D(i, I(i))2. 

step 2 For the first case, compute for every cluster I

the increase in error in transferring the first case from cluster 1(1), to which it belongs 
at present, to cluster 1. If the minimum of this quantity over all I = I(1) is negative, 
transfer the firat case from cluster 1(1) to this minimal i, adjust the cluster means of 
1(1) and the minimal I, and add the increase in error (which is negative) to e[P(n, k)]

step 3 Repeat step 2 for the ith case (2 ~ i ~ n) 

step 4 If no movement of a case from one cluster to another occurs for any case, stop. 

    Otherwise, return to Step 2. 

  This algorithm reasonably converges to the correct solution. 

3.2 Bootstrap Method versus Asymptotic Method
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  Confidence regions for the means of k-clusters can be obtained by using the asymp-
totic method ( CLT for k-means clustering, cf. Theorem 1), provided that we at least 
have a consistent estimate of the covariance matrix E(F) = r-1 Vf`- 1 of the limiting 
distribution. Such estimation involves figuring estimates of density function 1(z) and 
A, = {x E Rd J X is closer to b, than any other b3 ? i ~ j). By way of comparison, note that 
Theorem 2 implies correct asymptotic levels for the bootstrap confidence regions (cf. The-
orem 1, Beran (1985)) and, in addition, the bootstrap method does not require estimation 
of the nuisance parameter E(F) = r-1 VI'~ 1. This is an important practical advantage of 
the bootstrap procedures. 

  Estimated coverage probabilities for both methods are compared in two examples by 
Monte Carlo simulation. In the simulation, we consider the simplest cases in which the data 
is one-dimensional with two clusters. In this context estimation of the complex covariance 
matrix E(F) is simpler but still rather difficult. 

  Two aymptotic approaches were carried out. 

Asymptotic 1 ; Use a direct estimate of E(F) based on kernel density estimate , f,~ (x) (with 
an appropriate bandwidth) and sample cluster means br~2). 

Asymptotic 2 ; Use a bootstrap estimate

of E(F) with large B. (We use B=200 in our examples.) Note that the method" Asymptotic 
1 " is considerably more difficult in a multi-dimensional setting. 

  We also considered two bootstrap procedures. 

Bootstrap 1 ; n1f 2(b(F~) - b(F~.)) was implemented for our pivot n1/2(b(F,~) - b(F)) 

Bootstrap 2 ; n112E(F,~)-1/2(b(F~) - b(F,~)) was implemented for our pivot rat/2E(F)~1/2 

(b(F) ~- b(F)) 
  Actually " Bootstrap 2 " has a better rate of convergence in the situation where a 

confidence interval is constructed for the mean of a univariate one-sample (cf. Ducharme 
and Jhun (1986)). We do not know about the difference in the rate of convergence between 
these two methods in this case, so it may be interesting to compare these two methods 
empirically. 

3.3 Examples 

  In using the bootstrap methods a Monte Carlo approximation were used by taking 200 
bootstrap samples of size n from empirical distribution F,z of the data X1i X2, , X . 
We use the quantity 1&"2E(FY'1"2(b(F) ~-- b(F))f to obtain the confidence regions of b(F) 
where ' is the Euclidean metric on R2. This results in an ellipse as a confidence region of 
b(F). Note that it is easy to use the bootstrap method for any metric on R2 which results in 
a different shape of the confidence region (eg. f(z1t z2)J = max(x1i x2) yields a rectangular 
region.) 
  Both methods were carried out independently 300 times in the examples below. Sample 
sizes of 10, 20, 30, 40, and 50 were used to investigate coverage probabilities of the various 
confidence ellipses for the true cluster means (b1, b2).

6
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Example 1. We consider the example in Pollard (1982). Consider fitting two clusters to a 
sample from a distribution F that is spread uniformly over the union of the two disjoint 
intervals [--1.5, -0.5] and [0.5,1.5] on the real line. 

Example 2. Consider fitting two clusters to a sample from a uniform distribution over [0, 1] 
on the real line. 

   These examples are quite extreme cases, one with two very clear clusters, another one 
with no clusters at all. Empirical coverage frequencies of the various confidence ellipses used 
in the context Example 1 and Example 2 are shown in Tables 1 and 2 respectively. Overall, 
in both examples, in terms of coverage probabilities the bootstrap methods work better than 
the asymptotic methods. "Asymptotic 1" tends to overestimate the coverage probabilities in 
both examples, while "Asymptotic 2" tends to underestimate in Example 1. The difference 
comes from the method in estimating E(F). However, " Asymptotic 2 "looks better than " 
Asymptotic 1 " which implies accuracy of E(F,) as an estimator of E(F). The performance 
of " Bootstrap 1" and " Bootstrap 2 " are comparable. But, " Bootstrap 2" works better 
than the " Bootstrap 1 "for example 2. The use of only 200 bootstrap samples can create 
lumpiness of the bootstrap distribution in the tails, and may diminish the performance of 
the bootstrap confidence regions, especially at the 99% level.

Table 1. Comparison of estimated coverage probability for example 1

1. 95% confidence interval for the coverage probability based on 300 trials.
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4. Appendix 1 

  This section develops several lemmas needed for the proof of the main result (Theorem 
2 of Section 2). The aim is to justify the approximation

(5)

for a,~ in a neighborhood of a fixed vector p and fixed positive definite matrix rn , given 
X1, X2,.• , X,,, where Z, is an asymptotically normally distributed random vector. We can 
decompose W, (a,) ainto two components as below by using empirical distribution function 
F and triangular version of empirical process B.

(s)

where B, e) = n'12{F, (•) - F,(.)). Notice that, given fi,b(.,a.)dF 
deterministic, and we will mainly discuss about n r 112 f t,b(, a,~ )dB . The arguments are 
pretty much analogous to Pollard (1952).

Table 2. Comparison of estimated coverage probability for example 2

1. 95% confidence interval for the coverage probability based on 300 trials.
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Lemma 1 

  Suppose f ~Ix(l2dF(x) < ao and F has a continuous density function f. Then a --3 
t,b(., an) from Rkd into L2(F) is differentiable in quadratic mean. In consequences, the map 
a -* f , r(., a, )dF,b is differentiable. 

proof 

  If x E int (.A 2 ), 

        b(x, a + h) = ~ anE - = b(x, a ) - 2(h,)'(x - a,~;) + ~Ih1I2                                                        4

Since X, has a continuous density function f (x), X3 E U, intz <; < k (Af_) with probability 
one. Thus

,i(x, an +h) = b(x, a) + h'~(x, a) + fthjI2R(x,an,h) (7)

where d(x,a) ,~is the k vector of L2(F) functions -2(x - af)1A. ;~ and R(x,a,~,h)

R(x, a,~, h) ---~ o in F,~ as h--'O. (8)

Also

R(x,an,h) ≦ 鍵ゐ1「1目 ゐ'△(x,a)事max̀≦ ゴ≦為目レ α一酬2-ll欝 一αゴ疑2ロ

≦li4(矧 川 ゐ1「1Σ1=、田 血一aゴー酬2-1レaゴll21

≦ σ(1+樋x縫)fbrゐsmaⅡen。ughands・mec・n就antσ

∈L2(」%)uniforlnlyh憲 η.

(9)

Flom(7)a:nd(8),wehaveR(湿,aπ,ゐ)∈L2(瓦)and

R(x,a伽 ゐ)→oinL2(鑑)asゐ →0. (10)

(We used sups SUP~IFII <E f R2(x, a,~, h)dF~ (x) < oo with probability one,} Therefore f tb(., a~ ) 
dF,~ is differentiable with derivative

7(aπ)=J△ 一 鵡 (11)

  Next we will convert L2(F) differentiability of t,b(•, a,~) into stochastic differentiability of 

f ~h(•, a jdB . For this we will use some properties of Vapnik-Chervonenkis class to apply 
Theorem A1, which are explained in Appendix 2. 

Lemma 2 

  Let {a} b e a sequence of random vectors with Jai - a II = o~ (1), for some fixed vector 
a given X1, X2, ... , X,. Then under the condition of Lemma 1,

Jψ一 峨=Jψ 一 峨+続 曜J△ し蠣+輔 (12)

where r w J,am - a~ f (. 

proof

9.
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  From (7), the remainder term in (12) can be written as Ua - a„ I J f R(•, a , a - a,~ )dB. 
  From the argument for Lemma 1, R(., a,~, (4 - a,~) converges in L2(F) norm to zero as 

4-* a,. 
  From Proposition 1 and Proposition 2 (in the Appendix 2), we note that the graphs of 

elements of {f(.) = R(•, - a,~)} form a V-C class with envelope fc(x) = C(1 + llzIJ) 
for some constant C (cf. proof of Lemma 1). 

  Apply Theorem Al and Remarks (in the Appendix 2) with f(.) = R(•, an, (4- a,~) and 
g = D to get the result. 

  We also need a convergence of the second order derivative Tn of a --* f t,b(•, a)dFn to P. 
Lemma 3 

  Suppose f I IxII2dF(x) < oo, and F(x) has a continuous density function /(x) with respect 
to d-dimensional Lebesque measure )(•). Assume that the integral f [ f (x)(x - rn)(x -
rn)' J 1 ,,;jc(dx) exists and depends continuously on the location of the centers, for each 
i and j and for each fixed m E Rd (r and F,} are defined in Section 3.1). 

  Then a -~ f ,b (•, a)dF,~ has a second order derivative F which converges to a second 
order derivative T under?. 

proof 

  From Lemma 1, f t'(., a)dFn has the first order derivative 'y(a) with components f -2(x-
aI)1{XEA;}dFf(x) for i = ,k.

Now

Jψ(・,a)鵡 イ ψ(・a陥 一F)+Jψ(・,a)dF

and the second derivative of the first term of RHS converges to zero uniformly with proba-
bility one by using Proposition 3 in Appendix 2 (an extension of Glivenko-Cantelli lemma 
to a collection of functions ) with fixed underlying distribution. 

  Second order defferentiability of f t,b(.,a)dF was shown in Pollard (1932) by using an 
application of Stoke's theorem. 

  From Lemma 1 to Lemma 3, we can have the approximation (5). Now we willl write the 
approximation in terms of a sequence converging to p ; it will then apply directly to both 
sequences {h } and the sequence {p + n~1`2r-1Z). 

Lemma 4 

  Suppose f b(., a)dFn has a minimum at an, which is fixed given X1, X2, .. • ,X. Let 

{a,) be any sequence of random vectors in ,Ru for which (Ia - a,~f or(1). Then under 
the assumption of Lemma 3, we have

(14)

where r, =1Ia - a,~ and asymptotically Zn has a normal distribution. 

proof 

  From Lemma 1 and Lemma 3,

f~(.,a)dFn = ft,b(.,a)dF n n + (a - a,~)'y(an) 
           +(1{2)~a _ an)T n(a ! an) + o (fa r an M2)• (15)

10



Bootstrapping K-means clustering

The linear term must vanish because a = an minimizes f ~b(., a)dF,, . Set a = a to find

(is)

Notice that

(17)

Substituting (12) and (16) into (17) and regrouping terms gives

(ss)

Set

(19)

Then Z,~ converges weakly to N(o, V), where

V = (20)

by using Theorem A2.

5. Appendix 2. 

  In this section we will state some propositions and theorems for empirical processes on 

Vapnik-Chervonenkis classes, which were used in the proofs of the lemmas and main result. 

For this we need some definitions as follows. 

Definition 1 (Dudley (1978)) 

  Let A be some set (subset of a measurable space S) 

(1) ~A t will denote the cardinality of A (could be oa). Let CF be a collection of subsets of S. 

(2) Ll (A) = cardinality of subsets of S 
         = number of subsets of A carved out by CF. 

        = number of different sets of the form A fl C, C e CF. 

(3) m(n) = maxAcs{G1~(A) : ~AJ = n} - called the growth function pertaining to CF.

(4) V(CF)=V=
inf (n; m (n) < 2'~ ) 
oo if m' (n) = 2'~ for any n,

CF is a V-C (Vapnik-Chervonenkis) class if V(C) < oo, . the number V(F) is called the 
exponent of CF. 

Definition 2 

  Let f be a real-valued function on a set S. The graph of f is the subset of S x R1 given 
by {(s, t); either 6 t f (s) or f (s) < t < 0}.

11
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Definition 3 

  The covering number N(s) = N(5, d, I) for a metric space I, with metric d, is the 
smallest in for which there exists points i1, , i E I such that for arbitrary t E I, 
mini «< m d(t, ak) <5. 

  We can extend this definition to a collection of functions. Fix a measurable space S 
and let Q be a probability measure on S. Let 4' be a collection of functions in L1 (Q) 
. For each E, define the covering number N1(€, Q, 4i) as the smallest integer in such that 
mine<~<,, f - g, < e for any f E 4' (i.e. {g,; j =1,2, • • •,in} from a &net). 

Proposition 1. (Dudley (1978)) 

  Let G be a finite dimensional vector space of real functions g on a set S. Then the set 
of the form 4 = {x; g(x) > 0} is a V-C class with V(4) dirn(G) f 1. 

Proposition 2. (Dudley (1978)) 

  Let 1 be a V-C class. Fix k and let v(Ai, A2,. . • , At), where Al E ' be the or-field 
generated by the sets A1, A2,. • . , Am. Then = UQ { Ai , A2,•.•, Am; A, E cli} is a V-C 
class with V(+4) < k V(4). 

  Let X1 s X2,.. • , X,~ be Lid. S-valued with distribution F,,,, F,~ be an empirical measure 
and 4' be the collection of functions with envelope f o (i.e. each f E 4' satisfies It(t)I < 

!fo(t)I and itoIL, < oo). 
  Assume f f o (x)dF, (x) < K and denote

   2 = {(f ` g)2} f,g E 4'}, 'I's,,, = {(f- g); d,,(f,g) <5). 

         Ni (b, F, 4Y) = L1 (F)- covering number of 4'. 
         N2(5, F, 4') = L2 (F)- covering number of '. 

J2(5,F,iY) = f dj 2log(N2(u)Iu)1112du, Bn(.) = n1I2(F, (•) -- Fn())

where d,, (f , g) = L2 (F,,) distance between f and g and d,, (f , g)2 = 1(1 - g)2 dF„ and 
N(u) = N2(u, F, 4'). With this setup the following propositions and theorems are due to 
Millar (1984). 

Proposition 3. (Millar (1984)) 

  If lag N1(c, F,~, 4') = op(n) for any c > 0, then supfE qi j f (.)d(Ff (•) -- F,,(.)) I --~ 0 in 
probability. ( Note : If the underlying distribution is fixed, convergence can be obtained 
almost everywhere.) 

Proposition 4. (Millar (1984)) 

  If the graph of f E 4' forms a V-C class, with exponent V, then there exists A such that 
N1( c f f odF,, , F,,, 4') < A - ~` where c and A depend only on the index V. 

  Now we will state a triangular version of equicontinuity results for empirical processes. 
First we need the following assumptions. 

Assumptions 

(A1) For any positive c and ,, there exists 5 > 0 such that lim,,. sup P,,{ J2(&, F,, 'I') > 
     i} <ewhere P,,=F.,,xF.,xxF,,.

12
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(A2) For arbitrary 5 > 6, log N1(5, F , ) = o(n). 

Theorem Al (Equicontinuity for empirical process; Millar (1984)) 

  Under Al and A2, for any a and i > o, there exists 5 such that

Remarks 

(1) If the graphs of all f E 'I' form a V-C class, then A2 holds. 

(2) Since V norm > L1 norm, Al will also hold if the graphs form a V-C class. 

  If we have additional assumptions to Al and A2, then we have a'Central Limit Theorem' 
for empirical measures. 

Theorem A2 (CLT for Empirical Measures : Millar (1984)) 

  Let C(1) be the collection of continuous functions on . Put a metric d on hr where 
d(f, g) = f (f - g)2dF. Assume Al and A2. Assume also that there exists F such that 
supf,gE 1p I f (f - g)~d(F,~ - F) f -- a. 

  Then there exists ̀ Brownian Bridge ' BB(F) = {Z(t); t E h!} with all its paths in C() 
and n1/2(f d(F~ (•) - F~ (.))) converges to Z(.).
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