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1 Introduction and summary

In the past few years there have been numerous numerical studies of the conformal boot-

strap [1–3] based on the pioneering work [4]. The results of these studies seem to suggest

that even a small subset of the crossing symmetry constraints can be very restrictive when

supplemented with a few conditions on the conformal field theory (CFT) data. For ex-

ample, the assumption that a 3d CFT has Z2 or O(N) global symmetry and only a small

number of relevant operators is sufficient in order to determine many terms in the operator

product expansion (OPE) of these operators to a great accuracy [5–12].1 The possibility

that only a small subset of the constraints satisfied by a CFT may be needed to fix a large

amount of CFT data deserves much more scrutiny. In particular, to assess whether this pos-

sibility is realized more generally, it would be useful to study the bootstrap in examples for

which some precise information on the CFT data is already known. Supersymmetric CFTs

(SCFTs) provide us with a plethora of such examples. Indeed, supersymmetry often allows

one to determine exactly the dimensions of protected operators and some of their correla-

tors. This information can be compared to the results of a conformal bootstrap analysis, or

supplemented to it as an additional constraint, making SCFTs into excellent laboratories

for assessing how restrictive the crossing symmetry and unitarity conditions are [13–25].

In this paper we will focus on theories with four Poincaré supercharges, for which the di-

mensions of chiral operators and 2-point functions of conserved currents are calculable. For

SCFTs with this amount of supersymmetry, the bootstrap constraints on the 4-point func-

tion of a chiral operator X in general dimensions 2 ≤ d ≤ 4 were recently studied in [26, 27].

1When the theory has a Z2 global symmetry, the above assumptions define the 3d Ising universality class,

and indeed the results of the numerical bootstrap are consistent with, and improve upon other numerical

methods that rely on some microscopic definition of the Ising critical point. Similarly, when the CFT has

O(N) global symmetry, the assumptions define the universality class of the critical O(N)-vector model.
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The work [24] initiated a generalization of [26, 27] to SCFTs with a chiral superfield

Zi in the fundamental irrep of an O(N) global symmetry. The analysis [24] had interesting

implications for the theory containing both X and Zi, and with the most general O(N)

invariant cubic superpotential

W =
g1

2
X

N∑
i=1

Z2
i +

g2

6
X3 . (1.1)

In particular, it was shown that when N > 2, the assumption of a supersymmetric RG

fixed point of (1.1) with both g1 6= 0 and g2 6= 0 is inconsistent with unitarity and crossing

symmetry in dimensions 3 ≤ d ≤ 4.2 The likely explanation of this exclusion is that either

g1 or g2 flows to zero in the IR. As a result, the IR SCFT has an enhanced symmetry. The

4− ε expansion suggests that it is g2 that flows to zero in the IR, and that the O(N)×Z3

flavor symmetry of (1.1) is enhanced to O(N)×U(1). Under the O(N) symmetry, the Zi
form a fundamental vector and X is a singlet, while under the U(1) symmetry the Zi carry

charge +1 and X carries charge −2.

In this work, our goal is to use the bootstrap to pin-point the non-trivial SCFTs that

are expected to arise in the IR limit of (1.1) with g1 = g 6= 0 and g2 = 0,

W =
g

2
X

N∑
i=1

ZiZi . (1.2)

To do this, we supplement the bootstrap constraints of the 4-point function 〈ZiZ̄jZkZ̄l〉
studied in [24] with CFT data that can be inferred for this specific model. Most importantly,

the superpotential (1.2) implies the chiral ring relation
∑N

i=1 Z
2
i ∼ 0, and that the O(N)-

fundamental Zi is charged under the additional U(1) flavor symmetry mentioned above. In

addition, one can use supersymmetric localization and the results of [28, 29] to calculate the

“central charges” cT , c
O(N)
J , and c

U(1)
J defined as the ratio between the two-point functions

of the canonically normalized stress tensor, O(N) current, and U(1) current in our SCFT

and the corresponding quantities in a reference SCFT.

The more notable results of our numerical analysis are as follows:

• Bounds on the lowest-lying unprotected O(N) singlet. We provide upper

bounds, as a function of ∆Zi , on the dimension of the lowest-lying unprotected O(N)

singlet that appears in the Zi × Z̄j OPE. In the specific model (1.2), this operator

is a linear combination of |X|2 and
∑

i |Zi|
2 that at large N has scaling dimension

close to 2 for any d. Quite nicely, when we impose the values of the central charges

corresponding to the IR SCFT fixed point of (1.2), we find that for a given value

of N the allowed regions are spiked around the value of ∆Zi that can be computed

exactly using F -maximization and supersymmetric localization.

A nice application of these bounds is to test the accuracy of various approximation

schemes such as the 4−ε expansion. Indeed, the scaling dimension of the lowest-lying

2In 3d, if N = 2 and g2 = 0 then (1.1) is equivalent to the XY Z model, in which g2 is an irrelevant de-

formation. If N = 1, [24] argued that the theory flows to two decoupled copies of the 3d N = 2 Ising SCFT.
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unprotected singlet has been calculated up to 4 loops in the 4 − ε expansion. These

results are hardly converged when setting ε = 1, and various resummation techniques

are in order. As an example, we find certain Padé resummations to be inaccurate as

they give estimates for the scaling dimension that lie within the region disallowed by

our bootstrap bounds. Perhaps a better resummation technique or an expansion to

higher orders in ε is required.

• SCFTs with
∑N

i=1 Z
2
i ∼ 0 in the chiral ring. Imposing the chiral ring relation∑

i Z
2
i ∼ 0 that follows from (1.2) leads to universal lower bounds on ∆Zi . For

instance, for N = 1 our results imply that in any 3d N = 2 SCFT with a chiral

operator Z such that Z2 ∼ 0 in the chiral ring, we have that to a good approximation

∆Z ≥ 2
3 . This bound is saturated for the Ising-SCFT studied in [26, 27], and we

conjecture that it is exact. It would very interesting to prove this conjecture in the

future. In [26, 27], the chiral ring relation was also found to be satisfied at a kink

whose position varies smoothly within 2 ≤ d ≤ 4; the interpretation of this kink

in d > 2 is currently not known.3 In 4d it corresponds to a feature in the N = 1

bootstrap bounds that was originally discovered in [30], and recently explored further

in [25]. We find a family of similar kinks in 3 ≤ d ≤ 4 for every value of N ≤ Ncrit.(d)

that we checked, where Ncrit.(3) = 2, limd→4Ncrit.(d) → ∞, and in general Ncrit.(d)

increases with d. In d = 4 we extrapolate the position of these kinks to N → ∞
where they approach ∆Zi ≈ 1.2. This value may guide the search for an explicit

possible realization of these features.

• Bounds on c
O(N)
J and a generalization of F -maximization. We also present

numerical lower bounds on the c
O(N)
J central charge in terms of the scaling dimension

∆Zi of the chiral operator Zi. In our previous work in [24], we presented such bounds

for O(N)-invariant SCFTs in d = 3 when no other theory-specific information was

assumed. Here, we generalize the results of [24] by performing a similar analysis in

non-integer d and imposing more theory-specific information such as the values of

the various other central charges.

It is worth commenting on the extension to non-integer d. In the expressions for

the (super)conformal blocks, d appears as a parameter, so it is possible to extend

these equations to non-integer d, as was done in a supersymmetric context in [27].

A different, perhaps unrelated extension to non-integer d was performed by Giombi

and Klebanov [31] who provided an interpolation between the 3-sphere free energy

F in d = 3 and the anomaly coefficient a in d = 4. Assuming a similar procedure for

computing various conserved current central charges as in integer dimensions [28], one

can further use the proposal of [31] to compute these quantities in non-integer d [24].

Interestingly, we find that the values of c
O(N)
J computed using this procedure almost

saturate our numerical bounds determined using the extension of the superconformal

blocks to non-integer d of [27].

3In d = 2 this mysterious kink merges with another kink whose position smoothly interpolates to the 3d

N = 2 Ising SCFT. Exactly at d = 2 its position coincides with the N = (2, 2) minimal model with c = 1.
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O(N) U(1) U(1)R

Zi N 1 rZ

X 1 −2 2− 2rZ

Table 1. Charges of fields in the model (1.2).

The rest of this paper is organized as follows. In section 2, we review localization

and ε-expansion results for our models, as well as the setup for our numerical bootstrap

analysis. In section 3, we present numerical bounds for various values of N on the 2-point

function coefficients of the O(N), U(1), and stress-tensor conserved currents, as well as

on the scaling dimensions of the chiral operator Zi and the unprotected lowest dimension

non-trivial O(N)-singlet scalar operator in the Zi × Z̄j OPE.

2 The model

Consider an N = 2 supersymmetric theory in 3d containing the N + 1 chiral superfields

X and Zi (i = 1, . . . , N), and with a superpotential (1.2). The model defined by (1.2) is

expected to flow in the IR to an interacting SCFT with an O(N)×U(1) flavor symmetry

and an R-symmetry U(1)R, whose charges are specified in table 1. In this section we will

review some of the properties of the CFT data of the model (1.2) that will be used in the

numerical analysis of section 3.

2.1 Localization

Let us start by reviewing what CFT data can be generally extracted for 3d N = 2 theories

when using supersymmetric localization. The R-symmetry charges determine the conformal

dimensions of operators in the chiral ring of the SCFT. To determine these charges one

has to identify the superconformal R-symmetry in the IR, which can be done using the

procedure of F -maximization [32]. Moreover, as described in [28, 29], supersymmetry

allows for the calculation of the coefficients of 2-point functions of conserved currents,

which we refer to as ‘central charges’. The calculation of the R-charge rZ and of the flavor

symmetry central charges use as an input the S3 free energy F = − log |ZS3 |. On the other

hand, the stress-tensor central charge can be determined through the partition function on

the squashed sphere [29]. The partition functions on both manifolds are calculable using

supersymmetric localization [32–35].

In this paper we will also be interested in studying the model (1.2) in dimensions

3 ≤ d ≤ 4. A formal extension of the superconformal algebra of theories with four Poincaré

supercharges to d dimensions was suggested in [27]. In this extension, chiral primaries can

be defined in continuous d and the relation of their dimension to their R-charge is given by

∆ =
d− 1

2
r . (2.1)

The authors of [27] also gave the dimensional continuation of superconformal blocks cor-

responding to 4-point functions of chiral operators, thus allowing for a generalization of

– 4 –
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the supersymmetric bootstrap to non-integer dimensions. In a different development, an

extension of F to the Sd free energy in continuous d, denoted by F̃ , was recently proposed

in [31] for theories with only chiral superfields. Associated with F̃ , the authors of [31] con-

jectured a generalized F̃ -maximization procedure (as well as an F̃ -theorem), which can be

used to determine the R-charges of chiral operators in continuous d, and from (2.1), their

scaling dimensions. As done in [24], we will also use F̃ to determine flavor symmetry cen-

tral charges in non-integer dimensions.4 We cannot, however, determine the stress-tensor

central charge in this way, since currently there is no known interpolation of the squashed

sphere free energy in non-integer dimension.

Let us now list the CFT data discussed above in more detail for the particular

model (1.2). Let jµij and jµ denote the O(N) and U(1) conserved currents, respectively,

and Tµν the stress-tensor. We define the central charges of these currents as

〈jµ(x)jν(0)〉 = c
U(1)
J

Γ2(d/2)

4(d− 1)(d− 2)πd
Iµν(x)

1

x2d−2
,

〈jµij(x)jνkl(0)〉 = c
O(N)
J

Γ2(d/2)

4(d− 1)(d− 2)πd
(δikδjl − δilδjk) Iµν(x)

1

x2d−2
, (2.2)

〈Tµν(x)T ρσ(0)〉 = cT
dΓ2(d/2)

4(d2 − 1)πd

(
1

2
(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x))− 1

3
ηµνηρσ

)
1

x2d
,

where Iµν(x) = ηµν − 2x
µxν

x2
. In our conventions, c

O(N)
J = 1 and cT = c

U(1)
J = N for a free

O(N)-fundamental chiral multiplet of a single unit of U(1) charge.

The procedure of calculating c
O(N)
J in 3 ≤ d ≤ 4 by using the Sd free energy F̃ was

described in [24], and can be trivially generalized to c
U(1)
J ; we refer the reader to [24] for

more details. In table 2 we list the values of ∆Zi , c
O(N)
J and c

U(1)
J for some particular values

of N in dimensions d = 3 and d = 3.5, as well as values of cT in d = 3.

2.2 4 − ε expansion

In one of the numerical experiments we will perform in section 3 we place upper bounds on

the dimension ∆′Ss,0 of the lowest dimension unprotected O(N)-singlet scalar in the Zi×Z̄j
OPE. It is possible to obtain an approximation for the dimension of this operator using

the 4− ε-expansion, as we now describe.

Indeed, Wess-Zumino models with cubic superpotentials such as (1.2) have weakly

coupled fixed points in d = 4− ε. These models were studied perturbatively in 4d in [36–

39] up to 4-loop order, and their results can be adapted to our case of interest. For brevity,

we will only present the results for our specific model to 3-loop order. In particular, the

anomalous dimension matrix of X̄X and Z̄iZi can be read off from the results of [36, 38, 39].

One eigenvalue is always zero corresponding to the combination

JU(1) = 2X̄X − Z̄iZi . (2.3)

4It would be interesting to check the continuation of current 2-point functions as obtained through F̃ ,

to those calculated by the more conventional ε-expansion.
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d = 3

N 1 2 3 4 10 20

∆Zi .708 .667 .632 .605 .543 .521

c
O(N)
J — .600 .664 .715 .844 .920

c
U(1)
J 3.33 3.13 3.34 3.85 8.91 18.63

cT 6.02 8.72 11.85 15.31 38.34 78.08

d = 3.5

N 1 2 3 4 10 20

∆Zi .851 .833 .820 .810 .781 .767

c
O(N)
J — .826 .850 .869 .921 .957

c
U(1)
J 4.27 4.76 5.41 6.15 11.48 21.18

Table 2. The scaling dimension of ∆Zi
, and the O(N)×U(1) flavor central charges at the infrared

fixed point of (1.2) in d = 3, 3.5. The central charge of the stress-tensor cT is only determined in

d = 3. The charges are normalized so that they equal 1 and N , respectively, in a theory of N free

chiral multiplets.

The operator JU(1) is the bottom component of the current multiplet corresponding to

the flavor U(1) symmetry, and is therefore not renormalized. To 3-loop order, the other

eigenvalue turns out to be given by

γ(g) =
N + 4

16π2
g2 − N + 1

32π4
g4 +

3
(
N2 +N(6ζ(3) + 11) + 24ζ(3) + 4

)
4096π6

g6 +O(g8) . (2.4)

Moreover, the 3-loop β-function of (1.2) in d = 4− ε is

βg = − ε
2
g +

(N + 4)

32π2
g3 − N + 1

128π4
g5 +

N2 + 6ζ(3)(N + 4) + 11N + 4

8192π6
g7 +O(g9) . (2.5)

Solving βg(g∗) = 0 we find the dimension of the unprotected scalar in the ε-expansion to be

∆′Ss,0 = 2− ε+ γ(g∗) = 2− 4(N + 1)

(N + 4)2
ε2 +

12(N + 4)2ζ(3) + 2N(N(N − 1) + 16)

(N + 4)2
ε3 +O(ε4)

(2.6)

For any quantity f(d) known in the ε = 4 − d expansion up to a given order, we can

construct a Padé approximant

Padé[m,n](ε) =
A0 +A1ε+A2ε

2 + · · ·+Amε
m

1 +B1ε+B2ε2 + · · ·+Bnεn
, (2.7)

where the coefficients Ai, Bi are fixed by requiring that the expansion at small ε agrees

with the known terms in f(4 − ε). If a quantity is known in the ε-expansion to order k0,

one can construct Padé approximants of total order m+ n = k0.

In the X3 superpotential case studied in [27], the bootstrap results for the dimension

of the lowest scalar in the X × X̄ OPE, agree to three digits with the Padé[2,1](ε) or

– 6 –
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Padé[1,2](ε) approximants obtained from the ε-expansion evaluated to order ε3 [40]. This

suggests that a similar Padé approximation could also be accurate in our case. Therefore,

in the following sections we will use the Padé[2,1](ε) approximant of (2.6).

2.3 4-point function of Zi and bootstrap

Let us now describe the setup of our numerical analysis. Consider the 4-point function

〈Zi(x1)Z̄j(x2)Zk(x3)Z̄l(x4)〉 . (2.8)

For the purpose of implementing the bootstrap we find it convenient to write Zi = Z1i+iZ2i

and Z̄i = Z1i − iZ2i, and work with the real fields ZIi, treating I = 1, 2 as an O(2)

fundamental index. The O(2) symmetry here can be thought of either U(1)R or the flavor

U(1) — the charges of Zi under both of these symmetries are proportional. Instead of the

4-point function (2.8) we can thus equivalently study

〈ZIi(x1)ZJj(x2)ZKk(x3)ZLl(x4)〉 . (2.9)

The crossing symmetry equations of (2.9) are identical to those appearing in ap-

pendix B of [24], to which the reader is referred for more details.5 In compact form, the

invariance of (2.9) under the exchange (1, I, i)↔ (3,K, k) implies the crossing equation

0 =
∑

O∈Ss, all `

λ2
O
~V Ss

∆,` +
∑

O∈St, all `

λ2
O
~V St

∆,` +
∑

O∈Sa, all `

λ2
O
~V Sa

∆,`

+
∑

O∈Ts, ` even

λ2
O
~V Ts

∆,` +
∑

O∈Tt, ` even

λ2
O
~V Tt

∆,` +
∑

O∈Ta, ` odd

λ2
O
~V Ta

∆,` ,
(2.10)

where λO are the OPE coefficients that must be real by unitarity, and ~V Rr
∆,` are nine com-

ponent vectors given by certain combinations of conformal blocks defined in [24]. It is

important that the ~V Rr
∆,` also depend on ∆Zi , though we will suppress this dependence

in our notation to avoid clutter. The sums are over all superconformal multiplets in the

ZIi × ZJj OPE, which are classified according to their O(N) × O(2) representation. The

labels S and T denote, respectively, the singlet and rank-two traceless symmetric irreps

of O(2) (corresponding to operators that are uncharged or charged under U(1)R or the

flavor U(1), respectively). The singlet, rank-two traceless symmetric, and rank-two anti-

symmetric irreps of O(N) are denoted by s, t, and a, respectively. Due to Bose symmetry,

the operators in the irreps Ts and Tt must have even spins, those in Ta should have odd

spins, and those in all other irreps can have any integer spin.

The unitarity bounds in the different channels, as well as the additional constraints

on the chiral ring imposed by the specific superpotential (1.2) are listed in table 3. These

additional constraints are:

• The superpotential (1.2) implies that the chiral operator
∑N

i=1 Z
2
i is a descendant. It

is therefore removed from the Ts sector (i.e., from the Zi × Z̄j OPE).

5Note that the existence of an additional U(1) symmetry compared to the model discussed in [24] does

not lead to additional crossing relations.
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s t a

S ∆ ≥ `+ d− 2, for all allowed values of `

T

∆ ≥ |2∆Z − (d− 1)|+ `+ (d− 1), for all allowed values of `

∆ = 2∆Z + `, for all allowed values of `

∆ = d− 2∆Z , for ` = 0, ∆Z ≤ d/4 ∆ = 2∆Z , for ` = 0

Table 3. Unitarity bounds in different symmetry channels of the ZIi×ZJj OPE in the model (1.2).

• In general, the Zi × Zj OPE can contain a dimension d − 2∆Z conformal primary

of the form O ∼ Q̄2Ψ̄, where Ψ̄ is an anti-chiral primary of R-charge rΨ̄ = 2rZ − 2.

In the models (1.1), in the Ts channel Q̄2Ψ̄ = Q̄2X̄, while the Tt channel does not

contain a descendent Q̄2Ψ̄ of an anti-chiral primary. Note that an anti-chiral primary

Ψ̄ of R-charge 2rZ−2 can satisfy the unitarity bound only if ∆Z < d/4. In particular,

in d = 4 there is no such option if Zi are not free.

In our conventions, the relations between the OPE coefficients in (2.10) and the central

charges defined in (2.2) are given by

c
U(1)
J =

22d−4

λ2
Ss,d−2,0

, c
O(N)
J =

22d−5

λ2
Sa,d−2,0

, cT =
22d−1

(d− 1)

∆2
Z

λ2
Ss,d−1,1

, (2.11)

where λRr,∆,` denotes the OPE coefficient of an operator of dimension ∆ and spin ` trans-

forming in the Rr irrep of O(N) × O(2). To find an upper bound on the OPE coefficient

λR∗r∗,∆∗,`∗ of an operator O∗, we search for linear functionals ~α satisfying the conditions

~α(~V R∗r∗
∆∗,`∗) = 1 ,

~α(~V Rr
∆,`) ≥ 0 for all ~V Rr

∆,` /∈ {~V Ss
0,0 , ~V

R∗r∗
∆∗,`∗} and (∆, `) as in table 3 ,

(2.12)

where ~V Ss
0,0 corresponds to the identity operator. If such a functional ~α exists, then along

with the positivity of all λ2
O it implies that

λ2
R∗r∗,∆∗,`∗ ≤ −α(~V Ss

0,0 ) . (2.13)

To obtain the most stringent upper bound on λ2
R∗r∗,∆∗,`∗ , one should then minimize the

r.h.s. of (2.13) under the constraints (2.12).

To find upper bounds on the scaling dimension ∆′Ss,0 of the lowest dimension non-

identity O(N) × U(1)-singlet scalar primary O′Ss,0 appearing in the ZIi × ZJj OPE, we

consider linear functionals ~α satisfying the following conditions:

~α(~V Ss
0,0 ) = 1 ,

~α(~V Rr
∆,`) ≥ 0 for all ~V Rr

∆,` /∈ {~V Ss
0,0 ,

~V Ss
∆∗,0 |∆∗ < ∆′Ss,0} and (∆, `) as in table 3 ,

~α(~V Ss
d−2,0) ≥ 0 ,

(2.14)

where the third condition allows for the existence of the conserved U(1) flavor current of

our model. The existence of any such ~α would contradict (2.10), and thereby allow us to

– 8 –
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find disallowed points in the (∆Zi ,∆
′
Ss,0) plane. If we set ∆′Ss,0 to its unitarity value d− 2,

then we can find general bounds on ∆Zi as a function of d.

We can potentially strengthen the upper bounds on scaling dimensions of operators

by inserting the known values of OPE coefficients {λRiri,∆i,`i} into the algorithm (2.14),

so that we consider linear functionals ~α satisfying the altered conditions:

~α

(
~V Ss

0,0 +
∑
i

λ2
Riri,∆i,`i

~V Riri
∆i,`i

)
= 1 ,

~α(~V Rr
∆,`) ≥ 0 for all ~V Rr

∆,` /∈ {~V Ss
0,0 ,

~V Riri
∆i,`i

, ~V Ss
∆∗,0 |∆∗ < ∆′Ss,0} and ∆ as in table 3 ,

~α(~V Ss
d−2,0) ≥ 0 .

(2.15)

For instance, we can insert central charge values computed from localization using their

relation (2.11) to OPE coefficients.

3 Numerical bootstrap results

The problems (2.12), (2.14), and (2.15) of finding functionals subject to inequalities can be

rephrased as semi-definite programing problems as described in [30], which we implemented

using SDPB [41]. In this section we will describe the results of our numerical analysis.

3.1 Lower bounds on central charges c
O(N)
J , c

U(1)
J and cT

We start by presenting our bounds for the central charges c
O(N)
J , c

U(1)
J and cT defined

in (2.2). In figure 1 we show lower bounds on c
O(N)
J as a function of ∆Zi in d = 3 and d = 3.5.

For d = 3 we see that the localization values of c
O(N)
J , given in table 2, nearly saturate these

bounds, rapidly approaching kinks as we increase the value of N . For d = 3.5, the values

calculated using the generalization of F -maximization and supersymmetric localization to

non-integer dimensions [31] appear on kinks for all the values of N that we considered.

In fact, as we show in figure 4, these non-integer localization values nearly saturate the

bootstrap bounds on c
O(N)
J for the entire range 3 ≤ d ≤ 4.

Figure 2 depicts lower bounds on c
U(1)
J as a function of ∆Zi in d = 3 and d = 3.5.

For both d = 3 and d = 3.5, one can see kinks in the bounds for all the values of N that

we considered. However, compared with the c
O(N)
J case (figure 1), the localization values

of c
U(1)
J , given in table 2, saturate these bounds and approach the aforementioned kinks

only for relatively high values of N . Similar bounds for cT are shown in figure 3, in which

the analytically determined values of cT also approach saturation relatively slowly as N

is increased. We conclude that the general bootstrap bounds on c
U(1)
J and cT are not as

optimal as those on c
O(N)
J for the purpose of constraining the theories (1.2).

A notable feature of all these central charge bounds is that in d = 3 there is a gap in

the allowed region for N = 2 whenever .75 < ∆Zi < .875, while for the other values of N

the bounds continue across this range. In d = 3.5 and for all values of N studied, we find

similar gaps in the allowed region starting at ∆Zi ≈ .875 and ending at different points

depending on N . These gaps will be discussed further in section 3.3.
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Figure 1. Lower bounds on the O(N) flavor current central charge c
O(N)
J as function of the scaling

dimension ∆Zi
of the chiral O(N)-fundamental primary in dimensions d = 3 and d = 3.5, for

N = 2, 3, 4, 10, 20. Different shadings of orange denote the allowed regions for each N . The black

vertical lines denote localization values of ∆Zi for each N , while the asterisks denote the localization

values of c
O(N)
J for each N (see table 2). These bounds were computed using `max = 25 and Λ = 19.
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Figure 2. Lower bounds on the U(1) central charge c
U(1)
J in terms of the scaling dimension ∆Zi

of the chiral O(N)-fundamental primary in dimensions d = 3 and d = 3.5, for N = 2, 3, 4, 10, 20.

Different shadings of orange denote the allowed regions for each N . The black vertical lines denote

localization values of ∆Zi for each N , while the asterisks denote the localization values of c
U(1)
J for

each N (see table 2). These bounds were computed using `max = 25 and Λ = 19.
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Figure 3. Lower bounds on central charge cT in terms of the scaling dimension ∆Zi
of the

chiral O(N)-fundamental primary in dimension d = 3 and d = 3.5, for N = 2, 3, 4, 10, 20. Different

shadings of orange denote the allowed regions for each N . The black vertical lines denote localization

values of ∆Zi for each N , while the asterisks denote the localization values of cT for each N (see

table 2). These bounds were computed using `max = 25 and Λ = 19.
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SCFT in the IR limit of (1.1) with g2 = 0 to non-integer dimensions [31]. The curves, from bottom

to top, correspond to N = 2, 3, 4, 10.

3.2 Upper bounds on unprotected scalar

Let us now present our bounds on the dimension ∆′Ss,0 of the lowest-lying O(N)-singlet

scalar in the Zi× Z̄j OPE. In figure 5 we show upper bounds on ∆′Ss,0 as a function of ∆Zi

in d = 3 and d = 3.5. In both cases there are kinks in the bounds near the localization

values of ∆Zi . In this plot, the bound on ∆′Ss,0 at the localization values of ∆Zi is far

above the estimated perturbative value for ∆′Ss,0 computed as a Padé[1,2] extrapolation of

the 4− ε expansion results (black asterisks).

The results improve dramatically after imposing the values of the central charges given

in table 2.6 As shown in figure 6, this extra input creates a sharp peak in the bounds around

the localization values of ∆Zi , essentially fixing them very precisely at larger values of N . In

d = 3.5, the bootstrap bounds with central charges imposed are within a couple of percent

to the values of ∆′Ss,0 computed from the Padé[1,2](ε) approximant of the ε-expansion for

all the values of N that we considered. In d = 3, however, these bounds exclude the

estimate from the 3-loop ε-expansion when N = 2, 3, 4. As mentioned in section 2.2,

4-loop results for ∆′Ss,0 are also available in the literature, though we have found that

different Padé resummations of those give variable predictions, some of which are still

excluded by our numerical bounds. While it is conceivable that a more sophisticated

resummation method will improve the approximations based on the ε-expansion, it is in

general difficult to know a priori when these approximations are reliable. Predictions based

on the numerical bootstrap, however, are rigorous and can serve as a litmus test for the

validity of approximations.

3.3 Bounds on ∆Zi assuming λZ2 = 0

The bounds on central charges presented in the previous subsections all showed a disallowed

region for low enough values of ∆Zi , and thereby provide lower bounds on it. These bounds

6We found no change in our results when imposing the localization value of cT in d = 3 in addition to

the other central charges.
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Figure 5. Upper bound on the scaling dimension ∆′
Ss,0 of the lowest-lying O(N)-singlet scalar in

the Zi×Z̄j OPE, as a function of ∆Zi in dimensions d = 3 and d = 3.5, for N = 2, 3, 4, 10, 20. Differ-

ent shadings of orange denote the allowed regions for each N . The black vertical lines denote local-

ization values (table 2) of ∆Zi
for eachN . The red dots denote the stronger bounds once the localiza-

tion values of c
U(1)
J and c

O(N)
J (table 2) are imposed on the spectrum. The asterisks indicate the Padé

approximation to the 3-loop ε-expansion values of ∆′
Ss,0 for each N . Note that for N = 2 there is a

gap in the allowed region for .75 < ∆Zi
< .875, and that the range of ∆Zi

is smaller in this plot than

it is in the d = 3 central charge plots. These bounds were computed using `max = 25 and Λ = 19.

– 14 –



J
H
E
P
0
5
(
2
0
1
6
)
1
0
3

N = 2
N = 3

N = 4

N = 10

N = 20

***
*

*

0.50 0.55 0.60 0.65
DZi

1.4

1.6

1.8

2.0

D'Ss, 0

d = 3

Figure 6. Upper bound on the scaling dimension ∆′
Ss,0 of the lowest-lying O(N)-singlet scalar in

the Zi× Z̄j OPE, as a function of ∆Zi in dimensions d = 3 and d = 3.5, for N = 2, 3, 4, 10, 20, with

the values of the central charges (table 2) imposed. Different shadings of orange denote the allowed

regions for each N . The black vertical lines denote localization values of ∆Zi
for each N (table 2).

The red dots denote the bounds at the localization values of ∆Zi
, as in figure 5. The asterisks

indicate the Padé approximation of the 3-loop ε-expansion values of ∆′
Ss,0 for each N . Note that

the range of ∆Zi is smaller in this plot than it is in the d = 3 central charge plots. These bounds

were computed using `max = 25 and Λ = 19.

on ∆Zi arise from the extra assumptions imposed on the operator spectrum due to the

superpotential (1.2), as discussed in section 2.3. In particular, the assumption that the

chiral operator
∑

i Z
2
i is not a primary excludes the free theory, so a lower bound on ∆Zi

strictly above unitarity is possible.

In figure 7 the allowed range of ∆Zi is plotted against the dimension d for N = 1, 2, 3,

assuming that the coefficient λZ2
i

of the operator
∑

i Z
2
i in the Zi ×Zj OPE vanishes. For

N > 1 this assumption is included in the bootstrap setup described in section 2.3 and

used throughout this study,7 while for N = 1 we use the same bootstrap setup as in [27]

supplemented with the condition λZ2 = 0.

For N = 1 and d & 2.6, there are two disconnected intervals of allowed values of ∆Z .

The three boundaries of these intervals can be precisely identified with the three kinks

observed in [27]. The bottom boundary of the bottom allowed region corresponds to the

theory with superpotential W = X3, which has ∆X = (d− 1)/3. The top boundary of the

bottom allowed region corresponds to the “second kink” observed in [27] appearing precisely

when ∆Z = d/4.8 As seen in table 3, the position of the second kink is kinematically

7Inclusion of an operator with dimension d−2∆Zi in the Tt sector did not change results of this section.
8Such gaps at ∆Zi = d/4 appear for all values of N .
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Figure 7. Allowed region for the scaling dimension ∆Zi
of the O(N)-fundamental chiral primary

Zi as a function of the dimension d for N = 1, 2, 3 (top to bottom), in the absence of a chiral

primary in the O(N)-singlet channel of the Zi × Zj OPE. Different shadings of orange denote the

allowed regions for each N . These bounds were computed using `max = 25 and Λ = 19.

special, since the existence of a ∆ = d − 2∆Z operator is consistent with unitarity only

for ∆Z ≤ d/4. Finally, the bottom boundary of the top allowed region corresponds to the

“third kink” discussed in [27]. The same kink was first observed in d = 4 in [30] and it was

recently explored further in [25]. Curiously, as we emphasize with a linear fit in figure 7,

the location of this third kink changes linearly as the dimension d is increased.

In a given dimension d we always find two disconnected allowed regions for ∆Zi when-

ever N < Ncrit.(d), where the value of Ncrit.(d) increases with d. For N > Ncrit.(d) the

second and third kinks do not exist and there is only one allowed region. As d → 4, the

bottom wedge of the allowed region shrinks to zero size and Ncrit.(d) → ∞; i.e., in d = 4

the first and second kink disappear, leaving us with one connected allowed region starting

with what was the third kink in d < 4, which now exists for all N . For N = 2, 3, the

bottom boundary of the bottom allowed region in figure 7 is no longer linear and rather

coincides with the localization values predicted for the models (1.2).

In figure 8 we plot the position of the d = 4 kink in terms of 1/N for 3 ≤ N ≤ 50,

so that we may determine the large N behavior of the (as of yet) unknown SCFT, if any,

that may correspond to this feature. For larger values of N , the numerical convergence of

our results decreases drastically and therefore we rather extrapolate from lower values of

N . The extrapolation from the roughly linear region 15 ≤ N ≤ 50 to N → ∞, yields an

– 16 –



J
H
E
P
0
5
(
2
0
1
6
)
1
0
3

1.2 +
0.4

N

0.00 0.05 0.10 0.15 0.20 0.25 0.30
1/N1.15

1.20

1.25

1.30

1.35

ΔZi d = 4

Figure 8. Lower bound on the dimension ∆Zi of an O(N)-fundamental chiral primary Zi as a func-

tion of 1/N in d = 4 for 3 ≤ N ≤ 50, when
∑

i Z
2
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estimate for the scaling dimension of the chiral operator

∆4d = 1.2 +
0.4

N
+O(1/N2) . (3.1)

Unlike the other numerics in this study, for these numerics we used the improved bootstrap

parameters `max = 35 and Λ = 27, for which our bounds have a numerical uncertainty of

∆Zi = .001. The linear extrapolation may have greater uncertainty, so we conservatively

show our results to order O(10−2).

Acknowledgments

We thank Simone Giombi and Igor Klebanov for useful discussions. SSP and RY would like

to thank the organizers of the Simons Summer Workshop in Mathematics and Physics 2015,

where some of this work was done, for their kind hospitality. This work was supported in

part by the US NSF under Grant No. PHY-1418069 (SMC and SSP) and PHY-1314198

(RY).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 17 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
5
(
2
0
1
6
)
1
0
3

References

[1] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor.

Fiz. 66 (1974) 23 [INSPIRE].

[2] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and

conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

[3] G. Mack, Duality in quantum field theory, Nucl. Phys. B 118 (1977) 445 [INSPIRE].

[4] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[5] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving

the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022

[arXiv:1203.6064] [INSPIRE].

[6] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving

the 3D Ising model with the conformal bootstrap II. c-minimization and precise critical

exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

[7] F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from conformal

bootstrap, JHEP 10 (2014) 042 [arXiv:1403.6003] [INSPIRE].

[8] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising

model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

[9] R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global

symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].

[10] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06

(2014) 091 [arXiv:1307.6856] [INSPIRE].

[11] S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N) vector models in 4 ≤ d ≤ 6,

Phys. Rev. D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].

[12] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago,

JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

[13] L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP 09

(2014) 144 [arXiv:1310.3757] [INSPIRE].

[14] D. Bashkirov, Bootstrapping the N = 1 SCFT in three dimensions, arXiv:1310.8255

[INSPIRE].

[15] C. Beem, L. Rastelli and B.C. van Rees, The N = 4 superconformal bootstrap, Phys. Rev.

Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

[16] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The N = 8 superconformal bootstrap in three

dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].

[17] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact correlators of BPS operators from the

3d superconformal bootstrap, JHEP 03 (2015) 130 [arXiv:1412.0334] [INSPIRE].

[18] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The N = 2 superconformal

bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].

[19] M. Berkooz, R. Yacoby and A. Zait, Bounds on N = 1 superconformal theories with global

symmetries, JHEP 08 (2014) 008 [Erratum ibid. 01 (2015) 132] [arXiv:1402.6068]

[INSPIRE].

– 18 –

http://inspirehep.net/search?p=find+J+%22Zh.Eksp.Teor.Fiz.,66,23%22
http://dx.doi.org/10.1016/0003-4916(73)90446-6
http://inspirehep.net/search?p=find+J+%22AnnalsPhys.,76,161%22
http://dx.doi.org/10.1016/0550-3213(77)90238-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B118,445%22
http://dx.doi.org/10.1088/1126-6708/2008/12/031
http://arxiv.org/abs/0807.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0004
http://dx.doi.org/10.1103/PhysRevD.86.025022
http://arxiv.org/abs/1203.6064
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6064
http://dx.doi.org/10.1007/s10955-014-1042-7
http://arxiv.org/abs/1403.4545
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4545
http://dx.doi.org/10.1007/JHEP10(2014)042
http://arxiv.org/abs/1403.6003
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6003
http://dx.doi.org/10.1007/JHEP11(2014)109
http://arxiv.org/abs/1406.4858
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4858
http://dx.doi.org/10.1088/1751-8113/44/3/035402
http://arxiv.org/abs/1009.5985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5985
http://dx.doi.org/10.1007/JHEP06(2014)091
http://dx.doi.org/10.1007/JHEP06(2014)091
http://arxiv.org/abs/1307.6856
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6856
http://dx.doi.org/10.1103/PhysRevD.91.086014
http://arxiv.org/abs/1412.7746
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D91,086014%22
http://dx.doi.org/10.1007/JHEP11(2015)106
http://arxiv.org/abs/1504.07997
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07997
http://dx.doi.org/10.1007/JHEP09(2014)144
http://dx.doi.org/10.1007/JHEP09(2014)144
http://arxiv.org/abs/1310.3757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3757
http://arxiv.org/abs/1310.8255
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.8255
http://dx.doi.org/10.1103/PhysRevLett.111.071601
http://dx.doi.org/10.1103/PhysRevLett.111.071601
http://arxiv.org/abs/1304.1803
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1803
http://dx.doi.org/10.1007/JHEP09(2014)143
http://arxiv.org/abs/1406.4814
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4814
http://dx.doi.org/10.1007/JHEP03(2015)130
http://arxiv.org/abs/1412.0334
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.0334
http://dx.doi.org/10.1007/JHEP03(2016)183
http://arxiv.org/abs/1412.7541
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7541
http://dx.doi.org/10.1007/JHEP08(2014)008
http://arxiv.org/abs/1402.6068
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6068


J
H
E
P
0
5
(
2
0
1
6
)
1
0
3

[20] L.F. Alday and A. Bissi, Generalized bootstrap equations for N = 4 SCFT, JHEP 02 (2015)

101 [arXiv:1404.5864] [INSPIRE].

[21] C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap,

Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].

[22] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the three-dimensional

supersymmetric Ising model, Phys. Rev. Lett. 115 (2015) 051601 [arXiv:1502.04124]

[INSPIRE].

[23] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four

supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].

[24] S.M. Chester, S. Giombi, L.V. Iliesiu, I.R. Klebanov, S.S. Pufu and R. Yacoby, Accidental

symmetries and the conformal bootstrap, JHEP 01 (2016) 110 [arXiv:1507.04424]

[INSPIRE].

[25] D. Poland and A. Stergiou, Exploring the minimal 4D N = 1 SCFT, JHEP 12 (2015) 121

[arXiv:1509.06368] [INSPIRE].

[26] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the three-dimensional

supersymmetric Ising model, Phys. Rev. Lett. 115 (2015) 051601 [arXiv:1502.04124]

[INSPIRE].

[27] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four

supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].

[28] C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms,

unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012)

053 [arXiv:1205.4142] [INSPIRE].

[29] C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field

theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].

[30] D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05

(2012) 110 [arXiv:1109.5176] [INSPIRE].

[31] S. Giombi and I.R. Klebanov, Interpolating between a and F , JHEP 03 (2015) 117

[arXiv:1409.1937] [INSPIRE].

[32] D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159

[arXiv:1012.3210] [INSPIRE].

[33] A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal

Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[34] N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP

03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

[35] N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP

05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

[36] P.M. Ferreira, I. Jack and D.R.T. Jones, The quasiinfrared fixed point at higher loops, Phys.

Lett. B 392 (1997) 376 [hep-ph/9610296] [INSPIRE].

[37] P.M. Ferreira and J.A. Gracey, Nonzeta knots in the renormalization of the Wess-Zumino

model?, Phys. Lett. B 424 (1998) 85 [hep-th/9712140] [INSPIRE].

[38] I. Jack, D.R.T. Jones and A. Pickering, The soft scalar mass β-function, Phys. Lett. B 432

(1998) 114 [hep-ph/9803405] [INSPIRE].

– 19 –

http://dx.doi.org/10.1007/JHEP02(2015)101
http://dx.doi.org/10.1007/JHEP02(2015)101
http://arxiv.org/abs/1404.5864
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5864
http://dx.doi.org/10.1103/PhysRevD.93.025016
http://arxiv.org/abs/1507.05637
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.05637
http://dx.doi.org/10.1103/PhysRevLett.115.051601
http://arxiv.org/abs/1502.04124
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.04124
http://dx.doi.org/10.1007/JHEP08(2015)142
http://arxiv.org/abs/1503.02081
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.02081
http://dx.doi.org/10.1007/JHEP01(2016)110
http://arxiv.org/abs/1507.04424
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.04424
http://dx.doi.org/10.1007/JHEP12(2015)121
http://arxiv.org/abs/1509.06368
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.06368
http://dx.doi.org/10.1103/PhysRevLett.115.051601
http://arxiv.org/abs/1502.04124
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.04124
http://dx.doi.org/10.1007/JHEP08(2015)142
http://arxiv.org/abs/1503.02081
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.02081
http://dx.doi.org/10.1007/JHEP10(2012)053
http://dx.doi.org/10.1007/JHEP10(2012)053
http://arxiv.org/abs/1205.4142
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4142
http://dx.doi.org/10.1007/JHEP05(2013)017
http://arxiv.org/abs/1212.3388
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3388
http://dx.doi.org/10.1007/JHEP05(2012)110
http://dx.doi.org/10.1007/JHEP05(2012)110
http://arxiv.org/abs/1109.5176
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5176
http://dx.doi.org/10.1007/JHEP03(2015)117
http://arxiv.org/abs/1409.1937
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1937
http://dx.doi.org/10.1007/JHEP05(2012)159
http://arxiv.org/abs/1012.3210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
http://dx.doi.org/10.1007/JHEP03(2010)089
http://arxiv.org/abs/0909.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
http://dx.doi.org/10.1007/JHEP03(2011)127
http://dx.doi.org/10.1007/JHEP03(2011)127
http://arxiv.org/abs/1012.3512
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3512
http://dx.doi.org/10.1007/JHEP05(2011)014
http://dx.doi.org/10.1007/JHEP05(2011)014
http://arxiv.org/abs/1102.4716
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4716
http://dx.doi.org/10.1016/S0370-2693(96)01549-3
http://dx.doi.org/10.1016/S0370-2693(96)01549-3
http://arxiv.org/abs/hep-ph/9610296
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9610296
http://dx.doi.org/10.1016/S0370-2693(98)00169-5
http://arxiv.org/abs/hep-th/9712140
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712140
http://dx.doi.org/10.1016/S0370-2693(98)00647-9
http://dx.doi.org/10.1016/S0370-2693(98)00647-9
http://arxiv.org/abs/hep-ph/9803405
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9803405


J
H
E
P
0
5
(
2
0
1
6
)
1
0
3

[39] I. Jack and D.R.T. Jones, Quasiinfrared fixed points and renormalization group invariant

trajectories for nonholomorphic soft supersymmetry breaking, Phys. Rev. D 61 (2000) 095002

[hep-ph/9909570] [INSPIRE].

[40] L.V. Avdeev, S.G. Gorishnii, A. Yu. Kamenshchik and S.A. Larin, Four loop β-function in

the Wess-Zumino model, Phys. Lett. B 117 (1982) 321 [INSPIRE].

[41] D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06

(2015) 174 [arXiv:1502.02033] [INSPIRE].

– 20 –

http://dx.doi.org/10.1103/PhysRevD.61.095002
http://arxiv.org/abs/hep-ph/9909570
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9909570
http://dx.doi.org/10.1016/0370-2693(82)90727-4
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B117,321%22
http://dx.doi.org/10.1007/JHEP06(2015)174
http://dx.doi.org/10.1007/JHEP06(2015)174
http://arxiv.org/abs/1502.02033
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02033

	Introduction and summary
	The model
	Localization
	4-epsilon expansion
	4-point function of Z(i) and bootstrap

	Numerical bootstrap results
	Lower bounds on central charges c(J)**(O(N)), c(J)**(U(1)) and c(T)
	Upper bounds on unprotected scalar
	Bounds on Delta(Z(i)) assuming lambda(Z**2)=0


