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BOOTSTRAPPING ROBUST ESTIMATES OF REGRESSION

BY MATIAS SALIBIAN-BARRERA1 AND RUBEN H. ZAMAR2

University of British Columbia
We introduce a new computer-intensive method to estimate the distri-

bution of robust regression estimates. The basic idea behind our method is
to bootstrap a reweighted representation of the estimates. To obtain a boot-
strap method that is asymptotically correct, we include the auxiliary scale
estimate in our reweighted representation of the estimates. Our method is
computationally simple because for each bootstrap sample we only have to
solve a linear system of equations. The weights we use are decreasing func-
tions of the absolute value of the residuals and hence outlying observations
receive small weights. This results in a bootstrap method that is resistant to
the presence of outliers in the data. The breakdown points of the quantile
estimates derived with this method are higher than those obtained with the
bootstrap. We illustrate our method on two datasets and we report the results
of a Monte Carlo experiment on confidence intervals for the parameters of
the linear model.

1. Introduction. The standard error and sampling distribution of robust
regression estimates can be estimated, in principle, using the bootstrap [Efron
(1979)]. This method has been extensively studied for diverse models. In
particular, the theory for the bootstrap distribution of robust estimates has been
considered by Shorack (1982), Parr (1985), Yang (1985), Shao (1990, 1992), Liu
and Singh (1992) and Singh (1998), among others.

The standard error of robust regression estimates can also be estimated
using their asymptotic variances. However, the asymptotic distribution of robust
regression estimates has been mainly studied under the central normal model
which, of course, does not hold in most practical situations when robust methods
would be recommended. When the distribution of the errors is symmetric,
the estimates of the regression coefficients and of the scale of the errors are
asymptotically independent. Because outliers need not be balanced on both sides
of the regression line, many datasets with outliers do not satisfy this symmetry
assumption. If one relaxes this condition, the calculation of the asymptotic
distribution of robust location and regression estimates becomes involved [see
Carroll (1978, 1979), Huber (1981), Rocke and Downs (1981), Carroll and Welsh
(1988) and Salibian-Barrera (2000)].

We will focus on MM-estimates of regression [Yohai (1987)] calculated with an
initial S-estimate [Rousseeuw and Yohai (1984)] but our method can, in principle,
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be applied to other types of robust regression estimates (see Section 8). These
estimates have desirable robustness properties and are available in the statistical
software program S-plus. However, three problems arise when we want to use the
bootstrap to estimate their asymptotic distribution:

• Numerical instability. The bootstrap distribution might be a very poor estimator
of the distribution of the regression estimates because the proportion of outliers
in the bootstrap samples can be higher than that in the original dataset.

• Computational cost. Due to the nonconvex optimization problems that have
to be solved in order to calculate these robust regression estimates, for high-
dimensional problems (p > 10 say) it may not be feasible to obtain a few
thousand recalculated estimates.

• Recalculating the residual scale estimate. Recalculating the robust residual
scale estimate with each bootstrap sample increases the already high compu-
tational demands of the method. If we do not recalculate the scale estimate for
each bootstrap sample, the resulting distribution may not converge to the correct
asymptotic distribution.

Intuitively, the reason for the numerical instability mentioned above is as fol-
lows. Outlying and nonoutlying observations have the same chance of belonging
to any bootstrap sample. With a certain positive probability, the proportion of out-
liers in a bootstrap sample can be larger than the fraction of contamination the
robust estimate tolerates. In other words, a certain proportion of the recalculated
values of the robust estimate may be heavily influenced by the outliers in the data.
Thus, the tails of the bootstrap distribution can be heavily influenced by the out-
liers, regardless of the robustness of the statistic being bootstrapped. Singh (1998)
quantified this problem for the estimates of the quantiles of the asymptotic distri-
bution of robust location estimates. He defined the breakdown point for bootstrap
quantiles and showed that it is disappointingly low even for highly robust location
estimates. He proposed drawing the bootstrap samples from the Winsorized obser-
vations and showed that the quantile estimates obtained with this method have the
highest attainable breakdown point and that they converge to the quantiles of the
asymptotic distribution of the estimate. Unfortunately, it is not clear how to extend
Singh’s proposal to the linear regression model.

The recalculation of the residual scale estimate and its impact on the overall
computational cost of the method have not received much attention in the
literature. Many proposals to recalculate robust estimates [e.g., Schucany and
Wang (1991) and Hu and Kalbfleisch (2000)] ignore the fact that when the
errors do not have a symmetric distribution the scale estimate is no longer
asymptotically independent of the regression parameter estimates. Because of this,
for the bootstrap procedure to be asymptotically correct we have to recalculate the
scale estimate with each resample. When we bootstrap MM-regression estimates
with initial S-regression estimates, for each bootstrap sample we have to solve a
nonconvex minimization problem in p dimensions to determine the initial scale
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estimate. Moreover, the objective function of this optimization problem is defined
implicitly. After the scale estimate is found, we have to find a local extreme of
another nonconvex function (also in p dimensions) to determine the final MM-
regression estimate. The number of bootstrap samples needed to obtain reliable
distribution estimates naturally grows with the dimension of the statistic and hence
makes the problem computationally even more expensive to solve. This large
number of nonlinear optimization problems may render the method unfeasible for
high-dimensional problems. As an example of the computational times that can
be expected, the evaluation of 5000 bootstrap recalculations of an MM-regression
estimate on a simulated dataset with 200 observations and 10 explanatory variables
took 9120 CPU seconds (≈2.5 hours) on a Sun Sparc Ultra Workstation. Note that
due to the first problem discussed above, even if we wait for the results of this run,
they might not be reliable.

The second problem mentioned above has received some attention in the
literature. See, for example, Schucany and Wang (1991), Hu and Zidek (1995),
Singh (1998) and Hu and Kalbfleisch (2000). Note, however, that simultaneous
consideration of these problems seems to be missing in the literature. In particular,
the need to recalculate the scale with each bootstrap sample has not yet been
studied in the robustness literature.

Our basic idea is to bootstrap a reweighted representation of the estimate. This
procedure, called “fast bootstrap,” is computationally simple because for each
bootstrap sample we only have to calculate a weighted average to recalculate the
scale estimate and a weighted least squares estimate to obtain the bootstrapped
regression estimate (this solves the problems associated with computational cost).
The form of the weights for MM-regression estimates makes the procedure
numerically stable and more robust to the presence of outliers (this solves the
numerical instability problem mentioned above). We show that the breakdown
point of the quantiles obtained with the fast bootstrap is higher than that of the
quantiles obtained with the bootstrap and close to the maximum 1/2 [see Singh
(1998)]. The intuitive reason for the good breakdown point properties of the fast
bootstrap is that outlying points will typically be associated with small weights
and hence have small impact on the bootstrapped estimate.

To illustrate the gain in speed, consider the simulated dataset mentioned above.
The same number of recalculations performed with the fast bootstrap required only
416 CPU seconds (approximately 7 minutes) (instead of the 2.5 hours needed by
the bootstrap). In the context of data mining and other applications with extremely
large datasets (both in the number of cases and in the number of covariates), full
recalculation of robust estimates is rarely a feasible option.

The rest of the paper is organized as follows. Section 2 contains the definitions
of the regression estimates considered in this work. Section 3 introduces the fast
bootstrap. Section 4 illustrates its application with two examples. Sections 5 and 6
study its asymptotic and robustness properties, respectively. Section 7 presents
some simulation results. Section 8 contains the concluding remarks. Finally, the
Appendix gives the proofs of the main theorems discussed in this paper.
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2. Definitions and notation. To fix ideas, we will explicitly consider the
case of random explanatory variables and apply our method to regression MM-
estimates [Yohai (1987)]. The case of fixed explanatory variables and other robust
regression estimates is briefly discussed in Section 8.

Let (y1, z′
1)

′, . . . , (yn, z′
n)

′ be independent random vectors with common distri-
bution H , and set xi = (1, z′

i )
′ ∈ R

p.We will consider the linear regression model

yi = x′
iβ0 + σ0εi, i = 1, . . . , n.(2.1)

Ideally, one would like to assume that yi and zi are independent, with yi ∼ F0,
zi ∼ G0, (yi, z′

i)
′ ∼ H0 and F0 being some specified symmetric distribution

(typically the standard normal distribution). To allow for the occurrence of outliers
and other departures from the classical model, we will assume that the actual
distribution H of the data belongs to the contamination neighborhood

Hε = {
H = (1 − ε)H0 + εH ∗},(2.2)

where 0 ≤ ε < 1/2 and H ∗ is an arbitrary and unspecified distribution.
MM-estimates are based on two loss functions ρ0 and ρ1, which determine the

breakdown point and the efficiency of the estimate, respectively. More precisely,
the MM-estimate β̂n satisfies the equation

1

n

n∑
i=1

ρ′
1

(
yi − x′

iβ̂n
σ̂n

)
xi = 0,(2.3)

where σ̂n is a scale S-estimate [Rousseeuw and Yohai (1984)]. That is, σ̂n
minimizes the M-scale σ̂n(β) implicitly defined by the equation

1

n

n∑
i=1

ρ0

(
yi − x′

iβ

σ̂n(β)

)
= b.(2.4)

The asymptotic distribution of MM-estimates has been studied by Yohai (1987)
under the assumption that H = H0 (central parametric model). This assumption
will not hold, however, in typical situations when one wishes to use highly robust
MM-estimates. The fast bootstrap introduced in the next section yields a consistent
estimate for the covariance of β̂n under rather general conditions, including the
case H ∈ Hε .

3. The fast bootstrap. In what follows let β̂n be the MM-regression estimate
that satisfies (2.3). The scale estimate σ̂n is the S-scale obtained in (2.4). Let β̃n be
the associated S-regression estimate.

We are interested in making statistical inferences about the regression parame-
ter β0. Based on the same “plug-in” principle behind the bootstrap [Efron (1979)],
we propose using the following computer-intensive method to generate a large
number of recalculated β̂

∗
n’s. We will use the empirical distribution function of
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these recomputed statistics as our estimate of the sampling distribution of β̂n. We
could also use the empirical covariance matrix of the recalculated β̂

∗
n’s to estimate

the asymptotic covariance matrix of the sequence β̂n. However, we prefer to use
the first approach.

For each pair (yi,x′
i)

′ in the sample define the residuals associated with β̂n and

β̃n: ri = yi − β̂
′
nxi and r̃i = yi − β̃

′
nxi . First note that β̂n and σ̂n can be formally

represented as the result of a weighted least squares fit. For i = 1, . . . , n define the
weights ωi and vi as

ωi = ρ′
1(ri/σ̂n)

ri
,

vi = σ̂n

n b

ρ0(r̃i/σ̂n)

r̃i
.

(3.1)

Simple computations yield the following weighted average representation of (2.3)
and (2.4):

β̂n =
[
n∑
i=1

ωixix′
i

]−1 n∑
i=1

ωixiyi,(3.2)

σ̂n =
n∑
i=1

vi(yi − β̃
′
nxi ).(3.3)

Let {(y∗
i ,x

∗′
i )

′, i = 1, . . . , n} be a bootstrap sample from the observations.

Define the random variables β̂
∗
n and σ̂ ∗

n by

β̂
∗
n =

[
n∑
i=1

ω∗
i x∗
i x

∗′
i

]−1 n∑
i=1

ω∗
i x∗
i y

∗
i ,(3.4)

σ̂ ∗
n =

n∑
i=1

v∗
i (y

∗
i − β̃

′
nx∗
i ),(3.5)

where ω∗
i = ρ′

1(r
∗
i /σ̂n)/r

∗
i , v∗

i = σ̂nρ0(r̃
∗
i /σ̂n)/(nbr̃

∗
i ), r

∗
i = y∗

i − β̂
′
nx∗
i and r̃∗i =

y∗
i − β̃

′
nx∗
i for 1 ≤ i ≤ n. Note that the estimates β̂n, σ̂n and β̃n are not recalculated

from each bootstrap sample.
The recalculated β̂

∗
n and σ̂ ∗

n obtained in (3.4) and (3.5) may not reflect the actual

variability of the random vector (β̂
′
n, σ̂n)

′ due to the fact that the estimates used
in the weights ωi and vi are kept fixed. To fix this problem, we apply a linear
correction to the recalculated β̂

∗
n and σ̂ ∗

n and combine them. Let

Mn = σ̂n

[
n∑
i=1

ρ′′
1 (ri/σ̂n,xi )xix

′
i

]−1 n∑
i=1

ωixix′
i,(3.6)
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dn = a−1
n

[
n∑
i=1

ρ′′
1 (ri/σ̂n,xi)xix

′
i

]−1 n∑
i=1

ρ′′
1 (ri/σ̂n,xi)rixi ,(3.7)

an = 1

n

1

b

n∑
i=1

[
ρ′

0(r̃i/σ̂n)r̃i/σ̂n
]
.(3.8)

The fast bootstrap recalculated β̂n − β is given by

β̂
R∗
n − β̂n = Mn

(
β̂

∗
n − β̂n

)+ dn(σ̂ ∗
n − σ̂n).

Theorem 4.3 in Salibian-Barrera (2000) shows that, in general, the asymptotic
behavior of the sequence β̂n depends on that of σ̂n. Hence, to obtain an estimate
of the distribution of β̂n, we must take into account the behavior of the scale
estimate σ̂n.

REMARK 1. Note that to recalculate β̂
R∗
n − β̂n we do not solve (2.4) and (2.3).

For each bootstrap sample we only solve the linear system of equations (3.4) and
calculate the weighted average (3.5). The correction factors Mn, dn and an arise
from two linear systems and a weighted average, respectively, and are computed
only once with the full sample.

REMARK 2. For MM-regression estimates β̂n with a redescending score
function ρ′

1 [i.e., ρ′
1(r) ≡ 0 for |r| ≥ c > 0], the weights ωi give the method

stability in the presence of outliers. Outlying points will be associated with small
weights in (3.2) and (3.3). Note that extreme outliers (those with an associated
residual |ri |> cσ̂n) will receive a zero weight, and hence will have no effect at all
on the recalculated coefficients. Note that the weights vi used in recalculating the
scale are also decreasing in the absolute value of the residuals and hence outlying
points are less influential in the recalculated σ̂ ∗

n as well.

4. Examples. We now illustrate the stability of the inference based on the
fast bootstrap on a simple and a multiple linear regression analysis. In both cases
we compare the inference obtained using the bootstrap and the fast bootstrap on
the same robust regression estimates. These examples simultaneously illustrate the
serious effect of the outliers on the inference derived from the bootstrap and the
robustness of the fast bootstrap.

4.1. Belgium international phone calls. Consider the Belgium international
calls dataset [see Rousseeuw and Yohai (1984)]. These data consist of the number
of international phone calls (in tens of millions) originated in Belgium between
1950 and 1973. From 1964 to 1969 the observations were mistakenly recorded.
Instead of the number of calls, their total duration in minutes was registered. The
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FIG. 1. Least squares and robust regression fits to the Belgium international phone calls data.

figure for 1970 is partly contaminated: some calls were recorded with their
duration; others were registered according to the old convention. The linear
regression model considered in the literature is

#Calls (in tens of millions) = α0 + β0Year + ε,(4.1)

where α0 and β0 are the parameters of interest and the errors ε are assumed to
be independent and identically distributed with mean 0 and unknown but constant
variance σ 2. The MM-regression estimate with an S-scale gives α̂0 = −5.23 and
β̂0 = 0.11. Figure 1 displays the data with the robust and least squares fits. To
obtain confidence intervals for the regression parameters β , we use the bootstrap
and fast bootstrap methods to estimate the distribution of the robust regression

estimator. We performed 10,000 bootstrap recalculations. Scatterplots of β̂
R∗
u − β̂n

for the fast bootstrap and of β̂
∗
u− β̂n for the bootstrap are presented in Figure 2. We

clearly see that the fast bootstrap estimates are more stable. This is reflected in the
length of the confidence intervals. Table 1 contains the 95% confidence intervals
for the slope and intercept calculated with both the bootstrap and the fast bootstrap.

TABLE 1
95% confidence intervals for the regression coefficients of the

Belgium international calls data

Coefficient Fast bootstrap Classical bootstrap

Intercept (−10.32, −3.20)∗ (−17.74, 0.35)
Year (0.08, 0.20)∗ (0.00, 0.28)

An asterisk indicates a coefficient significantly different at the
5% level.
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FIG. 2. Comparison of bootstrap and fast bootstrap distribution estimates for the Belgium
international phone calls data—10,000 bootstrap samples.

Using the fast bootstrap, we conclude that both regression coefficients are
significantly different from 0 at the 5% level. On the other hand, the artificial
variability introduced by the outliers in the bootstrap yields longer confidence
intervals. As a consequence, using the bootstrap, we conclude that, at the 5% level,
there is no significant linear relationship between the response and the predictor
variable. The conclusion obtained with the fast bootstrap analysis is intuitively
in agreement with the linear trend observed in the scatterplot of the data (see
Figure 1).

4.2. Verbal test score data. These data contain observations drawn from 20
schools in the United States. They were first studied by Coleman et al. (1966) [see
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also Mosteller and Tukey (1977) and Rousseeuw and Leroy (1987) pages 79ff].
The data consist of verbal mean test scores for sixth-graders drawn from 20 schools
in the Mid-Atlantic and New England states. The explanatory variables are: staff
salaries per pupil (Staff Salary), percent age of white-collar fathers (White Collar),
socioeconomic status composite deviation (Soc. Status), mean teacher’s verbal
test score (Teacher Score) and mean mother’s educational level (Mother Ed.).
We fit a multiple linear regression model to these data to find which variables
have a significant effect on the mean verbal test score of the students. We used
the classical least squares fit and a 50% breakdown point and 95% efficient MM-
regression estimate with score functions in Tukey’s family (5.1). Figure 3 contains
the plot of the residuals obtained with the least squares and MM-regression
estimates. From this plot it is clear that these data contain outliers and that the
least squares fit is not appropriate.

To determine which coefficients are significantly different from 0, we built 95%
confidence intervals using both bootstrap and fast bootstrap methods to estimate
the distribution of the robust MM-regression estimator. We used 5000 bootstrap
samples to estimate the appropriate quantiles of the marginal distributions. The
bootstrap calculations required 820 CPU seconds, whereas the fast bootstrap was
done in 2.2 CPU seconds. The resulting confidence intervals are displayed in
Table 2.

The only significant coefficients using the bootstrap (at the 5% level) are those
of Soc. Status and Teacher Score. The confidence intervals constructed with the
fast bootstrap indicate that all coefficients are significant at this level. What is
most striking in this example is that the conclusions reached using the bootstrap
are the same as those we would have obtained using a nonrobust least squares
analysis. In other words, simply bootstrapping these highly robust estimates leads
to the same qualitative conclusions yielded by the nonrobust least squares fit. The
reason for the different behavior of the bootstrap and the fast bootstrap is again the
serious effect of the outliers in the bootstrap samples. Also note that the lengths of

TABLE 2
95% confidence intervals for the regression coefficients

of the verbal test score data

Coefficient Fast bootstrap Classical bootstrap

Intercept (12.37, 31.66)∗ (−5.60, 49.99)
Staff Salary (−2.34, −0.23)∗ (−3.75 1.26)
White Collar (0.03, 0.11)∗ (−0.03, 0.17)
Soc. Status (0.57, 0.69)∗ (0.41, 0.81)∗
Teacher Score (0.81, 1.56)∗ (0.09, 2.27)∗
Mother Ed. (−4.35, −1.37)∗ (−6.79, 0.97)

An asterisk indicates a coefficient significantly different
from 0 at the 5% level.



BOOTSTRAPPING ROBUST REGRESSION 565

FIG. 3. Residual plots for the least squares and robust fits to the verbal test score data. The dotted
lines indicate ±2σ̂n .

the bootstrap confidence intervals are between 2.5 and 4 times longer than those
obtained with the fast bootstrap.

To explore the shape of the estimates of the marginal distributions obtained with
each method, we used QQ-plots of the marginal bootstrap distributions. Figure 4
contains these plots for two marginal distributions, the other marginal distributions
being very similar. As expected, the marginal distributions of the bootstrap have
heavier tails than those of the fast bootstrap, resulting in unduly long confidence
intervals.
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(a) % White collar—bootstrap (b) % White collar—fast bootstrap

(c) Socioeconomic status—bootstrap (d) Socioeconomic status—fast bootstrap

FIG. 4. QQ-plots of the bootstrap and fast bootstrap marginal distributions for the verbal test score
data.

5. Asymptotic properties of the fast bootstrap. The following theorem
shows that the asymptotic distribution of the fast bootstrap is the same as that
of the MM-regression estimator.

In the rest of this paper we will assume the following regularity conditions for
ρ0 and ρ1:

R1. ρ0(−u)= ρ0(u) and ρ0(−u)= ρ0(u) for all u ∈ R;
R2. ρ0(0)= ρ1(0)= 0;
R3. ρ0 and ρ1 are continuously differentiable;
R4. supx ρ0(x)= supx ρ1(x)= 1;
R5. if ρ0(u) < 1 and 0 ≤ v < u then ρ0(v) < ρ0(u), and the same holds for ρ1.

A widely used family of functions ρ that satisfy R1–R5 above was proposed by
Beaton and Tukey (1974):

ρ(u)=
{

3(u/d)2 − 3(u/d)4 + (u/d)6, if |u| ≤ d,
1, if |u|> d,(5.1)

where d > 0 is a fixed constant.

THEOREM 1 (Convergence of the fast bootstrap distribution). Let ρ0 and
ρ1 be real functions satisfying R1–R5. Assume that they have continuous third
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derivatives. Let β̂n be the MM-regression estimator, σ̂n the S-scale and β̃n
the associated S-regression estimator. Assume that they are consistent, that is,

β̂n
P→ β, σ̂n

P→ σ and β̃n
P→ β̃, where β , σ and β̃ solve the following equations:

E
[
ρ′

1
(
(Y − X′β)/σ

)]= 0,

E
[
ρ0
(
(Y − X′β̃)/σ

)]= b,

E
[
ρ′

0
(
(Y − X′β̃)/σ

)]= 0.

If the following conditions hold:

1. The following matrices exist and are finite:

E
[
ρ′

1(r)/rXX′]−1
, E

[
ρ′

0(r)/rXX′]−1
, E

[
ρ′

1(r)XX′], E[ρ′
1(r)rXX′],

E
[
ρ′′

0 (r)XX′], E[ρ′′
1 (r)XX′]−1

, E
[
ρ′′

0 (r)rX
]
, E

[
ρ′′

1 (r)rX
];

2. E[ρ′
0(r)r] �= 0 and finite,

3. ρ′
1(u)/u, ρ′

1(u)/u, (ρ′
0(u)− ρ′′

0 (u)u)/u
2 and (ρ′

1(u)− ρ′′
1 (u)u)/u

2 are contin-
uous;

then along almost all sample sequences
√
n(β̂

R∗
n − β̂n) converges weakly, as n

goes to ∞, to the same limit distribution as
√
n(β̂n − β).

REMARK 3. Assumption 3 above is satisfied for functions ρ in Tukey’s family
(5.1).

REMARK 4. Regarding the assumption of consistency of σ̂n, β̃n and β̂n, Sali-
bian-Barrera (2000) found regularity conditions that suffice to prove consistency
and asymptotic distribution of these estimates for any F ∈ Hε [see (2.2)].

6. Robustness properties of the fast bootstrap. We are interested in the
robustness properties of the quantile estimates of our fast bootstrap. Let t ∈ (0,1)
and let qt be the t th upper quantile of a statistic θ̂n; that is, qt satisfies P [θ̂n >
qt ] = t .

Following Singh (1998), we define the upper breakdown point of a quantile
estimate q̂t as the minimum proportion of asymmetric contamination that can drive
it over any finite bound.

There are two closely related scenarios in which the quantile estimates based
on the fast bootstrap can break down. The first unfavorable situation is when the
proportion of outliers in the original data is larger than the breakdown point of
the estimate. In this case the estimate may already be unreliable, and so are the
inferences we derive from it. The second case is related to the number of outliers
appearing in the bootstrap samples. Let τ ∗ be the expected proportion of bootstrap
samples that contain more outliers than the breakdown point of the estimate. In
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other words, we expect τ ∗ × 100% of the recalculated β̂
∗
n’s to be unreliable. The

estimate q̂t may be severely affected by the outliers when τ ∗ > t . The following
theorem summarizes this discussion.

The breakdown point of robust regression estimates is related to the geometrical
characteristics of the data. In the same way, these characteristics affect the
breakdown point of the fast bootstrap quantile estimates. We need the following
definition of general position [Rousseeuw and Leroy (1987)].

DEFINITION 1 (General position). We say that k points in R
p are in general

position if no subset of size p + 1 of them determines an affine subspace of
dimension p. In other words, for every subset xi1, . . . ,xip+1 , 1 ≤ ij ≤ k, ij �= il
if j �= l, there are no vector v0 ∈ R

p \ {0} and scalar α ∈ R such that

x′
ij

v0 = α for j = 1, . . . , p+ 1.

The main result of this section is the following theorem that establishes the
breakdown point of the quantile estimates based on the fast bootstrap.

THEOREM 2 (Breakdown point of the fast bootstrap quantiles for the regression
model). Let (y1,x′

1)
′, . . . , (yn,x′

n)
′ ∈ R

p+1 be a random sample following the
linear model (2.1). Assume that the explanatory variables x1, . . . ,xn in R

p are in
general position (see Definition 1). Let β̂n be an MM-regression estimate and let ε∗
be its breakdown point. Then the breakdown point of the t th fast bootstrap quantile
estimate of the regression parameters βj , j = 1, . . . , p, is given by min(ε∗, εR),
where εR satisfies

εR = inf
{
δ ∈ [0,1] :P

[
Binomial(n,1 − δ) < p]≥ t}.(6.1)

It is easy to see that formula (6.1) is equivalent to

εR = inf
{
δ ∈ [0,1] :P

[
Binomial(n, δ)≥ n− p]≥ t}.(6.2)

Singh (1998) obtained the following formula for the upper breakdown point of the
bootstrap estimate q̂t of qt :

εC = inf
{
δ ∈ [0,1] :P

[
Binomial(n, δ)≥ [ε∗n]]≥ t},(6.3)

where [x] denotes the smallest integer larger than or equal to x and ε∗ is the
breakdown point of the estimate being bootstrapped. Since [ε∗n] ≤ [n/2]< n− 1
for n > 3, we immediately see from (6.2) and (6.3) that εC < εR . Table 3 compares
εC and εR for different sample sizes (n) and number of explanatory variables
(p). We considered an MM-regression estimate with 50% breakdown point and
95% efficiency when the data are normally distributed. We compared the quantiles
needed to construct 90%, 95% and 99% confidence intervals.
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TABLE 3
Comparison of quantile upper breakdown points for
MM-regression estimates with 50% breakdown point

Fast bootstrap Classical bootstrap

p n q̂0.005 q̂0.025 q̂0.05 q̂0.005 q̂0.025 q̂0.05

1 10 0.500 0.500 0.500 0.191 0.262 0.304
20 0.500 0.500 0.500 0.257 0.315 0.347
30 0.500 0.500 0.500 0.293 0.343 0.370

2 10 0.456 0.500 0.500 0.128 0.187 0.222
20 0.500 0.500 0.500 0.217 0.272 0.302
30 0.500 0.500 0.500 0.265 0.313 0.339

5 10 0.191 0.262 0.304 0.011 0.025 0.036
20 0.500 0.500 0.500 0.114 0.154 0.177
30 0.500 0.500 0.500 0.185 0.226 0.249

10 20 0.257 0.315 0.347 0.005 0.012 0.018
50 0.500 0.500 0.500 0.180 0.212 0.230

100 0.500 0.500 0.500 0.294 0.322 0.336

Note that the only cases where the upper breakdown point for the fast bootstrap
quantiles is significantly smaller than the breakdown point of the regression
estimate (50%) are n = 10, p = 5 and n = 20, p = 10. These cases are not of
interest from a practical point of view due to the extremely large dimension of the
model relative to the number of observations available. Also note that our upper
breakdown points are notably larger than those of the bootstrap quantiles estimate.

7. Simulation results. In this section we report the results of a Monte Carlo
study on the finite sample properties of confidence intervals for the parameters β in
the linear regression model (2.1). In what follows h(j ) denotes the j th coordinate
of the vector h.

We compare two methods for building confidence intervals for the coefficients
β(j ), j = 1, . . . , p. The first approach is to approximate the distribution of√
n(β̂n− β) by its normal asymptotic distribution. We build an asymptotic 1 − α

confidence interval for β(j ) of the form (β̂n(j) − zα/2V̂n, β̂n(j) + zα/2V̂n), where

V̂ 2
n is an estimate of the asymptotic variance of β̂n(j) and zα is the quantile

that leaves the area equal to α to its right under a standard normal curve. Let
�(F,β(F ),σ (F )) be the asymptotic covariance matrix of β̂n. We use V̂ 2

n equal
to the corresponding diagonal element of the empirical version of the above
asymptotic covariance matrix [namely, �(Fn, β̂n, σ̂n)]. We refer to this method
as “empirical asymptotic variance.”

The second approach is based on directly estimating the distribution of√
n(β̂n−β). In this case we focus on constructing confidence intervals for β(j ) of
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the form (Zn1−α/2,Znα/2), where Znη satisfies

P
[√
n(β̂n(j) − β(j )) >Znη

]= η for η ∈ (0,1).
We can use bootstrap methods to obtain estimates of Znη . The basic idea is

to use the empirical distribution of the recalculated β̂
∗
n(j)’s to obtain estimated

quantiles Ẑnη [see, e.g., Davison and Hinkley (1997), page 18]. Note that with
this method we do not use the symmetry assumption that underlies the asymptotic
normal approximation in the previous approach. We generated many recalculated

β̂
R∗
n − β̂n with the fast bootstrap and used the empirical distribution of each

projection to obtain estimates of the distribution of β̂n(j)−β (j ) for each coordinate

j = 1, . . . , p. With this empirical distribution we obtained estimates Ẑnη of the
quantiles needed to build the confidence intervals. In this context, the bootstrap
demands so much computer time that it becomes almost unfeasible; hence, we did
not include it in our study.

We considered sample sizes n = 30, 50 and 100 with p = 2 and p = 5
explanatory variables. These independent variables included an intercept: x1 ≡
1 and xi ∼ N(0,1) for i = 2, . . . , p. Finally, the errors followed the gross-
error contamination model with distributions Fε = (1 − ε).(x)+ εV (x), where
V (x)= 0.5.((x− x0)/0.1)+ 0.5.((x+ x0)/0.1) and.(x) denotes the standard
normal cumulative distribution function. We used ε = 0.00, 0.10 and 0.20. The
contamination point x0 was set at 3, 4 and 10. Here we report the results obtained
for x0 = 4, the others being very similar.

We generated 5000 datasets from the above distributions and built 99%
confidence intervals for the parameters of the model. We used MM-regres-
sion estimates obtained with ψ = ρ′

4.685 in Tukey’s family (5.1). The S-scale
was obtained with ρ1.54764 also in Tukey’s family. This choice yields estimates
with simultaneous 50% breakdown point and 95% efficiency when the data are
normally distributed.

Table 4 tabulates the results of the simulation for p = 5. It is easier to see the
difference between these methods by looking at Figure 5. These pictures show at
a glance that the levels obtained with the fast bootstrap are better than the ones
yielded by the empirical asymptotic variance (AV) estimate. Both methods are
very close only for the case of n= 100 and ε = 0.00. In all the other cases the fast
bootstrap yields notably better coverage levels. The behavior for the case n= 100
and ε = 0.00 is naturally expected because both methods are asymptotically
equivalent (and correct), and hence will behave similarly for large sample sizes.
Note that for n = 100 and ε = 0.20, however, the empirical asymptotic variance
method compares unfavorably with the fast bootstrap. The reason for this seems
to be that the empirical asymptotic variance formula is numerically unstable
(especially for contaminated datasets). The fast bootstrap being more stable shows
a better performance.
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TABLE 4
Coverage and length of 99% confidence intervals for the

linear regression model, p = 5

n ε Parameter Fast bootstrap Empirical AV

30 0.00 β0 0.967 (1.340) 0.911 (0.901)
β1 0.963 (1.408) 0.912 (0.924)
β2 0.963 (1.410) 0.913 (0.923)
β3 0.963 (1.417) 0.907 (0.923)
β4 0.963 (1.395) 0.908 (0.924)
σ 0.993 (2.165) 0.992 (2.167)

30 0.20 β0 0.983 (2.523) 0.917 (1.393)
β1 0.973 (2.641) 0.895 (1.429)
β2 0.973 (2.610) 0.901 (1.424)
β3 0.978 (2.688) 0.901 (1.427)
β4 0.974 (2.707) 0.898 (1.427)
σ 0.995 (3.455) 0.995 (3.456)

100 0.00 β0 0.988 (0.555) 0.983 (0.526)
β1 0.986 (0.563) 0.986 (0.530)
β2 0.984 (0.562) 0.982 (0.530)
β3 0.987 (0.564) 0.985 (0.530)
β4 0.988 (0.562) 0.985 (0.531)
σ 0.995 (0.659) 0.995 (0.660)

100 0.20 β0 0.994 (1.050) 0.984(0.903)
β1 0.993 (1.090) 0.982 (0.911)
β2 0.990 (1.095) 0.978 (0.910)
β3 0.992 (1.090) 0.974 (0.910)
β4 0.992 (1.093) 0.978 (0.910)
σ 0.994 (1.024) 0.994 (1.025)

(a) n= 30 (b) n= 100

FIG. 5. Average coverage of 99% confidence intervals for the linear regression model with p = 5.
Solid triangles are levels of the confidence intervals for the intercept and the coefficients of x1, . . . ,x4
calculated with the fast bootstrap; circles represent the corresponding levels for the confidence
intervals obtained with the empirical asymptotic variance estimate. Across the horizontal axis, the
three groups correspond to ε = 0.0, 0.1 and 0.2, respectively. The horizontal line indicates the
nominal level.
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8. Some concluding remarks. We have presented the “fast bootstrap” which
provides an alternative to the bootstrap for estimating the distribution of robust
regression estimates. Unlike the bootstrap, the fast bootstrap is fast to compute and
resistant to outliers in the data. In particular, we have built confidence intervals
for the coefficients of the linear model (2.1) based on MM-regression estimates
and have used the fast bootstrap to estimate their endpoints. We showed that
these confidence intervals are computationally feasible and have good coverage
properties across different sample sizes and amounts of contamination.

We have studied the case of random explanatory variables. In principle, we
could also apply our method to the case of fixed design as follows. Let ej =
yj − β̂

′
nxj , 1 ≤ j ≤ n, be the residuals of the MM-estimate. The bootstrapped

y∗
i ’s are

y∗
i = β̂

′
nxi + e∗i ,

where e∗i , 1 ≤ i ≤ n, is a random sample from the residuals. Now β̂
∗
n and σ̂ ∗

n are
defined by

β̂
∗
n =

[
n∑
i=1

ω∗
i xix′

i

]−1 n∑
i=1

ω∗
i xiy∗

i ,(8.1)

σ̂ ∗
n =

n∑
i=1

v∗
i

(
y∗
i − β̃

′
nxi

)
,(8.2)

where ω∗
i = ρ′

1

(
r∗i /σ̂n

)
/r∗i , v∗

i = σ̂nρ0(r̃
∗
i /σ̂n)/(n b r̃

∗
i ), r

∗
i = y∗

i − β̂
′
nxi and

r̃∗i = y∗
i − β̃

′
nxi for 1 ≤ i ≤ n. The correction factors An, vn and an are defined

as before, and so is β̂
R∗
n − β̂n. The main difference lies in the proposed resam-

pling procedure. Following Freedman (1981), we intend it to best resemble the un-
derlying process generating the data. Under suitable regularity conditions (which
include that the robust estimate itself be asymptotically normally distributed), the
consistency of the fast bootstrap for fixed designs can be obtained using a similar
proof to the one provided for Theorem 1.

The fast bootstrap could also be applied to other types of robust regression
estimates that can be represented as the solution of a smooth fixed-point equation
gn(θ̂n) = θ̂n. To obtain asymptotically correct distribution estimates with this
method, it is paramount that θ̂n above includes the scale estimate. For example,
in the case of GM estimates given as the solution of

n∑
i=1

η

(
yi − β̂

′
nxi

σ̂n
,xi

)
xi = 0

for a certain function η: R
p × R → R+ [see Hampel, Ronchetti, Rousseeuw and

Stahel (1986), Chapter 6], we have to consider the equations that define σ̂n. If σ̂n
is an S-estimate, we have
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1

n

n∑
i=1

ρ0

(
yi − β̃

′
nxi

σ̂n

)
= b,

1

n

n∑
i=1

ρ′
0

(
yi − β̃

′
nxi

σ̂n

)
xi = 0.

Then θ̂n = (β̂
′
n, σ̂n, β̃

′
n)

′ ∈ R
2p+1 and the function gn: R

2p+1 → R
2p+1 includes

the corresponding three equations above. The details regarding theoretical and
numerical performance of the fast bootstrap for these estimates deserve further
study.

APPENDIX

Proofs. The following lemma is needed for the proof of Theorem 2.

LEMMA 1. Let (y1,x′
1)

′, . . . , (yn,x′
n)

′ be n≥ p points in R
p such that if

Xn =



x′
1
...

x′
n


 ,(A.1)

then X′
nXn has full rank. For a given (yn+1,x′

n+1)
′ let β̂n+1 be the least squares

regression coefficients determined by the n+1 points. There exists a finite constant
K such that ‖β̂n+1‖ ≤K for any (yn+1,x′

n+1)
′ with |yn+1| ≤ c. (The constant K

only depends on the first n points and on the constant c.)

PROOF. We will show that the regression parameters β̂n+1 obtained when
adding a new point (yn+1,xn+1) are bounded for any xn+1 if yn+1 is bounded. Let
Xn ∈ R

n×p be the design matrix in (A.1). Note that Xn has rank p by hypothesis.
As a consequence, both (X′

nXn) and its inverse are positive definite. Let C be a
nonsingular matrix in R

p×p and let h ∈ R
p. Use the following formula [see, e.g.,

Seber (1984), page 519]

(C + hh′)−1 = C−1 − C−1hh′C−1(1 + h′C−1h)−1

to obtain

β̂n+1 =
[
I − Vxn+1x′

n+1

1 + x′
n+1Vxn+1

]
β̂n +

[
V − Vxn+1x′

n+1V

1 + x′
n+1Vxn+1

]
xn+1yn+1,

where V = (X′
nXn)−1 is positive definite and (yn+1,x′

n+1)
′ is the new point to be

added to the regression. To simplify the notation, let

u = xn+1, A = I − Vuu′

1 + u′Vu
, B = V − Vuu′V

1 + u′Vu
.
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The last equation can then be written as

βn+1 = Aβn + Buyn+1.

First, we will show that every entry in A is bounded for ‖u‖ → ∞. The (i, j)
element is given by

A(i,j ) = δi,j − uj
∑
k vikuk

1 +∑
k

∑
l vklukul

= δi,j − vij u
2
j + uj (∑k �=j vi kuk)

1 +∑
k

∑
l vklukul

.

It is easy to see (e.g., by dividing both the numerator and the denominator by ‖u‖2)
that the denominator has the same order as the numerator, so that the fraction will
remain bounded as ‖u‖ → ∞. Note that the denominator is bounded away from 0,
so that the whole expression is bounded for any u. We now show that the r th
element of Bu goes to 0 as ‖u‖ → ∞. Note that

Bu = Vu
1 + u′Vu

.

The r th element is then ∑
i vriui

1 +∑
ij vij uiuj

.

Divide both the numerator and the denominator by ‖u‖2 and use that
|uj |
‖u‖ ≤ 1 for 1 ≤ j ≤ p(A.2)

to conclude that the denominator is bounded when ‖u‖ → ∞ and that the
numerator goes to 0 when ‖u‖ → ∞. The latter can be seen noting that (A.2)
implies

|uj |
‖u‖2

→ 0 for 1 ≤ j ≤ p.
�

PROOF OF THEOREM 2. Let (y1,x′
1)

′, . . . , (yn,x′
n)

′ ∈ R
p+1 be n observations

following model (2.1). We assume that x1, . . . ,xn ∈ R
p are in general position (see

Definition 1). This assumption guarantees that any subset of size p of them will
determine a bounded least squares estimate.

We assume that there is a certain proportion of observations that do not
necessarily follow the linear regression model (2.1). We will show that any
bootstrap sample that contains at least p points that are not outliers yields a

bounded β̂
R∗
n . It follows that the only samples that can produce unbounded fast

bootstrap coefficients are those that contain at most p − 1 points that are not

outliers. The fast bootstrap β̂
R∗
n is given by

β̂
R∗
n = Mn(β̂

∗
n − β̂n)+ dn(σ̂ ∗

n − σ̂n).
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Note that the matrix Mn and the vector dn are not recalculated with each
bootstrap sample, and as long as the robust regression estimate β̂n does not break
down, they remain bounded. It is also easy to see that σ̂ ∗

n also remains bounded
for any bootstrap sample. Hence, the problem becomes determining under which
circumstances β̂

∗
n can be driven beyond any finite bound. Recall that

β̂
∗
n =

[
n∑
i=1

ω∗
i x∗
i x

∗′
i

]−1 n∑
i=1

ω∗
i x∗
i y

∗
i ,

where the weights ω∗
i = ρ′

1(r
∗
i /σ̂n)/r

∗
i are bounded. The above expression can be

rewritten as

β̂
∗
n =

[
n∑
i=1

x̃∗
i x̃

∗′
i

]−1 n∑
i=1

x̃∗
i ỹ

∗
i ,

where x̃∗
i =

√
ω∗
i x∗
i and ỹ∗

i =
√
ω∗
i y

∗
i . We consider the case of having at least p

data points that are not outliers. It is enough to have a bound on the effect of one
outlier and that that bound does not depend on the outlier. In what follows we show
how to obtain such a bound. To simplify the notation, we use the same symbols xi
and yi for the weighted points x̃i and ỹi .

Let (y1,x′
1)

′, . . . , (yn,x′
n)

′ be a bootstrap sample of n ≥ p good data points
and let (yn+1,x′

n+1)
′ be an arbitrary outlier included in this sample. Let β̂n be

the MM-estimate based on the full data. Without loss of generality, assume that
β̂n = 0 ∈ R

p . The data can always be transformed to satisfy this assumption. In
particular, if

ỹi = yi − β̂
′
nxi , i = 1, . . . , n,

then the points (ỹ1,x′
1)

′, . . . , (ỹn,x′
n)

′ have a zero regression estimate.

We now show that the outlier (yn+1,x′
n+1)

′ will only have an effect on β̂
∗
n+1 for

a bounded range of yn+1. Let c > 0 be the constant of the function ψc used for the
MM-estimate in (2.3) and let σ+

n = sup σ̂n be the largest possible value of σ̂n for a
sample of size n. Any point (yn+1,x′

n+1)
′ satisfying |yn+1|> cσ+

n has zero weight
in the fast bootstrap recalculations. Hence, it is not possible to upset β̂

∗
n+1 with

this type of contamination. In what follows we consider the case |yn+1| ≤ σ+
n c.

Lemma 1 gives a bound for the effect of (yn+1,x′
n+1)

′ on β̂
∗
n+1. This bound only

depends on the first n pairs.
Given a bootstrap sample of size n, assume that the first k observations are

“good” and the remaining n− k are arbitrary outliers. Applying Lemma 1 n− k

times, we see that the new β̂
∗
n+1 can only be modified by a finite amount. This

amount depends on the k first observations of this bootstrap sample, but it does not
depend on the values of the n− k outliers. Considering all the possible bootstrap
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samples that contain at least p points that are not outliers, we find a bound that only
depends on the original dataset. To drive the t th fast bootstrap quantile estimate
above any bound, we need to have at least t% of the bootstrap samples containing
less than p “good” points. The proportion ε of outliers in the original sample
should then satisfy P [Binomial (n,1 − ε) < p] ≥ t . �

LEMMA 2 [Serfling (1980), page 253]. Let X1, . . . ,Xn be a sequence of
independent identically distributed random variables and let g(x, t): R × R → R

be continuous in t uniformly on x ∈ R. Let θn be a sequence of random variables

such that θn
P−−−−→

n→ ∞ θ , a constant. Then

1

n

n∑
i=1

g(Xi, θn)
P−−−−→

n→ ∞E
[
g(X, θ)

]
.(A.3)

If θn
a.s.−−−−→

n→ ∞ θ , then (A.3) holds a.s. as well.

PROOF OF THEOREM 1. First, note that the estimates β̂n, σ̂n and β̃n satisfy
the following equations:

1

n

n∑
i=1

ρ′
1

(
ri(β̂n)

σ̂n

)
xi = 0,

1

n

n∑
i=1

ρ0

(
ri(β̃n)

σ̂n

)
= b,

1

n

n∑
i=1

ρ′
0

(
ri(β̃n)

σ̂n

)
xi = 0.

Simple calculations yield the following reweighted version of the estimates:

β̂n = An(β̂n, σ̂n)
−1 vn(β̂n, σ̂n),

σ̂n = σ̂nun(β̃n, σ̂n),(A.4)

β̃n = Bn(β̃n, σ̂n)
−1wn(β̃n, σ̂n),

where

An(β1, σ )=
1

n

n∑
i=1

ρ′
1(ri/σ )

ri
xix′

i ,

vn(β1, σ )=
1

n

n∑
i=1

ρ′
1(ri/σ )

ri
yixi ,



BOOTSTRAPPING ROBUST REGRESSION 577

un(β2, σ )=
n∑
i=1

ρ0(r̃i/σ )

nbr̃i
r̃i ,

Bn(β2, σ )=
1

n

n∑
i=1

ρ′
0(r̃i/σ )

r̃i
xix′

i ,

wn(β2, σ )=
1

n

n∑
i=1

ρ′
0( r̃i

/
σ)

r̃i
yixi .

Equations (A.4) can be expressed as the fixed point of a conveniently chosen
function. Consider f: R

2p+1 → R
2p+1 defined for β1 ∈ R

p , σ ∈ R and β2 ∈ R
p

by

f(β1, σ,β2)=




An(β1, σ )
−1vn(β1, σ )

σun(β2, σ )

Bn(β2, σ )
−1wn(β2, σ )


 .

To simplify the notation, we do not explicitly indicate the dependence of f on n.
We have

f(β̂n, σ̂n, β̃n)= (β̂n, σ̂n, β̃n)
′.

Using the differentiability of ρ0 and ρ1, we can calculate a Taylor expansion of f
about the limiting values of the estimates (β, σ, β̃):

 β̂n
σ̂n

β̃n


= f(β, σ, β̃)+ ∇f(β, σ, β̃)


 β̂n − β
σ̂n − σ
β̃n − β̃


+Rn,(A.5)

where Rn is the remainder term and ∇f(·) ∈ R
(2p+1)×(2p+1) is the matrix of partial

derivatives,

p 1 p

p ∂[A−1
n vn]/∂β ∂[A−1

n vn]/∂σ ∂[A−1
n vn]/∂β̃

1 ∂[σun]t/∂β ∂[σun]/∂σ ∂[σun]/∂β̃
p ∂[B−1

n wn]/∂β ∂[B−1
n wn]/∂σ ∂[B−1

n wn]/∂β̃
Tedious but straightforward calculations show that each entry in Rn is a linear

combination of quadratic forms x′
nHnxn, where xn = β̂n − β or xn = σ̂n − σ or

xn = β̃n − β̃ . Note that ‖xn‖ = OP
(
1/

√
n
)
. The matrix Hn is a combination

of products of matrices of the form 1
n

∑
(ρ
(k)
s (ri)/r

l
i )xix

′
i , with k = 0,1,2,3,

s = 0,1, and l = 0,1,2. The continuity of the derivatives of ρ0 and ρ1 together
with assumptions 1 and 3 and Lemma 2 shows that ‖Hn‖ = OP (1). We have
|x′
nHnxn| = oP

(
1/

√
n
)
. Hence, ‖Rn‖ = op(1/

√
n) in (A.5).
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To simplify the notation, let τn = (β̂n, σ̂n, β̃n)
′ and τ = (β, σ, β̃)′. Equation

(A.5) becomes
√
n(τ n − τ )= [

I − ∇f(τ )
]−1√

n
[
f(τ )− τ

]+ oP (1) .(A.6)

We will now show that the correction factors Mn and dn in (3.6) and (3.7) are
the corresponding first p rows of the estimate [I − ∇f(τ n)]−1 of the matrix
[I − ∇f(τ )]−1 in (A.6). It is easy to see that I − ∇f(τ n) has the form

[
I − ∇f(τ n)

]=
A v

0 · · · 0
...

...

0 · · · 0
0 · · · 0 a 0 · · · 0
0 · · · 0
...

...

0 · · · 0

w B

,

where

A = I − ∂

∂β
[A−1
n vn], v = − ∂

∂σ
[A−1
n vn], a = 1 − ∂

∂σ
[σun],

w = − ∂

∂σ
[B−1
n wn], B = I − ∂

∂β̃
[B−1
n wn].

That

∂

∂β̃
[un] = (0, . . . ,0)

follows from the fact that σ̂n attains the minimum of the S-scale.
Now note that the estimate of the correction factor in (A.6) has the following

form:

[
I − ∇f(τ n)

]−1 =

A−1 −A−1v/a

0 · · · 0
...

...

0 · · · 0
0 · · · 0 1/a 0 · · · 0
0 · · · 0
...

...

0 · · · 0

−B−1w/a B−1

.(A.7)

Note that in (A.6) we are only interested in the first p + 1 coordinates of τn
(the remaining p correspond to the S-regression estimate). From [I − ∇f(τ n)]−1
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in (A.7) we see that the last p coordinates of f are not involved in determining the
first p + 1 coordinates of τn − τ . Hence, when we apply this method in practice
we do not need to bootstrap β̃n.

It also follows from (A.7) that we only need to calculate A, v and a. We need
to find the derivatives of

[
An(β, σ )−1 vn(β, σ )

]
.

One way to calculate them is to differentiate the vector αn defined implicitly by

An(β, σ )αn(β, σ )= vn(β, σ ).

Drop the arguments (β, σ ) and the subscripts to simplify the notation. Differenti-
ating both sides of the equation

∂

∂β
[Aα] = ∂

∂β
v,

we obtain

∂

∂β
α = A−1

[
A −∑n

i=1 ρ
′′
1 (ri/σ̂n)

σ̂nxix′
i

]
.

It follows that

A = I − ∂

∂β
α|

β̂,σ̂n
= A−1 1

σ̂n

n∑
i=1

ρ′′
1 (ri/σ̂n)xix

′
i .

Then we have

A−1 = σ̂n

(
n∑
i=1

ρ′′
1

(
ri

σ̂n

)
xix′

i

)−1

A(A.8)

and

−A−1v

a
= bnσ̂n

[∑n
i=1 ρ

′′
1 (ri/σ̂n)xix

′
i

]−1∑n
i=1 ρ

′′
1 (ri/σ̂n)ri/σ̂nxi∑n

i=1 ρ
′
0(ri/σ̂n)ri/σ̂n

.(A.9)

It is easy to see that Mn in (3.6) is equal to (A.8) and that dn in (3.7) is −A−1 v/a

in (A.9).

We will now show that the bootstrap distribution of
√
n[f∗(τn)− τ n] converges

to the same limiting distribution as that of the sequence
√
n[f∗(τ )− τ ].
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First, note that

[
f∗(τn)− τn

]=



β̂
∗
n − β̂n
σ̂ ∗
n − σ̂n

β̃
∗
n − β̃n


=




A∗−1
n v∗

n − β̂n
σ̂n u

∗
n − σ̂n

B∗−1
n w∗

n − β̃n


 ,

where ∗ denotes the bootstrap version of these quantities. It is easy to see that

v∗
n(β̂n, σ̂n)=

n∑
i=1

ρ′
1(r

∗
i /σ̂n)x

∗
i + A∗

n(β̂n, σ̂n)β̂n

and

w∗
n(β̂n, σ̂n)=

n∑
i=1

ρ′
0(r̃

∗
i /σ̂n)x

∗
i + B∗

n(β̂n, σ̂n)β̃n.

Then 


β̂
∗
n − β̂n
σ̂ ∗
n − σ̂n

β̃
∗
n − β̃n


=




A∗−1
n

∑n
i=1 ρ

′
1(r

∗
i /σ̂n)x

∗
i

σ̂nu
∗
n − σ̂n

B∗−1
n

∑n
i=1 ρ

′
0(r̃

∗
i /σ̂n)x

∗
i


 .(A.10)

This last expression can be expressed as a function of means. Consider the function
g: R

p×p × R
p × R

p × R
p×p × R

p → R
p × R

p × R
p ,

g(Ā, v̄, ū, B̄,w )= (Ā−1v̄, ū, B̄−1w ).

Then (A.10) can be written as g(A∗
n, z

∗, u∗
n,B

∗
n,w

∗), where A∗
n, u∗

n and B∗
n are as

before, zi = ρ′
1(r

∗
i /σ̂n)x

∗
i and wi = ρ′

0(r̃
∗
i /σ̂n)x

∗
i for 1 ≤ i ≤ n. This function is

differentiable (this can be seen by thinking of it as a composition of differentiable
functions). We have that the statistic we are bootstrapping is of the form

g
(
ȳn(τn)

)− g
(
µ(τn)

)
,

where yi for 1 ≤ i ≤ n is a vector of the bootstrapped dimension and τn is
a consistent estimate of the vector of parameters τ . We have to show that the
asymptotic distribution of

√
n
(
ȳn(τn)− µ(τn)

)
(A.11)

is the same as that of
√
n
(
ȳn(τ )− µ(τ )

)
.(A.12)

The proof of this last statement is based on bounding the distance d2 [see Bickel
and Freedman (1981)] between the distribution functions of (A.11) and (A.12)
using the fact that τn → τ almost surely. Lemma 8.1 of Bickel and Freedman
(1981) and the regularity conditions of g show that the bootstrap distribution of
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g(ȳn(τ n))−g(µ(τ n)) converges to the same limit as that of the sequence g(ȳn(τ ))
− g(µ(τ )). �
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