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BOOTSTRAPPING NON-CAUSAL AUTOREGRESSIONS:

WITH APPLICATIONS TO EXPLOSIVE BUBBLE

MODELLING

Giuseppe Cavaliere∗, Heino Bohn Nielsen†, and Anders Rahbek†

Abstract

In this paper we develop bootstrap-based inference for non-causal autoregres-

sions with heavy tailed innovations. This class of models is widely used for mod-

elling bubbles and explosive dynamics in economic and financial time series. In

the non-causal, heavy tail framework, a major drawback of asymptotic inference

is that it is not feasible in practice as the relevant limiting distributions depend

crucially on the (unknown) decay rate of the tails of the distribution of the in-

novations. In addition, even in the unrealistic case where the tail behavior is

known, asymptotic inference may suffer from small-sample issues. To overcome

these diffi culties, in this paper we study novel bootstrap inference procedures, us-

ing parameter estimates obtained with the null hypothesis imposed (the so-called

restricted bootstrap). We discuss three different choices of bootstrap innovations:

wild bootstrap, based on Rademacher errors; permutation bootstrap; a combi-

nation of the two (‘permutation wild bootstrap’). Crucially, implementation of

these bootstraps do not require any a priori knowledge about the distribution of
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the innovations, such as the tail index or the convergence rates of the estimators.

We establish suffi cient conditions ensuring that, under the null hypothesis, the

bootstrap statistics estimate consistently particular conditional distributions of

the original statistics. In particular, we show that validity of the permutation

bootstrap holds without any restrictions on the distribution of the innovations,

while the permutation wild and the standard wild bootstraps require further as-

sumptions such as symmetry of the innovation distribution. Extensive Monte

Carlo simulations show that the finite sample performance of the proposed boot-

strap tests is exceptionally good, both in terms of size and of empirical rejection

probabilities under the alternative hypothesis. We conclude by applying the pro-

posed bootstrap inference to Bitcoin/USD exchange rates and to crude oil prices

data. We find that indeed non-causal models with heavy tailed innovations are

able to fit the data, also in periods of bubble dynamics.

Keywords: Non-causal Autoregressions; Heavy Tails; Bubble Dynamics; Bootstrap.

JEL Classification: C32.

1 Introduction

In the recent economic and statistical literature there has been an increas-

ing interest in non-causal processes with heavy tailed innovations, see e.g. Gourieroux

and Zakoïan (2017), Hecq, Lieb and Telg (2016), Lanne and Luoto (2017) and the ref-

erences therein. Despite their simplicity, these models, even in their simplest form, are

capable of mimicking periods of explosive, bubble-type dynamics and other types of

complex, nonlinear behavior as witnessed repeatedly in financial and economic series;

see Hencic and Gourieroux (2015) and Hecq et al. (2016). In economics, non-causal

processes are also shown in Gourieroux, Jasiak and Monfort (2016) to be in the solution

set of stationary linear rational expectations models, see also Lanne and Luoto (2013)
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who derive a noncausal autoregressive representation for inflation starting from a stan-

dard New Keynesian Phillips curve. Non-causal models are currently used also for fore-

casting time series with forward looking component, such as inflation or stock returns

(Lanne and Luoto, 2013; Gourieroux and Jasiak, 2016; Lanne, Meitz and Saikkonen,

2013).

A major drawback of this class of models, which limits its application in empirical

works, is that estimation and testing based on asymptotic inference is extremely hard

to implement in practice. In fact, as is well-known from the seminal works by Davis

and Resnick (1985a,b, 1986), the relevant limiting distributions depend crucially on

nuisance parameters and on the exact distribution of the innovations. Specifically, rates

of convergence of estimators and test statistics as well as the form of the corresponding

limiting distributions depend on tails of the distribution of the innovations. In addition,

as is well known also for causal processes, even in the unrealistic case where the relevant

asymptotic distributions were known, asymptotic inference would suffer from small-

sample issues in terms of size when testing hypotheses of interest and of empirical

coverage when interval estimation is considered.

In contrast, we propose here to resort to bootstrap implementations of ordinary least

squares [OLS] based inference. While the bootstrap in standard causal model with finite

variance has been deeply explored (see e.g. Gonçalves and White, 2004), to the best our

knowledge the bootstrap in non-causal autoregressions with heavy-tailed case has not

been pursued in the literature. In the standard, causal framework, the presence of heavy

tails make the standard (Efron’s) bootstrap (based on i.i.d. resampling) an inconsistent

estimator of the null distribution of the test statistics of interest, see Athreya (1987)

and Knight (1989). Other types of bootstrap, such as the ‘m out of n’bootstrap (which

is based on bootstrap samples with length —‘m’—less than the length —‘n’—of the

original sample) have been proposed, but their performance in finite samples is often

unsatisfactory, see e.g. Cornea-Maderia and Davidson (2015) and the discussion in
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Section 5 below. Importantly, these bootstraps often require to arbitrarily select the

size m of the bootstrap sample or to implement data-dependent methods (as in Bickel

and Sakov, 2008). Moreover, the properties of these bootstraps in the non-causal world

is largely unknown.

In this paper we take a different route, based on two main ingredients. First, we

rely on bootstrap algorithms to generate non-causal bootstrap data where parameter

estimates obtained with the null hypothesis imposed on the bootstrap sample. This is

the so-called ‘restricted bootstrap’(see, inter alia, Davidson and MacKinnon, 2006 and

Cavaliere, Nielsen and Rahbek, 2015), which we here adapt to the non-causal frame-

work (‘unrestricted bootstrap’algorithms are also considered in our analysis although

—as will be demonstrated — they tend to be inferior to restricted bootstraps). Sec-

ond, following a recent proposal made by Cavaliere, Georgiev and Taylor (2016) for

causal processes, we discuss three different choices of bootstrap innovations: standard

wild bootstrap based on Rademacher errors; permutation bootstrap; a combination of

the two (‘permutation wild bootstrap’). In contrast to (plain or ‘m out of n’) i.i.d.

bootstrap methods, the proposed bootstraps —instead of resampling with replacement

from a set of residuals, say ε̃t —work as follows. The wild bootstrap, usually imple-

mented in the causal finite variance case to account for possible heteroskedasticity in

the data (Goncalves and Kilian, 2004), generates the bootstrap errors as ε∗t = w∗t ε̃t with

{w∗t } an i.i.d. sequence independent of Rademacher random variables, i.e. satisfying

P (w∗t = 1) = P (w∗t = −1) = 1
2
(in contrast to the finite variance case, due to the series

representation in Lepage, Woodroofe and Zinn, 1981, other choices for the distribution

of w∗t do not work). The permutation bootstrap, proposed initially by LePage and Pod-

gorski (1996) in the context of a regression model with infinite variance errors, generates

the bootstrap innovations by simply taking a (uniformly distributed) random permu-

tation of the residuals ε̃t. Finally, the permutation-wild bootstrap, combines the two

schemes and multiply the randomly permuted residuals with the random, Rademacher
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sequence {w∗t }.

A crucial feature of these bootstraps is that their implementation and related com-

putation of e.g. bootstrap p-values do not require any a priori knowledge about the

distribution of the innovations, such as the previously mentioned tail index or the con-

vergence rates of the estimators. Moreover, despite the complexity of the underlying

statistical theory, the bootstrap algorithms are very simple to implement and do not

require the practitioner to choose any tuning parameters.

Although our bootstraps do not estimate the unconditional distribution of the statis-

tics of interest, we establish suffi cient conditions ensuring that, under the null hypoth-

esis, the bootstrap statistics estimate consistently particular conditional distributions

of the original statistics. This is important because, even if the use of OLS inference

does not take the tail behavior featured by heavy tailed processes into account, the

use of the aforementioned bootstraps allow to restrict the reference population with

respect to which the test statistics are compared. For instance, the wild bootstrap

estimates the limit null distributions of the original test statistics conditional on the

absolute values of the innovations. Similarly, the permutation bootstrap estimates the

limit null distributions of the original test statistics conditional on the order statistics

of the original innovations. Although, as pointed out by an anonymous referee, the

statistical literature does not provide a full answer to whether conditional or uncon-

ditional bootstrap-based inference performs better, it is important to investigate if in

the framework of noncausal autoregressions, conditional inference actually leads to an

increase of power with respect to unconditional inference (as is the case for the simple

location model with i.i.d. errors, see Cavaliere et al., 2013). Such power increase is

confirmed in our Monte Carlo simulations, see Section 5 below.

Our theoretical analysis show that validity of the permutation bootstrap holds with-

out any restriction on the distribution of the innovations, while the permutation wild

and the standard wild bootstraps require further assumptions such as symmetry. In-

5



terestingly, in the special case of first-order non-causal autoregressions we show that

the wild bootstrap mimics exactly (i.e. with no estimation error) the conditional dis-

tribution of the original statistic, conditional on the absolute values of the original

innovations.

Extensive Monte Carlo simulations show that the finite sample performance of the

proposed bootstrap tests is exceptionally good, both in terms of size and of empirical

rejection probabilities under the alternative hypothesis.

We conclude by considering two empirical applications of the proposed bootstrap

inference. In the first we consider Bitcoin/USD exchange rates. These data were ana-

lyzed in a recent paper by Gourieroux and Hencic (2015) using approximate likelihood

methods based on the Cauchy density. Using our proposed bootstraps, we find that a

non-causal model with heavy tailed innovations fits the data well also in periods of bub-

ble dynamics. The second application focuses on (Dubai) crude oil price data, and again

confirm the finding that the non-causal dynamics is an important feature of data which

exhibit periods with bubble-type behaviour. The two applications clearly illustrate that

bootstrap inference in non-causal models with heavy tails is simple and feasible, despite

the fact that no assumptions on the tail behaviour of the data are made.

The paper is organized as follows. Section 2 provides an introduction to non-causal

autoregressive processes with heavy tailed innovations, with focus on non-causal autore-

gressive processes of order k = 1, which we denote as AR+(1). In Section 3 we derive

validity of the three bootstrap schemes described above, with a detailed theory on both

finite sample and asymptotic properties. Next, in Section 4 we extend our asymptotic

results to the general case of higher order non-causal autoregressions, denoted AR+ (k).

Finite sample properties of our bootstrap schemes for AR+ (k) inference are investi-

gated by Monte Carlo simulation in Section 5. Additional Monte Carlo simulations are

provided in the accompanying supplementary material, Cavaliere, Nielsen and Rahbek

(2017). The two illustrative empirical applications are provided in Section 6. Section 7
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concludes. All mathematical proofs are relegated to the Appendix, along with a short

review of some standard results on heavy tailed processes.

2 Non-causal stable first-order

autoregressions

Before presenting our results on general non-causal autoregressions in Section 4, we

start by discussing the non-causal AR+(1) process with heavy-tailed innovations. We

first define the model in Section 2.1 and compare it with standard, causal processes

(denoted by AR−(k) in what follows) with finite variance. The time series properties

are then discussed in Section 2.2. Estimation, testing and related asymptotic inference

are reviewed in Section 2.3.

2.1 The AR+(1) model

Consider initially the non-causal autoregressive model of order one, AR+(1), as given

by the forward recursion

xt = ρxt+1 + εt, t ∈ Z (1)

where εt is an i.i.d. sequence of random variables with heavy tails. The presence of

heavy tails, as detailed below, excludes the standard case of finite variance innovations,

Eε2t < ∞. Instead, we require that that the tails of the distribution of εt decay at a

slow rate; more precisely,

P (|εt| > x) ∼ cx−αL (x) (2)

for some constant c > 0, α ∈ (0, 2) and L (·) a slowly varying function at infinity; see

Definition A.1 of Appendix A.

As is clear from the definition of the evolution of xt in (1), the process is non-causal
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or autoregressive forward in time. This formulation implies (see also Gourieroux and

Zakoïan, 2017) that periods of explosive type behavior will occur, as often witnessed

in the (exponential) build up and (sudden) decay of bubble phenomena in economic

time series; classic examples include stock returns, bit-coin data and social media type

(e.g. Twitter or Google search) data. It is also worth noting that under the heavy tail

assumption, the standard Gaussian case is ruled out, consequently excluding that the

non-causal representation is identical to a standard causal autoregression with the same

parameter ρ (see e.g. Brockwell and Davis, 1991, Proposition 4.4.2 and Gourieroux and

Zakoïan, 2017, Proposition 3, for the heavy tailed case).

A key example of heavy tailed innovation obtains when the εt’s are stable random

variables. Stable distributions (see e.g. Andrews et al., 2009, and references therein)

are indexed by an exponent α (here restricted to lie in the open interval (0, 2)), usually

labelled ‘characteristic exponent’or ‘tail index’, a skewness parameter |β| ≤ 1, a strictly

positive and finite scale parameter σ > 0, and a location parameter µ ∈ R, which is

set to zero in the following. If β = 0, the stable distribution is symmetric (about µ).

The Cauchy distribution, which is specifically investigated in Gourieroux and Zakoïan

(2017), is a special case of the stable distributions as seen by setting α = 1 and β = 0.

Also, for stable random variables (2) holds with L (x) = 1 and c = c (α, β, γ) > 0 (see

e.g. Nolan, 2016):

P (|εt| > x) ∼ cx−α

such that εt exhibits the so-called Pareto-type tails. Hence, E|εt|p = +∞ for all p ≥

α while E|εt|p < +∞ for p < α. Consequently, for any α ∈ (0, 2), εt has infinite

variance and, for α ∈ (0, 1), the variance is undefined and εt has infinite unconditional

expectation.
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2.2 Time series properties

As in the causal case, the non-causal AR+ (1) process xt is strictly stationary pro-

vided |ρ| < 1. Then, the strictly stationary solution has the one-sided moving average

representation

xt =
∑∞

j=0
ρjεt+j (3)

which is convergent a.s. for any α ∈ (0, 2). Notice also that xt inherits the same

tail and moment properties of εt (cf. Brockwell and Davis, 1991, Remark 1 of Section

13.3). In particular, xt has Pareto-type tails and satisfies E|xt|p <∞ for p ∈ [0, α) and

E|xt|p =∞ for p ≥ α; see Section A of the Appendix for details.

From Gourieroux and Zakoïan (2017), the AR+(1) with stable errors has, for ρ 6= 0

and β = 0, the surprising property of being a Markov chain with expectation, condi-

tional on the past, given by

E (xt|xt−1) = sgn (ρ) |ρ|(α−1)xt−1

For the standard Cauchy case (that is, β = 0 and α = 1) with ρ ∈ (0, 1), this leads to

the martingale property

E (xt|xt−1) = xt−1. (4)

In this case the variance of xt, conditional on the past, changes over time and is given

by

V (xt|xt−1) =
σ2

ρ (1− ρ)
+

1− ρ
ρ

x2t−1 =: σ2t|t−1. (5)

Taken together, (4) and (5) implies that in the Cauchy case xt can be given a semi-

strong double autoregressive (DAR) representation (Ling, 2004, 2007; Ling and Li, 2008;
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Nielsen and Rahbek, 2014; Yang and Ling, 2017)

xt = xt−1 + σt|t−1zt

with zt a martingale difference sequence with unit conditional variance and a conditional

density depending on xt−1.

2.3 Estimation

In line with Davis and Resnick (1985, 1986a,b) and Gourieroux and Zakoïan (2017),

we consider the empirical autocorrelation coeffi cient or equivalently the ordinary least-

squares [OLS] estimator of ρ in the non-causal AR+(1) model. This estimator is non-

parametric, in that it does not utilize the specification of the distribution of εt. In the

special case where the distribution of the εt’s is known, maximum likelihood [ML] can be

employed. For instance, where the εt’s are assumed to be stable random variables, MLE

can be implemented along the lines proposed in Andrews et al. (2009), although this

is challenging due to the lack of closed-form expressions for the likelihood1. However,

in the general case treated here where the εt’s are only known to be in the domain

of attraction of a stable distribution, MLE cannot be implemented. Other estimators,

such least absolute deviation (LAD) estimators could also be considered; here we focus

on OLS estimation only (for LAD estimation, see Hecq et al., 2016).

The OLS estimator (which corresponds to the Gaussian QMLE conditional on xT
1See also Breidt, Davis, Lii and Rosenblatt (1991), Hecq, Lieb and Telg (2016) and Lanne and

Saikkonen (2011) for further applications of MLE to non-causal heavy tailed processes.
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fixed), is given by2

ρ̂T =

∑T−1
t=1 xtxt+1∑T−1
t=1 x

2
t+1

=:
S01
S11

(6)

Crucially, and in contrast to the usual finite variance case, the asymptotic properties

of ρ̂T depend on several (unknown) features of the distribution of εt. Importantly, not

only the speed of convergence of the estimator depend on the unknown tail index α,

but also on the unknown slowly varying function L (·).

To illustrate, consider the special case where εt is symmetric about 0 and E|εt|α =

+∞, α ∈ (0, 2). Then, it follows by Theorem 4.4 in Davis and Resnick (1986a) that for

some normalizing sequence nT →∞, as T →∞

nT (ρ̂T − ρ)
w→ Z :=

1− ρ2

(1− ρα)1/α
S1
S0

(7)

where S0 and S1 are independent stable random variables with tail index α/2 and α,

respectively (for the general case, see Appendix A.2). In particular, when εt has Pareto-

type tails, then (7) holds with nT = (T/ log(T ))1/α. Also, when α = 1 and εt is stable

(such that εt is Cauchy), the previous expression reduces to

T

log T
(ρ̂T − ρ)→w Z = (1 + ρ)

S1
S0
. (8)

In this special case, S1 is standard Cauchy (C (0, 1)) and S0 Lèvy distributed on (0,∞),

which also implies that S−10 is χ21. Hence, Z of (8) is distributed as (1 + ρ)C (0, 1)χ21.

Studentized statistics show similar properties. For instance, consider the standard

2One may also consider the sample autocorrelation coeffi cient, as given by

φ̂T :=

∑T
t=2 xtxt−1∑T
t=1 x

2
t

= (1− x21∑T
t=1 x

2
t

)ρ̂T ,

see Davis and Resnick (1986a,b). For the present purposes the two formulations are equivalent and
leads to the same results.

11



t-ratio

tT :=
ρ̂T − ρ0
σ̂TS

−1/2
11

where S11 :=
∑T−1

t=1 x
2
t+1 and σ̂

2
T is the residual variance, σ̂

2
T := T−1

∑T
t=1 ε̂

2
t , for ε̂t :=

xt − ρ̂Txt+1. In the special case considered above it is straightforward to prove, see

Lemma A.5 in the Appendix, that tT = Op

(
T 1/2n−1T

)
; hence, in practice it is not

even obvious how to normalize the Student t-statistic in order to perform asymptotic

inference.

As the examples above clearly indicate, asymptotic inference based on OLS estima-

tion is infeasible, as the related asymptotic distributions depend on α, which is unknown

in practice. Moreover, even in cases where α is known, inference is not feasible in gen-

eral, as the normalizing sequence nT may depend on further unknown quantities, see

the next section and Appendix A.2. Hence, we next investigate the usefulness of the

bootstrap in approximating the distribution of the OLS estimator in the non-causal

case. Crucially, as we will argue next, the bootstrap allows for feasible inference when

the tail index α and/or the normalizing sequence nT are not known.

3 The Bootstrap for the non-causal AR+ (1)

In this section we discuss the bootstrap in the non-causal AR+(1) model by focusing

on tests of the null hypothesis H0 : ρ = ρ̄ against the two sided alternative ρ 6= ρ̄. We

consider test statistics of the form

(i): rT = ρ̂T − ρ̄ (ii) tT =
ρ̂T − ρ̄
σ̂TS

−1/2
11

(9)

with S11 and σ̂
2
T as defined earlier. As discussed in the previous section, the asymptotic

distributions of (appropriately normalized versions of) rT and tT are generally unknown

and asymptotic inference is infeasible. In what follows, the true value of the AR para-
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meter is denoted by ρ0. Also, the unrestricted least squares residuals are denoted by

ε̂t = xt − ρ̂Txt+1, while the restricted residuals are denoted by ε̃t = xt − ρ̄xt+1, such

that, under the null hypothesis, ε̃t = εt (t = 1, ..., T − 1).

We initially describe in section 3.1 the two main bootstrap schemes which we propose

in the paper. The first is a restricted bootstrap scheme, where the bootstrap DGP

satisfies the null hypothesis, while the second is a classic unrestricted bootstrap, where

the null hypothesis is not imposed on the bootstrap sample. Then, in section 3.2

we discuss finite sample and asymptotic properties of bootstrap tests based on both

schemes.

3.1 Bootstrap schemes

Given the autoregressive structure of the data generating process in (1), we discuss our

two recursive bootstrap schemes —the restricted and the unrestricted scheme. For the

first, we are able to provide exact results while for the latter, the unrestricted bootstrap,

we provide asymptotic results. As already emphasized, the bootstrap here is used to

provide approximations of particular conditional distributions of the original statistics

(where the conditioning set depends on the actual construction of the bootstrap inno-

vations), rather than estimating the unconditional null distribution as is typically the

case in the bootstrap literature.

3.1.1 Restricted bootstrap

For some bootstrap innovations ε∗t (t = 1, ..., T − 1) to be described below, we define

the bootstrap process x∗t , t = 1, ..., T by

x∗t = ρ̄x∗t+1 + ε∗t , t = 1, ..., T − 1
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initialized at x∗T = xT . This corresponds to x∗t :=
∑T−t−1

i=0 ρ̄iε∗t+i+ρ̄
T−txT for t = 1, ..., T ,

see also the MA representation in (3).

The choice of the bootstrap innovations ε∗t is crucial in the heavy tail framework. For

instance, it is well known that the i.i.d. bootstrap where the ε∗t’s are i.i.d. draws from the

empirical distribution function of the residuals renders the bootstrap inconsistent, see

Athreya (1987) and Knight (1989). Hence, we consider three alternative bootstrap re-

sampling methods, which were also considered in Cavaliere, Georgiev and Taylor (2016)

for the sieve bootstrap in classic causal ARmodels. The first is a permutation bootstrap,

where ε∗t = ε̃π∗(t), t = 1, 2, ..., T − 1 with {π∗ (i)}T−1i=1 a uniformly distributed random

permutation of {1, 2, ..., T − 1}. The second is a wild bootstrap based on Rademacher

innovations3, where ε∗t = w∗t ε̃t, t = 1, 2, ..., T − 1, with {w∗t }
T−1
t=1 an i.i.d. sequence

independent of the original data and satisfying P (w∗t = 1) = P (w∗t = −1) = 1
2
. The

third, the permutation-wild bootstrap, combines the two and sets ε∗t = w∗t ε̃π∗(t), t =

1, 2, ..., T − 1, with w∗t and π
∗ (t) as defined before.

We bootstrap the two statistics in (9) by considering their bootstrap analogs as

given by:

(i) r∗T = ρ̂∗T − ρ̄ (ii) t∗T =
ρ̂∗ − ρ̄
σ̂∗TS

∗−1/2
11

, (10)

with ρ̂∗T , σ̂
∗
T and S

∗
11 the analogues of ρ̂T , σ̂T and S11 in terms of the bootstrap sample

{x∗t}.

3.1.2 Unrestricted bootstrap

With ρ̂T defined in (6), the unrestricted bootstrap process x
†
t , t = 1, ..., T satisfies

x†t = ρ̂Tx
†
t+1 + ε†t , t = 1, ..., T − 1 (11)

3Notice that in a simple, static location model, the wild bootstrap based on Rademacher shocks
corresponds to the sign bootstrap of LePage (1992).
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with x†t initialized at x
†
T = xT , such that x

†
t =

∑T−t−1
i=0 ρ̂iT ε

†
t+i + ρ̂T−tT xT for t = 1, ..., T ,

as noted for the restricted bootstrap. The resampling methods are as before (wild

bootstrap, permutation bootstrap and combination thereof) but with ε̃t now replaced

by the unrestricted residuals, ε̂t := xt − ρ̂Txt+1. Notice that while for the restricted

bootstrap under the null hypothesis it holds that ε̃t = εt (and hence resampling is from

the true errors), for the unrestricted bootstrap it holds that ε̂t = εt − (ρ̂T − ρ0)xt+1.

This difference is not generally crucial in the finite variance case; however, under heavy

tailed innovations the asymptotic properties of the term (ρ̂T − ρ0)xt+1 are essential in

order to assess the validity of the bootstrap.

For the unrestricted bootstrap, the reference bootstrap statistics are given by

(i) r†T = ρ̂†T − ρ̂T (ii) t†T =
ρ̂†T − ρ̂T
σ̂†TS

†−1/2
11

,

with ρ̂†T , σ̂
†
T and S

†
11 are the analogues of ρ̂T , σ̂T and S11 in terms of the bootstrap

sample {x†t}.

We now turn to the finite sample and asymptotic properties of the two bootstrap

schemes.

3.2 Properties of the bootstrap

In order to investigate the properties of our bootstrap schemes in the AR+(1) model,

we first focus on some exact, finite sample results for the restricted bootstrap. We

initially show that under the null hypothesis this bootstrap replicates (with no estima-

tion error) specific conditional distributions of the original statistics, irrespective of the

dimension of the sample. Since the same exactness property does not hold when the

unrestricted bootstrap is employed, we then proceed by establishing that the bootstrap

asymptotically replicate such conditional distributions.
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3.2.1 Finite sample properties (restricted bootstrap)

As observed above, under the null hypothesis ε̃t = εt such that for the restricted boot-

strap the permutation, wild or the combined bootstraps resample from the true εt’s.

This implies that we can state the following exact finite sample result involving the

distribution of the restricted bootstrap statistics, conditional on the data, and the dis-

tribution of the original statistics, conditional on suitable functions of the data, when

the null hypothesis H0: ρ = ρ̄ holds. Here D (Y |X) denotes the (possibly random)

cumulative distribution function of Y given X. Moreover, ε(t) (t = 1, ..., T − 1) denote

the order statistics of {εt} while |ε|(t) (t = 1, ..., T − 1) denote the order statistics of

{|εt|}.

Lemma 1 (Restricted bootstrap) With {xt}Tt=1 given by (1) with any tail index

α > 0, consider the restricted bootstrap statistics defined in (10). Then under the null

hypothesis ρ0 = ρ̄ it holds that:

(i) For the permutation bootstrap,

D(r∗T |{xt}T1 ) = D(rT |{ε(t)}T−11 , xT );

(ii) For the wild bootstrap, if in addition the distribution of εt is symmetric about 0,

D(r∗T |{xt}T1 ) = D(rT |{|εt|}T−11 , xT ) ;

(iii) For the combined permutation-wild bootstrap, if the distribution of εt is sym-

metric about 0,

D(r∗T |{xt}T1 ) = D(rT |
{
|ε|(t)

}T−1
1

, xT ) .

The same results hold with rT , r∗T replaced by tT , t
∗
T , respectively.
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Remark 3.1 Lemma 1 implies that the restricted bootstrap replicates particular con-

ditional distributions of the original statistics. Specifically, denote (to simplify notation)

by F ∗T the distribution function of r
∗
T conditional on the original data, and by FT the

distribution function of the original statistic rT , conditionally on the statistics specified

in the lemma. Then, for any metric % (·) on the space of distribution functions, such

as the Lèvy metric (see below), the distance % (FT , F
∗
T ) equals 0. As shown in the sim-

ulations of Section 5 this is reflected by the excellent size properties displayed by the

restricted bootstrap in small samples.

Remark 3.2 The results in Lemma 1 do not hold for the unrestricted bootstrap, and

consequently for this bootstrap we instead establish some asymptotic results. As already

indicated, the reason is that the difference between unrestricted residuals and true

errors, given by ε̂t − εt = − (ρ̂T − ρ̄)xt+1, is not zero and instead becomes negligible

only asymptotically (under suitable conditions).

Remark 3.3 The symmetry assumption in Lemma 1(ii) and (iii) is crucial for validity

of the wild and permutation-wild bootstraps. This is because symmetry implies that

under the null hypothesis the original innovation εt and its bootstrap analog ε∗t have the

same distribution conditionally on the absolute value |εt|. This distributional equality,

which is crucial to the proof of Lemma 1, is clearly violated when εt is not symmetrically

distributed. It is also worth noticing that exactness of the permutation bootstrap is not

based on the symmetry assumption.

Remark 3.4 In the (causal) finite variance case, wild bootstrap validity generally re-

quires that the bootstrap shocks w∗t ’s have zero mean, unit variance and finite fourth

order moment. On the contrary, in the heavy tail case, w∗t necessarily needs to have the

two-point (Rademacher) distribution; other choices (such as the Gaussian or the much

used Liu’s and Mammen’s two point distributions) would undermine bootstrap validity
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in the sense of Lemma 1, also asymptotically, because ε∗t , conditionally on the data,

would not have the same distribution as εt, conditionally on the absolute value |εt|.

Remark 3.5 Importantly, Lemma 1 only requires i.i.d.-ness of the sequence {εt} (and

symmetry for the permutation and permutation wild schemes, see the previous remark)

and hence allows for any value of the non-causal autoregressive parameter ρ as well as

of the tail index α.

Finally, it is important to notice that the fact the bootstrap reproduces with no

estimation error a particular conditional distribution of the original statistic is not

enough for establishing that the bootstrap p-value, p∗T , is uniformly distributed under

the null hypothesis. This result is carefully discussed in Davidson and Flachaire (2014)

for a regression model with regressors independent of the shocks at all leads and lags.

In particular, as in their Theorem 1, we can use Lemma 1 to prove that, although the

bootstrap is not exact for any arbitrary nominal level, the discrepancy between a chosen

nominal level and the actual level is very small, even for samples of very small size (see

Davidson and Flachaire, 2014, pp.164—165). Specifically, such discrepancy does not

approximately exceed 2−T for the wild bootstrap and (T !)−1 for the permutation-based

bootstraps.

3.2.2 Large sample properties

We now turn to the large sample properties of the unrestricted bootstrap. In particular,

we establish that, under the null hypothesis, the permutation and the permutation-wild

bootstraps behave asymptotically as the restricted bootstrap statistics. The same result

does not hold for the standard wild bootstrap, as it will be clarified later.

In order to state our results below and in the next section, we make use of the

following assumption, see also Davis and Resnick (1986) and the discussion therein.
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Assumption 1 With {xt}T1 as given in (1), assume that (i) |ρ| < 1; (ii) the tail decay

of {εt} in (2) holds with α ∈ (0, 2) and lim x→∞ P (εt > x)/P (|εt| > x) =: p ∈ [0, 1],

lim x→∞ P (εt < −x)/P (|εt| > x) = 1 − p; (iii) E|εt|α = +∞; (iv) for α ∈ (1, 2),

E(εt) = 0 while, for α = 1, εt is symmetrically distributed.

Assumption 1(i) is a standard stationarity condition for non-causal autoregressions,

see also Section 2. Assumption 1(ii) is classic in the heavy tail literature and corresponds

to assuming that {εt} is in the domain of attraction of an α-stable law; see Appendix A.

Assumption 1(iii) connects the tail index α to the (in)finiteness of the moments of εt.

Finally, Assumption 1(iv) is a very mild requirement which essentially rules out some

pathological cases arising at the singularity α = 1.

The following lemma provides the asymptotic properties under the null hypothesis.

Specifically, recall that Lemma 1 shows that under the null hypothesis the distribution

of restricted bootstrap statistic r∗T , conditional on the original data, is identical to the

distribution of original statistic rT , conditional on appropriate transformations of the

original innovations {εt}. Recall, additionally, that the original statistic rT converges

weakly at the rate nT , see (7) for the symmetric case and Lemma A.4 in Appendix

for the general case. In the next lemma we show that under the null hypothesis the

unrestricted bootstrap statistic r†T and restricted bootstrap statistic r
∗
T are close in the

sense that

nT (r†T − r∗T ) = o∗p (1) ,

see Appendix B for notation on bootstrap stochastic orders. Importantly, this implies

that (under the null hypothesis) the distribution of unrestricted bootstrap statistic r†T ,

conditional on the original data, asymptotically coincides with the distribution of orig-

inal statistic rT , conditional on appropriate transformations of the original innovations

{εt}. More precisely, the Lèvy metric between these two conditional distributions tends

to zero, in probability (see also Remark 3.6 below).
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Lemma 2 Let {x†t}Tt=1 be the unrestricted bootstrap process defined in (11) using either

permutation or permutation-wild bootstrap shocks. Then, under Assumption 1, if the

null hypothesis holds then

nT (r†T − r∗T ) = op∗ (1)

with nT as given in Appendix B.2. Likewise, for the studentized bootstrap statistics

t†T , t
∗
T , it holds that

nT
T 1/2

(t†T − t∗T ) = op∗ (1) .

Remark 3.6 From Lemma 2 we are able to conclude that asymptotically and condi-

tionally on the data, the unrestricted bootstrap test statistics behave as the restricted

bootstrap test statistics under the null. In particular, this implies, for the permutation

bootstrap, that in terms of the Levy-metric %L (·),4

%L

(
F †T , F

∗
T

)
p→ 0

where F ∗T (F
†
T ) is now the distribution function of the normalized restricted bootstrap

statistic nT r∗T (unrestricted bootstrap statistic nT r
†
T ) conditional on the original data.

Hence, using also Lemma 1,

%L

(
F †T , FT

)
p→ 0

with FT the distribution function of the normalized original statistic nT rT , conditionally

on the statistics specified in Lemma 1. Under symmetry of εt, an equivalent result holds

for the permutation-wild bootstrap.

Remark 3.7 While the permutation and the permutation wild bootstraps are asymp-
4For a given η > 0, η-proximity of two cumulative distribution functions, say F

and F ∗, at a point x can be evaluated by means of the indicator IF,F
∗

η (x) :=
I (F ∗ (x− η)− η ≤ F (x) ≤ F ∗ (x+ η) + η). Then, the Lévy metric between F and F ∗ is defined as
follows:

%L (F, F ∗) := inf{η > 0 : ∀x ∈ R, IF,F
∗

η (x) = 1}.
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totically valid (in the Levy metric), a similar result does not hold for the standard

wild bootstrap, even under the symmetry assumption. However, we show in section 5

that this bootstrap (in the case of symmetric innovations) has good finite sample size

properties.

4 Higher-order dynamics

Consider now the AR+(k) process (k ≥ 1)

xt = ρ1xt+1 + ...+ ρkxt+k + εt = β′zt+1 + εt (12)

where zt := (xt, ..., xt+k−1)
′, β := (ρ1, ..., ρk)

′ and the εt’s as defined earlier. Interest lies

in testing linear hypotheses of the form H0 : R′β = r, where R is k × 1 and r scalar

(extension to multiple hypotheses are considered in Remark 4.3 below). As is standard,

we focus on the test statistics

(i) rT = R′β̂T − r (ii) tT =
R′β̂T − r

σ̂T (R′S−111 R)1/2
(13)

where, with S11 :=
∑T−k

t=1 zt+1z
′
t+1 and S10 :=

∑T−k
t=1 zt+1xt, β̂T := S−111 S10 is the OLS

estimator of β and σ̂2T := T−1
∑T−k

t=1 ε̂
2
t , ε̂t := xt − β̂

′
T zt+1, is the residual variance.

Consider the restricted bootstrap, based on the restricted OLS estimator, β̃T , and

associated residuals, ε̃t := xt − β̃
′
T zt+1, t = 1, ..., T − k. The bootstrap sample is

generated recursively with H0 imposed as

x∗t = β̃
′
T z
∗
t+1 + ε∗t , t = 1, ..., T − k (14)

and initialized at x∗t = xt, t = T − k + 1, ..., T . The ε∗t’s are, as before, based on

permutation and permutation-wild bootstrap resampling of the restricted residuals ε̃t’s.
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The wild bootstrap is invalid in this case and hence it is not considered further (see

Remark 4.1 below). The restricted bootstrap statistics r∗T and t
∗
T are

(i) r∗T = R′β̂
∗
T − r (ii) t∗T =

R′β̂
∗
T − r

σ̂∗T (R′S∗−111 R)1/2

where, with S∗11 :=
∑T−k

t=1 z
∗
t+1z

∗′
t+1 and S

∗
10 :=

∑T−k
t=1 z

∗
t+1xt, β̂

∗
T := S∗−111 S∗10 is the OLS

estimator of β obtained on the bootstrap sample and σ̂∗2T := T−1
∑T−k

t=1 ε̂
∗2
t , ε̂

∗
t :=

x∗t − β̂
∗′
T z
∗
t+1, the corresponding residual variance.

As before, and taking the rT statistic to illustrate, let %L(·, ·) denote the Levy met-

ric in the space of distribution functions. Moreover, let FT be the distribution function

of (normalized) original statistic, nT rT , with rT as in (13), conditionally on {ε(t)}T−k1 ,

{xT}Tt=T−k+1 for the permutation bootstrap, and conditionally on {|ε|(t)}T−k1 , {xT}Tt=T−k+1
for the permutation wild bootstrap. Finally, let F ∗T denote the distribution function of

the normalized bootstrap statistic nT r∗T , conditionally on the original data. The follow-

ing Theorem holds under the null hypothesis H0 as the sample size diverges.

Theorem 1 With {xt}T1 as given in (12), assume that εt satisfy condition (ii)-(iv) in

Assumption 1 and that all characteristic roots associated to (12) are outside the unit

disk in the complex plane. Then, under the null hypothesis,

%L (F ∗T , FT )
p→ 0 (15)

as T →∞.

Some remarks are in order.

Remark 4.1 Unlike the AR+ (1) case, when k > 1 the restricted bootstrap is exact

only asymptotically. This happens because, even under the null hypothesis, the re-

stricted residuals ε̃t would differ from the true innovations, εt. For the permutation and
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the permutation wild bootstrap, however, the difference ε̃t− εt vanishes suffi ciently fast

to ensure that the convergence in (15) holds. The same property does not hold for the

wild bootstrap scheme, where the difference ε̃t−εt is not negligible, even asymptotically

(as is also the case for causal models, see Cavaliere et al., 2016, Remark 4.2).

Remark 4.2 The unrestricted bootstrap based on the permutation and permutation-

wild schemes (the latter under symmetry) can be proved to be valid too. Simulation

results provided in Section 5 confirm this.

Remark 4.3 The case of multivariate (q-dimensional, q ≥ 1) hypotheses such as

H0 : R′β = r, where R is now k × q (with full column rank q) and r is q × 1 can

be studied by bootstrapping F -type statistics of the form FT :=
(
qσ̂2T

)−1
(R′β̂T −

r)′(R′S−111 R)−1(R′β̂T − r). With β̃ the OLS estimator restricted by H0, the bootstrap

sample is generated recursively as in (14) and the bootstrap statistic F∗T corresponds

to FT computed on the bootstrap sample. Theorem 1 can be extended and proved to

be valid in this case too. Exactness of the restricted bootstrap occur under H0 in the

special case where k = q (implying that ε̃t = εt under the null hypothesis).

Remark 4.4 Theorem 1 establishes for the AR+ (k) model asymptotic proximity (in

the Levy metric) of the distribution of the bootstrap statistics, conditionally on the

original data, and the distribution of the original statistics, conditional on suitable

statistics. This result, in general, does not imply that the bootstrap p-values are as-

ymptotically uniformly distributed. For this to be the case, it would be suffi cient to

prove that the limiting distribution function of the bootstrap statistic (conditionally

on the data) is continuous with probability one. A proof of this result seems to be

very hard to obtain. However, for the simpler location model with heavy tailed, i.i.d.

errors, asymptotic continuity of the bootstrap distribution can be established as done

e.g. in Knight (1989, p.1173-4) for a standard i.i.d. bootstrap. We hence conjecture
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that continuity should carry over to the statistics considered here. This conjecture is

supported by the Monte Carlo results in Section 5.

5 Finite sample simulations

To illustrate the finite sample properties of the proposed bootstrap tests in the non-

causal autoregression framework, we present here results from a set of Monte Carlo

simulations. As in Section 2 and Section 3, we consider the non-causal AR+(1) model

(1). The data generating process has ρ0 = 0.5, and innovations distributed according

to a stable law, εt ∼ S(α, β), for the four combinations (α, β) ∈ (1, 1.5)× (0, 0.75), and

T = 100 observations5. We focus on testing null hypotheses of the form

H0 : ρ = ρ̄,

against two-sided alternatives, ρ 6= ρ̄. The test statistics are rT and its studentized

version, tT , as given in Section 2.

Table 1 report results for the restricted bootstrap based on the three considered re-

sampling schemes, i.e. the wild bootstrap, the permutation bootstrap and the permutation-

wild bootstrap. All bootstrap tests are implemented with 999 bootstrap samples. Re-

sults for the corresponding unrestricted bootstraps are given in Table 2. Finally, in

Table 3 we present results obtained using a fully parametric (restricted) bootstrap,

where the ε∗t’s are i.i.d. copies of the original εt’s. Notice that this bootstrap is infeasi-

ble in practice and used here only for comparisons.

Section (A) in Table 1 focuses on the size properties and reports empirical rejection

frequencies (ERFs) at nominal significance levels 2.5%, 5% and 10% under the null

hypothesis (i.e. ρ̄ = ρ0 = 0.5). We observe that the permutation bootstrap has excellent

5Additional Monte Carlo simulations for different choices of lag length, k, sample length T and
(α, β)—indices are provided in the supplementary material, Cavaliere, Nielsen and Rahbek (2017).
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(A) (B)
ERF, Null ERF, Alternative, ρ̄

Statistic α β 2.5 5.0 10.0 0.35 0.40 0.45 0.50 0.55 0.60 0.65

rT 1.0 0.00 2.7 5.2 10.4 53.3 15.8 6.9 5.2 9.1 24.2 78.9
tT 1.0 0.00 2.6 5.3 10.3 65.5 19.6 8.0 5.3 7.8 18.0 67.4
rT 1.0 0.75 2.7 4.8 9.6 50.9 27.7 12.9 4.8 2.2 2.9 9.7
tT 1.0 0.75 2.7 4.9 9.9 51.6 28.2 13.4 4.9 2.0 1.4 2.2
rT 1.5 0.00 2.9 5.4 10.3 37.9 15.7 6.6 5.4 11.1 26.4 58.3
tT 1.5 0.00 3.0 5.3 10.2 44.3 20.8 8.6 5.3 8.8 20.4 46.4
rT 1.5 0.75 2.7 5.3 10.4 38.0 19.1 9.0 5.3 9.1 25.0 55.7
tT 1.5 0.75 2.6 5.2 10.5 42.2 22.4 10.6 5.2 6.1 14.7 36.9

Table 3: Simulation results for the infeasible fully parametric bootstrap for the statistics rT
and tT . Section (A) reports empirical rejection frequencies (ERF) for the bootstrap test of a
true null hypothesis, ρ = 0.5, for significance levels 2.5%, 5%, and 10%. Section (B) reports
ERF for the bootstrap tests for different values of ρ, ρ ∈ {0.35, 0.40, ..., 0.65}. The innovations
of the DGP are drawn from a stable distribution, S(α, β), and T = 100. Results are based on
999 bootstrap samples and 10000 Monte Carlo replications.

size properties, with ERFs close to the nominal levels, for all combinations of (α, β). As

expected, the wild bootstrap and the permutation-wild bootstrap show inflated ERFs

in cases where the distribution of εt is asymmetric, most severe when α = 1. The

differences in terms of size between the statistic rT and its studentized version tT are

small, although the test based on rT is marginally preferable.

Section (B) of the table presents ERFs (for tests at the nominal 5% level) for dif-

ferent values of ρ̄, ρ̄ ∈ {0, 35, 0.40, ..., 0.65}, and focuses on the power properties of the

proposed tests. We observe that the permutation bootstrap test and the permutation-

wild bootstrap test have good power when compared to the infeasible fully parametric

bootstrap (in particular for alternatives close to the null, see Table 3), while the wild

bootstrap test, as expected, performs poorly when the error distribution is asymmetric.

Again, the non-studentized statistic, rT , is generally preferable, although the difference

in power is not large.
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The overall conclusion from Table 1 is that, in line with the theoretical claims in

Section 3.2, all restricted bootstrap tests seem to work is cases of symmetric error

distributions, while only the permutation bootstrap is valid in asymmetric cases.

Turning to the unrestricted bootstrap, results in Table 2 support the overall con-

clusion that the restricted bootstraps are slightly preferable over the corresponding

unrestricted bootstraps in terms of size, in particular in the asymmetric cases. We have

also compared the results for our unrestricted bootstrap schemes with those in Tables

1—2 in Cavaliere et al. (2016) (notice that only unrestricted bootstrap alogorithms are

covered there) on standard causal processes. Despite causal and non-causal models be-

ing highly different, we find that in both cases the wild, permulation and permutation

wild bootstraps outperform in terms of power both the unfeasible parametric bootstrap

and the ‘m out of n’bootstrap6.

Additionally in unreported simulations7, we investigated possible effects of different

centering schemes for the estimated residuals, in particular using centering around the

median of the residuals and around their sample mean (notice that our theory does

not cover the use of re-centred residuals). On the one hand, these recentering schemes

tend to inflate the empirical size of the permutation bootstrap in cases of asymmetric

distributions, and in general do not lead to any uniform improvement of the performance

of the bootstrap tests in terms of size. On the other hand, in terms of ERFs under the

alternative, we observe that —only for the special case of the wild bootstrap —centering

increases the rejection probabilities. The permutation bootstrap is not affected in terms

of ERFs under the alternative by the possible recentering of the residuals.

6The supplementary material Cavaliere, Nielsen and Rahbek (2017) reports simulations for the ‘m
out of n’bootstrap.

7Available from the authors upon request.
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Figure 1: Daily Bitcoin-USD exchange rate from February 1 —July 31, 2013.

6 Empirical illustrations

6.1 Bitcoin-USD exchange rates

Consider first the Bitcoin-USD exchange rate, as recorded at the MtGox Bitcoin ex-

change, see Figure 1. Data are daily and cover the period February—July 2013 (T = 181

observations).8 Gourieroux and Hencic (2015) provide a detailed description and dis-

cussion of the data and find that an AR+ (k) model with k = 2 fits the data well.

We proceed by analyzing the Bitcoin data using a general to specific approach by

initially estimating an AR+(5) model by OLS. The AR+(5) model is given by (12)

with k = 5 and consequently β = (ρ1, ..., ρ5)
′. To illustrate, we consider testing of the

AR+(k − 1) model against an AR+(k) model, for k = 2, ..., 5. In addition, we also

report joint tests for the AR+(2) model against the AR+(k) model, k = 3, ..., 5. For

instance, the joint test for k = 2 against k = 5 corresponds to testing the null hypothesis

8Daily closing prices were obtained from www.quandl.com/collections/markets/bitcoin-data.
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AR+(k)
k 5 4 3 2
ρ̂1 1.212 1.214 1.216 1.203
ρ̂2 −0.287 −0.285 −0.296 −0.230
ρ̂3 0.028 0.011 0.055
ρ̂4 −0.026 0.036
ρ̂5 0.051

p-value for stepwise test
AR+(k − 1) against AR+(k)

Wild 0.651 0.783 0.760 0.143
Permutation 0.453 0.591 0.406 0.000
Permutation-wild 0.457 0.572 0.392 0.000

p-value for joint test
AR+(2) against AR+(k)

Wild 0.968 0.969 0.760
Permutation 0.877 0.860 0.406
Permutation-wild 0.857 0.859 0.392

Table 4: Empirical analysis of Bitcoin data. Bootstrap p-values are based on 999 bootstrap
replications.

H0 : R′β = 0 where

R′ =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .

As is clear from the reported bootstrap p-values in Table 4, all tests support the AR+(2)

model, thus confirming the findings of Hencic and Gourieroux (2015). The validity of

the reduction from an AR+(k) model of order k = 5 to k = 2 holds for all variants of

the bootstrap implementations, while the wild bootstrap (borderline) suggests a further

reduction to an AR+(1).
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The fitted AR+(2) model is given by

xt = ρ̂1xt+1 + ρ̂2xt+2 + ε̂t,

where xt denote the (de-trended) Bitcoin/USD exchange rate, with parameter estimates

given in Table 4.

In order to study the dependence structure of estimated residuals Gourieroux and

Zakoïan (2017) propose to study the empirical correlation of the ε̂t’s for an AR+(1)

model,
T−1∑
t=2

ε̂tε̂t−1/
T−1∑
t=1

ε̂2t , (16)

whose (upon normalization) asymptotic distribution is found by simulation for the

special case where the distribution of the εt’s is known. The empirical correlation in

(16) is closely related to the OLS estimator in (6) and therefore, upon an appropriate

normalization, has a limiting distribution which can be represented in terms of a ratio of

stable distributions, see (A.8). Our proposed strategy of estimating an AR+(k) model

first, and then testing by bootstrap p-values whether a reduction to an AR+(k − 1)

model is valid, is equivalent in the sense that the test statistic for a reduction from the

AR+(2) to the AR+(1) has similar asymptotic properties to those of a test based on

(16). Our results are more general, however, as they allow testing the AR+(k) structure

for any k ≥ 1 and, importantly, it is made feasible by the proposed bootstrap inference

which can be used independently of the tail properties of the innovations εt.

As emphasized in Gourieroux and Zakoïan (2017), the AR+(1) model with Cauchy

innovations has a causal recursive double autoregressive structure, hence motivating a

misspecification analysis for both autocorrelation and ARCH-type effects in the causal

AR−(1) model. Diagnostics of ‘causal vs. non-causal’can be based on the estimated

non-causal residuals, ε̂t, and estimated causal residuals, ε̂
−
t say, for autocorrelation and
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ARCH-type effects. However, the empirical autocorrelation coeffi cient between ε̂t and

ε̂t+1 has a non-standard, non-pivotal limiting distribution; hence, Lagrange multiplier

type tests for no autocorrelation (when based on conventional asymptotic χ2-based p-

values) are not valid. Likewise, standard Lagrange multiplier statistics for ARCH effects

are also invalid, as these are based on covariances between ε̂2t and its own lag(s).

To overcome these diffi culties we propose to use Spearman’s rank statistic. For any

bivariate sequence {(vt, wt)}Tt=1, this statistic is given by

ST

(
(vt, wt)

T
t=1

)
= RT

(
T − 2

1−R2T

)1/2
,

where RT := 1 − 6
∑T

i=1 d
2
i / (T (T 2 − 1)) with di = rki({vt}Tt=1) − rki({wt}Tt=1) the

difference between the two ranks of the observations {(vt, wt)}Tt=1. ST is approximately

tm-distributed with m = T − 2 degrees of freedom, see e.g. Moran (1950). The results

in Table 5 apply for the non-causal case (vt, wt) = (ε̂t, ε̂t−1) (and for the causal case

(ε̂−t , ε̂
−
t−1)) to test for zero autocorrelation or level dependence, and (vt, wt) = (ε̂t, ε̂

2
t−1)

((ε̂−t , (ε̂
−
t−1)

2)) to test for double autoregressive ARCH type dependence. We find that

for both the non-causal AR+(2) and causal AR−(2) there is no autocorrelation, while

the stronger ARCH effects for the causal AR−(2) model supports further the AR+(2)

model.

6.2 Crude oil prices

As a second empirical application, we consider the Dubai crude oil price obtained from

the FRED database of the Federal Reserve Bank of St. Louis. Figure 2 shows monthly

observations for the log-transformation of the real oil price, using the consumer price

index as deflator, for the period August 2004 to July 2016 (T = 144 observations).

For the empirical ananlysis, as for the previous example we start with an AR+(5)

model for the time-series corrected for a constant and apply general to specific testing.
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(vt, wt) Spearman corr., RT Test statistic, ST p-value
Autocorrelation
Non-causal (ε̂t, ε̂t−1) 0.017 0.228 0.820
Causal

(
ε̂−t , ε̂

−
t−1
)

−0.010 −0.127 0.899

ARCH-type
Non-causal

(
ε̂t, ε̂

2
t−1
)

0.023 0.309 0.758

Causal (ε̂−t ,
(
ε̂−t−1

)2
) 0.130 1.747 0.082

Table 5: Misspecification tests for non-causal residuals, ε̂t = xt− ρ̂1xt+1− ρ̂2xt+2, and causal
residuals, ε̂−t = xt− ρ̂−1 xt−1− ρ̂

−
2 xt−2, where ρ̂

−
1 and ρ̂

−
2 denote the LS estimates in the causal

AR−(2) model.

The bootstrap test results reported in Table 6 clearly point towards an AR+(2) model

for all three different bootstrap algorithms.

We report in Table 7 the Spearman rank correlation diagnostics for residual autocor-

relation and double autoregressive ARCH-type dependence in the estimated residuals

from the non-causal AR+(2) model and from a causal AR−(2) model. For both the non-

causal and the causal model we find that there is no evidence of autocorrelation, while

the stronger ARCH effects for the causal AR−(2) model again provide more support to

the AR+(2) model.

2006 2008 2010 2012 2014 2016

­2.0

­1.5

­1.0

­0.5 Real Dubai crude oil price

Figure 2: Montly data for the real Dubai crude oil price, August 2004-July 2016.
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AR+(k)
k 5 4 3 2
ρ̂1 1.339 1.355 1.365 1.392
ρ̂2 −0.281 −0.294 −0.348 −0.437
ρ̂3 −0.162 −0.185 −0.069
ρ̂4 0.016 0.071
ρ̂5 0.031

p-value for stepwise test
AR+(k − 1) against AR+(k)

Wild 0.720 0.403 0.521 0.000
Permutation 0.704 0.385 0.380 0.000
Permutation-wild 0.713 0.392 0.386 0.000

p-value for joint test
AR+(2) against AR+(k)

Wild 0.585 0.301 0.528
Permutation 0.545 0.222 0.380
Permutation-wild 0.532 0.223 0.386

Table 6: Empirical analysis of the real Dubai crude oil prices. Bootstrap p-values are based
on 999 bootstrap replications.

(vt, wt) Spearman corr., RT Test statistic, ST p-value
Autocorrelation
Non-causal (ε̂t, ε̂t−1) −0.048 −0.564 0.573
Causal

(
ε̂−t , ε̂

−
t−1
)

−0.064 −0.754 0.451

ARCH-type
Non-causal

(
ε̂t, ε̂

2
t−1
)

0.031 0.364 0.717

Causal (ε̂−t ,
(
ε̂−t−1

)2
) −0.144 −1.719 0.088

Table 7: Misspecification tests for the real Dubai crude oil price, The non-causal residuals
are given by ε̂t = xt − ρ̂1xt+1 − ρ̂2xt+2, and the causal residuals, ε̂−t = xt − ρ̂−1 xt−1 − ρ̂

−
2 xt−2,

where ρ̂−1 and ρ̂
−
2 denote the LS estimates in the causal AR

−(2) model.
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7 Concluding remarks

This paper investigates validity of bootstrap-based inference for pure non-causal AR+(k)

processes, thereby making inference feasible, when the innovations display heavy tails.

In terms of bootstrap algorithms, we propose to apply the restricted bootstrap, i.e.

parameters estimated under the null hypothesis are used for generating the bootstrap

sample, together with bootstrap innovations resampled by permutation bootstrap or

wild bootstrap, and a combination thereof. The proposed bootstrap inference is simple

to implement in practice and works very well in finite samples. In the empirical appli-

cations, in order to distinguish non-causal from causal processes, we apply diagnostics

checking based on Spearman rank statistics in terms of both causally and non-causally

estimated autoregressive residuals. As suggested by Gourieroux and Zakoïan (2017), a

pure non-causal process will upon estimation have residuals which are uncorrelated in

levels and squares over time, while if estimated by a causal autoregression, correlation

in the squares will be detectable, as was confirmed in our included empirical analysis.

Finally, as is well-known we stress that it is also of interest to consider mixed causal

and non-causal processes. For these however, due to identification issues addressed e.g.

in Hecq et al. (2016), it is required to extend our bootstrap theory to include (quasi-)

maximum likelihood or LAD-type estimation and inference, which we leave for future

research.
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Appendix

This Appendix is organized as follows. Appendix A lists some basic results on heavy

tailed sequences, while Appendix B contains the proofs of all the theoretical results.

Note that the supplementary material, Cavaliere, Rahbek and Nielsen (2017) contains

tables with additional Monte Carlo simulations. AR: sen-
tence on
suppl

A Some results on Heavy Tailed sequences

A.1 Large T results for heavy tailed sequences

We start by introducing the concept of regularly and slowly varying functions at infinity,

which are useful in the characterization of distributions with heavy tails such as Pareto-

type tails. These functions are defined as follows.

Definition A.1 A (positive and measurable) function g (x) is said to be regularly
varying at infinity with index α ∈ R if it satisfies

lim
λ→∞

g (λx)

g (λ)
= x−α

for all x > 0. If α = 0, g is said to be slowly varying at infinity.

Distributions with Pareto-Lèvy type tails such as Pareto and Stable (with α < 2)

distributions satisfy

F̄ (x) := P (X > x) ∼ cx−α, α ∈ (0, 2)

This implies, in particular, that F̄ (x) is regularly varying with index α, that is

lim
λ→∞

F̄ (λx)

F̄ (λ)
= x−α

From Mikosch (1999, Remark 1.1.3) it follows that any regularly varying function has

representation

F̄ (x) = cx−αL (x) , α ∈ (0, 2) (A.1)
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for some slowly varying function. Thus, Pareto and Stable distributions are special

cases of (A.1) where the slowly varying component L (x) is constant.

An important and related concept is the domain of attraction of a stable law.

Definition A.2 Consider an i.i.d. sequence {εt}t≥1, each of them with distribution
function F . Then, F is said to belong to the domain of attraction of an α-stable distri-
bution Sα if there exist constants aT > 0 and dT such that

1

aT

∑T

t=1
(εt − dT )→d Sα

as T → ∞. If aT = T 1/α, F is said to belong to the ‘normal’domain of attraction of
an α-stable distribution Sα.

The relation between the property of being in the domain of attraction of a stable

law and the behavior of the tails is given in the following Lemma from Chan and Tran

(1989), see also Janssen (1989).

Lemma A.1 (Chan and Tran, 1989) A random variable with distribution function
F (x) = 1− F̄ (x) is in the domain of attraction of a stable random variable with index
α ∈ (0, 2) if and only if

F̄ (x) ∼ px−αL (x) , α ∈ (0, 2) , as x→∞

where

p = lim
x→∞

F̄ (x)

F̄ (x) + F (−x)
= lim

x→∞

P (X > x)

P (|X| > x)
∈ [0, 1]

In order to characterize the asymptotic behavior of sample mean, variances and

autocovariances of heavy tailed, i.i.d. sequence {εt}t≥1 (see the next section), as well as

to prove the main theory provided in this paper, it is necessary to define the following

two normalizing sequences:

aT := inf
x∈R+

(
P (|εt| > x) ≤ T−1

)
, ãT := inf

x∈R+

(
P (|εtεt+1| > x) ≤ T−1

)
(A.2)

where it also holds that TP (|εt| > aTx) ≤ x−α for all x > 0. The relation between the

order of magnitudes of aT and ãT are given next.
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Lemma A.2 (Davis and Resnik, 1986) It holds that

aT , ãT →∞

and, in particular, that the sequences aT , ãT are regularly varying with index α−1. More-
over, as T →∞,

aT = TαL (T ) = o (ãT )

ãT = o(a1+εT ) for any ε > 0

ã−1T a2T = T 1/αL (T )

for L a slowly varying function at infinity.

Let us turn to the properties of sample second order moments and cross product

moments of an heavy tailed sequence. The next theorem holds under the assumptions

made in Section 3.2 for the analysis of the asymptotic properties of the bootstrap.

Theorem A.1 (Davis and Resnick, 1986, Theorem 3.3) Let {εt} satisfy Assump-
tions 1(ii),(iii) of Section 3.2. Then, with µT := E (εtεt+1I(|εtεt+1| ≤ ãT ),(

1

a2T

T∑
t=1

ε2t ,
1

ãT

T−h∑
t=1

(εtεt+1 − µT ) , .....,
1

ãT

T−h∑
t=1

(εtεt+h − µT )

)
w→ (S0,S1, ...,Sh) (A.3)

where S0 is stable with index α/2, Si are stable with index α for i = 1, .., h and Sj are
mutually independent for j = 0, 1, ..., h. The term µT can be omitted if Assumption
1(iv) also holds.

The proof of this theorem exploits properties of regular variation and Karamata’s

theorem (see Feller, 1971, p.283) as detailed in Davis and Resnick (1985a,b, 1986). In

particular, we have

T ã−1T E|εtεt+1|I (|εtεt+1| < ãT ) → α/ (1− α) (A.4)

T ã−2T E
(
ε2t ε

2
t+1I

(
|ε2t ε2t+1| < ãT

))
= O (1) (A.5)

and, for η < α,

lim sup
T→∞

T ã−ηT E|εtεt+1|ηI (|εtεt+1| ≤ ãT ) <∞ (A.6)
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and

TE (|εt+iεt−1|η I (|εt+iεt−1| > ãT )) = O (ãηT ) . (A.7)

A.2 On the empirical autocorrelation coefficients

With ρ̂T denoting the empirical autocorrelation coeffi cient of order one, or equivalently

the OLS estimator of ρ in the AR+ (1) model, properties of ρ̂T have been investigated

in Davis and Resnick (1986). In particular, consistency and asymptotic distributional

behaviour require assumptions 1(ii) and (iii), i.e. that the innovations εt’s are in the

domain of attraction of an α-stable distribution. We collect the consistency property

in the following lemma, where ρ̂T =
∑T−1

t=1 xtxt+1/
∑T

t=2 x
2
t .

Lemma A.3 (Davis and Resnick, 1986) Under Assumption 1(i)—(iii), then ρ̂T →p

ρ0.

To state the asymptotic distribution of ρ̂T , we let nT := ã−1T a2T , with ãT and aT as

given in the previous section. The following lemma holds.

Lemma A.4 (Davis and Resnick, 1986) Under the assumption of Lemma A.3,

nT (ρ̂T − ρ0 − dT )→w Z :=
1− ρ20

(1− ρα0 )1/α
S1
S0

(A.8)

where S0 and S1 are independent stable random variables with index α/2 and α, respec-
tively and aT , ãT are defined in (A.2). The centering factor dT satisfies

dT :=
T

1− ρE (ε1ε2I(|ε1ε2| ≤ ãT ))
(∑T−1

t=1 x
2
t+1

)−1
(A.9)

and can be omitted if Assumption 1(iv) also holds.

We end this section by presenting the following lemma, which provides the order of

magnitude of the studentized sample autocorrelation.

Lemma A.5 Under Assumption 1,

tT :=
ρ̂T − ρ0
σ̂TS

−1/2
xx

= Op(T
1/2n−1T ).
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B Proofs

In this appendix, we use the following notation. For a given sequence X∗T computed

on the bootstrap data, X∗T = o∗p(1) means that for any ε > 0, P ∗(||X∗T || > ε)
p→ 0, as

T → ∞. Similarly, X∗T = O∗p (1) means that, for every ε > 0, there exists a constant

M > 0 such that, for all large T , P (P ∗(||X∗T || > M) < ε) is arbitrarily close to one.

Also, I(·) denotes the indicator function; b·c denotes the integer part of its argument.

B.1 Proof of Lemma 1

Consider first the wild bootstrap (ii):, and note that under symmetry εt = |εt|wt with

wt an i.i.d. sequence, P (w∗t = ±1) = 1
2
, and recall that ε∗t = |εt|w∗t . Then as,

D
(
ε∗1, ..., ε

∗
T−1| {xt}

T
t=1

)
= D(ε∗1, ..., ε

∗
T−1| {εt}

T−1
t=1 , xT ) = D(ε∗1, ..., ε

∗
T−1| {|εt|}

T−1
t=1 , xT )

= D(ε1, ..., εT−1| {|εt|}T−1t=1 , xT )

it follows that,

D
(
r∗T | {xt}

T
1

)
= D(r∗T | {|εt|}

T−1
1 , xT ) = D(rT | {|εt|}T−11 , xT ).

Consider next the permutation bootstrap (i) and observe that

D
(
ε∗1, ..., ε

∗
T−1| {xt}

T
t=1

)
= D(ε∗1, ..., ε

∗
T−1| {εt}

T−1
t=1 , xT )

= D(επ(1), ..., επ(T−1)| {εt}T−1t=1 , xT )

= D(επ(1), ..., επ(T−1)|
{
ε(t)
}T−1
t=1

, xT )

= D(επ◦(1), ..., επ◦(T−1)|
{
ε(t)
}T−1
t=1

, xT )

= D(ε1, ..., εT−1|
{
ε(t)
}T−1
t=1

, xT ).

where π ◦ (t) denotes a permutation of the order statistic (t). Next, as for the wild
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bootstrap,

D
(
r∗T | {xt}

T
1

)
= D(r∗T |

{
ε(t)
}T−1
1

, xT ) = D(rT |
{
ε(t)
}T−1
1

, xT ).

The results for the permutation-wild bootstrap and for the t∗T statistics follow similarly.

�

B.2 Proof of Lemma 2

Consider the difference between r†T (based on estimated ρ and unrestricted residuals)

and r∗T (based on true ρ and true errors), where

r†T = ρ̂†T − ρ̂T = S†1εS
†−1
11 ,

such that by Berk (1974, eq. (2.15))

|r†T − r∗T | ≤
|S∗−111 |2|S

†
11 − S∗11|

1− |S†−111 ||S
†
11 − S∗11|

(
|S∗1ε|+ |S

†
1ε − S∗1ε|

)
+|S∗−111 ||S

†
1ε − S∗1ε|

With aT , ãT as defined in Section A, the result follows by establishing: (i) |S†11 −

S∗11| = op∗
(
a1+εT

)
, a2TS

∗−1
11 = Op∗ (1), (ii) |S†1ε − S∗1ε| = op∗ (ãT ) and finally (iii) |S∗1ε| =

Op∗ (ãT ). In this case, we find using also that ãT = o
(
a1+εT

)
for all ε > 0,

|r†T − r∗T | =
Op∗

(
a−3+εT

)
1 + op∗ (1)

[Op∗ (ãT ) + op∗ (ãT )] + op∗
(
ãTa

−2
T

)
= Op∗

(
a−3+εT

)
Op∗ (ãT ) + op∗

(
ãTa

−2
T

)
= op∗

(
ãTa

−2
T

)
for 0 < ε < 1. Hence, as claimed, nT (r†T − r∗T ) = op∗(1) for nT := a2T ã

−1
T . We proceed

by establishing (i)-(iii).

Establishing (i) |S†11 − S∗11| = Op∗
(
a1+εT

)
, a2TS

∗−1
11 = Op∗ (1):

We present here the result for the case of the wild bootstrap as this is the most

involved case. By definition, x†t = ρ̂T−tT x†T +
∑T−t−1

i=0 ρ̂iT ε
†
t+i, and hence with x

†
T = 0
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without loss of generality we find

S†11 =
T−1∑
t=2

x†2t =
T−1∑
t=2

(
T−t−1∑
i=0

ρ̂iT ε
†
t+i

)2
=

T−1∑
t=2

T−t−1∑
i=0

ρ̂2iT ε
†2
t+i +

T−1∑
t=2

T−t−1∑
i=0

T−t−1∑
j 6=i,j=0

ρ̂i+jT ε†t+iε
†
t+j

=

T−1∑
m=1

ε̂2m

(
m−1∑
i=0

ρ̂2iT

)
︸ ︷︷ ︸

(sq†)

+ 2
T−1∑
m=1

T−1−m∑
k=1

ε†mε
†
m+k

(
m−1∑
i=0

ρ̂2i+kT

)
︸ ︷︷ ︸

(cp†)

Similarly, x∗t = ρT−tx∗T +
∑T−t−1

i=0 ρiε∗t+i, and hence with x
∗
T = 0 without loss of generality

we find

S∗11 =
T−1∑
t=2

x∗2t =

T−1∑
t=2

(
T−t−1∑
i=0

ρi0ε
∗
t+i

)2
=

T−1∑
t=2

T−t−1∑
i=0

ρ2i0 ε
∗2
t+i +

T−1∑
t=2

T−t−1∑
i=0

T−t−1∑
j 6=i,j=0

ρi+j0 ε∗t+iε
∗
t+j

=
T−1∑
m=1

ε2m

(
m−1∑
i=0

ρ2i0

)
︸ ︷︷ ︸

(sq∗)

+ 2
T−1∑
m=1

T−1−m∑
k=1

ε∗mε
∗
m+k

(
m−1∑
i=0

ρ2i+k0

)
︸ ︷︷ ︸

(cp∗)

.

Here we have used the fact that ε†2t = ε̂2tw
∗2
t = ε̂2t and similarly ε

∗2
t = ε2t . Consider first

the difference sq†−sq∗, which equals

T−1∑
m=1

ε2m

(
m−1∑
i=0

(ρ̂2iT − ρ2i0 )

)
+

T−1∑
m=1

(ε̂2m − ε2m)

(
m−1∑
i=0

ρ̂2iT

)

where ∣∣∣∣∣
T−1∑
m=1

ε2m

(
m−1∑
i=0

(ρ̂2iT − ρ2i0 )

)∣∣∣∣∣ ≤ cT

(
T−1∑
m=1

ε2m

)
|ρ̂T − ρ0| = Op (ãT ) = op

(
a1+εT

)
,

with cT = Op (1) by the mean-value theorem and the fact that |ρ̂T | < 1 for T large

enough. Similarly,∣∣∣∣∣
T−1∑
m=1

(ε̂2m − ε2m)

(
m−1∑
i=0

ρ̂2iT

)∣∣∣∣∣ ≤ c (ρ̂T − ρ0)
2
T−1∑
t=1

x2t+1 = Op

(
ã2Ta

−2
T

)
= op

(
a1+εT

)
using the fact that ε̂t − εt = − (ρ̂T − ρ0)xt+1.
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Now we consider the difference of the cross-product terms, cp†−cp∗:

T−1∑
m=1

T−1−m∑
k=1

ε∗mε
∗
m+k

(
m−1∑
i=0

ρ̂2i+kT − ρ2i+k0

)
+

T−1∑
m=1

T−1−m∑
k=1

(
ε†mε

†
m+k − ε∗mε∗m+k

)(m−1∑
i=0

ρ̂2i+kT

)
=: ξ1T + ξ2T .

First, rewrite ξ1T as,

ξ1T =

T−1∑
m=1

T−1∑
n=m+1

εmεnw
∗
mw
∗
n

m−1∑
i=0

(
ρ̂2i+n−mT − ρ2i+n−m0

)
=

T−1∑
m=1

T−1∑
n=m+1

εmεnw
∗
nw
∗
mRT,m,n

such that consequently,

E∗
(
ξ21T
)

= E∗(
T−1∑
m=1

T−1∑
n=m+1

εmεnw
∗
nw
∗
mRT,m,n)2

=
T−1∑
m=1

T−1∑
n=m+1

T−1∑
p=1

T−1∑
q=p+1

εmεnεpεqE
∗ (w∗mw∗nw∗pw∗q)RT,m,nRT,p,q

= c
T−1∑
m=1

T−1∑
n=m+1

ε2mε
2
nR

2
T,m,n ≤ cT (ρ̂T − ρ0)

2 (
T−1∑
m=2

ε2m)2 = Op

(
ã2T
)

= op(a
2(1+ε))
T )

where, cT = Op (1) and, for T large enough, R2T,m = Op((ρ̂T − ρ0)
2). Regarding ξ2T , we

have

ξ2T =
T−1∑
m=1

T−1−m∑
k=1

(ε̂mε̂m+k − εmεm+k)w∗mw∗m+k(
m−1∑
i=0

ρ̂2i+kT )︸ ︷︷ ︸
γT,m

and hence

E∗(ξ22T ) =
T−1∑
m=1

T−1−m∑
k=1

((ε̂m − εm)ε̂m+k + εm(ε̂m+k − εm+k))2 γ2T,m

≤ c(ρ̂T − ρ0)2(
T−1∑
m=1

T−1−m∑
k=1

x2m+1ε̂
2
m+k +

T−1∑
m=1

T−1−m∑
k=1

x2m+k+1ε
2
m)

≤ c(ρ̂T − ρ0)2(
T−1∑
m=1

x2m+1)(
T−1∑
m=1

ε̂2m +
T−1∑
m=1

ε2m)
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= Op(ã
2
Ta
−4
T )Op(a

4
T ) = Op(ã

2
T ) = op(a

2(1+ε)
T ).

Collecting terms, we find S†11 − S∗11 = op∗
(
a1+εT

)
, as desired.

Establishing (ii) |S†1ε − S∗1ε| = op∗(ãT ):

By definition, using x†T = x∗T = 0,

S∗1ε =
T−1∑
t=1

x∗t+1ε
∗
t =

T−1∑
t=2

x∗t ε
∗
t−1 =

T−1∑
t=2

(
T−t−1∑
i=0

ρi0ε
∗
t+i

)
ε∗t−1

=
T−1∑
t=2

εt−1w
∗
t−1

(
T−t−1∑
i=0

ρi0εt+iw
∗
t+i

)

and

S†1ε =
T−1∑
t=1

x†t+1ε
†
t =

T−1∑
t=2

x†tε
†
t−1 =

T−1∑
t=2

(
T−t−1∑
i=0

ρ̂iT ε
†
t+i

)
ε†t−1

=
T−1∑
t=2

ε̂t−1w
∗
t−1

(
T−t−1∑
i=0

ρ̂iT ε̂t+iw
∗
t+i

)

Hence,

S†1ε − S∗1ε =
T−1∑
t=1

x†t+1ε
†
t −

T−1∑
t=1

x∗t+1ε
∗
t =

T−1∑
t=1

(
x†t+1 − x∗t+1

)
ε∗t︸ ︷︷ ︸

AT

+
T−1∑
t=1

x†t+1

(
ε†t − ε∗t

)
︸ ︷︷ ︸ .

BT

Regarding AT , notice that

AT =
T−1∑
t=1

(
x†t+1 − x

#
t+1

)
ε∗t +

T−1∑
t=1

(
x#t+1 − x∗t+1

)
ε∗t =: A1T + A2T

with {x#t } being a bootstrap sample based on ρ0 and resampling ε̂t. First,

E∗ (A1T )2 = E∗(

T−1∑
t=2

T−t−1∑
i=0

(
ρ̂iT − ρi0

)
ε̂t+iw

∗
t+iεt−1w

∗
t−1)

2

=

T−1∑
t=2

T−t−1∑
i=0

T−1∑
m=2

T−t−1∑
j=0

(ρ̂iT − ρi0)(ρ̂
j
T − ρ

j
0)ε̂t+iεt−1ε̂m+jεm−1E

∗ (w∗m+jw∗t+iw∗m−1w∗t−1)
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=

T−1∑
t=2

T−t−1∑
i=0

(
ρ̂iT − ρi0

)2
ε̂2t+iε

2
t−1 ≤ cT (ρ̂T − ρ0)

2
T−1∑
t=2

T−t−1∑
i=0

γ2iε̂2t+iε
2
t−1

= cT (ρ̂T − ρ0)
2QT = op

(
ã2T
)

where for the last inequality we have used that, for T large enough and for some positive

constants γ < 1 and cT ∈ Op (1),

|ρ̂iT − ρi0| = |ρ̂T − ρ0|
∣∣∣∣∣

i∑
k=1

ρ̂i−kT ρk−10

∣∣∣∣∣ ≤ cT |ρ̂T − ρ0|iγi . (B.10)

The order of magnitude op (ã2T ) follows by considering the following inequalities,

QT ≤ c

T−1∑
t=2

T−t−1∑
i=0

i2γ2iε2t+iε
2
t−1 + c

T−1∑
t=2

T−t−1∑
i=0

i2γ2i(ε̂t+i − εt+i)2ε2t−1

≤ c
T−1∑
t=2

T−t−1∑
i=0

i2γ2iε2t+iε
2
t−1 + c (ρ̂T − ρ0)

2
T−1∑
t=2

T−t−1∑
i=0

i2γ2ix2t+1+iε
2
t−1

= Q1T + c (ρ̂T − ρ0)
2Q2T ,

with Q1T and Q2T implicitly defined. Decompose Q1T as,

Q1T =
T−1∑
t=2

T−t−1∑
i=0

i2γ2iε2t+iε
2
t−1 (I (|εt+iεt−1| ≤ ãT ) + I (|εt+iεt−1| > ãT )) ,

and note that

E

(
T−1∑
t=2

T−t−1∑
i=0

i2γ2iε2t+iε
2
t−1I (|εt+iεt−1| ≤ ãT )

)
=

T−1∑
t=2

T−t−1∑
i=0

i2γ2iE
(
ε2t+iε

2
t−1I (|εt+iεt−1| ≤ ãT )

)
≤ cTE

(
ε2t ε

2
t−1I (|εtεt−1| ≤ ãT )

)
= O

(
ã2T
)

by Karamata’s Theorem, see (A.5). Likewise, for some η ∈ (0, α) such that η/2 < 1,

and using again Karamata’s Theorem, see (A.7),

E(

T−1∑
t=2

T−t−1∑
i=0

i2γ2iε2t+iε
2
t−1I (|εt+iεt−1| > ãT ))

η
2 ≤ cTE (|εt+iεt−1|η I (|εt+iεt−1| > ãT )) = O (ãηT ) .

Collecting terms, Q1T = Op (ã2T ). Likewise, Q2T =
∑T−1

t=2

∑T−t−1
i=0 i2γ2ix2t+1+iε

2
t−1 =
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Op (ã2T ) , and hence

(ρ̂T − ρ)2QT = op (1)
(
Op

(
ã2T
)

+ op (1)Op

(
ã2T
))

= op
(
ã2T
)
.

Next, consider BT =
∑T−1

t=1 x
†
t+1(ε

†
t − ε∗t ):

We prove that the required rate is obtained for the permutation-wild bootstrap1. In

this case, x†t and x
∗
t are generated with bootstrap shocks defined as ε

†
t = ε̂π(t)w

∗
t and

ε∗t = ε̃π(t)w
∗
t = επ(t)w

∗
t , respectively. For this choice we find

BT =
T−1∑
t=1

(
T−t−1∑
i=0

ρ̂iT ε̂π(t+1+i)w
∗
t+1+i

)(
ε̂π(t) − επ(t)

)
w∗t

and

E∗
(
B2
T

)
= E∗(ε̂2π(t+1+i)

(
ε̂π(t) − επ(t)

)2
)
T−1∑
t=1

T−t−1∑
i=0

ρ̂2iT

where the double summation term is of order T . Next, using standard properties of

expectations under random permutations,

E∗(ε̂2π(t+1+i)
(
ε̂π(t) − επ(t)

)2
) ≤ 1

T 2

T−1∑
t=1

ε̂2t

T∑
t=1

(ε̂t − εt)2

= Op

(
a2T
T 2

)
(ρ̂− ρ0)

2
T∑
t=1

x2t+1 = Op

(
a2T
T 2

)
Op

(
ã2T
a4T

)
Op

(
a2T
)

= Op

(
T−2ã2T

)
Hence, in P -probability, BT = O∗p

(
T−1/2ãT

)
= o∗p (ãT ).

1For our main result to hold we require BT to be of order o∗P (ãT ) in P -probability. However,
unless the bootstrap shocks involve the permutation (i.e. {π (t)}T−11 is a uniformly distributed random
permutation of {1, ...T−1}), such rate cannot be achieved. To see this, notice that without permutation

ε†t − ε∗t = − (ρ̂T − ρ0)xt+1w∗t

such that BT = − (ρ̂T − ρ0)
∑T−1
t=1

(∑T−t−1
i=0 ρ̂iT ε̂t+1+iw

∗
t+1+i

)
xt+1w

∗
t . Hence,

E∗
(
B2T
)

= (ρ̂T − ρ0)
2
T−1∑
t=1

T−t−1∑
i=0

ρ̂2iT ε̂
2
t+1+ix

2
t+1 = Op

(
ã2T
a4T

)
O
(
a4T
)

= Op
(
ã2T
)

and BT is of order O∗p (ãT ) rather than o∗p (ãT ).
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Establishing (iii) |S∗1ε| = Op∗ (ãT ):

We omit without loss of generality the permutation and consider instead the wild

bootstrap which is the most involved case. By definition,

S∗1ε =

T−1∑
t=2

T−t−1∑
i=0

ρi0εt+iεt−1w
∗
t−1w

∗
t+i

such that

E∗
(
S∗21ε
)

=

T−1∑
t=2

T−t−1∑
i=0

ρ2i0 ε
2
t+iε

2
t−1 (I (|εt+iεt−1| ≤ ãT ) + I (|εt+iεt−1| > ãT ))

Next, as for (ii) using Karamata’s Theorem (A.5),

E(

T−1∑
t=2

T−t−1∑
i=0

ρ2i0 ε
2
t+iε

2
t−1I (|εt+iεt−1| ≤ ãT )) ≤ cTE

(
ε2t ε

2
t−1I (|εtεt−1| ≤ ãT )

)
= O

(
ã2T
)
.

Likewise, for some η ∈ (0, α) such that η/2 < 1, and using Karamata’s Theorem (A.7)

again,

E(
T−1∑
t=2

T−t−1∑
i=0

ρ2i0 ε
2
t+iε

2
t−1I (|εt+iεt−1| > ãT ))

η
2 ≤

cTE (|εt+iεt−1|η I (|εt+iεt−1| > ãT ))
∞∑
i=0

∣∣ρi∣∣η = O (ãηT )

Collecting terms, E∗ (S∗21ε ) = Op (ã2T ) as desired. �

B.3 Proof of Theorem 1

In order to prove the theorem, we need to introduce an infeasible restricted bootstrap,

based on the true parameters. For this bootstrap, the bootstrap sample is generated

recursively as

x?t = β′0z
?
t+1 + ε?t , t = 1, ..., T − k,

again initialized at x?t = xt, t = T − k + 1, ..., T . The bootstrap shocks are generated

as ε?t := επ∗(t)w
∗
t , where as before π

∗(t), t = 1, ..., T − k is a uniformly distributed

random permutation of {1, ..., T − k}, while w∗t is either equal to 1 (wild bootstrap)
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or i.i.d. Rademacher (permutation wild bootstrap). The bootstrap statistic (based on

unrestricted parameter estimation) is then given by

r?T = R′β̂
?

T − r

where β̂
?

T is the OLS estimator of β computed on {x?t}. This bootstrap satisfies the

following lemma (its proof mimics the one given for Lemma 1 and is therefore omitted).

Lemma B.6 With r?T the infeasible restricted bootstrap, and rT the original statistic,
it follows that for the permutation, permutation-wild and wild bootstrap schemes the
following holds:
(i) For the permutation bootstrap,

D(r?T |{xt}T1 ) = D(rT |{ε(t)}T−11 , xT )

where {ε(t)}T−11 denotes the order statistics of {εt}T−11 ;
(ii) For the wild bootstrap, if the distribution of εt is symmetric,

D(r?T |{xt}T1 ) = D(rT |{|εt|}T−11 , xT ) ;

(iii) For the combined permutation-wild bootstrap, if the distribution of εt is sym-
metric,

D(r?T |{xt}T1 ) = D(rT |
{
ε|t|
}T−1
1

, xT ) .

The same results hold with rT , r?T replaced by tT , t
?
T , respectively.

Given the results in Lemma B.6, we now proceed by showing that in P -probability

nT (r∗T − r?T ) = o∗p (1) (B.12)

where nT := ã−1T a2T . This implies the desired result that the (normalized) bootstrap

statistics, conditionally on the data, mimic the distribution of the (normalized) original

statistic, conditional on suitable statistics.

Without loss of generality, we set zt = 0 for t = T − k + 1, ..., T . As in the proof of

Lemma 2 it suffi ces to establish that: (i) ||S?11−S∗11|| = op∗
(
a1+εT

)
, a2T ||S∗−111 || = Op∗ (1),

(ii) ||S?1ε−S∗1ε|| = op∗ (ãT ) and finally (iii) ||S?1ε|| = Op∗ (ãT ). In order to do so, one can
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follow exactly the same steps as done there, where the results in the following lemmas

are now required (their proof is omitted for the sake of brevity).

Lemma B.7 Under the assumptions of Theorem 1, the restricted and unrestricted OLS
estimators β̃T and β̂T satisfy, under the null hypothesis,

||β̃T − β0|| = Op(||β̂T − β0||) = Op

(
ãTa

−2
T

)
= op (1)

Moreover, with ε̃t − εt = −(β̃T − β0)zt+1,

T−k∑
t=1

|ε̃2t − ε2t | = op
(
ã2T
)

Lemma B.8 The bootstrap process x∗t satisfies

x∗t =
t−k−1∑
i=0

θ̃T,iε
∗
t+i (B.13)

where, for T large enough, |θ̃T,i| ≤ cTρ
i for some ρ ∈ [0, 1) and cT = Op (1). The

unfeasible bootstrap process x?t satisfies (B.13) with ε
∗
t+i replaced by ε

?
t+i and θ̃T,i replaced

by θi, with |θi| ≤ cρi.

B.4 Proof of Lemma A.5

Proof of Lemma A.5. Recall that ρ̂T − ρ0 = Op(ãTa
−2
T ), and that S−1/2xx = Op(a

−1
T ).

Next,

σ̂2T = T−1
(
Sεε − S2εxS−1xx

)
,

where Sεε = Op (a2T ) and Sεx = Op (ãT ), and consequently σ̂2T = Op

(
T−1

(
a2T + ã2Ta

−2
T

))
=

Op (T−1a2T ). Collecting terms the result holds. �
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