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1 Introduction

The conformal bootstrap [1, 2] in D > 2 dimensions has produced remarkable results, in-

cluding numerical bounds on operator dimensions and OPE coefficients [3–29], analytical

constraints [30–36], and recently a precise conjecture for the Z2-even spectrum of the 3D

Ising model [23]. However, all previous studies have focused on a single four-point function

〈φφφφ〉 containing identical operators (sometimes in a nontrivial global symmetry represen-

tation). It is extremely important to ask how other correlators, such as 〈φφφ2φ2〉 or more

generally 〈φ1φ2φ3φ4〉 for different operators φi, additionally constrain the space of CFTs.
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An immediate complication is that the unitarity properties of such mixed correlators

are more intricate because coefficients in the conformal block expansion are not necessarily

positive. In section 2, we describe how these unitarity properties can be captured by a

semidefinite program with a continuously infinite number of constraints (as opposed to

the linear programs that arise in the single correlator case). Applying methods introduced

in [10, 16], we rewrite this as a higher-dimensional semidefinite program with a finite

number of constraints, which can be solved on a computer.1 In section 3, we specialize our

discussion to the case of scalar correlators with a Z2 global symmetry.

To formulate our semidefinite program, we need approximations for conformal blocks

as rational functions of the exchanged operator dimension ∆. Such approximations follow

from a rapidly convergent expansion for the blocks as a sum over poles 1/(∆ − ∆i). We

describe this expansion in section 4, generalizing the results of [16] to non-equal exter-

nal operator dimensions. Our expressions give higher dimensional analogs of a recursion

relation for Virasoro conformal blocks developed by Alyosha Zamolodchikov in [37, 38].

In section 5 we apply our formalism to numerically study operator dimensions in 3D

CFTs with a Z2 global symmetry, a class of theories that includes the 3D Ising model. We

focus on the system of four-point functions {〈σσσσ〉, 〈σσǫǫ〉, 〈ǫǫǫǫ〉} containing the lowest

Z2-odd scalar σ and Z2-even scalar ǫ, and ask: What are the allowed dimensions (∆σ,∆ǫ)

assuming that σ and ǫ are the only relevant scalars in the CFT?

The existence of only two relevant scalars is an obvious experimental fact about the

3D Ising CFT — it follows from the observation that the phase diagram of water is two-

dimensional. Nevertheless, despite the mild assumptions of Z2 symmetry and two relevant

scalars, we find a striking result: the dimensions (∆σ,∆ǫ) are almost uniquely fixed! The

allowed region is a tiny sliver around ∆σ = 0.51820(14) and ∆ǫ = 1.4127(11), in agreement

with the most precise Monte-Carlo simulations [39], and also the c-minimization conjecture

of [23]. Indeed, our results give strong support for c-minimization — support that can be

strengthened with further numerical work.

It is plausible that with arbitrary computational power, the constraints we study are

strong enough to uniquely determine the spectrum of the 3D Ising CFT. In particular,

our results support the conjecture that the 3D Ising CFT is the only Z2-symmetric 3D

CFT with exactly two relevant operators, giving a higher-dimensional example of critical

universality [40, 41].

Because our study includes the correlator 〈σσǫǫ〉, we can additionally learn about

Z2-odd operators (appearing in the σ × ǫ OPE), which were not accessible in previous

bootstrap studies. In section 5 we also compute an upper bound ∆σ′ ≤ 5.41(1), where

σ′ is the second-lowest dimension Z2-odd scalar. A precise determination of the complete

Z2-odd spectrum of the 3D Ising model is a fascinating problem that we leave for future

work. We describe other important future directions in section 6.

1There are still a discretely infinite number of constraints, labeled by spins ℓ that can appear in the

OPE. However in practice, it is sufficient to include a large but finite number of spins, see appendix B.
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2 Bootstrapping mixed correlators and semidefinite programming

2.1 What is new about mixed correlators?

It was shown in [3] that the bootstrap constraints for a four-point function of identical

scalars 〈φφφφ〉 can be transformed into a system of linear inequalities. Studying solutions

to these inequalities leads to bounds on CFT data. By contrast, the bootstrap constraints

for mixed correlators 〈φ1φ2φ3φ4〉 cannot be written in terms of linear inequalities — rather

the mixed correlator problem is intrinsically quadratic.2 In this section, we describe how

this quadratic problem arises in a simple case, and how the procedure of [3] can be modified

to solve it.

2.1.1 Review of the bootstrap argument for identical scalars

Let us first recall the original bootstrap argument of [3] for a four-point function of identical

real scalars 〈φ(x1)φ(x2)φ(x3)φ(x4)〉. Using the OPE, we can write the four-point function

as a sum over conformal blocks

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

x
2∆φ

12 x
2∆φ

34

∑

O∈φ×φ

λ2
φφOg∆,ℓ(u, v). (2.1)

Here, u =
x2
12x

2
34

x2
13x

2
24
, v =

x2
23x

2
14

x2
13x

2
24

are conformal cross-ratios, O runs over real primary operators

appearing in the φ× φ OPE, ∆ = dim O, and ℓ = spinO. The OPE coefficients λφφO are

real by unitarity, implying that their squares λ2
φφO are positive.

The four-point function should be independent of how we pair the operators to perform

the OPE. Specifically, swapping 1 ↔ 3, we find the crossing equation

v∆φ

∑

O

λ2
φφOg∆,ℓ(u, v) = u∆φ

∑

O

λ2
φφOg∆,ℓ(v, u). (2.2)

Grouping terms that multiply λ2
φφO, we obtain a sum rule with positive coefficients

∑

O

λ2
φφOF∆,ℓ(u, v) = 0, (2.3)

F∆,ℓ(u, v) ≡ v∆φg∆,ℓ(u, v)− u∆φg∆,ℓ(v, u). (2.4)

Positivity of the coefficients in (2.3) is the key property that leads to universal bounds

on CFT data, without having to know the precise details of the operators O entering the

OPE. Let us first assume the dimensions ∆ and spins ℓ lie in some specified range. For

example, we might assume that all scalars have dimension larger than some ∆0. Consider

linear functionals α acting on functions of u, v, and suppose there exists an α satisfying

the conditions

α(F∆,ℓ) ≥ 0 for all ∆, ℓ in the spectrum, and

α(F0,0) = 1. (2.5)

2In fact, as we’ll see shortly, one has a quadratic problem even for identical operators with spin or

identical operators in large global symmetry representations.
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If such an α exists, the sum rule (2.3) cannot be satisfied with any choice of operators O,

and the hypothetical CFT is ruled out.

We can always express α in terms of a basis of functionals, for example derivatives

around the crossing-symmetric point,

α : F 7→
∑

m,n

amn∂
m
z ∂n

z F (z, z)|z=z= 1
2
, (2.6)

where z, z are defined by u = zz, v = (1 − z)(1 − z). Then, (2.5) becomes a set of linear

inequalities (and one affine equality) for the coefficients amn.

2.1.2 Applying the bootstrap argument to a mixed correlator

Let us try to apply this procedure to 〈φ1(x1)φ2(x2)φ2(x3)φ1(x4)〉, where φ1 and φ2 are

different scalar primaries. Equating conformal block expansions in the (12) → (34) and

(23) → (14) channels, we have

v∆2
∑

O

|λ12O|2g∆12,∆21

∆,ℓ (u, v) = u
∆1+∆2

2

∑

O

λ22Oλ11Og
0,0
∆,ℓ(v, u), (2.7)

where g
∆ij ,∆kl

∆,ℓ (u, v) is a conformal block for scalars with possibly unequal dimensions,

∆ij ≡ ∆i − ∆j , and λijO denotes the OPE coefficient of O ∈ φi × φj . We will often

abbreviate g0,0∆,ℓ(u, v) as g∆,ℓ(u, v).

The left-hand side of (2.7) has manifestly positive coefficients |λ12O|2. However, on

the right-hand side there is no a-priori relation between λ22O and λ11O, so their product

can have either sign. Consequently, we cannot simply apply linear functionals to both

sides and derive conclusions about the allowed spectrum. We must modify the bootstrap

logic above.

To obtain some kind of positivity condition, we can combine the crossing equation for

〈φ1φ2φ2φ1〉 with crossing equations for 〈φ1φ1φ1φ1〉 and 〈φ2φ2φ2φ2〉 into one equation

∑

O

(

λ11O λ22O

)

(

F
(11)
∆,ℓ F

(12)
∆,ℓ

F
(21)
∆,ℓ F

(22)
∆,ℓ

)(

λ11O

λ22O

)

+ λ2
12O terms = 0, (2.8)

where the F
(ij)
∆,ℓ are combinations of conformal blocks analogous to (2.4), and we have

suppressed their u, v dependence for brevity. The quantity multiplying λ11O and λ22O

above is a 2× 2 matrix of functions of u, v. Formally, it is an element of R2×2 ⊗F , where

F is the space of functions of u, v in the region where both conformal block expansions

converge.3 The right-hand side of (2.7) contributes to off-diagonal elements of this matrix.

We can now consider linear functionals α acting on functions of u, v

α : F → R, (2.9)

such that
(

α(F
(11)
∆,ℓ ) α(F

(12)
∆,ℓ )

α(F
(21)
∆,ℓ ) α(F

(22)
∆,ℓ )

)

∈ R
2×2 is a positive semidefinite matrix, (2.10)

3The convergence region F includes a finite open neighborhood of the point z = z = 1
2
[42].
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and α is additionally positive acting on each λ2
12O term in (2.8). Applying α to both sides,

we again have termwise positivity and the bootstrap logic can proceed.

An optimization problem that includes positive semidefiniteness constraints of the

form (2.10) is a semidefinite program, as opposed to the linear program (2.5) that appears in

the case of identical operators.4 Semidefinite programming has appeared in the conformal

bootstrap before: it was applied to 4D CFTs in [10], and later extended to arbitrary space-

time dimensions in [16]. However, its appearance here is qualitatively different. In [10, 16],

semidefinite programming was a useful trick for efficiently encoding the infinite number of

constraints α(F∆,ℓ) ≥ 0 (one for each ∆ and ℓ). This trick is not strictly necessary, and

alternative methods have also been successful, for example the discretization of ∆ in [3]

and the modified simplex algorithm in [23]. By contrast, the appearance of semidefinite

programming in (2.10) is unavoidable, stemming from the intrinsically quadratic nature of

the crossing constraints.5

In this work, we will combine the semidefinite programming trick of [10, 16] with the

novel appearance of semidefinite programming in (2.10). Thus, semidefinite programming

appears in two ways: one optional, the other obligatory. An alternative approach that

may be fruitful would be to adapt the modified simplex algorithm of [23] to work with

semidefiniteness constraints.6

2.2 Spin and global symmetry representations

Before describing our construction in detail, let us note that the appearance of semidefinite

programming is generic in the conformal bootstrap, and previously considered problems

are special cases where it can be avoided. Semidefinite programming appears whenever a

conformal block expansion has coefficients with indefinite sign.

An important example is a four-point function of operators with spin, where multiple

structures can appear in the OPE. For example, let Jµ(x) be a conserved current in a 3D

CFT. A primary operator Oµ1···µℓ with even spin ℓ can appear in the J × J OPE with two

different parity-even tensor structures [44–46],

Jµ(x)Jν(0) ∼ λ1
JJOt

µν
1 µ1...µℓ

(x)Oµ1...µℓ(0) + λ2
JJOt

µν
2 µ1...µℓ

(x)Oµ1...µℓ(0) + descendants.

(2.11)

The tensors t1(x) and t2(x) are fixed by conservation, symmetry under exchanging the

J ’s, and conformal invariance. Each tensor structure has an independent OPE coefficient

λ1
JJO, λ

2
JJO, and thus the conformal block expansion of 〈JµJνJρJσ〉 contains terms pro-

portional to λ1
JJOλ

2
JJO (which can have either sign).

4Because of the infinite number of constraints (one for each ∆, ℓ), one technically has a semi-infinite

program in the identical operators case. We will not bother with this distinction. We do not know the

correct terminology for a semidefinite program with an infinite number of constraints, as in the case of

mixed operators.
5It is possible to approximate the semidefiniteness constraint with a finite number of linear constraints

by approximating the cone of semidefinite matrices as a polytope, as explored in [43].
6Semidefinite programs enjoy a duality similar to the linear programming duality underlying the primal

simplex method in [23].
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Another example is a four-point function of operators in representations ri of a global

symmetry group G, where the tensor product ri ⊗ rj contains irreducible representations

with nontrivial multiplicity. The fact that bootstrap conditions become semidefiniteness

constraints in this case was first noticed in [8].

For instance, consider 〈φr(x1)φr(x2)φ
†
r(x3)φ

†
r(x4)〉, where φr is a scalar operator trans-

forming in the representation r, and φ†
r transforms in the dual representation r. Suppose

Os,ℓ ∈ φr×φr is a spin-ℓ operator transforming in the representation s ofG. The three-point

function 〈φrφrO†
s,ℓ〉 must be proportional to an invariant tensor tO of G. Specifically,

〈φrφrO†
s,ℓ〉 ∝ tO ∈

{

(Sym2r⊗ s)G if ℓ is even,

(∧2r⊗ s)G if ℓ is odd.
(2.12)

where Sym2 and ∧2 denote symmetric and antisymmetric tensor squares, and (·)G denotes

the G-invariant subspace. The space of such invariant tensors may be multidimensional:

its dimension counts the multiplicity of s in the decomposition of Sym2r and ∧2r into

irreducibles. If so, we can expand tO in a basis of invariant tensors ti, each with an

independent coefficient

tO = λ1
φφOt1 + λ2

φφOt2 + . . . . (2.13)

The conformal block expansion of our four-point function in the (12) → (34) channel can

then contain products λi
φφOλ

j∗
φφO, which are not necessarily positive.

Previous bootstrap studies of CFTs with global symmetries have focused on small

representations: either G = SO(n) with r the vector representation, or G = SU(n) with r

the fundamental representation. In each of these cases, the spaces Sym2r, ∧2r, and r ⊗ r

(in the other channel) decompose into irreducibles with multiplicity at most 1.

However, it is easy to find examples with higher multiplicities. For instance, take

G = SU(n), n ≥ 3, and let r to be the largest irreducible representation in Sym2AdG, of

dimension 1
4n

2(n− 1)(n+ 3). In this case,

Sym2r = 2 r⊕ . . . (2.14)

so that there are two independent OPE coefficients for an operator Or,ℓ with even spin.

The three-point structures for this example are written explicitly in appendix A.

2.3 General semidefinite programs for the bootstrap

In the previous subsection, we saw examples of different ways that semidefinite program-

ming can arise in the bootstrap. Now let us generalize these examples and show how the

generic statement of crossing symmetry and unitarity can be phrased as a semidefinite

program. The discussion here is somewhat abstract. In section 3, we will specialize to the

case of interest for the remainder of this work.

Consider a CFT whose symmetry group H is a product of the conformal group and

global symmetry groups.7 Primary operators Oi transform in unitary irreducible represen-

tations Ri of H. Let H0 be the isotropy subgroup of H (the group of symmetries that fix a

7In our discussion, we focus on bosonic operators in non-SUSY CFTs. The generalization of this section

to fermionic operators and/or superconformal theories is straightforward.

– 6 –
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spacetime point), which is generated by Lorentz transformations, dilatations, special con-

formal transformations, and global symmetry transformations. The representations Ri are

induced from finite dimensional representations Ri0 of H0. Hence, each Oi carries an index

ai for Ri0. For example, an uncharged spin-1 operator Jµ has ai = µ, a Lorentz index.

The four-point functions of the theory are given by

Gaiajakal
ijkl (x1, x2, x3, x4) ≡ 〈Oai

i (x1)Oaj
j (x2)Oak

k (x3)Oal
l (x4)〉. (2.15)

For each set of representations Ri, Rj , Rk, Rl, the four-point function can be expanded in

a finite basis of four-point structures I
aiajakal
f (xi), times functions Gf

ijkl(u, v) of conformal

cross-ratios,

Gaiajakal
ijkl (x1, x2, x3, x4) =

∑

f

Gf
ijkl(u, v)I

aiajakal
f (xi). (2.16)

The number of four-point structures depends on the representations Ri, Rj , Rk, Rl. For

example, when all the operators are scalars there is a single four-point structure. Its

definition is ambiguous up to multiplication by conformal cross ratios u, v. We choose

I(xi) =
1

x
∆i+∆j

12 x∆k+∆l

34

(

x24
x14

)∆ij
(

x14
x13

)∆kl

, (2.17)

where xij = |xi − xj | and ∆ij ≡ ∆i −∆j .

Crossing symmetry is the statement that (for bosonic operators) swapping (i, ai, x1) ↔
(k, ak, x3) leaves the four-point function unchanged,8

Gaiajakal
ijkl (x1, x2, x3, x4) = Gakajaial

kjil (x3, x2, x1, x4)

=
∑

f ′

Gf ′

kjil(v, u)(I
akajaial
f ′ (xi)|x1↔x3)

=
∑

f,f ′

Gf ′

kjil(v, u)Sf ′
f (u, v)I

aiajakal
f (xi), (2.18)

where Sf ′
f (u, v) is a finite-dimensional matrix defined by

∑

f

Sf ′
f (u, v)I

aiajakal
f (xi) = I

akajaial
f ′ (xi)|x1↔x3 . (2.19)

For instance, for scalar operators, using (2.17) we have

S =
x
∆i+∆j

12 x∆k+∆l

34

x
∆j+∆k

23 x∆i+∆l

14

(

x24
x34

)∆kj
(

x34
x13

)∆il
(

x24
x14

)∆ji
(

x14
x13

)∆lk

=
u

∆i+∆j
2

v
∆j+∆k

2

. (2.20)

We should think of Gf
ijkl(u, v) as a vector with indices given by ijkl, f, u, and v. The

matrix S acts on the f and u, v-indices. For convenience, let us additionally define the

8There are, of course, other crossing equations for other permutations of the four operators. The

permutations 1 ↔ 2 and 3 ↔ 4 typically give constraints that are simple to analyze. The permutation

1 ↔ 3 above gives a new nontrivial constraint. All other permutations can be obtained as compositions of

these.

– 7 –
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operator T : Gf
ijkl(u, v) 7→ Gf

kjil(u, v) which swaps i ↔ k and also U : G(u, v) 7→ G(v, u)

which swaps u ↔ v. Crossing symmetry then states

0 = (1− STU)(G). (2.21)

As usual in the bootstrap, to constrain solutions to crossing symmetry, we can look

at linear functionals acting on the crossing equation. A linear functional acting on G has

the form

α(G) =
∑

ijkl;f

αijkl
f (Gf

ijkl), (2.22)

where each αijkl
f acts on functions of two variables, as in (2.6). The dual of the crossing

equation is the statement that

0 = α((1− STU)(G))

=
∑

ijkl;f

(αijkl
f − αkjil

f ′ ◦ (Sf
f ′

U))(Gf
ijkl) (2.23)

for all α.

The final ingredient is the conformal block expansion for the functions Gf
ijkl. For

an operator Op appearing in the OPE Oi × Oj , there are in general several three-point

structures tm that can appear, and each structure has an associated OPE coefficient λ(m),

Oai
i (x)Oaj

j (0) =
∑

p

∑

m

λ
(m)
ijp t

aiaj
m ap(x, ∂)O

ap
p (0). (2.24)

Consequently, conformal blocks in the ij → kl channel are labeled by pairs of three-point

structures (m,n),

Gf
ijkl =

∑

p,m,n

λ
(m)
ijp λ

(n)
klpg

RiRjRkRl;f

Rp(m,n) (u, v). (2.25)

The conformal blocks g
RiRjRkRl;f

Rp(m,n) depend on the representations (dimensions, spins, and

global symmetry charges) of the external and exchanged operator, together with the three-

point structures (m,n) and four-point structure f .

Plugging the conformal block expansion (2.25) into the dualized crossing equa-

tion (2.23) gives

0 =
∑

p

∑

ijm

∑

kln

λ
(m)
ijp λ

(n)
klp

(

αijkl
f (g

RiRjRkRl;f

Rp(m,n) )− αkjil
f ′ (Sf

f ′

Ug
RiRjRkRl;f

Rp(m,n) )
)

. (2.26)

All repeated indices are summed, but we have chosen to indicate some of the sums explicitly.

Let us think of λ
(m)
ijp as a vector ~λp with indices ij,m. For each p, the quantity in parentheses

is then a matrix Ap with left indices ij,m and right indices kl, n, and the above equation

can be written

0 =
∑

p

~λT
pAp

~λp. (2.27)

– 8 –
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From (2.27), it is clear that the crossing equation can be studied using semidefinite

programming. Specifically, we can make an assumption about the CFT spectrum, and

then search for α such that

A0 ≻ 0, where O0 = 1 is the unit operator,

Ap � 0, for all p which can appear in the spectrum. (2.28)

If such an α exists, the assumed spectrum is ruled out. As usual in the bootstrap, the

advantage of studying this dual formulation of crossing symmetry is that one can make

progress by restricting to a finite-dimensional space of α’s. By contrast, truncating the

operator spectrum itself can introduce approximations that are difficult to control.

2.4 SDP2

The semidefinite programs described in previous sections have an infinite number of posi-

tivity constraints (2.10) — one for each ∆ and ℓ (and more generally for each conformal

representation) that can appear in the spectrum. To encode these constraints on a com-

puter, we write them in terms of a finite amount of data using a trick from [10, 16].

Let us briefly review this trick in the case of identical operators. The positivity con-

straints (2.5) are linear inequalities of the form

α(F∆,ℓ) ≥ 0 for ∆ ≥ ∆min
ℓ , (2.29)

where ∆min
ℓ is an ℓ-dependent lower bound on the dimension (e.g., the unitarity bound).

We take α to be of the form (2.6): a sum of derivatives with respect to z, z around the

crossing symmetric point z = z = 1/2.

The trick proceeds by first rewriting our inequalities as positivity of polynomials. This

is possible because there exists a systematic approximation

∂m
z ∂n

z F∆,ℓ(z, z)|z=z= 1
2
≈ χℓ(∆)P

(m,n)
ℓ (∆), (2.30)

where χℓ(∆) is a positive function and P
(m,n)
ℓ (∆) are polynomials in ∆.9 Dividing (2.29)

by χℓ(∆), we obtain

∑

m,n

amnP
(m,n)
ℓ (∆min

ℓ + x) ≥ 0 for x ≥ 0, (2.31)

where we defined x = ∆−∆min
ℓ . The left hand side is now a polynomial in x. The degree

of this polynomial grows logarithmically with the accuracy of the approximation (2.30).

A classic theorem [47] states that a polynomial P (x) is positive on the positive real axis,

P (x) ≥ 0 for x ∈ [0,∞) (2.32)

9Such approximations were first discovered for 2D and 4D theories in [10]. Their existence in arbitrary

dimensions was shown to follow from representation theory of the conformal algebra in [16]. We review this

argument in section 4.
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if and only if

P (x) = a(x) + xb(x), (2.33)

where a(x) and b(x) are sums of squares of polynomials. That is, a(x) =
∑

t pt(x)
2 and

similarly for b(x).

Let [x]d = (1, x, . . . , xd)T be a vector of monomials up to degree d and define the

(d + 1) × (d + 1) matrix Qd(x) ≡ [x]d[x]
T
d . It is easy to show that any degree-2d sum

of squares is of the form Tr(AQd(x)), where A � 0 is a positive semidefinite matrix.

Consequently, (2.33) is equivalent to

P (x) = Tr(AQd1(x)) + xTr(BQd2(x)) with A,B � 0. (2.34)

Here d1 = ⌊12 degP ⌋, d2 = ⌊12(degP − 1)⌋, and “�” means “positive semidefinite.” Us-

ing (2.34), we can write the constraints (2.31) in terms of positive semidefinite matrices

Aℓ, Bℓ with linear relations between the elements of Aℓ, Bℓ and the coefficients amn. This

efficiently encodes an infinite number of constraints in terms of finite matrices.

Now let us consider the case of distinct operators, with constraints of the form (2.10),









α(F
(11)
∆,ℓ ) . . . α(F

(1N)
∆,ℓ )

...
. . .

...

α(F
(N1)
∆,ℓ ) . . . α(F

(NN)
∆,ℓ )









� 0 for ∆ ≥ ∆min
ℓ . (2.35)

Here, F
(ij)
∆,ℓ are combinations of conformal blocks, and α is again a sum of derivatives with

respect to z, z. Similarly to (2.30), a systematic positive-times-polynomial approximation

for each entry of the above matrix exists,

∂m
z ∂n

z F
(ij)
∆,ℓ (1/2, 1/2) ≈ χℓ(∆)P

(ij;m,n)
ℓ (∆). (2.36)

Crucially, the positive function χℓ(∆) is independent of the matrix indices i, j. Dividing

by χℓ(∆), (2.35) is then equivalent to

∑

m,n

amn









P
(11;m,n)
ℓ (x) . . . P

(1N ;m,n)
ℓ (x)

...
. . .

...

P
(N1;m,n)
ℓ (x) . . . P

(NN ;m,n)
ℓ (x)









� 0 for x ≥ 0, (2.37)

where P
(ij;m,n)
ℓ (x) are polynomials and x = ∆−∆min

ℓ .

Analogously to the case of positive polynomials, an N ×N matrix polynomial that is

positive on the positive real axis, such as the one in (2.37), can be written as [48–50]

a(x) + xb(x), (2.38)

where a(x) and b(x) are sums of squares of matrix polynomials, i.e. a(x) =
∑

t p
T
t (x)pt(x),

and similarly for b(x).10 Let the highest degree of the polynomials pt be d1, and write the

10We thank Christoph Hanselka and Markus Schweighofer for providing a proof of this claim and Pablo

Parrilo for additional references.
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matrix polynomials pt(x) as

pt(x) =

d1
∑

ρ=0

pt;ρx
ρ, (2.39)

where pt;ρ are M ×N matrices. Any matrix polynomial a(x) can be written as

a(x) = Tr
Rd1+1(A(Qd1(x)⊗ 1)), (2.40)

where A is an N(d1 + 1) ×N(d1 + 1) matrix acting on R
d1+1 ⊗ R

N . Qd1(x) acts only on

the first tensor factor Rd1+1 and the trace is over this factor, leaving an N ×N matrix that

depends on x. In terms of components, the elements of a are given by

aij(x) = [x]Td1A
ij [x]d1 =

∑

ρσ

Aij
ρσx

ρxσ. (2.41)

If a(x) is a sum of matrix squares, then A is positive semidefinite on the space Rd1+1⊗
R
N . To see this, note that for an arbitrary N(d1 + 1)-vector λi

ρ we have

(λ,Aλ) =
∑

ij,ρσ

Aij
ρσλ

i
ρλ

j
σ =

∑

t,ijk,ρσ

pkit;ρp
kj
t;σλ

i
ρλ

j
σ =

∑

t,ik,ρ

(pkit;ρλ
i
ρ)

2 ≥ 0. (2.42)

The converse also holds: if A is positive semidefinite, then a(x) is a sum of matrix squares,

as can be seen by writing A as a sum of outer-products. Therefore, the matrix polynomials

of (2.37) can be written in a way analogous to (2.34):

∑

m,n

amnP
(ij;m,n)
ℓ (x) = [x]Td1A

ij [x]d1 + x[x]Td2B
ij [x]d2 ,

A,B � 0, (2.43)

where Aij
ρσ and Bij

ρσ are respectively N(d1 + 1) × N(d1 + 1) and N(d2 + 1) × N(d2 + 1)

positive semidefinite matrices.11 Once again, the infinite number of (matrix) constraints is

encoded in terms of finite matrices.

3 The conformal bootstrap with multiple scalars

3.1 Specializing to scalars

The analysis of section 2.3 is completely general and abstract. To simplify the discussion,

in this section we will focus on four-point functions of scalar operators. Here we do not

assume any additional global symmetries. Let φi = (φ1, φ2, φ3, . . .) be a collection of scalar

primary fields with scaling dimensions ∆i. We consider the correlation function of four

scalars,

Gijkl(x1, x2, x3, x4) = 〈φi(x1)φj(x2)φk(x3)φl(x4)〉. (3.1)

11We thank João Penedones for discussions of this idea.
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The expression (2.16) for the four-point function simplifies because there are no represen-

tation indices a in (3.1) and there is only one four-point structure (2.17) for four scalars.

Therefore, Gijkl can be written as

Gijkl(x1, x2, x3, x4) =
1

x
∆i+∆j

12 x∆k+∆l

34

(

x24
x14

)∆ij
(

x14
x13

)∆kl

Gijkl(u, v). (3.2)

The correlation function must be invariant under the exchange (1, i) ↔ (3, k), which gives

the crossing equation

v
∆j+∆k

2 Gijkl(u, v) = u
∆i+∆j

2 Gkjil(v, u). (3.3)

Following (2.25), the function Gijkl can be written in terms of conformal blocks g as

Gijkl(u, v) =
∑

O

λijOλklOg
∆ij ,∆kl

∆,ℓ (u, v), (3.4)

where compared to (2.25) there is no sum over different three-point structures, as only one

structure appears in three-point functions containing two scalar operators. The conformal

blocks also depend on the representations of the external operators φi, but since they are

scalars only the dependence on the dimensions ∆i remains. Moreover, the conformal blocks

depend only on the differences ∆ij and ∆kl, as shown for instance in [51, 52] and reviewed

in section 4. For real scalar external operators, the OPE coefficients λijO are real [3]. The

crossing equation is then given by

∑

O

(

λijOλklOv
∆j+∆k

2 g
∆ij ,∆kl

∆,ℓ (u, v)− λkjOλilOu
∆i+∆j

2 g
∆kj ,∆il

∆,ℓ (v, u)

)

= 0. (3.5)

The dual form of the crossing equation is given by (2.26), which for scalar operators becomes

∑

O

∑

ij

∑

kl

λijOλklO

[

αijkl

(

v
∆j+∆k

2 g
∆ij ,∆kl

∆,ℓ

)

− αkjil

(

u
∆i+∆j

2 g
∆kj ,∆il

∆,ℓ

)]

= 0, (3.6)

and can be analyzed using semidefinite programming, as explained in section 2.4.

We now introduce notation that follows more closely the notation used in the analysis

of the single correlator crossing equation. Let us define functions

F ij,kl
±,∆,ℓ(u, v) ≡ v

∆k+∆j
2 g

∆ij ,∆kl

∆,ℓ (u, v)± u
∆k+∆j

2 g
∆ij ,∆kl

∆,ℓ (v, u), (3.7)

which are respectively symmetric and antisymmetric under the exchange u ↔ v. They are

also invariant under the simultaneous exchange of i ↔ k and j ↔ l. In terms of these

functions, the crossing equation becomes

∑

O

[

λijOλklOF
ij,kl
∓,∆,ℓ(u, v)± λkjOλilOF

kj,il
∓,∆,ℓ(u, v)

]

= 0. (3.8)

If all operators are equal, the upper sign case reduces to the single correlator crossing

equation (2.3).
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3.2 Simplest system with a Z2 symmetry

Before switching to the dual form of the crossing equation, we will further simplify the

system of crossing equations under consideration by assuming that the system has a Z2

symmetry. Under this symmetry, all of the operators can be classified as even or odd.

Let σ and ǫ be the lowest dimension Z2-odd and Z2-even scalars, respectively. The OPE

structure of these operators can be written schematically as

σ × σ ∼
∑

O+

λσσOO,

σ × ǫ ∼
∑

O−

λσǫOO,

ǫ× ǫ ∼
∑

O+

λǫǫOO. (3.9)

Here O+ runs over Z2-even operators of even spin and O− runs over Z2-odd operators of

any spin. An important example of a system described by OPEs (3.9) is the critical Ising

model, where σ and ǫ can be thought of as the spin and energy density operators.

We now write the crossing equations (3.5) for four-point functions containing σ and

ǫ. Due to the Z2 symmetry, some of the OPE coefficients vanish and we end up with five

independent constraints:

0 =
∑

O+

λ2
σσOF

σσ,σσ
−,∆,ℓ (u, v),

0 =
∑

O+

λ2
ǫǫOF

ǫǫ,ǫǫ
−,∆,ℓ(u, v),

0 =
∑

O−

λ2
σǫOF

σǫ,σǫ
−,∆,ℓ(u, v),

0 =
∑

O+

λσσOλǫǫOF
σσ,ǫǫ
∓,∆,ℓ(u, v)±

∑

O−

(−1)ℓλ2
σǫOF

ǫσ,σǫ
∓,∆,ℓ(u, v), (3.10)

where in the last equation we used the identity λσǫO = (−1)ℓλǫσO. We can write this in

vector notation as

∑

O+

(

λσσO λǫǫO

)

~V+,∆,ℓ

(

λσσO

λǫǫO

)

+
∑

O−

λ2
σǫO

~V−,∆,ℓ = 0, (3.11)
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where ~V−,∆,ℓ is a 5-vector and ~V+,∆,ℓ is a 5-vector of 2× 2 matrices:

~V−,∆,ℓ =

















0

0

F σǫ,σǫ
−,∆,ℓ(u, v)

(−1)ℓF ǫσ,σǫ
−,∆,ℓ(u, v)

−(−1)ℓF ǫσ,σǫ
+,∆,ℓ(u, v)

















, ~V+,∆,ℓ =















































(

F σσ,σσ
−,∆,ℓ (u, v) 0

0 0

)

(

0 0

0 F ǫǫ,ǫǫ
−,∆,ℓ(u, v)

)

(

0 0

0 0

)

(

0 1
2F

σσ,ǫǫ
−,∆,ℓ(u, v)

1
2F

σσ,ǫǫ
−,∆,ℓ(u, v) 0

)

(

0 1
2F

σσ,ǫǫ
+,∆,ℓ(u, v)

1
2F

σσ,ǫǫ
+,∆,ℓ(u, v) 0

)















































. (3.12)

Let ~α = (α1, . . . , α5) be a 5-vector of functionals, αi : F → R. Acting on (3.11) with this

functional gives the dual form of crossing equation

∑

O+

(

λσσO λǫǫO

)

~α · ~V+,∆,ℓ

(

λσσO

λǫǫO

)

+
∑

O−

λ2
σǫO~α · ~V−,∆,ℓ = 0, (3.13)

or more explicitly

∑

O+

(

λσσOλǫǫO

)

(

α1[F σσ,σσ
−,∆,ℓ ]

1
2α

4[F σσ,ǫǫ
−,∆,ℓ] +

1
2α

5[F σσ,ǫǫ
+,∆,ℓ]

1
2α

4[F σσ,ǫǫ
−,∆,ℓ] +

1
2α

5[F σσ,ǫǫ
+,∆,ℓ] α2[F ǫǫ,ǫǫ

−,∆,ℓ]

)(

λσσO

λǫǫO

)

+
∑

O−

λ2
σǫO

(

α3[F σǫ,σǫ
−,∆,ℓ] + (−1)ℓα4[F ǫσ,σǫ

−,∆,ℓ]− (−1)ℓα5[F ǫσ,σǫ
+,∆,ℓ]

)

= 0. (3.14)

The sum over operators in (3.11) must contain the unit operator. For convenience we will

write the unit operator contribution separately. We also assume that the operators are

normalized so that λσσ1 = λǫǫ1 = 1. The crossing equation can then be written as

(

1 1
)

~α · ~V+,0,0

(

1

1

)

+
∑

O+

(

λσσO λǫǫO

)

~α · ~V+,∆,ℓ

(

λσσO

λǫǫO

)

+
∑

O−

λ2
σǫO~α · ~V−,∆,ℓ = 0. (3.15)

3.3 Bounds from semidefinite programming

Now (3.15) is in the right form for a semidefinite programming analysis as described at the

end of section 2.3. The logic is to make an assumption about the CFT spectrum and then

search for a functional ~α such that

(

1 1
)

~α · ~V+,0,0

(

1

1

)

> 0,

~α · ~V+,∆,ℓ � 0, for all Z2-even operators with even spin,

~α · ~V−,∆,ℓ ≥ 0, for all Z2-odd operators in the spectrum. (3.16)
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If we manage to find such a functional, then crossing symmetry can not be satisfied and we

conclude that the initial assumption about the spectrum is wrong. Note that (3.16) rep-

resents a sufficient condition for a functional to exclude the spectrum, but not a necessary

one. In particular, it does not take into account the symmetry of the OPE coefficients,

λσσǫ = λσǫσ. Using this identity we could weaken the conditions on a functional that would

still violate the crossing symmetry constraints (strengthening the resulting bounds).

The space of all functionals is infinite-dimensional, so for implementation on a com-

puter we must select a finite subspace of functionals as well as a convenient set of basis

vectors. We follow the traditional approach, which has given good results in previous stud-

ies, and use linear combinations of z and z derivatives at the point z = z = 1/2 as the

basis for functionals. The functional αi is given in that basis by

αi[f ] =
∑

m≥n

aimn∂
m
z ∂n

z f(z, z)
∣

∣

z=z= 1
2
, (3.17)

where we limit the number of derivatives with the parameter nmax by requiring n +m ≤
2nmax − 1.12 The sum in (3.17) only contains terms with m ≥ n because the functional

acts on functions of u, v, which are symmetric under the exchange z ↔ z. Moreover, the

functional α5 acts on F+, which is symmetric under the exchange u ↔ v, so only the terms

with m + n even are non-zero. Other components αi act on functions F− antisymmetric

under u ↔ v, so for them only the terms with n + m odd are non-vanishing. The total

number of independent components of the functional ~α is then N = 5nmax(nmax + 1)/2.

This is the dimension of the vector space in which we search for a functional ~α with the

properties (3.16).

To turn the constraints (3.16) into a semidefinite program suitable for numerical anal-

ysis on a computer, we employ the method described in section 2.4. We use the rational

approximation of conformal blocks described explicitly in section 4 to approximate the

conformal blocks and their derivatives as

∂m
z ∂n

z g
∆12,∆34

∆,ℓ (z, z)
∣

∣

∣

z=z= 1
2

≈ χℓ(∆)p∆12,∆34;mn
ℓ (∆), (3.18)

where p∆12,∆34;mn
ℓ (∆) are polynomials in ∆ and χℓ(∆) are functions that are positive for

all values of ∆ in the CFT spectrum. Then we can similarly write

∂m
z ∂n

z F
ij,kl
±,∆,ℓ(z, z)

∣

∣

∣

z=z= 1
2

≈ χℓ(∆)P ij,kl;mn
±,ℓ (∆), (3.19)

where P ijkl;mn
±,ℓ (∆) are polynomials related to p

∆ij ,∆kl;mn

ℓ . Using the last expression, we

can rewrite the conditions (3.16) in the following form:

(

1 1
)

Z0(0)

(

1

1

)

> 0,

Zℓ(∆) � 0, for all Z2-even operators with even spin,

Yℓ(∆) ≥ 0, for all Z2-odd operators in the spectrum. (3.20)

12nmax is equivalent to the parameters k,K in [16, 23].
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Here Yℓ(∆) are polynomials and Zℓ(∆) are matrix polynomials in ∆ defined as

Yℓ(∆) ≡
∑

mn

[

a3mnP
σǫ,σǫ;mn
−,ℓ (∆) + a4mn(−1)ℓP ǫσ,σǫ,mn

−,ℓ (∆)− a5mn(−1)ℓP ǫσ,σǫ;mn
+,ℓ (∆)

]

, (3.21)

Zℓ(∆) ≡
∑

mn





a1mnP
σσ,σσ;mn
−,ℓ (∆) 1

2

(

a4mnP
σσ,ǫǫ;mn
−,ℓ (∆)+a5mnP

σσ,ǫǫ;mn
+,ℓ (∆)

)

1
2

(

a4mnP
σσ,ǫǫ;mn
−,ℓ (∆)+a5mnP

σσ,ǫǫ;mn
+,ℓ (∆)

)

a2mnP
ǫǫ,ǫǫ;mn
−,ℓ (∆)



.

The constraint Yℓ(∆) ≥ 0 can be written in terms of positive semidefinite matrices as

Yℓ(∆
min
ℓ (1 + x)) = Tr(AℓQd1(x)) + xTr(BℓQd2(x))

=
∑

ρσ

(Aℓ)ρσx
ρ+σ +

∑

ρσ

(Bℓ)ρσx
ρ+σ+1, (3.22)

where Aℓ, Bℓ � 0 are positive semidefinite, and d1, d2 are chosen appropriately for the

degree of Yℓ. Similarly, the constraint Zℓ(∆) � 0 can be written in terms of positive

semidefinite matrices as

Zℓ(∆
min
ℓ (1 + x)) = Tr

Rd1+1(Cℓ(Qd1(x)⊗ 12×2)) + xTr
Rd2+1(Dℓ(Qd2(x)⊗ 12×2),

Zij
ℓ (∆min

ℓ (1 + x)) =
∑

ρσ

(Cℓ)
ij
ρσx

ρ+σ +
∑

ρσ

(Dℓ)
ij
ρσx

ρ+σ+1, (3.23)

where Cℓ, Dℓ � 0 are positive semidefinite acting on R
d1,2+1 ⊗ R

2, and d1, d2 are cho-

sen appropriately for the degree of Zℓ. Matching terms of equal degree in x on both

sides, (3.22) and (3.23) become linear equations relating the variables aimn, Aℓ, Bℓ, Cℓ, Dℓ.

Written in terms of these variables, our optimization problem is now in a form that can be

fed to a semidefinite program solver. We give details of our implementation in the solver

SDPA-GMP [53, 54] in appendix B.

3.4 Additional constraints

There are a few additional constraints on systems of multiple correlators that we have

not yet incorporated into our numerical analysis. One is that the coefficient of the stress

tensor conformal block should be consistent with Ward identities. In the OPE φ×φ, Ward

identities imply that the stress tensor appears with coefficient proportional to ∆φ. Thus, in

the conformal block decomposition for 〈φ1φ1φ2φ2〉 in the φ1φ1 → φ2φ2 channel, the stress

tensor block appears with a coefficient of λ11Tλ22T ∝ ∆1∆2
c

(up to a theory-independent

pre-factor that depends on our definition of the conformal block), where c ∝ 〈TµνTρσ〉 is

the coefficient of the stress tensor two-point function.13 In the 3D Ising model, this implies

that the coefficients of the stress tensor block in 〈σσσσ〉, 〈σσǫǫ〉, 〈ǫǫǫǫ〉 must appear in the

fixed ratios ∆2
σ : ∆σ∆ǫ : ∆

2
ǫ .

We might add this additional information to obtain stronger bounds. However, this

condition is useless without an additional assumption of a gap in the spin-2 spectrum,

13c is commonly referred to as the “central charge,” although it has no (known) relation to symmetry

algebras in greater than 2 spacetime dimensions.
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∆T ′ ≥ 3 + δ with δ > 0, where T ′ is the second-lowest spin-2 operator in the theory. In

the absence of a gap, spin-2 operators with dimension 3 + ε with ε ≪ 1 can mimic the

contribution of the stress tensor, obliterating any information about ratios of stress-tensor

coefficients. Concretely, the condition Z2(3 + ε) � 0 in (3.20) for all ε > 0 also implies

Z2(3) � 0, which is strictly stronger than necessary given the Ward identities.

In the 3D Ising model, there is indeed a large gap in the spin-2 spectrum, ∆T ′ & 5.5 [23].

We have not incorporated the existence of this gap and the accompanying Ward identity

constraints in this work. It will be very interesting to do so in the future.

Another constraint on the 3D Ising model is that there is precisely one operator ǫ with

dimension ∆ǫ.
14 The condition Z0(∆ǫ) � 0 in (3.20) actually allows for many operators of

dimension ∆ǫ with different OPE coefficients. In particular, it assumes only that the sum

∑

dimO=∆ǫ

spinO=0, Z2-chargeO=+

(

λσσO

λǫǫO

)

(

λσσO λǫǫO

)

(3.24)

is a positive semidefinite matrix (which is a consequence of unitarity). However, because

there is exactly one choice forO above, the sum is not a generic positive semidefinite matrix:

it has rank one. Let us suppose the vector (λσσǫ, λǫǫǫ) is proportional to eθ ≡ (cos θ, sin θ)

for some angle θ ∈ [0, π). We can then replace the condition Z0(∆ǫ) � 0 with the weaker

condition

eTθ Z0(∆ǫ)eθ ≥ 0. (3.25)

Running our semidefinite program subject to (3.25) will yield some allowed region Aθ in

the space of CFT data. Since we do not know the actual value of θ in the 3D Ising model,

we must then scan over θ, computing the final allowed region

A∗ =
⋃

θ∈[0,π)

Aθ. (3.26)

The region A∗ could in principle be smaller than what one gets by imposing the näıve

condition Z0(∆ǫ) � 0. The idea of scanning over θ to exploit the fact that (3.24) has rank

one was initially explored in [43]. Unfortunately, performing this scan is infeasible with

our current methods, given the time it takes to compute each allowed region Aθ. These

constraints will be important to study in the future.

Another constraint is the symmetry of three-point coefficients, in particular the relation

λσǫσ = λσσǫ. This constraint is straightforward to impose within our formalism, and we

are currently exploring its consequences.

4 Rational representations for conformal blocks

In order to study the semidefinite program described in the previous sections, we require

systematic approximations for the derivatives of the functions F ijkl
±,∆,ℓ in terms of positive

14We thank Slava Rychkov for explaining how to exploit this constraint.
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functions times polynomials in ∆. Such approximations directly follow from a representa-

tion for the conformal blocks as a sum over poles in ∆. Representations of this type were

first developed for 2D (Virasoro) conformal blocks by Alyosha Zamolodchikov [37, 38],

and a generalization for global conformal blocks with identical external scalars in general

spacetime dimension D was developed in [16].15 In this section we generalize the formula

obtained in [16] to non-identical external scalars.

The conformal block corresponding to the exchange of the primary operator O can

be written in radial quantization as a sum over states in the conformal family of the

corresponding state |O〉:

x∆1+∆2
12 x∆3+∆4

34

(

x14
x24

)∆12
(

x13
x14

)∆34

g∆12,∆34

∆,ℓ (u, v) =

∑

α=O,PµO,PµP νO...

〈0|φ1(x1)φ2(x2)|α〉〈α|φ3(x3)φ4(x4)|0〉
〈α|α〉 . (4.1)

Here the sum goes over the descendants of |O〉, generated from |O〉 by acting on it with

the momentum operators Pµ. Poles in the conformal block occur at special (non-unitary)

dimensions ∆ = ∆∗ where some descendant |α〉 = Pn|O〉 of the state created by the

primary operator O becomes null, i.e. 〈α|α〉 = 0, so that some of the denominators in (4.1)

become zero. This null state and all of its (also null) descendants together form a conformal

sub-representation, and hence the residue of the pole is proportional to a conformal block:16

g∆12,∆34

∆,ℓ ∼ cα
∆−∆∗

g∆12,∆34

∆α,ℓα
as ∆ → ∆∗. (4.2)

Since poles in ∆ determine g∆12,∆34

∆,ℓ up to a function that is analytic on the entire

complex plane, we can write

g∆12,∆34

∆,ℓ (r, η) = g̃∆12,∆34

ℓ (∆, r, η) +
∑

i

c∆12,∆34
i

∆−∆i
g∆12,∆34

∆i+ni,ℓi
(r, η), (4.3)

where g̃∆12,∆34

ℓ (∆, r, η) is an entire function of ∆ and we describe the conformal cross ratios

using radial coordinates [58]. In Euclidean signature, where z = z∗, these are defined by

reiθ =
z

(1 +
√
1− z)2

, η = cos θ. (4.4)

The block g∆12,∆34

∆,ℓ (r, η) has an essential singularity of the form r∆ as ∆ → ∞. Stripping

this off, we have

h∆12,∆34

∆,ℓ (r, η) ≡ r−∆g∆12,∆34

∆,ℓ (r, η), (4.5)

h∆12,∆34

∆,ℓ (r, η) = h̃∆12,∆34

ℓ (r, η) +
∑

i

c∆12,∆34
i

∆−∆i
rnih∆12,∆34

∆i+ni,ℓi
(r, η). (4.6)

15Other recent studies of global conformal blocks can be found in [12, 45, 46, 51, 52, 55–61], with con-

nections to Mellin amplitudes in [62–71]. Older work includes [1, 72–75]. Superconformal extensions have

been studied in [6, 22, 76–83].
16At this stage it is not obvious that all such poles must be simple poles. Indeed, when the spacetime

dimension D = 2n is an even integer, double poles occur, while outside of even dimensions only simple

poles occur. Our formulas assume D 6= 2n, but reproduce the correct even-D conformal blocks in the limit

D → 2n.

– 18 –



J
H
E
P
1
1
(
2
0
1
4
)
1
0
9

ni ∆i ℓi c∆12,∆34
i

k 1− ℓ− k ℓ+ k c∆12,∆34
1 (k) k = 1, 2, . . .

2k 1 + ν − k ℓ c∆12,∆34
2 (k) k = 1, 2, . . .

k 1 + ℓ+ 2ν − k ℓ− k c∆12,∆34
3 (k) k = 1, 2, . . . , ℓ

Table 1. The positions of poles of g∆12,∆34

∆,ℓ in ∆ and their associated data. There are three types of

poles, corresponding to the three rows in the table. The first two types exist for all positive integer

k, while the third type exists for positive integer k ≤ ℓ. The coefficients c∆12,∆34

1 (k), c∆12,∆34

2 (k),

c∆12,∆34

3 (k) are given in (4.8).

Here h̃∆12,∆34

ℓ (r, η) is an entire function of ∆ with no singularities as ∆ → ∞. Therefore,

it is independent of ∆ and given by h̃∆12,∆34

ℓ (r, η) = lim∆→∞ h∆12,∆34

∆,ℓ (r, η).17

Now, the function h̃∆12,∆34

ℓ can be easily computed by solving the conformal Casimir

equation [52] to leading order in ∆, giving the result18

h̃∆12∆34
ℓ (r, η) =

ℓ!

(2ν)ℓ

(−1)ℓCν
ℓ (η)

(1− r2)ν(1 + r2 + 2rη)
1
2
(1+∆12−∆34)(1 + r2 − 2rη)

1
2
(1−∆12+∆34)

,

(4.7)

where ν = D−2
2 and Cν

ℓ (η) is a Gegenbauer polynomial. The locations of the poles ∆i

in (4.3) are the same as in the case of equal external dimensions (though in that case some

have vanishing coefficients) since they only depend on the representation theory of the

exchanged operator. In both cases we find three sequences of poles, reproduced in table 1.

However, the coefficients c∆12,∆34
i depend on the external dimensions and can be found by

solving the conformal Casimir equation. In practice we do this order by order in the r

expansion, following the procedure described in [58]. We compute coefficients up to high

order in the r-expansion, guess a formula, and check the formula to even higher orders.

The resulting coefficients are given by

c∆12,∆34
1 (k) = −4kk(−1)k

(k!)2
(ℓ+ 2ν)k

(

1
2(1− k +∆12)

)

k

(

1
2(1− k +∆34)

)

k

(ℓ+ ν)k
,

c∆12,∆34
2 (k) = −42kk(−1)k

(k!)2
(ν − k)2k

(ℓ+ ν − k)2k (ℓ+ ν + 1− k)2k

×
(

1

2
(1− k + ℓ−∆12 + ν)

)

k

(

1

2
(1− k + ℓ+∆12 + ν)

)

k

×
(

1

2
(1− k + ℓ−∆34 + ν)

)

k

(

1

2
(1− k + ℓ+∆34 + ν)

)

k

,

c∆12,∆34
3 (k) = −4kk(−1)k

(k!)2
(ℓ+ 1− k)k

(

1
2(1− k +∆12)

)

k

(

1
2(1− k +∆34)

)

k

(ℓ+ ν + 1− k)k
, (4.8)

17Note that h̃
∆12,∆34

ℓ (r, η) is not given by r−∆g̃
∆12,∆34

ℓ (∆, r, η); it also contains some (analytic) contri-

butions from the sum in (4.3).
18Here we define the conformal blocks with a factor (−1)ℓ relative to [16]. In the notation of [55], our

blocks have a normalization coefficient of cℓ ≡
(−1)ℓ

4∆
(ν)ℓ
(2ν)ℓ

.
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where (a)n = Γ(a + n)/Γ(a) denotes the Pochhammer symbol. It should be possible to

analytically derive these coefficients using conformal representation theory. A derivation

could shed light on their generalization to other conformal blocks (e.g., for operators with

spin) and superconformal blocks.

Using the recursion relation (4.6), it is straightforward to compute derivatives of the

conformal blocks around the crossing-symmetric point r = r∗ = 3 − 2
√
2 ≈ 0.17, η = 1.19

These have the form

∂m
z ∂n

z g
∆12,∆34

∆,ℓ (r, η)
∣

∣

∣

r=r∗,η=1
= r∆∗

(

q∆12,∆34;mn
ℓ (∆) +

∑

i

a∆12,∆34;mn
ℓi

∆−∆i

)

, (4.9)

where q∆12,∆34;mn
ℓ (∆) is a polynomial in ∆ and a∆12,∆34;mn

ℓi are numerical coefficients. Poles

corresponding to larger values of ni in table 1 are suppressed by higher powers of r∗ ≈ 0.17.

Thus, we can get a good approximation by truncating to a finite number of poles ni ≤ νmax,

with the result

∂m
z ∂n

z g
∆12,∆34

∆,ℓ (r, η)
∣

∣

∣

r=r∗,η=1
≈

r∆∗
∏

i(∆−∆i)
p∆12,∆34;mn
ℓ (∆), (4.10)

where p∆12,∆34;mn
ℓ (∆) is a polynomial obtained by combining the poles in the partial frac-

tion expansion (4.9).20 This has the form (3.18), with χℓ(∆) = r∆∗
∏

i(∆ − ∆i)
−1. The

accuracy of this approximation depends on νmax. Bounds involving more derivatives (higher

nmax) require more precise expressions for the blocks, and consequently higher νmax. We

have verified that the bounds computed in this work are essentially unchanged if νmax is

increased.

5 Results and 3D Ising interpretation

5.1 General bound on ∆ǫ

Previous numerical bootstrap studies considered only a single four-point function 〈σσσσ〉.
One of the results of the single correlator bootstrap is a rigorous upper bound on the

dimension of the lowest-dimension scalar ǫ appearing in the σ× σ OPE. The bound on ∆ǫ

as a function of ∆σ was obtained for D = 3 in [12]; we reproduce it here and plot it in

several figures, as explained below.

In the case of multiple correlators, both σ and ǫ appear as external operators, resulting

in the system of equations (3.11). It is clear that the bound resulting from this system will

be at least as strong as the single-correlator bound because we can set α2,3,4,5 = 0 in (3.15)

to reduce it to the single-correlator problem. A priori, it is possible for the complete

system (3.11) to give an even stronger bound on ∆ǫ. However, after proceeding with the

computations described in section 3.3, assuming nothing else about the spectrum except

19The computation for ∆12 = ∆34 = 0 is described explicitly in [23]. Once we fix ∆12,∆34 the computa-

tion here is essentially the same. We must compute different tables of derivatives for each numerical value

of ∆12,∆34.
20The accuracy can be improved further by applying the technique described in appendix A of [16].
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that σ and ǫ are respectively the lowest dimension Z2-odd and -even scalars,21 we find that

the multi-correlator and single-correlator bounds agree (at nmax = 6).

While it is not obvious what the allowed region should be, it is clear that Z2-symmetry

combined with multiple correlator constraints should not fix the dimensions (∆σ,∆ǫ) with-

out additional assumptions. For example, the O(N) vector models admit a Z2 symmetry,

so they should lie in the allowed region, but below the 3D Ising model.22

5.2 Bound on ∆σ′

A new feature of the multiple correlator bootstrap for the Ising model is the access to

the Z2-odd spectrum. In particular, this allows us to place an upper bound on the di-

mension of the second Z2-odd scalar σ′. We assume that all Z2-odd scalars (other than

σ, σ′) have dimensions greater than ∆σ′ and try to find a contradiction with the crossing

equation (3.11). In the notation of section 3.3, we must find a functional satisfying the

constraints:

(

1 1
)

Z0(0)

(

1

1

)

> 0,

Z0(∆) � 0, ∀∆ ≥ ∆ǫ,

Zℓ(∆) � 0, ∀∆ ≥ ∆min
ℓ , ℓ = 2, 4, . . . ,

Y0(∆σ) ≥ 0,

Y0(∆) ≥ 0, ∀∆ ≥ ∆σ′ ,

Yℓ(∆) ≥ 0, ∀∆ ≥ ∆min
ℓ , ℓ = 1, 2, . . . , (5.1)

where ∆min
ℓ is the unitarity bound for a spin-ℓ operator. For given ∆σ and ∆ǫ, we find the

minimal value of ∆σ′ for which the spectrum is excluded. This value, depending on both

∆σ and ∆ǫ, is an upper bound on the dimension of σ′.

Instead of making a three-dimensional plot of ∆σ′ vs. (∆σ,∆ǫ), we choose a curve

in the (∆σ,∆ǫ) plane and plot the ∆σ′ bound along it. In particular, we choose (∆σ,∆ǫ)

to lie on the (single-correlator) upper bound on ∆ǫ computed at nmax = 10 — the black

dotted line in figures 3 and 4. This choice of curve is somewhat arbitrary. An advantage

is that it should pass near the 3D Ising point. Our primary goal is to get a general picture

of the constraints on ∆σ′ .

The bound on ∆σ′ as a function of ∆σ (with ∆ǫ following the nmax = 10 single

correlator bound) is shown in figure 1 at nmax = 6, corresponding to a linear functional

with N = 105 components.23 It has an almost rectangular peak centered near the Ising

value of ∆σ. The sides of the peak are close to vertical and the top is relatively flat. The

width of the peak is partially an artifact of our choice of (∆σ,∆ǫ) curve, as will be clear

in the next subsection.

21Additionally, we always include the usual unitarity bounds on operator dimensions.
22To apply our bounds to the O(N) models, we may take σ = φ1 and ǫ = S11, where φi is a vector under

O(N) and Sij is the lowest-dimension traceless symmetric tensor of O(N) in φi × φj . Of course, much

stronger bounds can be obtained by using the full information of O(N) symmetry, as in [16].
23For lower values of nmax the bound only exists for ∆σ < 0.51.
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upper bound on ∆σ′ (nmax = 6)

∆σ

∆σ′

0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535
1

2

3

4

5

6

7

Figure 1. An upper bound on ∆σ′ , where (∆σ,∆ǫ) are constrained to lie on the nmax = 10 single

correlator bound (black dotted line in figures 3 and 4). The sharp spike in the bound occurs when

the values of ∆σ,∆ǫ lie within the allowed region in figure 3, with no assumption about Z2-even gaps

(medium-blue shaded region). Only when ∆σ,∆ǫ take these values, is it possible to have ∆σ′ ≥ 3,

and indeed the upper bound on ∆σ′ becomes extremely weak. This bound is computed at nmax = 6,

νmax = 8. We expect that as nmax increases, it becomes more sharply peaked, while the top moves

down to the correct value of ∆σ′ in the 3D Ising model. At nmax = 10, νmax = 14 we have computed

the stronger bound ∆σ′ ≤ 5.41(1) (the dashed line) at the points (∆σ,∆ǫ) = (0.5181, 1.41206),

(0.51815, 1.41267), (0.5182, 1.41312).

This peak provides another example of interesting behavior in bootstrap bounds near

the Ising point. Away from the Ising point, for ∆σ < 0.517 or ∆σ > 0.52, the bound on

∆σ′ is quite strong, implying ∆σ′ < 3 for the range of ∆σ plotted in figure 1. Just at

the Ising point, the bound ∆σ′ . 6.5 is relatively weak compared to the expected value of

∆σ′ = 3+ωA in the 3D Ising CFT, which has been estimated to be ∆σ′ & 4.5 by resumming

the ǫ-expansion [84], ∆σ′ ≈ 5.4 using the scaling field approach [85], ∆σ′ ≈ 4.7− 5.2 using

exact RGE methods [86], and ∆σ′ = 4.05(5) using the truncated bootstrap approach [24].

Enlarging the search space of functionals by increasing nmax, the peak gets narrower

and smaller. At nmax = 10, we computed a bound on ∆σ′ to precision 0.01 at the three

points (∆σ,∆ǫ) = (0.5181, 1.41206), (0.51815, 1.41267), (0.5182, 1.41312) near the expected

values in the 3D Ising model. At each of these points we find ∆σ′ ≤ 5.41(1), closer to the

estimates of other methods, but perhaps still somewhat larger. The difference in the

nmax = 6, 10 results indicates that this bound has yet to converge to its optimal value and

could likely be improved with further numerical work.
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allowed region with ∆σ′ ≥ 3 (nmax = 6)

∆σ

∆ǫ

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 2. Allowed region of (∆σ,∆ǫ) in a Z2-symmetric CFT3 where ∆σ′ ≥ 3 (only one Z2-odd

scalar is relevant). This bound uses crossing symmetry and unitarity for 〈σσσσ〉, 〈σσǫǫ〉, and 〈ǫǫǫǫ〉,
with nmax = 6 (105-dimensional functional), νmax = 8. The 3D Ising point is indicated with black

crosshairs. The gap in the Z2-odd sector is responsible for creating a small closed region around

the Ising point.

5.3 Bounds on (∆σ,∆ǫ) with gaps in the operator spectrum

The ∆σ′ bound in figure 1 indicates that away from the Ising point the spectrum must

contain a Z2-odd scalar of dimension ∆σ′ < 3. Conversely, imposing ∆σ′ ≥ 3 will exclude

values of ∆σ sufficiently far from the Ising model. The assumption ∆σ′ ≥ 3 has physical

meaning: it implies that there is only one relevant Z2-odd operator, σ. This assumption is

known to hold for the critical Ising model, where the only relevant operators are σ and ǫ.

Using this as input, we can additionally assume a gap ∆ǫ ≥ 3 in the Z2-even spectrum to

obtain even stronger bounds on scaling dimensions of the Ising model.

With the assumption of a gap in the Z2-odd spectrum, we find a strong constraint on

the values of ∆σ and ∆ǫ. The allowed region in the (∆σ,∆ǫ) plane is shown shaded light

blue in figure 2 for nmax = 6. As expected from the ∆σ′ bound, it consists of a small closed

region around the Ising point and another big region at ∆σ & 0.54. The dashed line is the

single correlator bound. Note that since we expect ∆σ′ ≈ 4.5 in the Ising model, we could

have assumed a bigger gap in the Z2-odd sector to get an even smaller allowed region in

the (∆σ,∆ǫ) plane. However, due to the fact that the sides of the peak in the ∆σ′ bound in

figure 1 are almost vertical, we expect that the allowed region around the Ising point is not

significantly affected by the exact value of the Z2-odd gap, as long as it is greater than 3.

The effect of the gap in the Z2-even sector is shown in figure 3. Without the Z2-odd

gap, we get exactly the same bound that was obtained for the single correlator bootstrap
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allowed region with various gaps in ∆ǫ′ ,∆σ′ (nmax = 6)

∆σ

∆ǫ

0.5 0.505 0.51 0.515 0.52 0.525 0.53
1

1.1

1.2

1.3

1.4

1.5

Single Correlator ∆ǫ′ ≥ 3

Figure 3. Allowed regions in a Z2-symmetric CFT3, assuming various gaps in the scalar spectrum.

The dashed line is an upper bound on ∆ǫ using crossing symmetry and unitarity of 〈σσσσ〉, with
no assumptions about gaps, at nmax = 6. The black dotted line is the same bound with nmax = 10.

The light blue shaded region assumes a gap ∆ǫ′ ≥ 3 in the Z2-even sector. The medium blue

shaded region assumes a gap ∆σ′ ≥ 3 in the Z2-odd sector, and uses crossing symmetry for the

system of correlators 〈σσσσ〉, 〈σσǫǫ〉, 〈ǫǫǫǫ〉 (same as figure 2). The dark blue region assumes both

∆σ′ ,∆ǫ′ ≥ 3, and uses the system of multiple correlators. All bounds other than the black dotted

line are computed with nmax = 6, νmax = 8 (21 components for single correlator bounds, 105

components for multiple correlator bounds). The 3D Ising point is indicated with black crosshairs.

in [12]. The allowed region for that case is shaded light blue in figure 3. Assuming gaps

in both the Z2-odd and -even parts of the spectrum, we find the allowed region around

the Ising point (shaded dark blue) to be of similar shape, but somewhat smaller size than

the allowed region when assuming only the Z2-odd gap (shaded medium blue). A zoomed

version of this region is shown in figure 4.

The allowed region around the Ising point shrinks further when we increase the value

of nmax. Finding the allowed region at nmax = 10 (N = 275) is computationally intensive,

so we tested only the grid of 700 points shown in figure 5. The disallowed points in the

figure were excluded by assuming both ∆σ′ ≥ 3 and ∆ǫ′ ≥ 3. On the same plot, we also

show the nmax = 14 single-correlator bound on ∆ǫ computed in [23] using a very different

optimization algorithm. The final allowed region is the intersection of the region below the

nmax = 14 curve and the region indicated by our allowed multiple correlator points.

Since the point corresponding to the 3D Ising model must lie somewhere in the allowed

region, we can think of the allowed region as a rigorous prediction of the Ising model di-
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replacemen

allowed region with various gaps in ∆ǫ′ ,∆σ′ , zoom (nmax = 6)

∆σ

∆ǫ

0.516 0.517 0.518 0.519 0.52 0.521 0.522 0.523
1.39

1.4

1.41

1.42

1.43

1.44

Figure 4. Zoom in on the region of the 3D Ising point in figure 3.

mensions, giving ∆σ = 1/2+η/2 = 0.51820(14) and ∆ǫ = 3−1/ν = 1.4127(11). In figure 6

we compare our rigorous bound with the best-to-date predictions using Monte Carlo sim-

ulations [39] and the c-minimization conjecture [23]. Although our result has uncertainties

greater than c-minimization by a factor of ∼10 and Monte-Carlo determinations by a factor

of ∼3, they still determine ∆σ and ∆ǫ with 0.03% and 0.08% relative uncertainty, respec-

tively. Increasing nmax further could potentially lead to even better determinations of ∆σ

and ∆ǫ. Indeed, the single correlator bound at nmax = 14 passing through the allowed

region in figure 5 indicates that the nmax = 10 allowed region is not yet optimal. At this

point, it is not even clear whether continually increasing nmax might lead to a finite allowed

region or a single isolated point.

We note that in our determinations we did not assume the c-minimization conjecture

or anything similar. The only assumption besides unitarity and conformal symmetry was

the existence of a Z2 symmetry and the assumption that σ and ǫ are the only relevant

scalars. It is therefore encouraging that the two methods are in such good agreement.

6 Discussion

In this work we have elucidated the power of mixed correlators in the context of the 3D

conformal bootstrap. While the simplest upper bound on the leading Z2-even operator

dimension ∆ǫ does not differ from the single correlator bootstrap, mild assumptions about

the number of relevant operators give rise to very tight constraints on the allowed values of

∆σ and ∆ǫ, almost uniquely determining their values. Our results support the conjecture

that the 3D Ising CFT is the only Z2-symmetric CFT in 3 dimensions with exactly two
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allowed region with ∆ǫ′ ,∆σ′ ≥ 3 (nmax = 10)

∆σ

∆ǫ

0.5179 0.518 0.5181 0.5182 0.5183 0.5184 0.5185 0.5186
1.41

1.411

1.412

1.413

1.414

1.415

Figure 5. Allowed and disallowed (∆σ,∆ǫ) points in a Z2-symmetric CFT3 with only one relevant

Z2-odd and Z2-even scalar, using the constraints of crossing symmetry and unitarity for 〈σσσσ〉,
〈σσǫǫ〉, 〈ǫǫǫǫ〉 at nmax = 10 (275 components), νmax = 14. The light grey points are ruled out,

while the dark blue points are allowed. The light blue shaded region shows the region allowed by

crossing symmetry and unitarity of the single correlator 〈σσσσ〉 at nmax = 14, computed in [23].

The final allowed region is the intersection of this shaded region with the region indicated by the

dark blue points (see figure 6).25

relevant operators. No other such CFT has been found experimentally, and it appears that

using bootstrap techniques a numerical “proof” may be forthcoming.

Moreover by considering the mixed correlator bootstrap we are also able to gain in-

formation about the Z2-odd spectrum, finding a general upper bound on ∆σ′ . We fully

anticipate that further studies of the mixed correlator bootstrap will yield an accurate

picture of the complete low-lying spectrum of the 3D Ising CFT.

There are several directions for future research. First, given the vital role that semidef-

inite constraints play in general formulations of the conformal bootstrap, it is important to

find and implement improved algorithms for high-precision solutions of semidefinite pro-

grams of the type encountered in this work. Such improvements will make it much easier to

perform broad explorations of the space of conformal field theories in general dimensions.

More concretely, it would be interesting to perform similar studies of the simplest

multiple correlator constraints in D 6= 3, as well as in CFTs with different global symmetry

groups. For example, in 2D one could understand what assumptions are needed in order to

25The computed points in figure 5 lie on a grid, where each row has constant ∆ǫ−∆σ, because ∆ǫ−∆σ is

the quantity entering the conformal blocks g∆12,∆34

∆,ℓ (u, v). Restricting it to a small number of values means

we have fewer tables of blocks to compute. We thank Slava Rychkov for this idea.
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allowed region with ∆ǫ′ ,∆σ′ ≥ 3 (nmax = 10)

∆σ

∆ǫ

0.51805 0.5181 0.51815 0.5182 0.51825 0.5183 0.51835
1.4115

1.412

1.4125

1.413

1.4135

1.414

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 6. Allowed values of (∆σ,∆ǫ) in a Z2-symmetric CFT3 containing only two relevant scalars.

The blue region is our rigorous bound from figure 5, computed at nmax = 10, 14. The dark grey

rectangle is the Monte-Carlo prediction of [39]. The light grey rectangle is the prediction of the c-

minimization conjecture [23], using single-correlator results at nmax = 21. There may be additional

disconnected regions for ∆σ & 0.54, as in figure 2, but we have not computed them here.

isolate the minimal model solutions, in 3D one could perform similar studies of the O(N)

vector models, and in 4D one could try to better understand the space of CFTs with a

small number of relevant operators which may have phenomenological interest. Moreover,

the time is ripe to begin including constraints from 4-point functions of operators with spin

— such studies will likely use techniques similar to what we have developed in this work.

It is also interesting to study mixed correlators in theories with supersymmetry. In par-

ticular, previous numerical bootstrap studies have focused on 4-point functions containing

the lowest component of a given supersymmetry multiplet, while mixed correlators could

allow one to incorporate the full constraints of supersymmetry on the external operators.26

Such studies may help to clarify the origin of the “kink” observed in previous studies of

the 4D N = 1 superconformal bootstrap [10] and may also reveal rich new structure in

theories with N = 2, 4 supersymmetry, extending the results of [15, 19, 26]. Finally, there

is significant room for incorporating mixed correlators into general analytical studies of the

bootstrap, both in the context of large N theories [30, 31] and in constraining the spectrum

at large spin [32, 33].

While the conformal bootstrap involving identical external operators has already shown

itself to be surprisingly constraining, our results demonstrate that the larger system of

26One can think about this in two ways: in components, we have four-point functions of different operators

in the same SUSY multiplet; in manifestly supersymmetric notation, multiple superconformally covariant

structures can appear in a three-point function.
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mixed constraints, combined with mild assumptions about gaps, may be sufficiently pow-

erful to uniquely locate isolated CFTs. Indeed, if one previously did not know about the 3D

Ising CFT, one would have discovered it following the general logic of this paper! There may

be many more isolated CFTs waiting to be discovered, perhaps theories without Lagrangian

descriptions or supersymmetry. The space of such theories can be mapped out in a system-

atic way using the conformal bootstrap, by inputting gaps and searching for small closed

allowed regions in the space of operator dimensions. There is much exploration to be done!
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A Multiple SU(n) three-point structures

In this appendix, we give a concrete example of multiple structures appearing in a three-

point function of operators charged under a global symmetry. Let G = SU(n) and let r be

the largest irreducible representation in Sym2AdG, of dimension 1
4n

2(n − 1)(n + 3). The

symmetric tensor square of r decomposes into irreducibles as

Sym2r = 2 r⊕ . . . . (A.1)

Consequently, there are two independent three-point structures (and hence OPE coeffi-

cients) in the three-point function 〈φrφrOr〉 when Or has even spin. Let us write these

structures explicitly in the case where O = φ.

In terms of SU(n)-indices, φkl
ij has two symmetric upper and two symmetric lower

indices, and satisfies the tracelessness condition φil
ij = 0. To write correlators of φ, it is

convenient to use index-free notation, where we contract φ with auxiliary bosonic vectors

U, V in the fundamental and dual representations, respectively,

φ(U, V , x) ≡ V
i
V

j
UkUlφ

kl
ij (x). (A.2)
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The operator with explicit indices can be recovered by differentiating with respect to U, V

and subtracting traces of the form δki , δ
l
j , δ

k
j , δ

l
i,

φkl
ij (x) =

∂

∂Uk

∂

∂Ul

∂

∂V
i

∂

∂V
j
φ(U, V , x)− traces. (A.3)

Any expression of the form V · U does not contribute after subtracting traces. Hence,

φ(U, V ) should only be defined modulo the ideal of functions proportional to V · U . Quo-

tienting by this ideal is equivalent to restricting φ(U, V ) to the locus V · U = 0, so we will

henceforth impose this condition. To apply (A.3), we can choose an arbitrary extension

of φ(U, V ) away from V · U = 0 and then differentiate. Similar index-free techniques were

used for classifying correlators of operators with spin in [44, 45, 56].

A correlator of φ(Um, V m, xm)’s must be a function of the SU(n)-invariants Qmn ≡
V m · Un (with n 6= m since V m · Um = 0) which is quadratic in each of the V m, Um. For a

three-point function, there are two such structures consistent with permutation symmetry,

〈φ(U1, V 1, x1)φ(U2, V 2, x2)φ(U3, V 3, x3)〉 = λ1Q12Q23Q31Q21Q32Q13

(x12x23x31)∆φ
(A.4)

+λ2

(

(Q12Q23Q31)
2 + (Q21Q32Q13)

2
)

(x12x23x31)∆φ
.

Each structure comes with its own OPE coefficient λ1, λ2. The explicit SU(n)-indices for

this three-point function can be recovered by applying (A.3) for each operator.

B Implementation in SDPA-GMP

In this appendix, we follow the notation of the SDPA manual [87]. In section 3.3, we

expressed our semidefinite program in terms of the variables aimn and the positive semidef-

inite matrices Aℓ, Bℓ, Cℓ, Dℓ. These are subject to linear constraints (3.22), (3.23), where

we equate coefficients of each power of x on both sides. The aimn are unconstrained. We

can write them in terms of positive variables by introducing a “slack variable” s ≥ 0,

and writing aimn = bimn − s, where bimn ≥ 0. All unknowns can now be grouped into one

block-diagonal positive semidefinite matrix

Y = diag(bimn, s, Aℓ, Bℓ, Cℓ, Dℓ). (B.1)

Here, m,n, i run over the 5nmax(nmax+1)/2 components of the functional α, and ℓ runs over

spins up to some large maximum value. In this work, we take ℓ = 0, 1, . . . , 25, 26, 49, 50.

Derivatives of the conformal blocks converge rapidly as ℓ → ∞, and in practice ℓmax ≈ 50 is

enough to ensure appropriate positivity conditions for all ℓ (one can check this by plotting

functionals at high ℓ once they are determined).

Y is the matrix of unknowns in the “dual” formulation of a semidefinite program

defined in [87]. The equality conditions (3.22), (3.23) can be expressed in the form

Tr(FiY ) = ci, (B.2)

– 29 –



J
H
E
P
1
1
(
2
0
1
4
)
1
0
9

where Fi are symmetric matrices with the same block-structure as Y , i runs over spins ℓ

and powers of x entering (3.22), (3.23), and ci = 0. As a normalization condition, we turn

the first constraint in (3.20) into an equality

(

1 1
)

Z0(0)

(

1

1

)

= 1, (B.3)

which can also be written in the form (B.2) with ci = 1, where only the entries in Fi

corresponding to bimn, s are nonzero. Since we are only interested in determining whether

a feasible solution exists for Y , and not in optimizing a particular function, we take the

dual objective function F0 to be identically zero.

Sometimes we have isolated operators in the OPE (for instance, in the Ising model, ǫ

is isolated from the remaining Z2-even scalars which have ∆ ≥ 3). Demanding that α be

positive on the contribution of these operators gives additional semidefiniteness constraints

on the variables bimn, s. To accommodate these, we extend the matrix Y with semidefinite

matrices Ek,

Y = diag(bimn, s, Aℓ, Bℓ, Cℓ, Dℓ, Ek). (B.4)

The semidefiniteness constraints now become equalities relating bimn, s, and Ek, which can

again be written in the form (B.2). This suffices to write our semidefinite program in the

form required by SDPA-GMP.

If our semidefinite program is feasible (i.e., if a functional α exists satisfying our con-

straints), then it should be possible to reduce the primal objective function to zero (the

dual objective function is identically zero). By decreasing the parameter epsilonDash, we

can force SDPA-GMP to make the primal objective smaller and smaller. Failure to decrease

the primal objective below a given finite value means the SDP is infeasible. In practice,

we set epsilonDash very small (∼ 10−30), and use the final value of the primal objective

as a measure of whether the problem is feasible or infeasible. Our SDPA-GMP parameters

are summarized in table 2. Our condition for feasibility is |primalObjective| ≤ 10−13.

Our computational setup is as follows. A Mathematica program computes tables of

derivatives of conformal blocks using the recursion relation described in section 4. A

separate Mathematica program reads these tables and writes a semidefinite program to a

file in sparse SDPA format. This file is read and solved by SDPA-GMP itself. We have modified

SDPA-GMP to allow checkpointing: it periodically saves its state to a file so it can be started

and stopped at will.27 Thus, computations taking several days can be interrupted safely

without having to start over again from the beginning. The nmax = 10 computations in

this work are quite time-intensive. Writing the SDP to a file takes about 30 minutes, and

solving it takes approximately 2 weeks. The nmax = 6 computations are much less time-

intensive, taking about 8 hours each. It is extremely useful to run several computations in

parallel on a computing cluster. Checkpointing allows us to set small time-limits on each

individual process, continually freeing up the cluster for jobs from other users.28

27The checkpointed version of SDPA-GMP is available at

https://bitbucket.org/davidsd/sdpa-gmp-checkpointed/overview.
28Our cluster management software uses Cloud Haskell [88, 89] and MongoDB [90].
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parameter value

maxIteration 1000

epsilonStar 10−20

lambdaStar 1020

omegaStar 1020

lowerBound −1040

upperBound 1040

betaStar 0.1

betaBar 0.3

gammaStar 0.7

epsilonDash 10−30 (10−35)

precision 300 (425)

Table 2. SDPA-GMP parameters used in the calculation of the operator dimension bounds. In

parentheses are the values of the parameters used in the nmax = 10 computation in figure 5.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[47] G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer-Verlag, New York

U.S.A. (1976).

[48] T. Iwasaki, G. Meinsma, and M. Fu, Generalized S-procedure and finite frequency KYP

lemma, Math. Probl. Eng. 6 (2000) 305.

[49] E. Aylward, S. Itani and P. Parrilo, Explicit sos decompositions of univariate polynomial

matrices and the kalman-yakubovich-popov lemma,

IEEE 46th Conf. Decision Control 2007 (2007) 5660.

[50] C. Hanselka and M. Schweighofer, Matrix Polynomials Positive Semidefinite on Intervals, to

appear.

– 33 –

http://dx.doi.org/10.1007/JHEP09(2010)099
http://arxiv.org/abs/1006.0976
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0976
http://dx.doi.org/10.1007/JHEP12(2013)004
http://arxiv.org/abs/1212.3616
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3616
http://dx.doi.org/10.1007/JHEP11(2013)140
http://arxiv.org/abs/1212.4103
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4103
http://arxiv.org/abs/1312.5344
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5344
http://dx.doi.org/10.1007/JHEP08(2014)145
http://arxiv.org/abs/1403.6829
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6829
http://arxiv.org/abs/1404.1079
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1079
http://dx.doi.org/10.1007/BF01214585
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,96,419
http://dx.doi.org/10.1007/BF01022967
http://dx.doi.org/10.1103/PhysRevB.82.174433
http://arxiv.org/abs/1004.4486
http://dx.doi.org/10.1103/RevModPhys.71.S358
http://inspirehep.net/search?p=find+J+Rev.Mod.Phys.,71,S358
http://dx.doi.org/10.1103/PhysRevD.86.105043
http://arxiv.org/abs/1208.6449
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6449
http://dx.doi.org/10.1007/JHEP07(2013)105
http://arxiv.org/abs/1104.4317
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4317
http://dx.doi.org/10.1007/JHEP11(2011)071
http://arxiv.org/abs/1107.3554
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3554
http://dx.doi.org/10.1007/JHEP11(2011)154
http://arxiv.org/abs/1109.6321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6321
http://dx.doi.org/10.1155/S1024123X00001368
http://dx.doi.org/10.1109/CDC.2007.4435026


J
H
E
P
1
1
(
2
0
1
4
)
1
0
9

[51] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product

expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

[52] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion,

Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

[53] M. Yamashita, K. Fujisawa, M. Fukuda, K. Nakata and M. Nakata, A high-performance

software package for semidefinite programs: SDPA 7, Research Report B-463, Department of

Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo Japan (2010).

[54] M. Nakata, A numerical evaluation of highly accurate multiple-precision arithmetic version

of semidefinite programming solver: Sdpa-gmp, -qd and -dd,

IEEE Int. Symp. Comp.-Aided Control Syst. Design (CACSD) 2010 (2010) 29.

[55] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results,

arXiv:1108.6194 [INSPIRE].

[56] D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP 04 (2014) 146

[arXiv:1204.3894] [INSPIRE].

[57] H. Osborn, Conformal Blocks for Arbitrary Spins in Two Dimensions,

Phys. Lett. B 718 (2012) 169 [arXiv:1205.1941] [INSPIRE].

[58] M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks,

Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].

[59] A.L. Fitzpatrick, J. Kaplan and D. Poland, Conformal Blocks in the Large D Limit,

JHEP 08 (2013) 107 [arXiv:1305.0004] [INSPIRE].

[60] M. Hogervorst, H. Osborn and S. Rychkov, Diagonal Limit for Conformal Blocks in d

Dimensions, JHEP 08 (2013) 014 [arXiv:1305.1321] [INSPIRE].

[61] C. Behan, Conformal blocks for highly disparate scaling dimensions, JHEP 09 (2014) 005

[arXiv:1402.5698] [INSPIRE].

[62] G. Mack, D-independent representation of Conformal Field Theories in D dimensions via

transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407

[INSPIRE].

[63] G. Mack, D-dimensional Conformal Field Theories with anomalous dimensions as Dual

Resonance Models, Bulg. J. Phys. 36 (2009) 214 [arXiv:0909.1024] [INSPIRE].

[64] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes,

JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

[65] A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language

for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].

[66] M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074

[arXiv:1107.1504] [INSPIRE].

[67] A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix,

JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].

[68] A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix,

JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

[69] M.F. Paulos, M. Spradlin and A. Volovich, Mellin Amplitudes for Dual Conformal Integrals,

JHEP 08 (2012) 072 [arXiv:1203.6362] [INSPIRE].

– 34 –

http://dx.doi.org/10.1016/S0550-3213(01)00013-X
http://arxiv.org/abs/hep-th/0011040
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011040
http://dx.doi.org/10.1016/j.nuclphysb.2003.11.016
http://arxiv.org/abs/hep-th/0309180
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309180
http://dx.doi.org/10.1109/CACSD.2010.5612693
http://arxiv.org/abs/1108.6194
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.6194
http://dx.doi.org/10.1007/JHEP04(2014)146
http://arxiv.org/abs/1204.3894
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3894
http://dx.doi.org/10.1016/j.physletb.2012.09.045
http://arxiv.org/abs/1205.1941
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1941
http://dx.doi.org/10.1103/PhysRevD.87.106004
http://arxiv.org/abs/1303.1111
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1111
http://dx.doi.org/10.1007/JHEP08(2013)107
http://arxiv.org/abs/1305.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0004
http://dx.doi.org/10.1007/JHEP08(2013)014
http://arxiv.org/abs/1305.1321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1321
http://dx.doi.org/10.1007/JHEP09(2014)005
http://arxiv.org/abs/1402.5698
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5698
http://arxiv.org/abs/0907.2407
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2407
http://arxiv.org/abs/0909.1024
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1024
http://dx.doi.org/10.1007/JHEP03(2011)025
http://arxiv.org/abs/1011.1485
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1485
http://dx.doi.org/10.1007/JHEP11(2011)095
http://arxiv.org/abs/1107.1499
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1499
http://dx.doi.org/10.1007/JHEP10(2011)074
http://arxiv.org/abs/1107.1504
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1504
http://dx.doi.org/10.1007/JHEP10(2012)127
http://arxiv.org/abs/1111.6972
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6972
http://dx.doi.org/10.1007/JHEP10(2012)032
http://arxiv.org/abs/1112.4845
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4845
http://dx.doi.org/10.1007/JHEP08(2012)072
http://arxiv.org/abs/1203.6362
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6362


J
H
E
P
1
1
(
2
0
1
4
)
1
0
9

[70] A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory,

JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].

[71] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091

[arXiv:1209.4355] [INSPIRE].

[72] S. Ferrara, A. Grillo and R. Gatto, Manifestly conformal covariant operator-product

expansion, Lett. Nuovo Cim. 2S2 (1971) 1363.

[73] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal

four-point function, Nucl. Phys. B 49 (1972) 77 [INSPIRE].

[74] S. Ferrara, R. Gatto and A.F. Grillo, Properties of Partial Wave Amplitudes in Conformal

Invariant Field Theories, Nuovo Cim. A 26 (1975) 226 [INSPIRE].

[75] S. Ferrara, A.F. Grillo, R. Gatto and G. Parisi, Analyticity properties and asymptotic

expansions of conformal covariant green’s functions, Nuovo Cim. A 19 (1974) 667 [INSPIRE].

[76] F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator

product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].

[77] P.J. Heslop, Aspects of superconformal field theories in six dimensions, JHEP 07 (2004) 056

[hep-th/0405245] [INSPIRE].

[78] M. Nirschl and H. Osborn, Superconformal Ward identities and their solution,

Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].

[79] F.A. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point

functions, Annals Phys. 321 (2006) 581 [hep-th/0412335] [INSPIRE].

[80] F.A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in

general dimensions, JHEP 09 (2004) 056 [hep-th/0405180] [INSPIRE].

[81] J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in Superconformal Theories,

JHEP 09 (2011) 071 [arXiv:1107.1721] [INSPIRE].

[82] A.L. Fitzpatrick et al., Covariant Approaches to Superconformal Blocks,

JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].

[83] Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, N = 1 superconformal blocks for

general scalar operators, JHEP 08 (2014) 049 [arXiv:1404.5300] [INSPIRE].

[84] A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory,

Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [INSPIRE].

[85] K.E. Newman and E.K. Riedel, Critical exponents by the scaling-field method: The isotropic

N-vector model in three dimensions, Phys. Rev. B 30 (1984) 6615 [INSPIRE].

[86] D.F. Litim and L. Vergara, Subleading critical exponents from the renormalization group,

Phys. Lett. B 581 (2004) 263 [hep-th/0310101] [INSPIRE].

[87] K. Fujisawa et al., SDPA (Semidefinite Programming Algorithm) – User’s Manual, Technical

Report (1995). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.2285.

[88] J. Epstein, A.P. Black and S. Peyton-Jones, Towards haskell in the cloud,

SIGPLAN Not. 46 (2011) 118.

[89] http://haskell-distributed.github.io/.

[90] http://www.mongodb.org/.

– 35 –

http://dx.doi.org/10.1007/JHEP02(2013)054
http://arxiv.org/abs/1208.0337
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0337
http://dx.doi.org/10.1007/JHEP12(2012)091
http://arxiv.org/abs/1209.4355
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4355
http://dx.doi.org/10.1007/BF02770435
http://dx.doi.org/10.1016/0550-3213(72)90587-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B49,77
http://dx.doi.org/10.1007/BF02769009
http://inspirehep.net/search?p=find+J+NuovoCim.,A26,226
http://dx.doi.org/10.1007/BF02813413
http://inspirehep.net/search?p=find+J+NuovoCim.,A19,667
http://dx.doi.org/10.1016/S0550-3213(02)00096-2
http://arxiv.org/abs/hep-th/0112251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112251
http://dx.doi.org/10.1088/1126-6708/2004/07/056
http://arxiv.org/abs/hep-th/0405245
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405245
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.013
http://arxiv.org/abs/hep-th/0407060
http://inspirehep.net/search?p=find+EPRINT+hep-th/0407060
http://dx.doi.org/10.1016/j.aop.2005.07.005
http://arxiv.org/abs/hep-th/0412335
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412335
http://dx.doi.org/10.1088/1126-6708/2004/09/056
http://arxiv.org/abs/hep-th/0405180
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405180
http://dx.doi.org/10.1007/JHEP09(2011)071
http://arxiv.org/abs/1107.1721
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1721
http://dx.doi.org/10.1007/JHEP08(2014)129
http://arxiv.org/abs/1402.1167
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.1167
http://dx.doi.org/10.1007/JHEP08(2014)049
http://arxiv.org/abs/1404.5300
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5300
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://arxiv.org/abs/cond-mat/0012164
http://inspirehep.net/search?p=find+EPRINT+cond-mat/0012164
http://dx.doi.org/10.1103/PhysRevB.30.6615
http://inspirehep.net/search?p=find+J+Phys.Rev.,B30,6615
http://dx.doi.org/10.1016/j.physletb.2003.11.047
http://arxiv.org/abs/hep-th/0310101
http://inspirehep.net/search?p=find+EPRINT+hep-th/0310101
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.2285
http://dx.doi.org/10.1145/2096148.2034690
http://haskell-distributed.github.io/
http://www.mongodb.org/

	Introduction
	Bootstrapping mixed correlators and semidefinite programming
	What is new about mixed correlators?
	Review of the bootstrap argument for identical scalars
	Applying the bootstrap argument to a mixed correlator

	Spin and global symmetry representations
	General semidefinite programs for the bootstrap
	SDP*2

	The conformal bootstrap with multiple scalars
	Specializing to scalars
	Simplest system with a Z(2) symmetry
	Bounds from semidefinite programming
	Additional constraints

	Rational representations for conformal blocks
	Results and 3D Ising interpretation
	General bound on Delta(epsilon)
	Bound on Delta(sigma')
	Bounds on Delta(sigma), Delta(epsilon) with gaps in the operator spectrum

	Discussion
	Multiple SU(n) three-point structures
	Implementation in SDPA-GMP

