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Abstract—Peer–to–peer networks are very popular but the
problem of bootstrapping them has largely been ignored. In a
fully decentralized environment such as a mobile ad hoc network
(MANET) the usual bootstrapping solutions, which typically
require a centralized service, are not possible. We present a
method of bootstrapping P2P overlay networks running on
MANETs which involves multicasting P2P overlay join queries
and responses, and caching results at all nodes. Node choose
which overlay members to join to based on a utility function that
considers both the distance in hops and the overlay neighbors’
available energy. Simulation results show that the P2P overlay
can closely reflect the underlying topology, which reduces energy
consumption, that caching the join requests reduces the number
of messages required to join the overlay, and that compared to
Random Address Probing, there is less overhead and significantly
less delay.

I. INTRODUCTION

Peer–to–peer (P2P) networks are increasingly popular and
their uses vary over many different application types, such as
file sharing, Voice–over–IP, gaming and instant messaging. It
seems natural to combine mobile ad hoc networks (MANETs)
and peer–to–peer networks together so that a P2P overlay
runs on a cooperative MANET since both types of networks
have many similarities. Both are fully decentralized networks,
both must dynamically organize themselves, both must deal
with frequent topology changes, both attempt to be resilient
to failure, and both perform the routing function.

Despite the similarities, it is unclear that simply adopting
existing P2P overlay techniques and using them in MANETs
is desirable, since there also differences. P2P overlays tend to
be very large–scale with millions of users and are designed
for deployment on the “edge” of the Internet, where the nodes
generally do not move about. On the other hand, MANETs
tend to have far fewer nodes, the devices are severely resource–
constrained in comparison, and the links between nodes usu-
ally have higher delay. Energy consumption is of great concern
and users are also geographically nearby one another.

This paper presents Overture, which is to the best of our
knowledge the first to address the problem of bootstrapping
P2P overlays in MANETs. The word overture has an intro-
ductory connotation, just as the bootstrap procedure is the
introductory part of overlay membership. Overture uses the
idea of multicasting to all nodes, which is impractical on the
Internet but not in MANETs. When a node wishes to join a
P2P overlay, it multicasts a network–wide join request. When
a join request is received, if an overlay member has open
slots for direct connections to more peers, it will multicast a

network–wide response. All nodes, whether or not they belong
to an overlay, will cache this response. After a sufficient time,
the original requesting node will have one or more responses to
select from. The requesting node evaluates a utility function
for each response which reflects its preference for choosing
closer overlay members or ones with more energy available. A
closer member would typically result in greater responsiveness
and also more closely match the underlying topology of the
network, while a member with greater energy is more likely
to remain alive longer.

In this paper, the term node refers to a device in the MANET
that is not a part of any P2P overlay. This includes devices
that are in the process of joining an overlay. The terms peer
and overlay member are used interchangeably and refer to a
device in the MANET that is part of a P2P overlay. A peer is
a neighbor if there is a direct connection to it in an overlay.
A join request represents an attempt to become part of a P2P
overlay, while a connection request is a message to a specific
peer in an attempt to become its neighbor.

Simulation results show that the overlay can closely reflect
the underlying topology of the network as demonstrated by the
average neighbor’s hop distance, and that the delay to join an
overlay is significantly lower than RAP, even when RAP has
the advantage of selecting from only valid MANET addresses.
In addition, the use of caching reduces the number of messages
that must be transmitted while trying to join an overlay.

The rest of the paper is organized as follows. Section
II describes the bootstrap algorithm Overture, including the
multicast query and multicast response, the use of caching, and
how the utility function is used to select neighbors. Section III
presents our simulation results and analysis. Section IV looks
at related work and Section V gives our conclusions.

II. OVERTURE

Nodes discover overlays by finding peers that are already
participating in a P2P network. This is accomplished by having
the node first examine its local cache for previously–known
peers. If none are found, or the information is stale, the node
multicasts a join request. When a peer receives a request, it
may multicast a reply and all nodes in the network cache the
information. The node wanting to join the overlay then selects
the best peers based on criteria discussed in Section II-C.

A. Multicast Query and Multicast Reply

The idea of multicasting both a join request and reply has
been used previously in Hassanein et al. [1]. All nodes in the
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MANET must join a multicast group which is used for both
sending join requests and responding to them. Any multicast
routing protocol may be used, such as the one presented in [1],
Multicast Ad Hoc On–Demand Distance Vector (MAODV)
[2], or On-Demand Multicast Routing Protocol (ODMRP) [3].
For unicast messages, any unicast routing protocol may be
used. Pseudo–code for the actions of each node in the MANET
for the Overture bootstrapping algorithm is given in Figure 1.
For simplicity, the pseudo–code shown assumes that a node
will only attempt to connect to one peer at a time.

When a node wishes to join a P2P overlay, it multicasts a
join request (mc join request message) to the multicast group.
It is possible for multiple overlays to exist in the MANET,
reflecting different P2P applications. If the node knows which
overlay it wishes to join, this can be indicated in the initial
request. Otherwise, the join request is considered generic and
nodes belonging to all overlays in the MANET may respond.

All peers in the overlay that are willing to accept a con-
nection from the node multicast a response (mc join reply
message) back to the group. This response includes the peer’s
address and remaining energy. If a peer in the overlay is not
willing to accept any new connections, it ignores the request.

All devices that receive the response cache the information,
even if they are already part of a P2P overlay. Nodes in
the MANET may receive multiple responses for which they
then use the selection criteria presented in Section II-C to
connect with the number of neighbors they require. Current
members of the overlay may decide that the peer response
they have received represents a better neighbor in the overlay,
either because it is closer or has more energy. In this case,
the peer may send a unicast connection request (conn request
message) to that peer. If an open neighbor space is available,
a conn reply message will be received. Otherwise a conn full
message will be received.

B. Caching

When deciding to join the P2P overlay, a node first consults
its local cache and selects peers based on the information
contained therein. If there are fewer known peers than the
node wishes to connect to, or the information about a peer
is believed to be out of date, the node proceeds with a mul-
ticast query as described in Section II-A. Otherwise, unicast
connection requests (conn request messages) are sent to the
desired peers.

Cached information is maintained in a soft state, meaning
that it is time limited. When a multicast response is received,
it is placed in the cache with a fixed time-to-live value. This
value is then decremented as time passes, and the entry is
removed from the cache when it reaches zero. Even though it
is expected that most peers will remain in the overlay for a
prolonged period, the information concerning their remaining
energy and whether or not they are accepting new neighbors
is not long–lived.

When a node caches the response only the information
provided in the peer response, which includes its address and
remaining energy, is stored, not the route to it and so a large
cache is not needed. If the cache is full, the new entry will
replace the one with the shortest TTL value.

Non-overlay Nodes:

join_overlay:
sort cache by TTL
remove expired entries
sort cache by utility value
retrieve peer with highest utility
if cache_hit

send conn_request to peer
else {

multicast mc_join_request
set timeout value for mc_join_request

timeout for mc_join_request:
set best_peer = null
for each entry in cache {

calculate utility value P for entry
if utility > best_peer.utility

set best_peer = cache entry
}
send conn_request to best_peer

received mc_join_reply:
add reply to cache

received conn_response:
add peer to list of neighbors

received conn_full:
remove entry from cache
call join_overlay function

Overlay Peers:

received mc_join_request:
if no available neighbor slots

or wrong overlay {
ignore mc_join_request

} else {
multicast mc_join_reply

}

received mc_join_reply:
add reply to cache
if joined to same overlay as reply {

calculate utility value P for responding peer
if response.utility > lowest neighbor.utility

send conn_request to peer
}

received conn_request:
if have available neighbor slots {

reply with conn_response
add node to list of neighbors

} else {
reply with conn_full

}

received conn_response:
remove neighbor with lowest neighbor.utility
add peer to list of neighbors

received conn_full:
ignore

Fig. 1: Pseudo-code for Overture bootstrap algorithm

C. Selecting Peers

When a peer provides its response to a join request by
sending a mc join reply, it includes its address so that the
potential neighbor knows how to contact it. It also provides its
remaining energy level, e. When a node receives the response
it then combines this information with its knowledge, provided
by the underlying routing protocol, of the distance in hops
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to the peer, h. In this paper, we focus on an unstructured
Gnutella–like [4] overlay for simplicity.

The determination of the best peers is determined by the
Cobb-Douglas utility function [5] P = hα × e1−α. h and
e are both normalized, and α is a parameter indicating the
preference of a nearer peer to a longer–lived one. When α = 0,
this indicates that the node wishes to select the peer with the
most remaining energy regardless of its distance. This may
result in an overlay topology which does not closely reflect
the underlying network topology, however the connection to
the peer is likely to remain for a longer period of time.
On the other hand, when α = 1, this indicates that the
node wants a neighbor that is closer, no matter how little
energy it has remaining. The benefit of matching the overlay
topology to the underlying network is that fewer hops are
required when overlay neighbors communicate, which results
in reduced energy usage network–wide.

When a node joins an overlay, it must connect to n peers,
where n varies depending on the P2P network being used. The
selection algorithm presented in this section is applied to all
responses, and the list is sorted based on utility. The n top
peers are selected and conn request messages are unicasted
to them. If a peer rejects the connection request because its
neighbor list is full, a conn full is received and the node
simply selects the next peer on the list and tries again. When
a conn response is received, this indicates that the node has
been successful in selecting a neighbor and the peer is added
to the neighbor list.

III. SIMULATION RESULTS AND ANALYSIS

This section evaluates the performance of Overture for
MANETs with different sized P2P overlays for different
distance–energy preference values (α) and compares it to
Random Address Probing (RAP) with extra knowledge. In
RAP nodes send join requests to random addresses in the hope
that they are connected to the overlay.

A. Simulation Parameters and Metrics

The MANETs are simulated in ns–2, have an area of
1000m × 1000m, and contain 60 nodes. It is assumed that
only one P2P overlay exists, as this makes no difference in
how the bootstrapping algorithm works. All nodes are evenly
distributed in the simulation area. The random waypoint model
is used for mobility with nodal velocities distributed according
to a uniform distribution with minimum speed of 1 m/s
and maximum speed of 3 m/s. The pause time is uniformly
distributed with a mean of 60 seconds and the simulation time
is set to one hour. MAODV is used as the multicast routing
protocol and AODV is used as the unicast routing protocol.
A peer maintains a maximum of three connections to other
peers.

In each simulation experiment, the distance–energy prefer-
ence parameter (α) in the utility function is varied. In addition,
experiments for bootstrapping using RAP were also performed
in order to compare them with Overture. Experiments for
Overture were carried out both with and without caching
turned on in order to verify its benefit. Each experiment begins

TABLE I
ENERGY CONSUMPTION CONSTANTS USED IN SIMULATION

msend 1.89 mW · sec/byte
bsend 246 mW · sec

mrecv 0.494 mW · sec/byte
brecv 56.1 mW · sec

bsendctl 120 mW · sec
brecvctl 29.0 mW · sec

with the overlay existing in a steady state. During the remain-
der of the experiment, a randomly selected node attempts to
join the overlay every 20s, and a randomly selected peer leaves
the overlay every 20s. A file transfer is generated between two
random overlay nodes every 20s. Several runs were completed
for each experiment with the results averaged.For the RAP
scheme the first three nodes to respond are the ones selected
for connection. There are a total of 60 MANET nodes in each
experiment, but the number of P2P overlay nodes is restricted
to no more than 30, 45, or 60, depending on the experiment.

When conducting experiments with the normal Random
Address Probing scheme, nodes were virtually never able to
connect to the overlay at all due to the random nature of
selecting addresses from a relatively large address space and
the comparatively few nodes that are part of the overlay. On
the Internet, where within a subnet there may be hundreds or
even thousands of overlay nodes, the chances of a successful
probe are much more likely. In a MANET, where there are
far fewer overlay nodes, the RAP technique is much more
likely to meet with failure. Therefore, in order to provide a
useful comparison, the Random Address Probing technique
was given additional information in the form of the addresses
of all nodes existing in the MANET so that a valid random
MANET node would be chosen each time.

The energy consumption model used in the simulations is
the linear model proposed by Feeney [6]. Each MAC layer
operation takes a certain amount of power as defined by cost =
m×size+b where m is the incremental cost of the operation,
b is the fixed cost, and size is the amount of data sent or
received. The constants are obtained by physical measurements
for a Lucent IEEE 802.11 WaveLAN PC Card from [6] and
are summarized in Table I.

B. Simulation Analysis

In P2P overlays on MANETs, it is more efficient if the
overlay topology reflects the underlying network, because if
two neighboring peers are on opposite sides of the network, a
single message must travel the entire network diameter. This
results in not only higher delay due to the distance the message
travels, but also in greater energy use for each MANET node
that is involved in forwarding data. Therefore, Overture allows
the user to connect to proximate peers. Figure 2 shows the
results for several values of the preference parameter, with
and without caching, and for RAP. An α–parameter value of
1.0 indicates that nodes are attempting to select the shortest
hop distance peers as neighbors, and as can be seen, they are
generally successful at doing so. Overture allows peers that are
already part of the overlay to try to connect to nearer neighbors
when they receive a response to a query initiated by another
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node. This helps peers to maintain shorter connections and
is seen by the much lower neighbor distance when compared
with the RAP experiments.

When connecting to peers, it seems like a good idea to select
ones that have more energy remaining as this is an indicator
of how much longer they are likely to remain alive before
their battery expires. However, selecting a longer–lived peer
may require choosing one that is a further hop distance away.
The utility–function used in the bootstrap algorithm allows
the user to ignore distance and focus solely on energy by
choosing an α–parameter value of 0.0. The average energy
remaining for a node’s neighbors is given in Figure 3 for
several parameter values, both with and without caching, and
for RAP. Lower α values actually result in greater overall
energy usage because overlay neighbors will tend to be further
apart, resulting in overlay traffic being forwarded by more
nodes. The use of caching reduces the number of messages that
need to be transmitted, which in turn increases the amount of
energy nodes have available. Neighbors selected by the RAP
algorithm have the lowest available energy because they tend
to be further away.

It is important to consider how many messages are sent in
order to join the overlay as this is a good measure of the
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Fig. 4: Average number of messages sent per connection
attempt

overhead of the algorithm. Also, energy use is directly related
to the number of messages exchanged, as seen in Table I.
Therefore, the fewer messages/packets sent, the better. Figure
4 indicates how many messages are sent for each connection
attempt during the bootstrapping process for different α–
parameter values, with caching turned on and off, and also for
RAP. The messages needed are fairly constant for Overture,
though slightly higher if the cache is not used. There is
neglible difference for varying α values, as the parameter has
no effect on the number of messages sent. Random Address
Probing requires significantly more messages per connection
attempt despite the possibility of Overture multicasting a
request. However, as the number of overlay nodes increases
the number of messages RAP requires falls due to the greater
chance of contacting an overlay node. RAP cannot match
Overture’s performance here because the peer RAP selects to
connect to may have all of its neighbor slots full, whereas this
is unlikely to be the case for Overture.

Another important consideration when attempting join an
overlay is the amount of time that passes between initiating
the bootstrapping algorithm and successfully connecting to a
peer. Figure 5 indicates how much time is required for the
average join attempt for several parameter values, both with
and without caching, and for RAP. The use of caching reduces
the join delay due to fewer messages needing to be transmitted.
As with message overhead, there is no difference when varying
values of α, as the parameter has no effect on the delay. The
delay for RAP is several orders of magnitude higher because
it must randomly try nodes, most of which it cannot join. In
between attempts, it must wait for a response before trying
another node.

The goal of the cache is to reduce the number of message
transmissions required, and as seen in the previous experiment,
it is successful in doing so. Each cache miss results in a
network–wide multicast query and potentially several multi-
cast responses. In contrast, a cache hit requires only a few
unicast message exchanges. Therefore, a higher cache hit rate
results in fewer multicast transmissions. In our experiments,
the cache hit rate was not set at a fixed number, but instead the
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cache was built up as would be done in a real system. A hit rate
of between 71 and 75% was achieved, a fairly constant rate
regardless of experiment type, resulting in significant savings
in message transmissions. This indicates that this cache hit rate
is a property of Overture, as it does not vary significantly with
different distance–energy preference parameter (α) values.

IV. RELATED WORK

This section examines the various bootstrapping mecha-
nisms that exist for wired P2P networks.

Knoll et al. survey some bootstrapping protocols for wired
P2P overlays [7]. The main techniques in use are divided into
two categories, peer–based and mediator–based. The peer–
based techniques include peer caching, in which each node
keeps a list of previously active peers; multicasting, which
is impractical on the Internet; and random address probing, in
which a random address is sent a join request. Overture makes
use of multicasting and a form of peer caching and in Section
III is shown to be superior to RAP in MANETs.

The second category consists of mediator–based schemes,
which include the use of a central server, host caches which
require the node to retrieve a list of peers from a specific
URL, server lists, and trackers. None of the mediator–based
approaches are practical in MANETs because they all require
some sort of centralized infrastructure, which cannot be as-
sumed available in a MANET.

Conrad and Hof propose a generic bootstrap service de-
signed for the Internet [8]. In their approach, all nodes belong
to a specific bootstrap overlay, from which bootstrap informa-
tion about a particular P2P overlay can be acquired. This is
similar to our work, in which all network nodes must belong
to a specific multicast group. Conrad and Hof use a variation
of RAP called Local RAP which checks IPs in the local subnet
first since they are more likely to be active. To distribute the
P2P network information, any structured protocol can be used.

The authors propose the use of a “salt value” to prevent
all queries from going to a single node since some P2P
networks are enormously popular. This salt value is added to
the name when hashing and spreads out the keys. To support
small bootstrap networks, which would have many missed salt

queries, the Conrad and Hof propose an adaptive salt window
algorithm, which adapts the salt value based on a window
which varies with the size of the network.

Castro et al. similarly propose the idea of a universal overlay
to provide the bootstrap service [9]. Their design is based on
the structured overlay Pastry [10] and provides mechanisms
to advertise and discover services, to contact nodes, and also
to acquire the application code required to install the desired
service. They use multicasting, and provide persistent storage
and distributed search.

V. CONCLUSIONS

This paper presented Overture, a bootstrapping algorithm
for finding and joining a P2P overlay that is running on a
mobile ad hoc network. To our knowledge, this is the first
bootstrapping algorithm proposed for these types of networks.
Nodes multicast an overlay join request to the entire MANET,
and if a peer has an available neighbor slot open, a multicast
response is sent. All nodes, whether or not they are part of
an overlay, cache the response for possible future use. After
a sufficient time, the querying node chooses among the best
available peers based on a utility function which indicates its
preference for choosing a closer or longer–lived neighbor.

Simulation results demonstrate that Overture connects to
closer nodes than the RAP scheme, uses less energy, and
also requires fewer messages and significantly less delay to
join the overlay. The cache was shown to significantly reduce
the number of packets sent. In the future, we will consider
delay and bandwidth factors in addition to hop distance for
determining node “closeness”.
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