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1 Introduction

Recently, there has been a remarkable revival of interest in the 40-year-old conformal boot-

strap idea [1–7]. The basic method, developed in [8], has now matured to the point where

it is possible to extract the spectrum of operator dimensions and Wilsonian operator prod-

uct expansion (OPE) coefficients of particular conformal field theories (CFTs) with great
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accuracy [9–12]. The ingredients for the bootstrap program are minimal, namely confor-

mal symmetry, unitarity, and crossing symmetry of the four-point function. Strikingly,

this is sufficient to derive highly non-trivial, non-perturbative constraints on the space of

generic conformal field theories. Beginning with [13, 14], it has been shown that, as it is

natural to expect, imposing additional symmetries on the CFT allows one to obtain even

stronger constraints. A particularly interesting possibility is to consider supersymmetry.

Supersymmetry leads to exact results for specific quantities such as the dimensions of chiral

operators. This is a nice complement to the conformal bootstrap approach, which, although

very powerful — it can determine and bound unprotected quantities — is a somewhat blunt

instrument, since it addresses general properties for the space of all consistent conformal

field theories. When supersymmetry is combined with the conformal bootstrap we expect

an interesting interplay where exact information is used to restrict bootstrap searches to

specific theories or classes of theories whereupon one can obtain accurate information about

the unprotected part of the spectrum.

Bootstrap methods have been previously applied to theories with various amounts of

supersymmetry. Theories with maximal supersymmetry are very constrained and thus

particularly suited for analysis using bootstrap technology. This has been explored in

four [15–18] and three [19] dimensions where various bounds on the spectrum of conformal

dimensions and OPE coefficients were found. It turns out that theories with at least sixteen

superconformal charges in various dimensions admit a remarkable algebraic structure which

leads to the closure of the crossing equations on the space of certain protected operators.

This was uncovered in [20] where it was shown that in four-dimensional CFTs with N =

2 supersymmetry one can solve analytically for correlation functions of some protected

operators by exploiting an underlying chiral algebra. This feature was further explored to

great efficacy in six [21], four [22, 23] and three dimensions [24]. These analytic results can

then be used as input to perform a numerical bootstrap analysis and obtain bounds on the

spectrum of unprotected operators in these highly symmetric theories [24, 25].

While theories with eight or more Poincaré supercharges are quite rigid and possess

deep mathematical properties, their dynamics is highly constrained. Thus it is worthwhile

to explore theories with less supersymmetry, which are harder to control, but perhaps of

greater phenomenological interest. This motivates our study in this paper of CFTs with

four Poincaré supercharges (eight superconformal charges). Some of the first papers on the

modern incarnation of the bootstrap program studied N = 1 SCFTs in d = 4 [13, 26, 27].

Very little has been done in two and three dimensions, a notable exception being the work

in [28] which studied SCFTs with four superconformal charges in d = 3, i.e. CFTs with

N = 1 supersymmetry.

In this paper, we aim to fill this gap by applying bootstrap methods to SCFTs with

four Poincaré supercharges in any dimension in the range 2 ≤ d ≤ 4. This corresponds to

N = (2, 2) and N = 2 theories in d = 2 and d = 3, respectively, and to N = 1 SCFTs

in d = 4. Moreover, one of the advantages of bootstrap methods is that they allow for

a straightforward analytic continuation into fractional values of the spacetime dimension.

This has been explored before in [29], where the numerical bootstrap results were success-

fully compared with analytic calculations for the Wilson-Fisher fixed point in d < 4. Here
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we follow a similar approach, tracking the four-supercharge version of the Wilson-Fisher

fixed point from four to two dimensions. This CFT is simply the critical Wess-Zumino

(cWZ) model, i.e. the theory of a single chiral superfield with cubic superpotential at its

infrared fixed point. As compared to the non-supersymmetric case, we have a lot less room

for error here, since the conformal dimension of the “spin” field is protected and equal

to (d − 1)/3 in any spacetime dimension d. Remarkably, we show that bounds on the

dimension of the leading scalar operator in a chiral-antichiral OPE exhibit “kinks” (as in

e.g. [9, 30]) at precisely this point for all 2 ≤ d < 4. They range from the (2, 2) c = 1 su-

persymmetric minimal model in d = 2, where the numerical bootstrap agrees with various

exact results, all the way to the free theory in d = 4. In d = 3, we find a kink at conformal

dimension 2/3, and are able to read off the dimension of the leading unprotected scalar,

which is approximately 1.9098. Also in d = 3, our bootstrap prediction for the two-point

function of the stress-tensor is in close agreement with the exact localization calculation

of [31]. Furthermore, for d . 4 our results for the dimension of the leading unprotected

scalar agree with those of the one-loop ǫ-expansion [32]. This strongly suggests that in 3d

our kink does indeed describe the super-Ising model. This theory is of some interest in

condensed matter physics [33–36], and we perform a detailed analysis of its properties in a

companion paper [37].

Part of the difficulty in bootstrapping supersymmetric theories lies in determining the

form of the superconformal blocks. Supersymmetry organizes conformal into superconfor-

mal multiplets, and accordingly conformal blocks of primaries with different dimensions and

spins also become grouped. The calculation of superconformal blocks for general external

operators can be a cumbersome technical problem. In this paper, we find the superconfor-

mal blocks in theories with four supercharges for external scalar superconformal primary

operators with arbitrary scaling dimensions. A crucial ingredient is that at least two of

these operators should be chiral primaries. Our approach is facilitated by the existence of

a formal dimensional continuation of the superconformal algebra with four supercharges to

arbitrary dimension d ≤ 4. The commutation relations for the ordinary conformal algebra

formally make sense when we let the spacetime vector indices run from 1 to d, since Jacobi

identities can be verified without specializing to a fixed integer d. Here we show that this

picture can be extended to include fermionic generators, namely four Poincaré supercharges

and four conformal supercharges. We are able to write down (anti)commutation relations

among all generators without specializing to a fixed d and demonstrate the validity of all

super-Jacobi identities in an essentially dimension-independent way. The superconformal

blocks can then be found in general d using the fact that they are eigenfunctions of the

quadratic Casimir operator of this superconformal algebra. This method is similar to the

way in which non-supersymmetric conformal blocks were found in [38]. Our general results

reduce to previously studied cases, namely d = 2 and d = 4 [13, 39, 40]. Remarkably, we

find that for any dimension, the superconformal blocks take the same functional form as

ordinary, non-supersymmetric, blocks where the dimensions of external and propagating

operators are shifted. This fact was also observed for d = 2, 4 in [40].

We begin our exploration in the next section, where we describe a construction of

the superconformal algebras in d ≤ 4 in a unified framework. This is necessary in order to
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properly define the Casimir operator of the algebra and its action on local operators, which

is used in section 3 to find the superconformal blocks. In section 4, we provide a short

review of the properties of the critical Wess-Zumino model in general dimension. Section 5

describes the set of crossing equations that we utilize in the numerical bootstrap procedure,

the results of which are presented and discussed in section 6. We finish with a discussion

in section 7. Several appendices complement the main text with technical results.

2 Superconformal algebra in continuous dimension

2.1 General results

We begin by presenting what we would like to call the dimensional continuation of the

superconformal algebra with four Poincaré supercharges to an arbitrary spacetime dimen-

sion d ≤ 4. The superconformal algebras in the traditional sense exist only for integer

values of d. We will show however that some insight can be gained by considering a set of

(anti)commutation relations which formally make sense for any real 0 ≤ d ≤ 4, such that

we obtain the corresponding superconformal algebras for integer d. We believe that this

language is useful because it allows us to

• cast the d = 4 N = 1, d = 3 N = 2, d = 2 N = (2, 2) and d = 1 N = 4

superconformal algebras in a unified way, where d enters only as a real parameter in

the (anti)commutation relations (besides defining the range for the spacetime vector

index),

• derive unitarity bounds on highest-weight representations for the whole d-dependent

family in a unified manner, and verify they reduce to the correct results for the

algebras in integer d,

• find the superconformal blocks as analytic functions of d.

It is a well-known fact that the d = 3, N = 2, and d = 2, N = (2, 2) Poincaré supersymme-

try algebras are dimensional reductions of the N = 1 algebra in d = 4, with the extra U(1)

R-symmetry in d = 2 coming from rotations in the two “transverse” dimensions. Here,

we generalize this dimensional reduction to the full superconformal algebra. Imposing the

Jacobi identities in a superconformal algebra leads to non-trivial polynomial relations for

the generators of the Clifford algebra, this being the essential reason for the scarcity of

superconformal algebras [41]. Consistency of our approach requires a continuous version

of these identities valid in any d ≤ 4. The identities can be checked for any d = 0, 1, . . . , 4

and at the level of traces even for continuous d. The superconformal algebra thus exists in

continuous dimension in the same sense as the ordinary conformal algebra, where Jacobi

identities can be checked formally without fixing spacetime dimension. Moreover, we show

in section 3 that superconformal blocks can be derived as analytic functions of d exactly

as in the non-supersymmetric case [38, 42].

– 4 –



J
H
E
P
0
8
(
2
0
1
5
)
1
4
2

We work in Euclidean signature, with reality conditions equivalent to those imposed by

unitarity in Lorentzian signature.1 The unhatted Latin indices will run over the unreduced

spacetime directions i = 1, . . . , d, while the hatted indices over the reduced ones î =

d+ 1, . . . , 4. The bosonic generators include the usual momenta Pi, special conformal Ki,

dilation D, and rotation Mij generators, with i, j = 1, . . . , d, the U(1) R-symmetry R, and

finally the rotations in the reduced dimensions Mîĵ . Because of our formal approach, it

is important to keep the reduced rotations Mîĵ for any d, although there are no physical

generators for d > 2. In our conventions, the bosonic commutation relations are

[Mij ,Mkl] = −i(δilMjk + δjkMil − δikMjl − δjlMik) ,

[Mîĵ ,Mk̂l̂] = −i(δîl̂Mĵk̂ + δĵk̂Mîl̂ − δîk̂Mĵ l̂ − δĵ l̂Mîk̂) ,

[Mij , Pk] = −i(δjkPi − δikPj) ,

[Mij ,Kk] = −i(δjkKi − δikKj) ,

[D,Pi] = −iPi ,

[D,Ki] = iKi ,

[Pi,Kj ] = −2i(δijD +Mij) ,

(2.1)

with all other commutators vanishing. The Hermitian conjugation rules are

D† = −D , R† = R , M †
ij =Mij , M †

îĵ
=Mîĵ , P †

i = Ki . (2.2)

We note that in our conventions, the action of the dilation generator D on an operator O
is [D,O] = −i∆O, where ∆ is the conformal dimension of O.

The fermionic generators include four Poincaré supercharges, Q, and four conformal

supercharges, S. The former will be denoted Q+
α , Q

−
α̇ , with α, α̇ = 1, 2, where the upper

index denotes the R-charge eigenvalue, ±1, and the lower index transforms under the

SO(d)× SO(4 − d) rotations. As indicated by the dot, the supercharges with different R-

charge are allowed to transform non-equivalently under rotations, as is the case for N = 1 in

d = 4. The conformal supercharges are Hermitian conjugates of the Poincaré supercharges

Sα− = (Q+
α )

† , Sα̇+ = (Q−
α̇ )

† . (2.3)

With this convention for placement of indices, contraction of an upper and a lower index

of the same kind is an invariant operation since any representation of the compact group

SO(d)× SO(4− d) is unitary. Let us now sketch how the structure of the superconformal

algebra, with the generators above, follows from the Jacobi identities. With the exception

of the anticommutator of Poincaré and conformal supercharges, we simply reproduce the

d = 4, N = 1 superconformal algebra, but we think it is worthwhile to show how the

structure emerges in a d-independent language.

Jacobi identities involving D or R imply that both sides of an (anti)commutation

relation must have the same scaling dimension and R-charge, and we always impose these

1The four-dimensional Euclidean superconformal algebra with four Poincaré supercharges does not admit

unitary representations. This is not important for us since we insist on unitarity in Lorentzian signature.

We thank Toine Van Proeyen for emphasizing this point.
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constraints in what follows. Furthermore repeated indices always imply a summation. The

basic building block is the anticommutator of Poincaré supercharges, which takes the form

{Q+
α , Q

−
α̇ } = Σi

αα̇Pi , (2.4)

where Σi
αα̇ is an, as yet, unspecified tensor. Using the conjugation rules (2.2), (2.3) one finds

{Sα̇+, Sα−} = Σ̄α̇α
i Ki , (2.5)

with Σ̄α̇α
i = (Σi

αα̇)
∗. The only generators that can appear in the anticommutator of a

Poincaré and a conformal supercharge are D, R,Mij andMîĵ . Rotation invariance dictates

that D comes multiplied with one of the invariant tensors δαβ , δ
α̇
β̇
. Let us normalize our

supercharges so that
{Sα−, Q+

β } = iδαβD + . . . ,

{Sα̇+, Q−

β̇
} = iδα̇

β̇
D + . . . ,

(2.6)

where the dots stand for the contribution of other generators. The Jacobi identities coming

from the triplets [Q+
α , Q

−
α̇ ,Ki] and [Sα̇+, Sα−, Pi] then determine the following commutators

[Ki, Q
+
α ] = Σi

αα̇S
α̇+ ,

[Ki, Q
−
α̇ ] = Σi

αα̇S
α− ,

[Pi, S
α̇+] = −Σ̄α̇α

i Q+
α ,

[Pi, S
α−] = −Σ̄α̇α

i Q−
α̇ .

(2.7)

We denote the representation matrices of rotations on the supercharges as mij , m̃ij , i.e.

[Mij , Q
+
α ] = (mij)

β
α Q+

β ,

[Mij , Q
−
α̇ ] = (m̃ij)

β̇
α̇Q

−

β̇
,

[Mij , S
α̇+] = −(m̃ij)

α̇
β̇
Sβ̇+ ,

[Mij , S
α−] = −(mij)

α
β Sβ− ,

(2.8)

where the latter two follow from the former two using the conjugation rules in (2.2)

and (2.3). Note that the matrices mij , m̃ij are necessarily antisymmetric in the space-

time indices. The Jacobi identities for the triplets [Pi,Kj , Q
+
α ] and [Pi,Kj , Q

−
α̇ ] imply

ΣjΣ̄i = δij + 2imij ,

Σ̄iΣj = δij + 2im̃ij .
(2.9)

Taking the symmetric parts implies that the Σi tensors satisfy the Clifford algebra

ΣiΣ̄j +ΣjΣ̄i = 2δij ,

Σ̄iΣj + Σ̄jΣi = 2δij ,
(2.10)

while taking the antisymmetric parts leads to explicit formulas for the rotation generators

in terms of Σi

mij = − i

4
(ΣjΣ̄i − ΣiΣ̄j) ,

m̃ij = − i

4
(Σ̄iΣj − Σ̄jΣi) .

(2.11)

– 6 –



J
H
E
P
0
8
(
2
0
1
5
)
1
4
2

Since we would like our algebras to be related by the dimensional reduction, we will

take (2.8), (2.10), and (2.11) to hold also for the hatted indices î, ĵ = d + 1, . . . , 4, thus

defining the action of the extra R-symmetry. It remains to determine the anticommutators

between Poincaré and conformal supercharges, i.e. {Sα−, Q+
β } and {Sα̇+, Q−

β̇
}. It follows

from the [Sα−, Q+
β , Pi], [S

α̇+, Q−

β̇
, Pi] Jacobi identities that Mij appears contracted with

the corresponding tensor mij or m̃ij with unit coefficient. The most general form of the

anticommutators which can be checked, using only (2.10), to be consistent with all Jacobi

identities except for those involving three fermionic generators, is

{Sα−, Q+
β } = δαβ(iD − aR) + (mij)

α
β Mij + b(mîĵ)

α
β Mîĵ ,

{Sα̇+, Q−

β̇
} = δα̇

β̇
(iD + aR) + (m̃ij)

α̇
β̇
Mij + b(m̃îĵ)

α̇
β̇
Mîĵ ,

(2.12)

for some real constants a, b. It remains to check whether the Jacobi identities involv-

ing three fermionic generators are satisfied. The Jacobi identity coming from the triplet

[Q+
α , Q

−
α̇ , S

β−] leads to

Σ̄α̇α
i Σi

ββ̇
=

2a+ 1

2
δαβδ

α̇
β̇
+ (mij)

α
β (m̃ij)

α̇
β̇
+ b(mîĵ)

α
β (m̃îĵ)

α̇
β̇
. (2.13)

The rotation generators are traceless in the spinor indices, so taking the trace of this

equation with respect to both pairs of indices and noting that (2.10) implies

tr(ΣiΣ̄i) = 2d , (2.14)

we find

a =
d− 1

2
. (2.15)

To fix b, we consider the Jacobi identity of the triplet [Q+
α , Q

+
β , S

γ−], which leads to

d− 2

2
δαβδ

γ
δ + (α↔ γ) = (mij)

α
β (mij)

γ
δ + b(mîĵ)

α
β (mîĵ)

γ
δ + (α↔ γ) . (2.16)

There is an analogous identity with dotted indices. Contracting all spinor indices and using

that (2.10) and (2.11) imply

(mij)
α

β (mij)
β

α =
d(d− 1)

2
, (mîĵ)

α
β (mîĵ)

β
α =

(4− d)(3− d)

2
, (2.17)

so we find

3(d− 2) =
d(d− 1)

2
+ b

(4− d)(3− d)

2
, (2.18)

which holds in continuous d for b = −1. The final form of the sought anticommutators

is thus

{Sα−, Q+
β } = δαβ

(

iD − d− 1

2
R

)

+ (mij)
α

β Mij − (mîĵ)
α

β Mîĵ ,

{Sα̇+, Q−

β̇
} = δα̇

β̇

(

iD +
d− 1

2
R

)

+ (m̃ij)
α̇
β̇
Mij − (m̃îĵ)

α̇
β̇
Mîĵ .

(2.19)

We have demonstrated that identities (2.13), (2.16) are satisfied in any d after contracting

the spinor indices. We do not know of a d-independent way to argue for their validity in

– 7 –
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their uncontracted form. However, one can make an explicit choice of the 4d Σ matrices

satisfying (2.10), and check the identities for all dimensions of interest. Indeed, they are

satisfied for any consistent choice of Σ matrices for any d = 0, 1, . . . , 4. This exhausts all

the constraints imposed by Jacobi identities, thus showing that our algebra is consistent

in any d ≤ 4.

2.2 Realizations in integer d ≤ 4

In this section, we illustrate that our interpolation reduces to the expected algebras in

integer number of dimensions. This is of course necessary since they are the unique su-

perconformal algebras with four Poincaré supercharges and a U(1) R-symmetry in the

respective number of spacetime dimensions.

For d = 4, our algebra is manifestly the N = 1 superconformal algebra with com-

plexification sl(4|1), with two pairs of Poincaré supercharges, with opposite R-charge,

transforming in the two inequivalent Weyl representations. The value a = (d− 1)/2 = 3/2

leads to the well-known chirality condition on scalar superconformal primaries, ∆ = 3q/2,

with ∆ the dimension and q the R-charge.

For d = 3, we reproduce the N = 2 superconformal algebra, whose complexification

is osp(2|4). Choosing Σi
αα̇ = (σi)

α̇
α for i = 1, 2, 3, where σi are the usual Pauli matrices,

we find that Q−
α̇ transforms as a complex conjugate of Q+

α , so that a lower (upper) dotted

index is equivalent to an upper (lower) undotted index, and all indices can be raised and

lowered using ǫαβ , ǫαβ . The complete algebra is presented in appendix A.

The relevant superconformal algebra in two dimensions is the global part of the N =

(2, 2) superconformal algebra in the NS-NS sector. The complexified Lie superalgebra

is sl(2|1)l ⊕ sl(2|1)r. Working on the holomorphic (left-moving) side, we have the usual

bosonic generators Ln, n = −1, 0, 1, R-symmetry Ω, and fermionic generators G±
±1/2. They

satisfy the following (anti)commutation relations

[Lm, Ln] = (m− n)Lm+n ,

[Lm, G
±
r ] =

(m

2
− r
)

G±
m+r ,

[Ω, G±
r ] = ±G±

r ,

{G+
r , G

−
s } = 2Lr+s + (r − s)Ω ,

(2.20)

with all other (anti)commutators vanishing. The anti-holomorphic generators, which we

denote with a bar, satisfy exactly the same algebra. Making the traditional choice Σi
αα̇ =

(σi)
α
α̇ for i = 1, 2, 3 and Σ4

αα̇ = iδαα̇, our interpolating algebra from section 2.1 repro-

duces (2.20) after the following identification for the bosonic generators

P1 = −i(L−1 + L̄−1) , P2 = L−1 − L̄−1 ,

K1 = i(L1 + L̄1) , K2 = L1 − L̄1 ,

D = −i(L0 + L̄0) , M12 = −L0 + L̄0 ,

R = Ω+ Ω̄ , M34 =
Ω− Ω̄

2
,

(2.21)
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and the following for the fermionic generators

Q+
1 = G+

−1/2 ,

Q−
1 = Ḡ−

−1/2 ,

S1+ = Ḡ−
1/2 ,

S1− = G−
1/2 ,

Q+
2 = Ḡ+

−1/2 ,

Q−
2 = G−

−1/2 ,

S2+ = G+
1/2 ,

S2− = Ḡ−
1/2 .

(2.22)

Finally consider the case d = 1. In this dimension, the generator R drops out from

equations (2.19), and indeed from the expression for the conformal Casimir as shown in

section 3.1. Hence, it may be safely dropped from the algebra. Since 4 = 1 + 3, the

situation is quite similar to the d = 3 case detailed above and in appendix A. In particular,

the rotation generators in the directions 2, 3, 4 describe an su(2) algebra acting as an R-

symmetry on the supercharges. Analogously to d = 3, we make the choice Σî
αβ̇

= (σî−1)
β̇
α

for î = 2, 3, 4, where σa are the usual Pauli matrices and Σ1
αβ̇

= iδβ̇α. A lower dotted index

has the same transformation under the R-symmetry as an upper undotted index and vice

versa, so that we can write

Qα− ≡ Q−
α̇ , S+

α ≡ Sα̇+ . (2.23)

Spinor indices can be raised and lowered using ǫαβ , ǫαβ . We also define

H ≡ P1 , K ≡ K1 , Rî−1 ≡
1

2
εî−1,ĵ−1,k̂−1Mĵk̂ , (2.24)

and find that the algebra becomes psu(1, 1|2), described by the non-zero commutators:

[H,K] = −2iD , [D,H ] = −iH , [D,K] = iK ,

{Q+
α , Q

β−} = iδ β
α H , [D,Q+

α ] = − i

2
Q+

α , [D,Qα−] = − i

2
Qα− ,

{S+
α , S

β−} = −iδ β
α K , [D,S+

α ] =
i

2
S+
α , [D,Sα−] =

i

2
Sα− ,

{Sα−, Q+
β } = iD δαβ − (σi)

α
βRi, [K,Q+

α ] = iS+
α , [K,Qα−] = iSα− ,

{S+
α , Q

β−} = iD δ β
α − (σi)

β
α Ri, [H,S+

α ] = iQ+
α , [H,Sα−] = iQα− ,

[Ri, Rj ] = iǫijkRk , [Ri, X
+
α ] =

1

2
(σi)

β
αX

+
β , [Ri, X

α−] =
1

2
(σi)

α
β Xβ− ,

(2.25)

where in the last line X stands for either Q or S.

2.3 Unitarity bounds in general d

It will be useful for section 3.4 to work out the unitarity bounds, in general dimension, for

the symmetric traceless representation and the representation in the tensor product of the

symmetric traceless and the spinors. The unitary representations in integer d were found

in [43, 44] but our goal here is to offer a derivation that formally makes sense in general

d. It was noted in [45] that the free scalar CFT in non-integer d contains negative-norm

states. This casts doubt on whether one can have unitary CFTs in fractional dimensions.
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Here, we will be modest and will derive necessary conditions for unitarity in general d, by

focusing on the lowest levels, assuming that superconformal primaries have positive norm.

Suppose |OA〉 is a superconformal primary of dimension ∆, R-charge q, transforming

in a representation R of SO(d) × SO(4 − d). Using a standard argument, [43, 46–48], it

follows from (2.19) that the Q+
α descendants of |OA〉 have non-negative norm when

∆ ≥ d− 1

2
q + aR + ar − min

R′⊂R⊗r
(aR′) , (2.26)

where aR denotes the eigenvalue of representation R under the following Casimir

1

2
MijMij −

1

2
MîĵMîĵ , (2.27)

and r denotes the spinor representation in which Q+
α transforms, with ar its eigenvalue

under (2.27). Similarly, the Q−
α̇ descendants of |OA〉 have non-negative norm whenever

∆ ≥ −d− 1

2
q + aR + ar̄ − min

R′⊂R⊗r̄
(aR′) , (2.28)

where r̄ is the representation in which Q−
α̇ transforms. In Euclidean signature, the bar

operation on SO(d)×SO(4−d) representations corresponds to parity, rather than complex

conjugation, but we will refer to it as conjugation for simplicity. It remains to evaluate

aR on the representations of interest. Suppose R = Ss is the symmetric traceless tensor of

spin s. Since it has no indices in the reduced dimensions, we find just the SO(d) eigenvalue

aSs = s(s+ d− 2) . (2.29)

Consider now the spinor representations r, r̄. It follows from (2.10) that their eigenvalue

under 1
2MijMij is d(d−1)

8 , which matches the expected values 1
4 ,

3
4 ,

3
2 in d = 2, 3, 4, respec-

tively. The spinor indices α, α̇ necessarily transform also under the reduced rotations Mîĵ ,

and indeed, the eigenvalue under 1
2MîĵMîĵ is related to the eigenvalue under 1

2MijMij by

replacing d 7→ 4− d. Hence the eigenvalue under (2.27) is

ar = ar̄ =
d(d− 1)

8
− (4− d)(3− d)

8
=

3(d− 2)

4
. (2.30)

Let us move on to the representation |Oαi1...is〉, symmetric and traceless in the s vector

indices, and satisfying the irreducibility criterion Σ̄α̇α
i1

|Oαi1...is〉 = 0. We denote this repre-

sentation as Ps. The action of the SO(d) Casimir can be evaluated in general d using the

dimensional continuation of the superconformal algebra from the previous sections with

the result
1

2
MjkMjk|Oαi1...is〉 =

[

d(d− 1)

8
+ s(s+ d− 1)

]

|Oαi1...is〉 . (2.31)

This expression reduces to the expected
(

s+ 1
2

)2
in d = 2; j(j + 1), with j = s + 1

2 , in

d = 3; and 2[j1(j1 + 1) + j2(j2 + 1)], with j1 = s+1
2 , j2 = s

2 , in d = 4. We have already

seen that
1

2
Mĵk̂Mĵk̂|Oαi1...is〉 =

(4− d)(3− d)

8
|Oαi1...is〉 , (2.32)
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leading to

aPs = s(s+ d− 1) +
3(d− 2)

4
. (2.33)

The same formula is valid for the conjugate representation |Oα̇i1...is〉.
Finally, we will need the Casimir for the representation |Oαβi1...is〉, symmetric in αβ,

symmetric and traceless in the vector indices, and satisfying Σ̄α̇α
i1

|Oαβi1...is〉 = 0. We

denote this representation by Qs. The superconformal algebra is not sufficient to find the

individual eigenvalues of the SO(d) and SO(4− d) Casimir operators because of the cross-

term occurring when the two rotation generators each act on one spinor index. Fortunately,

the identity in (2.16) is precisely what is needed to evaluate this cross-term in the difference

of the two Casimirs. The final result is

aQs = s(s+ d) + 2(d− 2) . (2.34)

This result is in harmony with the results in d = 3, 4, where the contribution of the SO(4−d)
Casimir must vanish. Indeed, in d = 3, aQs = (s+1)(s+2), corresponding to the j = s+1

representation, and in d = 4, aQs = (s + 2)2, corresponding to the j1 = s
2 + 1, j2 = s

2

representation. Formula (2.34) applies also to the conjugate representation |Oα̇β̇i1...is
〉.

We are now in a position to derive the unitarity bounds at level one for the Ss and

Ps representations. Due to the covariance of the Σ̄ tensor, we have the decompositions

Ss⊗r = P̄s−1⊕Ps+1, Ss⊗ r̄ = Ps−1⊕ P̄s+1, valid for s > 0. The first direct summand has a

smaller value of a, leading to the unitarity bound for the symmetric traceless representation

∆Ss ≥
d− 1

2
|q|+ s+ d− 2 , s > 0 . (2.35)

This formula reduces to the well-known results in integer d. For the special case s = 0,

unitarity at the first level implies only ∆ ≥ d−1
2 |q|. However, this condition is not sufficient

for unitarity, since the level-two state |P〉 = ǫαβQ+
αQ

+
β |OA〉 has norm

〈P|P〉 = 4

(

∆− d− 1

2
q

)(

∆− d− 1

2
q − d+ 2

)

. (2.36)

An analogous result holds for |P̃〉 = ǫα̇β̇Q−
α̇Q

−

β̇
|OA〉, leading to the unitary representations

∆S0 =
d− 1

2
|q| ,

∆S0 ≥ d− 1

2
|q|+ d− 2 .

(2.37)

Consider now the representation Ps. We have Ps ⊗ r = Ss ⊕ Qs, Ps ⊗ r̄ = Qs−1 ⊕ Ss+1,

with the first direct summand having the smaller value of aR′ . Equations (2.26), (2.28)

thus lead to the bound

∆Ps ≥
∣

∣

∣

∣

d− 1

2
(q + 1)− 1

∣

∣

∣

∣

+ s+ d− 3

2
. (2.38)

In d = 3, this reduces to the expected ∆ ≥ |q| + s + 3
2 = |q| + j + 1, with j = s + 1

2 . In

d = 4, it becomes ∆ ≥
∣

∣

3
2q +

1
2

∣

∣+s+ 5
2 =

∣

∣

3
2q + j1 − j2

∣

∣+j1+j2+2, with j1 =
s+1
2 , j2 =

s
2 ,
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in perfect agreement with [43, 44]. The unitarity bound for the conjugate representation

P̄s is obtained simply by flipping the sign of q in (2.38)

∆P̄s
≥
∣

∣

∣

∣

d− 1

2
(q − 1) + 1

∣

∣

∣

∣

+ s+ d− 3

2
. (2.39)

The notions of short and semi-short representations are useful because operators in

these representations often have dimensions protected from quantum corrections. A super-

conformal chiral scalar operator belongs to a short multiplet and obeys the first equation

in (2.37) with q > 0, an anti-chiral operator obeys the same equation with q < 0. For the

symmetric traceless representation of spin s, the semi-short multiplets are those for which

the superconformal primary saturates (2.35), which for s = 0 is the same as saturating the

second equation in (2.37).

Necessary conditions for unitary representations of the nonsupersymmetric conformal

algebra in general dimension are presented in section 6 of [44] (see also [49]) and they are

generally weaker than the ones for the superconformal algebra discussed here. It is also

useful to recall that a free scalar field in d dimensions necessarily has

∆free =
d− 2

2
, (2.40)

and a conserved current of spin s in any CFT obeys

∆cc = s+ d− 2 . (2.41)

3 Superconformal blocks

A standard method for finding conformal and superconformal blocks is by utilizing the

Casimir equation [38, 40]. Having formulated a dimensional continuation of the supercon-

formal algebra with four Poincaré supercharges, we are in a position to find the Casimir

equation and its solution for a large class of superconformal blocks in general d. This is

done in sections 3.1, 3.2. Remarkably, as was already noticed in [40], superconformal blocks

are closely related to non-supersymmetric conformal blocks with shifted scaling dimensions

and we provide an interpretation of this fact in section 3.3. In section 3.4 we deal with

an important case not captured by the Casimir approach, namely that of superconformal

blocks in the chiral channel.

3.1 Superconformal Casimir

In this section, we find the quadratic Casimir of the relevant superconformal algebra in

general dimension. The quadratic Casimir must be a linear combination of the quadratic

Casimir Cb of the bosonic conformal subalgebra so(d + 1, 1), the Casimir of the reduced

rotations, so(4−d), R2, and terms quadratic in the fermionic generators. Invariance under

D, R, Mij , and Mîĵ reduces the possibilities to

C = Cb + c1S
α+Q−

α + c2Q
−
αS

α+ + c3S
α−Q+

α + c4Q
+
αS

α− + c5R
2 + c6MîĵMîĵ , (3.1)
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with ci so far undetermined constants. Note that

Cb = −D2 − 1

2
(PiKi +KiPi) +

1

2
MijMij . (3.2)

The coefficients ci can be determined by requiring [C,Q+
α ] = [C,Q−

α̇ ] = 0. Using (2.19) and

looking at the coefficients of DQ+
α , DQ

−
α̇ , Q

+
αD and Q−

α̇D leads to c1 = c3 = −c2 = −c4 =
1/2. Similarly, the coefficient of RQ+

α determines c5 = −(d− 1)/4. Finally, the coefficient

of MîĵQ
+
α fixes c6 = −1/2, leading to the final result

C = −D2−1

2
(PiKi+KiPi)+

1

2
MijMij−

1

2
MîĵMîĵ−

d− 1

4
R2+

1

2

([

Sα̇+, Q−
α̇

]

+
[

Sα−, Q+
α

])

.

(3.3)

It is instructive to study the contribution of the R-symmetries in d = 2, where, after

using (2.21), one finds

1

2
MîĵMîĵ +

d− 1

4
R2 =

1

4

[

(Ω− Ω̄)2 + (Ω + Ω̄)2
]

=
1

2

(

Ω2 + Ω̄2
)

. (3.4)

The contribution is a sum of a holomorphic and an antiholomorphic part as expected.

The eigenvalue of C when acting on a superconformal family, where the superconformal

primary has dimension ∆, R-charge q, and transforms as a symmetric traceless tensor of

spin s under Mij and as a singlet under Mîĵ , is

λC = ∆(∆− d+ 2) + s(s+ d− 2)− d− 1

4
q2 . (3.5)

To find this, we have used the eigenvalue of the usual conformal Casimir operator Cb when

acting on a conformal primary [38]

λCb
= ∆(∆− d) + s(s+ d− 2) . (3.6)

3.2 Casimir equation and its solution

Here, we derive a formula for the superconformal blocks in theories invariant under the

superconformal algebra in section 2, for the four-point function 〈φ1φ2φ3φ4〉, where φi are
scalar superconformal primaries with dimensions ∆i and R-charges qi. In addition, we

assume that φ1 and φ3 are chiral, i.e. Q+
αφ1,3 = 0, or equivalently

∆1,3 =
d− 1

2
q1,3 . (3.7)

A superconformal block corresponds to the contribution of a single superconformal family

produced in the OPE of φ1 and φ2. It is therefore an eigenfunction of the superconformal

Casimir (3.3) applied to the first two operators. Due to the appearance of supercharges,

the resulting equation will relate the superconformal block of 〈φ1φ2φ3φ4〉 to the one of

〈ψα̇
1ψ

α
2 φ3φ4〉, where ψ1,2 is a supersymmetric descendant of φ1,2. In the limit |x4| → ∞,

we can use a supersymmetric Ward identity to reduce the latter correlator to a differential

operator acting on 〈φ1φ2φ3φ4〉 and thus derive a differential equation for the original super-

conformal block. Consider the action of the fermionic part of the superconformal Casimir
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on the product φ1(x1)φ2(x2). Using the chirality of φ1 and the superconformal algebra,

one can show that

1

2

([

Sα̇+, Q−
α̇

]

+
[

Sα−, Q+
α

])

(φ1(x1)φ2(x2)) |0〉 = (3.8)

=
[

(Sα−φ1(x1))(Q
+
αφ2(x2))− (Q−

α̇φ1(x1))(S
α̇+φ2(x2)) + 2(∆1 +∆2)φ1(x1)φ2(x2)

]

|0〉 ,
where the action of conserved charges on local operators is the usual one via the commu-

tator. From

φ(x) = eix·Pφ(0)e−ix·P , (3.9)

and using (2.7), it follows that

(Sα−φ1(x1)) = ixi1Σ̄
α̇α
i (Q−

α̇φ1(x1)) , (Sα̇+φ2(x2)) = ixi2Σ̄
α̇α
i (Q+

αφ2(x2)) . (3.10)

It remains to relate the correlator
〈

(Q−
α̇φ1(x1))(Q

+
αφ2(x2))φ3(x3)φ4(x4)

〉

, (3.11)

to 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉. Starting from the Ward identity
〈[

Q+
α , (Q

−
α̇φ1(x1))φ2(x2)φ3(x3)φ4(x4)

]〉

= 0 , (3.12)

and using the anticommutator of Poincaré supercharges, (2.4), and the chirality of φ3,

we find
〈

(Q−
α̇φ1(x1))(Q

+
αφ2(x2))φ3(x3)φ4(x4)

〉

+
〈

(Q−
α̇φ1(x1))φ2(x2)φ3(x3)(Q

+
αφ4(x4))

〉

=

= −iΣi
αα̇∂

x1
i 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 .

(3.13)

Conformal invariance ensures that no information is lost if we take the limit x4 → ∞.

The leading behavior of a correlation function containing a primary O(x) of dimension ∆

and arbitrary Lorentz quantum numbers as |x| → ∞ is |x|−2∆. Thus the second term on

the left-hand side of (3.13) is subleading in the limit |x4| → ∞, since Q+
α increases the

dimension of φ4 by 1/2. In the derivation of the differential equation, we can then replace
〈

(Q−
α̇φ1(x1))(Q

+
αφ2(x2))φ3(x3)φ4(x4)

〉

, (3.14)

with

− iΣi
αα̇∂

x1
i 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 , (3.15)

while remembering that we must send |x4| to infinity at the end of the calculation. Com-

bining this with (3.10), and using

tr
(

ΣiΣ̄j

)

= 2δij , (3.16)

which follows from the Clifford algebra, we find the action of the fermionic part of the

superconformal Casimir on the four-point function to be
〈

1

2

([

Sα̇+, Q−
α̇

]

+
[

Sα−, Q+
α

])

(φ1(x1)φ2(x2))φ3(x3)φ4(x4)

〉

∼

∼ 2 (x12 · ∂x1 +∆1 +∆2) 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 ,
(3.17)

where xij ≡ xi−xj , and the ∼ symbol means equality up to terms subleading as |x4| → ∞.
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The contribution of a single superconformal family of the superconformal primary O
to the four-point function takes the form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉|O =
cOφ1φ2

cφ3φ4O

|x12|∆1+∆2 |x34|∆3+∆4

|x24|∆12 |x14|∆34

|x14|∆12 |x13|∆34
G∆12,∆34

∆O,sO
(z, z̄) ,

(3.18)

where G∆12,∆34

∆,s (z, z̄) is the superconformal block and ∆ij ≡ ∆i − ∆j . Here z and z̄ are

related to the usual conformally invariant cross-ratios u, v as

u ≡ x212 x
2
34

x213 x
2
24

= zz̄ , v ≡ x214 x
2
23

x213 x
2
24

= (1− z)(1− z̄) . (3.19)

The operator (3.17) translates into the following action on the superconformal block

2
[

z(1− z)∂ + z̄(1− z̄)∂̄
]

G∆12,∆34

∆,s (z, z̄)−∆34(z + z̄)G∆12,∆34

∆,s (z, z̄) , (3.20)

where ∂ ≡ ∂z and ∂̄ ≡ ∂z̄. The action of the R-symmetry cancels on the two sides of the

superconformal Casimir equation, and using the result for the conformal Casimir [38], the

differential equation for the superconformal block becomes

DG∆12,∆34

∆,s (z, z̄) = [∆(∆− d+ 2) + s(s+ d− 2)]G∆12,∆34

∆,s (z, z̄) , (3.21)

where the differential operator D is given by

D ≡ 2z2(1− z)∂2 + 2z̄2(1− z̄)∂̄ + (∆12 −∆34 − 4)(z2∂ + z̄2∂̄) + 2
(

z∂ + z̄∂̄
)

+

+
1

2
(∆12 − 2)∆34(z + z̄) + 2(d− 2)

zz̄

z − z̄

[

(1− z)∂ − (1− z̄)∂̄
]

.
(3.22)

It turns out that this equation has a simple solution in terms of the ordinary non-

supersymmetric conformal blocks. This has also been pointed out for d = 4 and

φ1 = φ3 = φ̄2 = φ̄4 in [40]. Indeed, the solution with the correct z, z̄ → 0 behavior is

G∆12,∆34

∆,s (u, v) = u−1/2G∆12−1,∆34−1
∆+1,s (u, v) , (3.23)

where G∆12,∆34

∆,s (u, v) is the non-supersymmetric conformal block and we switched to the

usual cross-ratios u, v. We comment on the relationship between conformal and super-

conformal blocks in the next section. It is also possible to decompose the superconformal

block into conformal blocks using a relation found in [50]. Using the convention where the

u→ 0, v → 1 behavior of the conformal blocks is

G∆12,∆34

∆,s (u, v) ∼ (−1)s

2s
u

∆−s
2 (1− v)s , (3.24)

the decomposition reads

G∆12,∆34

∆,s = G∆12,∆34

∆,s + a1G
∆12,∆34

∆+1,s+1 + a2G
∆12,∆34

∆+1,s−1 + a3G
∆12,∆34

∆+2,s , (3.25)
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where

a1 ≡ −(∆+∆12+s)(∆+∆34+s)

2(∆+s)(∆+s+1)
,

a2 ≡ −s(s+d− 3)(∆+∆12−s−d+2)(∆+∆34−s−d+2)

2(2s+d−4)(2s+d−2)(∆−s−d+2)(∆−s−d+3)
, (3.26)

a3 ≡
∆(∆−d+3)(∆+∆12+s)(∆+∆34+s)(∆+∆12−s−d+2)(∆+∆34−s−d+2)

4(2∆−d+4)(2∆−d+2)(∆+s)(∆+s+1)(∆−s−d+2)(∆−s−d+3)
.

It follows that whenever a superconformal family contributes to a given four-point func-

tion, as in (3.18), it is through the superconformal primary, O, and three other conformal

primaries (and all their conformal descendants). The three conformal primaries are super-

symmetric descendants of O, with dimensions and spins that can be read off from (3.25).

A few comments are in order. Notice that for ∆12 = ∆34 = 0 the coefficients do not

have poles for dimension and spin consistent with the unitarity bounds, and furthermore

their sign is consistent with unitarity. For ∆12 and ∆34 different from zero, there can be

poles, for ∆, s saturating the unitarity bound, but this is expected since the leading block

itself diverges. This is related to the fact that conserved currents can only couple to scalars

with identical dimensions.

It is useful to pause for a moment and compare our solution for G∆12,∆34

∆,s (u, v) to previ-

ous results in integer dimensions. For the special case of the d = 4, N = 1 superconformal

blocks studied in [13, 40], our solution is in agreement with their result since conformal

blocks are invariant under ∆12 ↔ −∆34. For d = 2, the explicit form of the solution is (up

to an overall constant)

G∆12,∆34

∆,s (z, z̄) = j∆+s
2

(z)j∆−s
2

(z̄) + z ↔ z̄ , (3.27)

where

jh(z) ≡ zh2F1

(

h− ∆12

2
+ 1, h+

∆34

2
; 2h+ 1; z

)

. (3.28)

This also agrees with the result found in [40], up to the transformation z ↔ z/(z − 1), or

equivalently x1 ↔ x2, and after taking into account the following identity

zh2F1(h+ 1, h, 2h+ 1; z) =

(

z

1− z

)h

2F1

(

h, h, 2h+ 1;
z

z − 1

)

. (3.29)

As a cross-check on the Casimir approach, appendix A contains a derivation of the coeffi-

cients in (3.26) for d = 3, using the constraints of superconformal symmetry and chirality

of φ1,3 on the OPE. It is conceivable that this type of OPE derivation of the superconformal

blocks can be carried out in general d using the superconformal algebra of section 2.

Finally, we would like to point out some curious relations between the coefficients

in (3.26). For d = 2 and d = 4 one has a3 = a1a2. This identity is not true in general

dimension. However, if one considers ai as a formal function ai(∆, s, d,∆12,∆34) one finds

a3(∆, s, d,∆12,∆34) = a1(∆, s, d,∆12,∆34)a2(−s,−∆, d,∆12,∆34) . (3.30)
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3.3 The relationship between conformal and superconformal blocks

The relation in (3.23) between superconformal and ordinary conformal blocks can be given

a simple interpretation. Consider the contribution of the superconformal family of the

superconformal primary O to the correlator 〈φ1φ2φ3φ4〉 as in (3.18). It can be rewritten,

via (3.23), as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉|O = (3.31)

= |x24|2
cOφ1φ2

cφ3φ4O

|x12|∆1+∆2+1|x34|∆3+∆4+1

( |x24|
|x14|

)∆12−1( |x14|
|x13|

)∆34−1

G∆12−1,∆34−1
∆O+1,sO

(u, v) .

Up to the |x24|2 prefactor, this has the form of the contribution of the conformal family of

a conformal primary Õ to the four-point function of some new fields φ̃i

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉|O = |x24|2〈φ̃1(x1)φ̃2(x2)φ̃3(x3)φ̃4(x4)〉|Õ , (3.32)

where the quantum numbers of operators with a tilde are related to the original ones as

∆φ̃1
= ∆φ1 ,

∆φ̃2
= ∆φ2 + 1 ,

∆φ̃3
= ∆φ3 ,

∆φ̃4
= ∆φ4 + 1 ,

∆Õ = ∆O + 1 , sÕ = sO .

(3.33)

Hence, the terms in the superconformal block expansion of 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 are
in one-to-one correspondence with the terms of the conformal block expansion of

〈φ̃1(x1)φ̃2(x2)φ̃3(x3)φ̃4(x4)〉 =
1

|x24|2
〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 . (3.34)

Moreover, since the only difference between the four-point functions 〈φ1φ2φ3φ4〉 and

〈φ̃1φ̃2φ̃3φ̃4〉 is the factor |x24|2, we can mimic their relationship by writing

φ̃1,3 = φ1,3 ,

φ̃2,4 = σφ2,4 ,
(3.35)

where σ is a real scalar conformal primary field of scaling dimension ∆σ = 1 not interacting

with any of the φi. Therefore, there is no regularization needed in defining the composite

operators σφ2,4, and the correlation function factorizes as

〈φ1(x1)(σφ2)(x2)φ3(x3)(σφ4)(x4)〉 = 〈σ(x2)σ(x4)〉〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 . (3.36)

It may sound surprising that the conformal block expansion of 〈φ1(σφ2)φ3(σφ4)〉 is the

same as the superconformal block expansion of 〈φ1φ2φ3φ4〉. Each superconformal primary

O(0) in the φ1×φ2 OPE gives rise to four conformal primaries O(j), j = 0, . . . , 3, and each of

these gives rise to infinitely many conformal primaries in the φ1×σφ2 OPE, of the schematic
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form σ∂nO(j), n = 0, 1, . . .. For the proposed relationship between the two expansions to

hold, there must occur numerous cancellations among the various conformal primaries,

leaving only the contribution of the lowest one σO(0). Indeed, denoting the conformal

descendant of O(0) with dimension ∆O +1 and spin sO +1 as O(1), the contribution of the

conformal primary σO(1) is cancelled by the contribution of σ
↔

∂O(0), which has the same

dimension and spin. Remarkably, this cancellation continues to hold for all the higher-lying

conformal primaries, leaving only σO(0).

It will be curious to study whether the relation in (3.32) between correlation functions

in a superconformal field theory and those in a non-supersymmetric conformal field theory

can ever be realized for some theories of physical interest.

3.4 Spectrum in a chiral OPE

When considering conformal bootstrap for the correlator 〈φ1φ2φ3φ4〉 with φ1,3 chiral pri-

maries and φ2,4 superconformal primaries, there is another possibility for an OPE expan-

sion, namely fusing φ1 and φ3. Chirality implies that all conformal primaries appearing

in this OPE must be annihilated by Q+
α and it is the goal of this section to derive which

components of superconformal multiplets have this property.

Suppose that P is a conformal primary of dimension ∆P and R-charge qP in the

symmetric traceless representation of spin s, satisfying [Q+
α ,P] = 0. Further, assume

that P is a supersymmetric descendant of the superconformal primary O, where O has

dimension ∆ and R-charge q. The SO(d)×SO(4−d) representation R in whichO transforms

depends on the precise way P is obtained from O through the action of supercharges.

The relationship between O and P is constrained by observing that the superconformal

Casimir (3.3) must have the same eigenvalue on O and P. Since P is annihilated by both

Ki and Q+
α , it is also annihilated by their anticommutator Sα̇+. One can then use the

superconformal algebra to evaluate the action of C on P purely in terms of its quantum

numbers, with the resulting eigenvalue

λ1 = ∆P(∆P − d) + s(s+ d− 2)− d− 1

4
q2P + (d− 1)qP , (3.37)

where the last term arises from the fermionic generators. Similarly, one can evaluate the

eigenvalue of C on O using the fact that it is a superconformal primary, the result being

λ2 = ∆(∆− d+ 2) + aR − d− 1

4
q2 , (3.38)

where aR is the SO(d) × SO(4 − d) Casimir familiar from section 2.3. Moreover, for

each conformal primary in the superconformal multiplet, there are relations of the form

∆P = ∆ + m
2 , m = 0, . . . , 4, qP = q + n, n = −2, . . . , 2, and we can proceed case by case

and determine whether λ1 = λ2 is consistent. We label each case by (qP , R) and use the

notation of section 2.3 for the SO(d)× SO(4− d) representations.

• At level zero, we have the single case (qP = q,R = Ss), and λ1 = λ2 implies

∆ =
d− 1

2
q , (3.39)
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which corresponds to a unitary representation only if s = 0, i.e. P must be a chiral

primary. In other words, the chiral superconformal primaries must have s = 0.

• There are four cases to consider at level one: (q+1, P̄s−1), (q+1, Ps), (q−1, Ps−1), (q−
1, P̄s), corresponding to Pi1...is = Σ̄α̇α

i1
Q+

αOα̇i2...is , Pi1...is = ǫαβQ+
αOβi1...is , Pi1...is =

Σ̄α̇α
i1
Q−

α̇Oαi2...is , Pi1...is = ǫα̇β̇Q−
α̇Oβ̇i1...is

respectively, where in the first and third case

we also need to symmetrize with respect to the extra vector index. For the first case,

λ1 = λ2 implies

∆ =
d− 1

2
q + s− 1 +

d

2
, (3.40)

which is precisely the unitarity bound (2.39) for P̄s−1. The first case is therefore

allowed only if the superconformal multiplet of O contains the non-trivial null states

Q+
αP. We call a null state trivial if it can be seen to vanish without resorting to the

computation of its norm. For example, Q+
1 Q

+
1 O is a trivial null state. The shortening

condition (3.40) translates into

∆P =
d− 1

2
qP + s , s > 0 , (3.41)

and thus can be thought of as a natural extension of (3.39) to s > 0. The remaining

three cases all lead to non-trivial linear relations between ∆, q and s, but none of these

relations corresponds to the appearance of a non-trivial null-state. Therefore, they

all lead to a contradiction since we know that Q+
αP must be non-trivial null states,

since if they were trivial null-states, the condition λ1 = λ2 would itself be trivial.

• We simply state the results for level two. The only case not leading to the type

of contradiction we saw for the three disallowed cases at level one is (q + 2, Ss),

i.e. Pi1...is = ǫαβQ+
αQ

+
βOi1...is , which can be easily seen to always satisfy Q+

αP = 0

without the need for a shortening condition on O. There are then two allowed types of

unitary representations. Either O is antichiral, i.e. s = 0 and ∆ = −d−1
2 q, leading to

∆P = −d− 1

2
qP + d , (3.42)

or O is generic, satisfying (2.35) (including s = 0), which leads to

∆P ≥
∣

∣

∣

∣

d− 1

2
qP − d+ 1

∣

∣

∣

∣

+ s+ d− 1 . (3.43)

We must also remember that for s = 0, the superconformal primary must satisfy the

unitarity bound ∆ ≥ d−2
2 .

• Of the four cases at level three, the condition λ1 = λ2 does not lead to an immediate

contradiction only for (q+1, P̄s−1). Similarly to what happenes at level one, λ1 = λ2
in this case implies a consistent shortening condition. The novelty here is that this

shortening also kills the state P, and thus there are no consistent possibilities at

level three.
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• There is only one conformal primary at level four, but λ1 = λ2 does not lead to a

consistent shortening condition on O, so the primary at level four can not appear in

the chiral OPE.

Essentially identical results were derived in [26, 51] for d = 4, N = 1 in the context

of the OPE of a chiral operator Φ with itself. The new feature of the generalization to

d < 4 is the appearance of the level-two descendant of an antichiral primary (3.42). From

R-charge conservation we have d−1
2 qP = 2∆Φ which, combined with the unitarity bound

∆ ≥ d−2
2 for the operator O, implies that the antichiral case can only be included if

∆Φ ≤ d

4
. (3.44)

Thus in d = 4, the antichiral case can only appear when Φ is the scalar component of a

free chiral superfield, where we know it does not appear since there is no coupling between

Φ and any other fields. However, in d < 4, there is a finite window for ∆Φ where the

level-two descendant of an antichiral primary can make a contribution, and we will see it

plays a crucial role in the Wess-Zumino model, since its appearance corresponds to the

Yukawa coupling.

It follows from the above discussion that only one kind of allowed conformal primary

P from the same superconformal multiplet can appear in the φ1 × φ3 OPE, and therefore

the superconformal blocks coincide with the usual conformal blocks. Supersymmetry plays

a role in this channel only through constraints on the spectrum of conformal primaries that

can appear in the OPE.

4 Intermezzo: review of the Wess-Zumino model

In this section, we remind the reader of some basic facts about the massless Wess-Zumino

model in d ≤ 4 [52]. A nice review on the subject can be found in [53]. The model consists

of the theory of a single chiral superfield Υ with cubic superpotential W (Υ) = 1
3λΥ

3.

Equivalently, this is a theory of a complex boson and fermion with the Lagrangian

LWZ = ∂µφ̄∂
µφ+ iψ̄γµ∂µψ + |λ|2|φ|4 + (λφψαǫ

αβψβ + c.c.) . (4.1)

The classical dimension of the coupling λ is ǫ
2 , with ǫ ≡ 4 − d, and it is convenient to

define the dimensionless coupling λ̃ = µ−ǫ/2λ, where µ is the renormalization scale. Super-

symmetry implies that the superpotential is not renormalized. Therefore the β-function

of λ̃ is determined by the anomalous dimension of the chiral field Φ, which is the lowest

component of the superfield Υ

βλ̃ = λ̃
[

− ǫ
2
+ 3γΦ(λ̃)

]

, (4.2)

where γΦ = −1
2
d logZ
d log µ and the factor of 3 comes from the fact that W (Υ) is cubic. Since

we know from perturbation theory and unitarity that γΦ(λ̃) > 0 for λ̃ ≪ 1, we expect

that for sufficiently small ǫ, the theory has an interacting IR fixed point with unbroken
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supersymmetry at a coupling λ̃∗ > 0. This CFT is what we refer to as the critical WZ model

(cWZ). The exact relation (4.2) implies that at the fixed point the anomalous dimension is

γΦ(λ̃
∗) =

4− d

6
, (4.3)

and hence

∆Φ =
d− 2

2
+ γΦ(λ̃

∗) =
d− 1

3
. (4.4)

This formula can also be deduced from the exact superconformal relationship between

scaling dimension and R-charge of a chiral field ∆ = d−1
2 q, since the R-charge of the

superpotential is qW = 2 and thus qΦ = 2/3.

An equivalent way to state the result in (4.4) is that the ǫ-expansion of the critical

exponent η ≡ 2∆Φ − (d− 2) is exact at the leading order

η = 2γΦ(ỹ
∗) =

ǫ

3
. (4.5)

The critical exponent ν, characterizing the divergence of the correlation length as the

temperature approaches the critical temperature, is related to the scaling dimension of the

lowest uncharged scalar, [Φ̄Φ], as follows

ν−1 = d−∆[Φ̄Φ] . (4.6)

It is not protected by supersymmetry and has been computed at one loop in the ǫ-

expansion [32, 33]

ν =
1

2
+
ǫ

4
+O(ǫ2) , (4.7)

leading to

∆[Φ̄Φ] = 2 +O(ǫ2) . (4.8)

The critical exponent ω, characterizing the approach to scaling, is related to the scaling

dimension of the lowest irrelevant scalar operator, O, as

ω = ∆O − d . (4.9)

It is reasonable to expect that O is the supersymmetric descendant of [Φ̄Φ] obtained by

acting on [Φ̄Φ] with four Q supercharges. This leads to ∆O = ∆[Φ̄Φ] + 2, implying the

exact relation

ω = 2− ν−1 . (4.10)

Finally, let us note that the equation of motion for Υ can be written in superspace lan-

guage as

DαD
αῩ = ∂ΥW (Υ) , (4.11)

where Dα is the superspace derivative corresponding to the action of the supercharge Q+
α

that annihilates the chiral superfield Υ. This implies that the chiral ring of the fixed-point

theory has the relation

Φ2 = 0 . (4.12)
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In the language of the CFT data, this means that the OPE Φ×Φ does not contain a chiral

primary. From the results of section 3.4 we can conclude that all operators that appear in

the OPE are then exact under Q+
α .

There is another piece of data available about the cWZ model in d = 3 that we will

seek to match with the bootstrap results, namely the coefficient of the two-point function of

the stress tensor, denoted by CT . In SCFTs with four supercharges, the two-point function

of the stress tensor is proportional to the two-point function of the R-current τRR. In [54],

it was shown how τRR can be computed for d = 3, N = 2 SCFTs from the squashed-sphere

partition function F (b)

τRR =
2

π2
Re

∂2F (b)

∂b2

∣

∣

∣

∣

b=1

, (4.13)

where b is the squashing parameter, b = 1 corresponding to the round sphere. A formula

for the squashed-sphere partition function of d = 3, N = 2 theories was found using

localization in [55]. Denoting by τ
(free)
RR the two-point function of the R-current in the

theory of a single free chiral multiplet, it was found in [31] that2

CT

C
(free)
T

=
τRR

τ
(free)
RR

≃ 0.7268 . (4.14)

We will comment further on this ratio in section 6.

5 Bootstrap setup

In this section, we review the derivation of a set of crossing symmetry equations which we

later solve numerically. The results of the previous sections suggest that the structure of

these “bootstrap equations” should be very similar to those that were studied in the case

of d = 4, N = 1 SCFTs in [14, 26, 51, 56], and indeed this is what we find.

We are interested in the crossing symmetry constraints for the four-point function

〈ΦΦ̄ΦΦ̄〉, where Φ is a chiral operator with dimension ∆Φ and Φ̄ is its charge conjugate. The

chirality condition imposes that the R-charge is given by qΦ = 2
d−1 ∆Φ = 2

d−1∆Φ̄ = −qΦ̄.
Conformal symmetry fixes the four point function to take the form

〈Φ(x1)Φ̄(x2)Φ(x3)Φ̄(x4)〉 ≡
g(u, v)

|x12|2∆Φ |x34|2∆Φ
, (5.1)

where the cross-ratios u, v are defined in (3.19). Let us ignore supersymmetry for the

moment but still insist on the presence of a U(1) global symmestry under which Φ and Φ̄

have opposite charges. The OPE leads to a decomposition of g(u, v) in terms of conformal

blocks G∆,s(u, v). For instance, in the (12) channel we take x1 → x2, and get

g(u, v) =
∑

O

(−1)s|cOΦΦ̄|2G∆,s(u, v) . (5.2)

2We are grateful to Simone Giombi, Igor Klebanov, and Silviu Pufu for bringing this result to our

attention.
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Recall that we are using the normalization (3.24). Equality of the OPEs in the three

channels leads to the constraints

v∆Φ
∑

O

(−1)s|cOΦΦ̄|2G∆,s(u, v) = u∆Φ
∑

O

(−1)s|cOΦΦ̄|2G∆,s(v, u) , (12) = (14) , (5.3)

v∆Φ
∑

O

|cOΦΦ̄|2G∆,s(u, v) = u∆Φ
∑

P

|cPΦΦ|2G∆,s(v, u) , (12) = (13) , (5.4)

where O, P are conformal primaries appearing in the Φ× Φ̄, and Φ×Φ OPE, respectively.

Symmetrizing and antisymmetrizing equation (5.4) with respect to u ↔ v allows us to

write the equations in (5.3), (5.4) as the system

∑

O+

|cO+

ΦΦ̄ |2






F∆Φ
∆,s

F∆Φ
∆,s

H∆Φ
∆,s






+
∑

O−

|cO−

ΦΦ̄ |2






F∆Φ
∆,s

−F∆Φ
∆,s

−H∆Φ
∆,s






+
∑

P

|cPΦΦ|2






0

F∆Φ
∆,s

−H∆Φ
∆,s






= 0 . (5.5)

The first/second sum in (5.5) runs over uncharged conformal primaries with even/odd spin

respectively. The third term in (5.5) is a sum over conformal primaries of charge 2qΦ and

contains even spins only. The functions F,H in (5.5) are defined as

F∆Φ
∆,s ≡ (−1)s

[

v∆ΦG∆,s(u, v)− u∆ΦG∆,s(v, u)
]

,

H∆Φ
∆,s ≡ (−1)s

[

v∆ΦG∆,s(u, v) + u∆ΦG∆,s(v, u)
]

. (5.6)

Including the effects of supersymmetry simply means replacing conformal blocks by the

superconformal blocks appropriate for each channel, and taking into account superconfor-

mal unitarity bounds. As we showed in section 3, the superconformal blocks in the ΦΦ̄

channel are linear combinations of four non-supersymmetric conformal blocks, while in the

ΦΦ channel, at most one conformal primary from a superconformal multiplet can appear,

meaning that superconformal blocks are equal to non-supersymmetric conformal blocks.

Equations (3.25), (3.26) with ∆12 = ∆34 = 0, lead us to define

F∆Φ
∆,s ≡ F∆Φ

∆,s + c1F
∆Φ
∆+1,s+1 + c2F

∆Φ
∆+1,s−1 + c3F

∆Φ
∆+2,s ,

F̃∆Φ
∆,s ≡ (−1)s

(

F∆Φ
∆,s − c1F

∆Φ
∆+1,s+1 − c2F

∆Φ
∆+1,s−1 + c3F

∆Φ
∆+2,s

)

,

H̃∆Φ
∆,s ≡ (−1)s

(

H∆Φ
∆,s − c1H

∆Φ
∆+1,s+1 − c2H

∆Φ
∆+1,s−1 + c3H

∆Φ
∆+2,s

)

,

(5.7)

where

c1 ≡ −a1|∆12=∆34=0 , c2 ≡ −a2|∆12=∆34=0 , c3 ≡ a3|∆12=∆34=0 , (5.8)

and the ai were defined in (3.26). The supersymmetric version of equation (5.5) then reads

∑

O+

|cO+

ΦΦ̄ |2






F∆Φ
∆,s

F̃∆Φ
∆,s

H̃∆Φ
∆,s






+
∑

O−

|cO−

ΦΦ̄ |2






F∆Φ
∆,s

F̃∆Φ
∆,s

H̃∆Φ
∆,s






+
∑

P

|cPΦΦ|2






0

F∆Φ
∆,s

−H∆Φ
∆,s






= 0 , (5.9)

The first two sums run over superconformal primaries of vanishing R-charge and even/odd

spin respectively, while the third sum runs over conformal primaries of R-charge qP =
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2qΦ = 4
d−1∆Φ. All terms in the sums are constrained by superconformal unitarity bounds,

and the third sum also by [Q+
α ,P] = 0, as analyzed in section 3.4. We can summarize the

constraints on the spectrum as follows

O+ : ∆ = 0 , ∆ ≥ s+ d− 2 , s = 0, 2, 4, . . . , (5.10a)

O− : ∆ ≥ s+ d− 2 , s = 1, 3, 5, . . . , (5.10b)

P :











∆ = 2∆Φ + s ,

∆ = d− 2∆Φ ,

∆ ≥ |2∆Φ − (d− 1)|+ s+ (d− 1) ,

s = 0, 2, . . . ,

s = 0, ∆Φ ≤ d/4 ,

s = 0, 2, . . . .

(5.10c)

Equations (5.9), together with the spectrum specifications (5.10), constitute a linear

program for the various OPE coefficients squared. Solving this kind of problem is the

basis of the numerical (conformal) bootstrap program, and the procedure has by now been

described extensively in the literature. Here, we shall provide a very brief description of

how such a problem can be solved, and refer the reader to [10, 57] for further details.

The first step is to reduce the continuously infinite functional equations to some finite

set of constraints. The usual bootstrap procedure is to Taylor expand to some given order in

the two cross-ratios u and v (or an alternative coordinate system). The number of derivative

components is most conveniently labeled by a parameter nmax, in terms of which the total

number of constraints is 1
2(nmax + 1)(nmax + 2). Standard algorithms, such as Dantzig’s

simplex method, can then be used to try to obtain a set of OPE coefficients which solve

the equations. This may or may not be possible, depending on the set of operators that we

allow in the crossing equations. In particular, to derive bounds, one imposes constraints

on the sets of operators allowed in the sum rule (5.9) until a solution can no longer be

found. Typically, this constraint is a gap in the set of uncharged scalar operators, so that if

a solution cannot be found for a given nmax, then it is ruled out definitively. Increasing the

parameter nmax can then only lead to tighter bounds. In this work, our calculations were

done using a modification of a Python-based arbitrary precision3 simplex method solver

for semi-infinite linear programs [10]. The package [57] was also used as a cross-check on

some results.

6 Bootstrap results

Having developed the technology to analyze crossing symmetry for SCFTs with four

Poincaré supercharges in various dimensions, we now apply it to study and constrain the

space of allowed theories. Theories with only four Poincaré supercharges do not exist in

d > 4 and, while the status of SCFTs (and CFTs) in d < 2 is certainly an interesting

question, for this study, we choose to restrict ourselves to 2 ≤ d ≤ 4.

Since we made no use of parity invariance in our derivation of superconformal blocks

and crossing relations, our bounds also apply to unitary theories which do not preserve

parity, such as N = 2 superconformal Chern-Simons-matter theories in d = 3.

3In the implementation used in this paper arbitrary-precision arithmetic was used only for matrix inver-

sion as lower precision generation of conformal blocks proved sufficient at the values of nmax presented here.
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Figure 1. Upper bound on the lowest-dimension neutral scalar operator, [ΦΦ̄], appearing in the

Φ × Φ̄ OPE. The dashed vertical lines correspond to ∆Φ = d−1
3 , the protected dimension of Φ in

the cWZ model in dimension d. The value of d associated to a line is indicated by its color, which

matches the corresponding bound plot.

Unless otherwise specified, all the plots shown in this section were made using nmax = 6

which gives 84 constraints (28 terms in the Taylor expansion of the three-vector identity

in (5.9)).

6.1 Scalar operator bounds

We begin our numerical exploration by determining bounds on the scaling dimension of

the first scalar operator in the Φ × Φ̄ OPE as a function of ∆Φ. This corresponds to the

lowest dimension scalar in the O+ channel in equation (5.9). Throughout this section, we

will refer to this operator schematically as [ΦΦ̄], following the weak-coupling intuition of

it being the composite operator of Φ and Φ̄. Bounds in various dimensions, d = 2, . . . , 4,

are shown in figures 1 and 2 for a range of conformal dimensions ∆0 ≤ ∆Φ ≤ ∆0+
1
2 (with

∆0 =
d−2
2 the conformal dimension of a free scalar in dimension d).

Figures 1 and 2 exhibit a variety of interesting features.

1. A clear kink at ∆Φ = d−1
3 where we conjecture that the bound is saturated by the

d-dimensional critical Wess-Zumino model with a cubic superpotential.

2. A second kink located at ∆Φ = d
4 that is very sharp for 3 ≤ d ≤ 4, but seems to

soften, and may no longer exist, for d < 3.

3. A third kink at some value of ∆Φ >
d
4 . In d = 3 the value is ∆Φ ≈ 0.86. In d = 4 this

feature appears at ∆Φ ≈ 1.38 and is likely the same feature first observed in [26].
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Figure 2. A close-up of the bounds in figure 1. Note that the first kink in every dimension

corresponds to ∆Φ = d−1
3 (the locations of the vertical lines).

The location of the second feature described above, ∆Φ = d
4 , coincides with a kinematically

special point. This is the value of ∆Φ where the scalar operator P in the Φ × Φ OPE

with dimension d− 2∆Φ is a superdescendant of a superconformal primary which hits the

unitarity bound (see (5.10) and the discussion around (3.44)). The third kink, however,

does not seem to correspond to any kinematically special point. We will discuss these two

features in more detail in section 6.5.

6.2 OPE and central charge

In addition to placing bounds on operator dimensions, the numerical bootstrap allows us

to extract the spectrum and OPE coefficients associated with the “extremal” solution that

saturates these bounds [11]. In particular, we can use this procedure to deduce |cΦΦ̄T |2, the
squared OPE coefficient of the stress-tensor in the Φ×Φ̄ OPE, from which we can compute

CT (the canonical normalization of the stress-tensor two-point function) associated with

the solutions lying along the bounding curves in figure 1. In two dimensions, CT reduces to

2 c, where c is the central charge of the left/right Virasoro algebra. In general dimension,

CT is not always related to a conformal anomaly, but we still refer to it as the central

charge. In terms of the OPE coefficient in our normalization, equation (3.24), the central

charge4 is

CT =
∆2

Φ

|cΦΦ̄T |2
(

d

d− 1

)2

. (6.1)

In theories with four Poincaré supercharges, the stress-tensor is not a superconformal pri-

mary, but rather lies in the supermultiplet of the R-current, so what we actually read

4We follow the normalization of [42], in particular equation (4.2) in that reference.
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Figure 3. The central charge, CT , of the boundary solution, i.e. when ∆[ΦΦ̄] saturates the bounds

given in figure 1. The crosses denote the value of CT for a free chiral multiplet in dimension d. The

dashed vertical lines lie at ∆Φ = d−1
3 , corresponding to the chiral primary field of the cWZ model

in dimension d.

off with our approach is |cΦΦ̄J |2 with J a conserved spin-one superconformal primary (of

dimension ∆J = d− 1). From this, we extract the OPE coefficient of the spin-two descen-

dant using (5.8). Note also that unlike in [29], here we are not maximizing the stress-tensor

(or R-current) OPE coefficient, but rather simply extracting it from a particular solution,

characterized by having a maximal allowed dimension of [ΦΦ̄].

In the normalization given above, a free boson has C
(b)
T = d

d−1 while a free Dirac

fermion has C
(f)
T = d, so for a free chiral multiplet we have

C
(free)
T = 2C

(b)
T + C

(f)
T =

d(d+ 1)

d− 1
. (6.2)

The values of C
(free)
T for d = 2, . . . , 4 are shown in figures 3 and 4 as large crosses which,

as expected, sit at the limiting value of CT as ∆Φ approaches the unitarity bound in

dimension d.

The CT plots share a lot of the structure of the ∆[ΦΦ̄] plots. We find local minima

(that are global minima within the range of the plot) at ∆Φ = d−1
3 corresponding to the

exact dimension of the chiral field in the d-dimensional cWZ model. Moreover, a sharp

spike appears for 3 ≤ d ≤ 4 at ∆Φ = d
4 . This spike is a local maximum of the CT curve

rather than a minimum. Once more, it is not clear if this last feature persists for d < 3.

There is also a third feature: another local minimum at the value of ∆Φ corresponding to

the third kink in the bounds plot. This also implies a local CT minimum in d = 4 for the

kink at ∆Φ ≈ 1.4, as first observed in [26].
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Figure 4. A close-up of the curves in figure 3. The minimum in every dimension exactly corresponds

to ∆Φ = d−1
3 (the locations of the vertical lines). Note that CT in d = 2 lies precisely at 2,

corresponding to the known value c = c̄ = 1 of the lowest N = 2 minimal model (see section 6.3).

It is important to emphasize that the curves depicted in figures 3 and 4 are not the

result of maximizing the stress-tensor OPE and hence are not, in any strict sense, lower

bounds on CT . However, a preliminary comparison of ∆[ΦΦ̄] maximization and CT min-

imization (analogous to the analysis in [29]) suggests that these two are equivalent, at

least in the region ∆Φ . d−1
3 . A more thorough investigation of this question is left to

future studies.

6.3 Two-dimensional N = 2 minimal models

As there is a great deal known about two-dimensional superconformal minimal models,

we can use them as a benchmark to compare various exactly known quantities with our

numerical estimates. In appendix C, we summarize some of the salient features of these

theories. The N = 2 minimal models are labeled by a positive integer k, which determines

their central charge via

c =
3 k

k + 2
. (6.3)

Superconformal primaries in these models are labeled by two integers n = 0, . . . , k and

m = −n,−n+ 2, . . . , n with (holomorphic) dimension h and R-charge Ω

hn,m =
n (n+ 2)−m2

4 (k + 2)
, Ω =

m

(k + 2)
. (6.4)

The chiral (antichiral) primaries have m = ±n, respectively. In principle, one can apply

the superconformal bootstrap to two-dimensional conformal theories with generic spectrum
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and only (0, 2) supersymmetry. However, in our analysis, we have restricted to theories

with (2, 2) supersymmetry and a diagonal spectrum. Our conventions imply that CT = 2c.

The model with k = 1 has CT = 2 and two super-Virasoro primary operators of

dimension ∆1,±1 = 1
3 and R-charge q = ±2

3 (and of course the identity ∆0,0 = 0). The

Φ1,1 ×Φ1,−1 OPE contains only the super-Virasoro family of the identity, so that the first

primary of the global superconformal algebra appearing after the identity is Ω−1Ω̄−1|0〉,
which has ∆ = 2. Indeed, this operator must appear in the OPE of any chiral primary

and its conjugate in any local two-dimensional N = 2 SCFT. This immediately allows us

to determine that all hypothetical CFTs saturating our bounds for ∆Φ ' 1/3 cannot be

local theories. It is possible that adding more constraints (i.e. derivatives in the crossing

symmetry relations) will bring the bound down, but we know that at best, it can asymptote

to the line ∆[ΦΦ̄] = 2∆Φ, corresponding to a supersymmetric version of mean field theory

(also known as generalized free field theory). Note that the latter indeed does not have

a local stress tensor and hence does not benefit from the standard enhancement to the

infinite conformal symmetry in d = 2.

In figure 5, we focus our attention on the d = 2 bound and superimpose the dimensions

of known minimal model operators. At ∆Φ = 1
3 , we find that the bound is very close to

2, suggesting that the k = 1 minimal model saturates our bound. This observation is

further confirmed in the left panel of figure 6, where we show that CT ≈ 2 at this point

as expected. As a further check we plot, in the right panel of figure 6, the absolute value5

of the OPE coefficient |cΦΦ̄ [ΦΦ̄]|. There is clearly a cusp at ∆Φ = 1
3 , |cΦΦ̄ [ΦΦ̄]| ≈ 1

3 , which

is indeed the expected value for this OPE coefficient in the k = 1 model (see appendix C

for a derivation). Let us emphasize once more that the OPE coefficients appearing in our

figures are not computed by maximizing any OPE coefficient but rather are extracted from

the solutions saturating the ∆[ΦΦ̄] bound (see [11]).

As mentioned above, ∆Φ = d−1
3 is the expected dimension of the protected operator Φ

of the cWZ model, which can be thought of as a super-symmetric generalization of the Ising

model. The k = 1 model fits naturally into this role, being the simplest super-Virasoro

minimal model. Moreover, it was shown in [58, 59] that precisely the minimal model with

k = 1 arises from an N = 2 Ginzburg-Landau theory with a cubic superpotential, i.e. the

two-dimensional incarnation of the Wess-Zumino model.

To the left of ∆Φ = 1/3, we see that the upper bound on ∆[ΦΦ̄] is very nearly saturated

at points corresponding to Φ = Φ1,1, Φ̄ = Φ1,−1, [ΦΦ̄] = Φ2,0 in the minimal models with

k ≥ 2, which lie at

∆Φ =
1

(k + 2)
, ∆[ΦΦ̄] =

4

(k + 2)
, k ≥ 2 . (6.5)

From the left panel in figure 6 it seems, however, that for ∆Φ < 1/3, the central charges

extracted from the boundary solutions do not precisely match those of the k > 1 minimal

5Since OPE coefficients only appear squared in the crossing symmetry relations we consider, we only

have access to their magnitude, not their sign.
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Figure 5. An extended view of the upper bound on ∆[ΦΦ̄] in d = 2 (with nmax = 9). The blue

crosses mark the exact dimensions of operators from various superconformal minimal models. The

cross at ( 13 , 2) corresponds to the super-Ising model (i.e. the k = 1 super-Virasoro minimal model).

The dashed green like corresponds to ∆[ΦΦ̄] = 2∆Φ, the expected value in mean field theory.

Figure 6. Central charges (left), and the OPE coefficient of [ΦΦ̄] (right), for d = 2, extracted from

the boundary solution in figure 5 . The blue crosses give the expected values of CT for the first few

super minimal-models (k = 1, . . . , 11). The dashed green line, CT = 6∆Φ, is the unitarity bound

discussed in appendix C. Both figures were made with nmax = 9.
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models. This suggests that the latter do not exactly saturate our bound6 at the given

constraint level, a phenomenon which has also been observed for the higher minimal models

in the non-supersymmetric case. It may be that imposing further constraints, i.e. higher

values of nmax, will improve the situation but, as this is not our focus here, we leave this

question for future explorations.

The blue crosses in figure 5 to the right of the super-Ising point (1/3, 2) correspond to

the fusion of Φk,k, i.e. the chiral primary with the highest conformal dimension in the k-th

minimal model, with its conjugate Φk,−k. As noted above, in this case, [ΦΦ̄] = Ω−1Ω̄−1|0〉,
and thus ∆[ΦΦ̄] = 2. Our numerical bound does show a short plateau with ∆[ΦΦ̄] = 2 just

to the right of the super-Ising kink. These boundary solutions are ruled out however in a

full-fledged N = 2 SCFT with super-Virasoro symmetry. This can be seen by the virtue

of the unitarity bound CT ≥ 6∆Φmax (see appendix C), which is shown in the left panel of

figure 6 as the green dashed line. However, it is reassuring that CT corresponding to the

numerical solution of the crossing on the boundary asymptotes to CT = 6∆Φ, and hence

to the correct value in the minimal models.

6.4 Bootstrapping the cWZ model in 2 ≤ d ≤ 4

In this section, we analyse in more detail the numerical bootstrap results at ∆Φ = d−1
3

for 2 ≤ d ≤ 4. As previously noted, this value of ∆Φ is significant as it corresponds to

the protected dimension of a chiral primary operator in the d-dimensional cWZ model.

As the bounds for every 2 ≤ d ≤ 4 in figure 1 have a kink precisely at this value of ∆Φ,

we conjecture that the bounds are saturated by the operator [ΦΦ̄] in the d-dimensional

cWZ theory.

As argued in [45], it is likely that theories in fractional dimension are non-unitary

and may even suffer further pathologies. Nonetheless, they provide a useful interpolation

between theories in integer dimension, allowing us to track critical exponents and other

features as a function of the dimensions. This idea is similar in spirit to the ǫ-expansion.

The literature on the cWZ model is rather sparse and very few critical exponents have

been computed and only to leading order, see [32, 33, 36]. This motivates a companion

paper [37] where we conduct a more detailed numerical study of the phenomenologically

interesting case of d = 3.

As discussed in section 4, the dimension of [ΦΦ̄] in this theory has only been computed

to the first order in the ǫ-expansion

∆[ΦΦ̄] = 2− ǫ+
1

ν
= 2 +O(ǫ2), (6.6)

so we do not have precise estimates to compare with. Our numerical results for the maximal

value of ∆[ΦΦ̄] at ∆Φ = (d− 1)/3 are presented in figure 7. To give a better sense for this

quantity, we plot both the anomalous dimension ∆[ΦΦ̄] − (d − 2) against the anomalous

6The “extremal functional method” advocated in [11] requires a very precise determination of the max-

imal scalar gap in order to yield (generically) a unique solution. Moreover, if this maximal value is suffi-

ciently far from the expected value of ∆[ΦΦ̄] in a particular theory, then the resulting spectrum might be

quite different.
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Figure 7. Predictions for the anomalous dimension of [ΦΦ̄] in the d-dimensional cWZ model. The

ǫ-expansion for this operator dimension is known to linear order and gives ∆[ΦΦ̄] = 2+O(ǫ2) so on

the r.h.s. we show ∆[ΦΦ̄] − 2 as a function of ǫ.

Figure 8. Our prediction for the central charge, CT , of the cWZ model in d dimensions normalized

by the value for a free chiral superfield, Cfree
T

= d(d+1)
d−1 . This data is extracted from the solution

which saturates the bounds given in figure 1 at ∆Φ = d−1
3 . The exact value in d = 3 can be

computed via localization to be ≃ 0.7268 while in this figure (nmax = 6) we find ∼ 0.7260 (see [37]

for a more precise determination).

dimension ∆Φ − d−2
2 , and the difference ∆[ΦΦ̄] − 2 as a function of ǫ. The latter gives an

estimate for the form of the unknown O(ǫ2) corrections in (6.6). We also plot, in figure 8,

the values of CT at ∆Φ = (d − 1)/3, normalized with respect to CT for a free chiral field.

Recall, from figure 4, that these correspond to local minima of CT which we conjecture to

correspond to the d-dimensional cWZ model.

The location of the kink and the fact that it corresponds to the exact result, ∆[ΦΦ̄] = 2,

in d = 2 supports our claim that we are indeed studying the cWZ theory. Moreover,

equation (6.6) is consistent with what we observe in figure 2; namely that ∆[ΦΦ̄] ≈ 2 for

2 ≤ d ≤ 4.

The strongest evidence for our conjecture comes, however, not from a critical exponent,

but from the computation of CT . As discussed in section 4, it is possible to determine this

quantity, in d = 3, by taking derivatives of the squashed-sphere partition function, a

quantity that is exactly computable via localization. This computation yields CT /C
(free)
T ≃

0.7268 while our best numerical estimate (in [37]) gives 0.72652(33), putting the exact value

just within our error bars. As noted in section 6.2, we have checked (in d = 3) that for
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Figure 9. Bound plots for [ΦΦ̄] near d = 4 (left). On closer inspection, the kink in the bound plot

is slightly to the right of ∆Φ = d−1
3 (shown as dashed vertical lines). As explained in the text, we

read off and plot (right) ∆[ΦΦ̄] at the bound both at the local maximum (top curve) and the value

∆Φ = d−1
3 (bottom curve).

∆Φ . 2/3, the value of CT extracted from the OPE coefficients of the solution maximizing

∆[ΦΦ̄] does, indeed, correspond to what one would get using CT -minimization in the sense

of [10] (i.e. it is the minimal value of CT , as a function of ∆Φ, consistent with unitarity

and crossing symmetry under the very mild additional assumption of not having additional

scalars of very low dimension). Since the exact value of CT is close to saturating this lower

bound (which will only increase as we increase nmax) one could conceivably turn this into

a proof that the theory under consideration is necessarily the cWZ model.

Near d = 4, we expect that the ǫ-expansion should yield good numerical estimates so,

as an additional test of our results, we would like to check the vanishing of the O(ǫ) term

in (6.6) by studying our bounds for small ǫ. In figure 9, we show the ∆[ΦΦ̄] bounds, now

computed for d = 3.95 − 3.99 in steps of 0.01. We expect that the low-order ǫ-expansion

should yield reasonable results for these small values of ǫ ∼ 0.01− 0.05. The first thing to

note about the bounds is that we see (at this resolution) that the kink does not exactly

coincide with ∆Φ = d−1
3 but rather is very slightly to the right of that value. Although

we know that the cWZ theory has an operator exactly at ∆Φ = d−1
3 , we also know our

bounds are not optimal (as we are using a relatively small number of Taylor coefficients

corresponding to nmax = 6), and the bound curve will move down as we increase the

number of constraints. In fact, in [37] we show that, for d = 3, the minimum of the CT

curve does indeed correspond much more closely to ∆Φ = d−1
3 , and that as we add more

derivatives, the kink in the ∆[ΦΦ̄] bound moves left towards ∆Φ = d−1
3 and towards the

minimum of the CT plots.

We will nonetheless be conservative here and estimate the value of ∆[ΦΦ̄] using two

different procedures and show that our results are relatively robust. In the first approach,

we simply extract the value of the bound at ∆Φ = d−1
3 . The second approach is to read

off the value of ∆[ΦΦ̄] at the local maximum in the left plot of figure 9. In both cases, we

find a quadratic fit for ∆[ΦΦ̄] − 2 as a function of ǫ and read off the subleading terms in

equation (6.6). The two fits are shown in the right plot in figure 9 with the lower curve

corresponding to the values at ∆Φ = d−1
3 .
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Figure 10. Second kink: the anomalous dimension of ∆[ΦΦ̄] vs that of ∆Φ at ∆Φ = d

4 for 2 ≤ d ≤ 4

(left). The central charge, normalized by that of a free chiral superfield, at ∆Φ = d

4 (right).

The results for the two fits are:

∆[ΦΦ̄] − 2 = −0.283 ǫ2 + 7.76× 10−3ǫ+ 7.17× 10−5 , ∆[ΦΦ̄] at ∆Φ =
d− 1

3
, (6.7)

∆[ΦΦ̄] − 2 = −0.648 ǫ2 + 22.3× 10−3ǫ+ 77.4× 10−5 , ∆[ΦΦ̄] at local max . (6.8)

It is clear that the quadratic coefficient depends on how we choose to extract ∆[ΦΦ̄], meaning

that our bounds have not converged sufficiently. What does seem rather robust however,

is that the constant and linear pieces are orders of magnitude smaller than the quadratic

piece, consistent with the ǫ-expansion prediction in equation (6.6).

6.5 Additional kinks

In every dimension in the range 2 ≤ d ≤ 4, we clearly observe a kink at ∆Φ = d−1
3 which,

as explained above, very likely corresponds to the cWZ model. For 3 ≤ d ≤ 4, there is also

a very clear kink at ∆φ = d
4 , but it stops being sharp below d = 3. Moreover, for 2 ≤ d ≤ 4,

there is yet one more kink at some ∆Φ > d
4 that is an extension of the d = 4 kink first

observed in [26]. In this section, we initiate a very brief exploration of these two structures.

We will refer to them as the second and third kink even though the former may not exist for

d < 3, rendering the name “third kink” somewhat incorrect in those dimensions. Thus by

“third kink”, we will always mean the feature located at ∆Φ >
d
4 . In figure 10, we plot the

dimension bound for ∆[ΦΦ̄] and the central charge extracted from figure 1 at ∆Φ = d
4 . This

kink is distinct from the first and third kink, and from various other crossing symmetry

kinks that have appeared in the literature [10, 29], in two important ways. First, as is

clear from figure 3, it corresponds to a local maximum of the central charge rather than a

minimum. This statement is not entirely accurate as figure 3 is not a central charge bound

plot, in the sense of [10], but rather the central charge corresponding to the saturating

solution, which, a priori, may not minimize the central charge. Second, this kink occurs

at a kinematically special point in terms of the constraints imposed by supersymmetry.

Precisely at ∆Φ = d
4 , the two additional scalar operators allowed in the R-charged channel

at dimensions ∆ = d − 2∆Φ and ∆ = 2∆Φ have equal dimensions, see (5.10). For this

reason, one might suspect that the second kink is a kinematical feature of the boundary
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Figure 11. Third kink: the anomalous dimension of ∆[ΦΦ̄] vs that of ∆Φ for the third kink (left);

the central charge, normalized by that of a free chiral superfield, for the third kink (right).

solution that may not correspond to any physically interesting theory. The fact that this

structure does not continue below d = 3, whereas the coincidence of the two operator

dimensions persists, might, however, suggest otherwise. Motivated by this possibility, in

section 6.5.1, we discuss some initial attempts to guess a physical theory corresponding to

the second kink, and provide some guidance for others who would try their hand at this

task. The third kink is much more “traditional”, since it locally minimizes CT and also

appears at values of ∆Φ which do not enjoy any known significance. As mentioned before,

these kinks seem to be a continuation of the one first observed at d = 4 in [26]. The third

kink merges with the first in d = 2, and thus becomes the N = 2 minimal model with k = 1.

In figure 11, we display the anomalous dimension of ∆[ΦΦ̄] as a function of the anomalous

dimension of ∆Φ, as well as the ratio CT /C
free
T as a function of d, for the third kink. We

determine the location of the kink by choosing the minimum of CT (or equivalently the

location of the kink in the ∆[ΦΦ̄] bound) up to the resolution of figure 3, which is7 ∼ 0.005.

For d = 2, we do not see any distinct kink and since already at d = 2.2, the location of the

kinks seems to be merging, we assume that for d = 2 the first and third kink coincide. To

exhibit the structure of the third kink in more detail we also provide, in figure 12, plots of

the anomalous dimensions of ∆Φ and ∆[ΦΦ̄] at the kink as a function of d.

6.5.1 Some speculations

In this section, we would like to offer some speculations about the nature of the second

and third kinks.

The second kink is kinematically special, since here the two candidate scalar conformal

primaries in the Φ×Φ OPE (Φ2, with dimension 2∆Φ, and Q
2Ψ̄, with dimension d−2∆Φ)

have equal dimensions, see (5.10). Between ∆Φ = (d− 1)/3 and this point, the bound on

[ΦΦ̄] is linearly decreasing, and an analysis of the Φ × Φ OPE coefficients shows that all

along this line, the Φ2 operator is not present, see figure 13. At ∆Φ = d/4, the chiral scalar

field Ψ becomes a free field, and so it should decouple from the spectrum. At this precise

point, the Φ2 operator reappears, and it is this transition that marks the appearance of

7As we have not conducted any systematic convergence estimate for our bounds, we do not make any

claim that this resolution bounds the error in any way.
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Figure 12. Third kink: the anomalous dimension of ∆Φ as a function of d for the third kink (left);

the anomalous dimension of ∆[ΦΦ̄] as a function of d for the third kink (right).

Figure 13. Scaling dimensions (left) and OPE coefficients (right) for the first three scalar operators

in the the Φ×Φ OPE, extracted from the saturating solution, for d = 3 with nmax = 9. Operators

appear in both plots with the same color (chosen according to ordering in the scaling dimension

plot). Note the decoupling of Φ2 at ∆Φ = 2/3, corresponding to the cWZ model, as well as at the

location of the third kink at ∆Φ ∼ 0.86.

the second kink. It is interesting to note that the kink persists all the way to d = 4, where

it seems to lead to a very abrupt change in the central charge. Although our numerics

present problems close to the free theory point in d = 4, it seems then that the second kink

describes free theory with more than one chiral superfields. A natural guess is three chiral

superfields, since this gives8 CT = 20, which seems to be very close to the asymptotic value

in figure 3.

We are then led to guess that the second kink describes a theory with three chiral

superfields, X,Y, Z. Furthermore, we expect a superpotential term X2Y , which implies

that if Y becomes free at the fixed point, then one has ∆X = d/4 as required. In d = 3,

we can use F-maximization to find the scaling dimensions of the chiral fields [60]. We have

found two superpotentials which seem to have the right properties, namelyW = X2Y +XZ,

and W = X2Y + Y 2Z2. In the first case, the fixed-point conformal dimensions (which are

8 At precisely the free point, there are extra spin-1 and spin-2 currents which mix with the stress-tensor.

Our numerics cannot disentangle these, hence the discontinuous jump to the single-field value of CT at the

free point.
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equal to the R-charges in d = 3), as fixed by F -maximization, come out to be ∆X = 3/4,

∆Y = 1/2, and ∆Z = 5/4. In the second case, one finds that the dimension of Z at the fixed

point is naively below the unitarity bound. This signals the emergence of accidental flavor

symmetries which mix with the R-symmetry, modifying the F -maximization procedure.

This accidental flavor symmetry is accounted for by noting that the field Z becomes free

and thus ∆Z = 1/2. This then leads to ∆Y = 1/2 and ∆X = 3/4.

To distinguish between the two guesses above, we need another observable. A conve-

nient choice is the central charge CT . As mentioned above, by computing the partition

function on a squashed sphere, it is possible to determine τRR/τ
free
RR = CT /C

free
T , with τRR

the R-current two-point function coefficient. For the two superpotentials above we find

τRR(3/4) + τRR(1/2) + τRR(5/4)

τRR(1/2)
= 1 , W = X2Y +XZ , (6.9)

τRR(3/4) + 2τRR(1/2)

τRR(1/2)
≃ 2.5603 , W = X2Y + Y 2Z2 . (6.10)

This should be compared with the ratio CT /C
free
T ≃ 1.24 that we obtain from figure 10 (to

avoid any confusion in the formulas above, we are normalizing by dividing by the values

for a single free chiral field). Indeed, it appears we would need ∆Z ≃ 1.14, which seems

hard to obtain from a polynomial superpotential with three chiral superfields.

To finish the discussion on the second kink, we should mention the intriguing pos-

sibility that the corresponding theory is in fact non-unitary. Violations of unitarity are

not necessarily excluded by our bootstrap methods, as long as squares of OPE coefficients

remain. This exotic suggestion is motivated by the observation that

4τRR(3/4)− τRR(1/2)

τRR(1/2)
≃ 1.2413 . (6.11)

This suggest that the field theory actually contains five chiral superfields, but one of

them has the wrong sign kinetic term, so that in terms of CT , they effectively appear

as three chiral superfields. Considering the superpotential W = (X2 + Z2 +W 2 + V 2)Y ,

F -maximization leads to ∆Y < 1/2, which is below the unitarity bound, and signals

that the field Y is actually free, i.e. ∆Y = 1/2. After taking this into account, we find

∆X = ∆Z = ∆W = ∆V = 3/4. Hence, it appears that this theory has all the right

properties to match our second kink.

The attentive reader may have noticed a small sleight of hand here. When a chiral

field becomes free, it decouples from the rest of the theory and hence stops contributing to

the OPE coefficient of the conserved spin-2 current. Therefore, CT derived from numeri-

cal bootstrap measures the two-point function of the stress-tensor of the interacting part

of the CFT only, and we should leave out the free contributions in (6.9), (6.10), (6.11).

However, we expect that the extra field is free only precisely at the kink and not in its

immediate neigbourhood, and thus we should include its contribution by continuity. We

would then also expect that another spin-one superconformal primary approaches the uni-

tarity bound as we approach the kink, providing the extra U(1) symmetry of the free chiral.

Unfortunately, preliminary numerical studies suggest that this is not so.
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Let us focus now on the line of theories for (d− 1)/3 < ∆Φ < d/4. The decoupling of

Φ2 suggests a chiral ring relation Φ2 = 0. One particular such theory is the Wess-Zumino

model with two chiral superfields Υ,Λ and a cubic superpotential of the form W = λΥ2Λ.

Denoting the lowest components of the superfields by Φ and Ψ respectively, this model

yields the correct OPE Φ × Φ = Q2Ψ̄, i.e. the operator Φ2 is absent. In addition, we have

the relation ∆Ψ = (d− 1)− 2∆Φ, which follows from chirality and R-charge conservation.

The exact dimensions in this model can be determined in d = 3 by F -maximization, as

shown in [31], giving ∆Φ ≃ 0.708. Could it be that our bound is saturated by this theory?

Unfortunately this is not so. In the same reference, the authors compute τRR ≃ 0.380,

whence it follows that

CT

C free
T

=
τRR

τRR(1/2)
≈ 1.52 . (6.12)

On the other hand, from figure 4, we read off that at ∆Φ ≃ 0.708, CT ≃ 6, and hence

CT /C
free
T ≃ 1, very different from what we obtain above.

Consider now the third kink, which was first observed in d = 4 [26]. Our analysis adds

a few more pieces of information about a putative theory sitting there. First, the kink

continues to exist all the way to d = 2, where it apparently merges with the CT = 2c = 2,

N = 2 minimal model. Second, the chiral field Φ2 disappears from the spectrum also at

this kink, as witnessed by figure 13. In d = 2, this corresponds to the non-existence of a

dimension-2/3 Virasoro primary in the c = 1 model. This is a strong hint that the chiral

ring of the theory at the kink has a relation Φ2 = 0. Since the kink does not merge with the

free theory in d = 4, we do not expect it can be described by a Lagrangian for a collection

of chiral superfields. It is concievable it arises as an IR fixed point of a non-abelian gauge

theory in d = 4, or even an abelian gauge theory in d = 3. Note that the central charge CT

in d = 4 is rather low — about 1.6 times that of the free chiral multiplet and only about

a half of a single free vector multiplet.

7 Discussion

In this paper, we have investigated the constraints of the conformal bootstrap on super-

conformal field theories with four Poincaré supercharges in d ≤ 4. The cases d = 2 and

d = 3 have not been analyzed before and thus we provide new universal bounds on uni-

tary SCFTs with N = 2 supersymmetry in these dimensions. We have also shown that

the bounds display three interesting features (kinks), one of which we have conjecturally

identified as the infrared fixed point of the single-field Wess-Zumino model with cubic su-

perpotential. This conjecture is supported by the matching of the protected dimension of

the chiral field, comparison of the value of CT with an exact calculation by supersymmetric

localization in d = 3, the structure of the OPE in the chiral sector, ǫ-expansion computa-

tions, and the agreement with exact results in d = 2. In [37], we take this conjecture at

face value to provide a detailed study of the theory for d = 3.

It is clearly of great interest to elucidate the remaining two kinks. We expect that at

least the third kink corresponds to a physical theory, since it shares many features with

– 38 –



J
H
E
P
0
8
(
2
0
1
5
)
1
4
2

the better-understood Ising-like kinks. Perhaps a good candidate theory can be found with

the correct value of CT , and a gauge-invariant chiral operator Φ with the right dimension

and chiral ring relation Φ2 = 0. It could also be interesting to see if CT can be derived

using localization in continuous d, in the spirit of [61], and matched with our results for

the cWZ model or used as a tool to probe the other kinks.

The crucial ingredient in this work was to formulate a dimension-independent ap-

proach to superconformal algebras with four Poincaré supercharges in d ≤ 4. This allowed

us, among other things, to write down the action of the superconformal Casimir on a four-

point function as a differential equation, whose solutions in turn gave us the superconformal

blocks relevant for the bootstrap analysis. This approach can be extended to supercon-

formal theories with eight Poincaré supercharges in general dimension, the parent algebra

being the (1, 0) superconformal algebra in six dimensions. Theories with this amount of

supersymmetry are particularly suited for bootstrap analysis since, apart from the case

d = 2, 4, they do not admit marginal deformations. Work on this is currently in progress.

It is intriguing that the supersymmetric conformal blocks can be recast as non-

supersymmetric ones with shifted external dimensions. In this paper, we have extended

this observation, previously noted in [40] for d = 2, 4, to any dimension and more gen-

eral external operators. In the same reference, the authors showed that certain N = 2

superblocks in four dimensions are given by a similar expression, this time with a shift by

two units. It would be interesting to see if there is any deep reason for this connection and

if the latter result also extends to other spacetime dimensions.

We have only briefly touched upon the extension of our analysis to d < 2. While the

superconformal blocks we derived should be valid in any d ≤ 4, it is not clear whether one

can use the numerical bootstrap techniques to extract interesting information in d = 1 [62].

This certainly deserves further study since superconformal quantum-mechanical models

are ubiquitous and should be dual to the AdS2 near horizon regions of some extremal

black holes.

Another interesting avenue for future exploration is to combine the constraints from

superconformal symmetry studied here with the simplifications that occur in large N CFTs,

i.e. when correlation functions factorize. This was explored to some extent with N = 4

supersymmetry in d = 4 in [18] but much remains to be understood. The interest in this

problem stems in part from the AdS/CFT correspondence and the fact that string theory

leads to a vast landscape of holographic duals to SCFTs with four supercharges.
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A OPE derivation of 3d N = 2 superconformal blocks

In this appendix, we provide further evidence for the formulae (3.25), (3.26) by explicitly

determining the coefficients ai from constraints imposed by d = 3, N = 2 superconformal

invariance on the OPE.9 As a first order of business let us present the explicit realization

of the d = 3, N = 2 algebra. The bosonic generators are just the conformal generators and

the R-charge {R,Mij , D, Pi,Ki}. They satisfy the commutation relations already presented

in (2.1). A realization of these commutation relations in terms of differential operators is

given by

Mjk = −i(xj∂k − xk∂j) ,

Kj = −i(xkx
k∂j − 2xjx

k∂k) ,

Pj = −i∂j , D = ixk∂k , R = r .

(A.1)

Note that the action of the conformal generators on operators in the CFT picks up a minus

sign relative to (A.1). See the discussion around equations (2.28)–(2.31) in [44].

The fermionic generators are Q±
α , S

α±, where α = 1, 2 is the Dirac index. The Dirac

representation is self-dual, with the isomorphism with the dual representation provided by

the antisymmetric tensor ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1. Thus in d = 3 there is no real

distinction between the α and α̇ index used in section 2 and we will omit the dots in this

appendix. Hermitian conjugation acts as (Q±
α )

† = Sα∓. Let (σi)
α
β be the usual Pauli

matrices

σ1 ≡
(

0 1

1 0

)

, σ2 ≡
(

0 −i

i 0

)

, σ3 ≡
(

1 0

0 −1

)

, (A.2)

and further define

(σi)αβ = ǫαγ(σi)
γ
β , (σi)

αβ = (σi)
α
γǫ

γβ , (σi)
β

α = ǫαγ(σi)
γ
δǫ

δβ . (A.3)

9It is quite possible that these results can be derived also using techniques from superspace similar to

the ones in [63].
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The action of the bosonic generators on the fermionic ones is then

[R,Q±
α ] = ±Q±

α , [R,Sα±] = ±Sα± ,

[Mij , Q
±
α ] =

1

2
εijk(σk)

β
αQ

±
β , [Mij , S

α±] =
1

2
εijk(σk)

α
β Sβ± ,

[D,Q±
α ] = − i

2
Q±

α , [D,Sα±] =
i

2
Sα± ,

[Pi, S
α±] = −(σi)

βαQβ± , [Ki, Q
±
α ] = (σi)βαS

β± ,

(A.4)

with all other commutators vanishing. Note that εijk is the completely antisymmetric

tensor in three dimensions. Finally, the anticommutation relations among the fermionic

generators are

{Q+
α , Q

−
β } = Pi(σi)αβ , {Sα+, Sβ−} = Ki(σi)

αβ ,

{Sα−, Q+
β } = (iD −R)δαβ +

1

2
εijkMij(σk)

α
β ,

{Sα+, Q−
β } = (iD +R)δαβ +

1

2
εijkMij(σk)

α
β ,

(A.5)

with all other anticommutators vanishing. This algebra is of course in harmony with the

general presentation in section 2 of the superconformal algebras in d ≤ 4.

Generalities. Let us first consider a CFT without supersymmetry and review how a

conformal multiplet, with primary Pi1...is of dimension ∆ in the symmetric traceless repre-

sentation of spin s, contributes to the four-point function, 〈φ1φ2φ3φ4〉, of scalar primaries

φi of dimensions ∆i. Define the OPE coefficient, cPφ1φ2
, by writing the contribution of the

conformal family of P to the φ1 × φ2 OPE as10

φ1(x)|φ2〉 = . . .+ cPφ1φ2
|x|−∆1−∆2+∆−sxi1 . . . xis [|Pi1...is〉+ desc.] + . . . . (A.6)

The contribution of level-one descendants in the square bracket is

desc. = α(x · P )|Pi1...is〉+ βxi1P
j |Pji2...is〉+ . . . , (A.7)

where

α = − i

2

∆ +∆12 + s

∆+ s
,

β = − i

2

s∆12

(∆ + s)(∆− s− 1)
.

(A.8)

The two-point function of P and its conjugate P̄ takes the form

〈

Pi1...is(x)P̄j1...js(y)
〉

=
fPP̄

|x− y|2∆

[

1

s!

∑

σ∈Ss

s
∏

n=1

Iinjσ(n)
(x− y)− traces

]

, (A.9)

where Ss is the permutation group on s elements and

Iij(x) = δij − 2
xixj
|x|2 . (A.10)

10In this appendix we freely use the operator-state correspondence, which is valid in any CFT in Euclidean

signature. The state corresponding to an operator φ(x) will be denoted by |φ〉.
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It is useful to note that the coefficient fPP̄ also appears in the scalar product

〈Pi1...is |Pj1...js〉 = fPP̄

(

1

s!

∑

σ∈Ss

s
∏

n=1

δinjσ(n)
− traces

)

. (A.11)

With these normalizations, the contribution of the conformal family to the four-point

function is

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉|P =
fPP̄ c

P
φ1φ2

cP̄φ3φ4

|x12|∆1+∆2 |x34|∆3+∆4

|x24|∆12 |x14|∆34

|x14|∆12 |x13|∆34
G∆12,∆34

∆,s (u, v) ,

(A.12)

where G∆12,∆34

∆,s (u, v) is the conformal block whose normalization is determined as in (3.24).

The following derivation of the superconformal blocks relies on the observation that when

φi are superconformal primaries and φ1,3 chiral primaries, superconformal symmetry fixes

the OPE coefficients and two-point functions of all contributing conformal primaries from

the same superconformal multiplet in terms of those of the superconformal primary.

Consider now the correlator 〈φ1φ2φ3φ4〉 in a 3d, N = 2 SCFT, where φi are scalar

superconformal primaries, with φ1,3 chiral, i.e. [Q+
α , φ1,3] = 0. We wish to determine

which conformal primaries in the superconformal family of a superconformal primary P
can appear in both the OPE of φ1 × φ2 and the OPE of φ̄3 × φ̄4. Only those conformal

primaries can contribute to the above four-point function. Consider the OPE φ1(x)|φ2〉.
It follows from the chirality of φ1 and the superconformal algebra that [Sα+, φ1(x)] = 0.

Hence

Sα+φ1(x)|φ2〉 = 0 , (A.13)

since φ2 is a superconformal primary. Similarly,

Sα−φ̄3(x)|φ̄4〉 = 0 . (A.14)

Consequently, the conformal primary with the lowest dimension from a given supercon-

formal family that contributes to both OPEs must be annihilated by Sα±, and thus this

operator is necessarily the superconformal primary. It follows that the superconformal

primary has integer spin and its R-charge is given by q = q1 + q2 = −q3 − q4. Let us

denote this operator with P(0)
i1...is

, and its dimension and spin with ∆ and s, respectively.

All other contributing conformal primaries from the same supermultiplet must have integer

spin and R-charge q. The conformal primaries in the multiplet have dimensions ∆ + n/2,

with n = 0, . . . , 4 labelling the number of Q supercharges acting on P(0)
i1...is

. These opera-

tors have integer spin only when n is even. For s > 0 and generic ∆ − |q|, there are four

candidate conformal primaries with dimension ∆+ 1. P(1) with spin s+ 1, P(2) with spin

s − 1, and P+−, P−+, both with spin s. All four can be obtained by acting with linear

combinations of the products Q±
αQ

∓
β on P(0). Consider the action of spacetime parity

xi 7→ −xi. A proper tensor of spin s transforms as (−1)s, while a pseudotensor as (−1)s+1.

The supercharges Q±
a “square to the momentum”, and thus must transform such that any

product transforms as Q±
αQ

∓
β 7→ −Q±

αQ
∓
β . It follows that P(1), P(2) have the same par-

ity as P(0), while P+−, P−+ have the opposite. In theories invariant under parity, this
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gives an argument why only P(1) and P(2) can contribute. However, the Casimir approach

from the main text does not require parity invariance and thus shows that our formula

for superconformal blocks is valid in general. Finally, there is a conformal primary P(3)

with dimension ∆ + 2, spin s and R-charge q, obtained from P(0) by acting with a linear

combination of products of four Q’s, which can also contribute to the four-point function.

In the following subsections, we show how the constraints (A.13) and (A.14) fix the OPE

coefficients of P(1), P(2), and P(3) in terms of those of P(0) and also compute the two-point

functions fP(i)P̄(i) for i = 1, 2, 3 in terms of fP(0)P̄(0) . We find that

ai =
fP(i)P̄(i)

fP(0)P̄(0)

cP
(i)

φ1φ2
cP̄

(i)

φ3φ4

cP
(0)

φ1φ2
cP̄

(0)

φ3φ4

, (A.15)

reproduce the results in (3.26) for d = 3.

The contribution of P(1). It is useful to define the operator

Tj(x, y) ≡ (σj)
αβ
[

(x− y)Q+
αQ

−
β − (x+ y)Q−

αQ
+
β

]

. (A.16)

An explicit expression for P(1) is then given by

|P(1)
i1...is+1

〉 = 1

s+ 1

s+1
∑

n=1

Tin(∆ + s, q)|P(0)

i1...̂in...is+1
〉 − traces , (A.17)

where the notation i1 . . . în . . . is+1 means that the index in is omitted from the string of

indices, and the traces are subtracted to make the resulting state traceless. Applying S+
α to

the OPE φ1(x)|φ2〉mixes the contribution of level-one conformal descendants of P(0), (A.7),

with that of the conformal primary P(1). Requiring that the result vanishes and looking

at the coefficient of the highest power of z̄ = x1 − ix2 leads to

cP
(1)

φ1φ2
= − i(∆ +∆12 + s)

4(∆ + s)(∆ + s+ 1)(∆ + s+ q)
cP

(0)

φ1φ2
, (A.18)

and hence also

cP̄
(1)

φ3φ4
= − i(∆ +∆34 + s)

4(∆ + s)(∆ + s+ 1)(∆ + s− q)
cP̄

(0)

φ3φ4
. (A.19)

Note the opposite sign of the R-charge in the denominators of (A.18), (A.19) resulting from

the presence of the conjugate operator. The two-point function can be found by using the

superconformal algebra

fP(1)P̄(1) = 8(∆ + s)(∆ + s+ 1)(∆ + s+ q)(∆ + s− q)fP(0)P̄(0) . (A.20)

Putting the pieces together, we find

a1 =
fP(1)P̄(1)

fP(0)P̄(0)

cP
(1)

φ1φ2
cP̄

(1)

φ3φ4

cP
(0)

φ1φ2
cP̄

(0)

φ3φ4

= −(∆ +∆12 + s)(∆ +∆34 + s)

2(∆ + s)(∆ + s+ 1)
, (A.21)

in agreement with (3.26).
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The contribution of P(2). The conformal primary P(2) is given by the contraction

|P(2)
i1...is−1

〉 = Tj(∆− s− 1, q)|P(0)
ji1...is−1

〉 , (A.22)

so that the resulting state is automatically symmetric and traceless. Using again (A.13),

and this time looking at the next-to-leading power of z̄ = x1 − ix2 fixes

cP
(2)

φ1φ2
= − is(∆ +∆12 − s− 1)

4(2s+ 1)(∆− s)(∆− s− 1)(∆− s− 1 + q)
cP

(0)

φ1φ2
, (A.23)

and similarly

cP̄
(2)

φ3φ4
= − is(∆ +∆34 − s− 1)

4(2s+ 1)(∆− s)(∆− s− 1)(∆− s− 1− q)
cP̄

(0)

φ3φ4
. (A.24)

The norm of |P(2)〉 is

fP(2)P̄(2) = 8
(2s+ 1)

(2s− 1)
(∆− s)(∆− s− 1)(∆− s− 1 + q)(∆− s− 1− q)fP(0)P̄(0) , (A.25)

leading to

a2 =
fP(2)P̄(2)

fP(0)P̄(0)

cP
(2)

φ1φ2
cP̄

(2)

φ3φ4

cP
(0)

φ1φ2
cP̄

(0)

φ3φ4

= −s
2(∆ +∆12 − s− 1)(∆ +∆34 − s− 1)

2(4s2 − 1)(∆− s)(∆− s− 1)
, (A.26)

in harmony with (3.26) for d = 3.

The contribution of P(3). In order to be able to write a relatively compact expression

for P(3) it is convenient to define the following operator, which takes symmetric traceless

tensors of spin s and dimension ∆, into symmetric traceless tensors of spin s, dimension

∆ + 1, and opposite parity

Uab
η : |ψi1...is〉 7→ η ǫαβQa

αQ
b
β |ψi1...is〉+ i

s
∑

n=1

εjink(σj)
αβQa

αQ
b
β |ψki1...̂in...is

〉 , (A.27)

where a, b = ± are R-charge indices, η ∈ C, and εijk is the standard antisymmetric tensor

with ε123 = 1. This operator is useful also to write down the other four conformal primaries

with dimension ∆ + 1. We find that

|P+−〉 = U+−
∆−1+q|P(0)〉 ,

|P−+〉 = U−+
∆−1−q|P(0)〉 ,

|P++〉 = U++
η |P(0)〉 ,

|P−−〉 = U−−
η |P(0)〉 ,

(A.28)

are conformal primaries, the first two of which have been discussed below (A.14). The

parameter η is arbitrary for the last two cases since the second part of (A.27) drops out by

the symmetry of (σj)
αβ , and the anticommutativity of supercharges of the same R-charge.
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We must remember that Uab
η acts not only on the Hilbert space, but also on the vector

indices. The conformal primary of dimension ∆ + 2 and spin s can then be written as

|P(3)〉 = (∆+s−q)(∆−s−1−q)
(

U++
∆ U−−

∆ −U+−
∆+qU

+−
∆−1+q−U−+

∆−qU
+−
∆−1+q

)

|P(0)〉+

+ (∆+s+q)(∆−s−1+q)
(

U−−
∆ U++

∆ −U−+
∆−qU

−+
∆−1−q−U+−

∆+qU
−+
∆−1−q

)

|P(0)〉 .
(A.29)

Note that the second line is obtained from the first by flipping all R-charge indices and the

sign of the R-charge. Using once again (A.13), and looking at the leading power of z̄ for

the lowest scaling dimension where |P(3)〉 contributes, one can show that

cP
(3)

φ1φ2
= −

(∆ +∆12 + s)(∆ +∆12 − s− 1)cP
(0)

φ1φ2

16(4∆2 − 1)(∆2 − s2)(∆2 − (s+ 1)2)(∆ + s+ q)(∆− s− 1 + q)
, (A.30)

and so

cP̄
(3)

φ3φ4
= −

(∆ +∆34 + s)(∆ +∆34 − s− 1)cP̄
(0)

φ3φ4

16(4∆2 − 1)(∆2 − s2)(∆2 − (s+ 1)2)(∆ + s− q)(∆− s− 1− q)
. (A.31)

The norm is

fP(3)P̄(3) = 64∆2(4∆2−1)(∆2−s2)(∆2−(s+1)2)((∆+s)2−q2)((∆−s−1)2−q2)fP(0)P̄(0) ,

(A.32)

so that

a3=
fP(3)P̄(3)

fP(0)P̄(0)

cP
(3)

φ1φ2
cP̄

(3)

φ3φ4

cP
(0)

φ1φ2
cP̄

(0)

φ3φ4

=
∆2(∆+∆12+s)(∆+∆12−s−1)(∆+∆34+s)(∆+∆34−s−1)

4(4∆2−1)(∆2−s2)(∆2−(s+1)2)
,

(A.33)

in complete agreement with (3.26) for d = 3.

B Decomposition of the generalized free chiral correlator

A natural solution to the crossing equation using the conformal blocks in (3.23) in both

channels corresponds to the supersymmetric analogue of the generalized free field. The

elementary fields of this theory are a chiral scalar primary φ(x) of dimension ∆φ, its

supersymmetric descendants — a fermion ψa(x) = (Q−
a φ(x)), and the auxiliary field F (x) =

ǫabQ−
a Q

−
b φ(x), as well as their conjugates. The correlators are computed using Wick’s

theorem, where each field only couples to its conjugate. The decomposition of the correlator

〈φφ̄φφ̄〉 into ordinary conformal blocks was given in [64]. We can use this decomposition

together with (3.25) to find the decomposition into superconformal blocks

〈

φ(x1)φ̄(x2)φ(x3)φ̄(x4)
〉

=
1

|x12|2∆φ |x34|2∆φ

[

1 +
(u

v

)∆φ

]

= (B.1)

=
1

|x12|2∆φ |x34|2∆φ



G0,0
0,0(u, v) +

∑

n,s≥0

pn,sG0,0
2∆φ+2n+s,s(u, v)



 ,
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where

pn,s =
(−2)s(∆φ)

2
n+s

(

∆φ − d
2 + 1

)2

n

n!s! (2∆φ + 2n+ s)s
(

s+ d
2

)

n
(2∆φ + n− d+ 2)n

(

2∆φ + n+ s− d
2 + 1

)

n

, (B.2)

and (x)n ≡ Γ(x + n)/Γ(x) is the Pochhammer symbol. This decomposition serves as a

further test of the validity of the superconformal blocks in (3.23). The result in (B.1), (B.2)

strongly resembles the decomposition of the four-point function of non-supersymmetric

generalized free fields into ordinary conformal blocks given in equation (43) of [64]. In

fact the two results are identical to each other (up to an overall normalization) if one fixes

∆1 = ∆2 = ∆φ in equation (43) of [64], and performs the shift 2∆φ 7→ 2∆φ − 1 in the

denominator of (B.2). This is reminiscent of the observations in section 3.3.

C N = 2 minimal models

Generalities. Here we collect some well-known facts about N = 2 minimal models in two

dimensions, see for example [65]. For a discussion on N = 1 minimal models see [66]. The

(holomorphic) infinite-dimensional N = 2 superconformal algebra in two dimensions is:

[Lm, Ln] =
c

12
(m3 −m) δm+n,0 + (m− n)Lm+n , {G+

r , G
+
s } = {G−

r , G
−
s } = 0 ,

[Lm, G
±
r ] =

(m

2
− r
)

G±
m+r , [Ωn, G

±
r ] = ±G±

r+n ,

[Lm,Ωn] = −nΩm+n , [Ωm,Ωn] =
c

3
mδm+n,0 ,

{G+
r , G

−
s } =

c

3

(

r2 − 1

4

)

δr+s,0 + 2Lr+s + (r − s)Ωr+s . (C.1)

Here m and n are integers and in the NS sector r and s are half-integers. The modes of the

energy momentum tensor are Lm, those of the superconformal R-symmetry are Ωn and the

two supercharges have modes G±
r . The real number c is the (left or right moving) central

charge and it is related to the conformal anomaly of the CFT.

The finite, sl(2|1), subalgebra of the superconformal algebra, given in (2.20), is ob-

tained from (C.1) by restricting to the generators {L−1,0,1,Ω ≡ Ω0, G
±
±1/2}. Unitary rep-

resentations of the infinite-dimensional N = 2 superconformal algebra exist for any real

c ≥ 3 and for the discrete values

c =
3k

k + 2
, k = 0, 1, 2, . . . . (C.2)

This discrete series is usually referred to as the N = 2 minimal models. The dimensions and

R-charges of the superconformal primary operators in the NS sector of the k-th minimal

model are labeled by two integers m and n

h =
n(n+ 2)−m2

4(k + 2)
, Ω =

m

k + 2
, 0 ≤ n ≤ k , −n ≤ m ≤ n , m+n = even . (C.3)

The fusion rules for N = 2 minimal models are derived in [67, 68] (see also [69]).11 The

superconformal primaries in the k-th minimal model will be denoted by φn,m. The fusion

11Notice that there is a factor of 1/2 difference between our conventions for the R-charge and the ones

in [67, 68].
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rules are then

φn1,m1 × φn2,m2 =

m2+n2
2
∑

n=
m2−n2

2

φn1−m2+2n,m1+m2 . (C.4)

The k-th N = 2 minimal model has a Zk+2 symmetry generated by some of the primaries

in the Ramond sector, see [67]. Chiral, antichiral primaries are superconformal primaries

also annihilated by G+
−1/2, G

−
−1/2, respectively, which is equivalent to Ω = ±2h. In the

minimal models, these are operators with m = ±n, respectively.
One can derive a universal bound for the central charge of a two-dimensional N = 2

SCFT using the infinite-dimensional superconformal algebra, see for example [70]. Using

unitarity and the algebra in (C.1) one finds

0 ≤ 〈φ|{G+
−3/2, G

−
3/2}|φ〉 = 〈φ|

(

2L0 − 3Ω +
2c

3

)

|φ〉 , (C.5)

for any superconformal primary |φ〉. Thus we arrive at the following constraint for the

dimension and R-charge of any superconformal primary

2h− 3Ω +
2c

3
≥ 0 , (C.6)

which becomes h ≤ c/6 for a chiral primary. The bound is saturated only if the state

G+
−3/2|φ〉 is null. The highest-dimension chiral primary in every minimal model has m =

n = k and saturates the bound. If we have a unitary (2, 2) SCFT with a diagonal spectrum,

i.e. h̄ = h = ∆/2, we arrive at the following lower bound on the central charge

CT ≥ 6∆max , (C.7)

where ∆max is the highest dimension of a superconformal primary in the theory. One can

repeat the same analysis with the state G+
−(2p+1)/2|φ〉 with p = 1, 2, 3, . . . and find the

bound

CT ≥ 12

p+ 1
∆max , (C.8)

Clearly the strongest bound is obtained for p = 1 as in (C.7).

In section 6.3 we claimed that in every unitary CFT with N = (2, 2) supersymmetry

there is always an operator (or state) of dimension ∆ = 2 which is a superdescendant of

the identity. This state is given by

Ω−1Ω̄−1|0〉 , (C.9)

where |0〉 is the NS vacuum and Ω−1 is defined in (C.1). This state clearly has dimension

∆ = h+ h̄ = 2 and R-charge q = Ω+ Ω̄ = 0. Moreover its norm is given by

〈0|Ω1Ω̄1Ω−1Ω̄−1|0〉 =
c2

9
. (C.10)

Therefore in a unitary theory the state is never null since c > 0.

– 47 –



J
H
E
P
0
8
(
2
0
1
5
)
1
4
2

Super-Ising in d = 2. The theory with c = 1 can be realized in terms of a single

compact boson, ϕ, at a specific radius R =
√
3 [69, 71]. There are three superconformal

primary operators

φ1,±1 =: e
± i√

3
ϕ
: , φ0,0 = 1 . (C.11)

The operator φ1,1 is chiral with ∆ = q/2 = 1
3 , and is identified with the (holomorphic

part of the) operator Φ in section 6.3. Similarly the operator φ1,−1 is antichiral with

∆ = −q/2 = 1
3 , and is identified with the operator Φ̄. One can now use the formula

: eiaϕ(z1) :: eibϕ(z2) := (z1 − z2)
ab : eiaϕ(z1)+ibϕ(z2) : , (C.12)

where a and b are some constants, to find the OPE

φ1,1(z1)φ1,−1(z2) ∼
1

(z1 − z2)1/3
+

i√
3
∂z2ϕ(z2)(z1 − z2)

2/3 + . . . . (C.13)

We normalize all two point functions in the theory to have coefficients 1 and define the

operator Oǫ(z) ≡ i∂zϕ(z), which has dimension h = 1. The operator of dimension ∆ = 2,

which should be identified with [ΦΦ̄] from section 6.3, is obtained by taking Oǫ(z)Ōǫ(z̄) =

∂zϕ(z)∂z̄ϕ̄(z̄). Another useful OPE is given by

i∂z1ϕ(z1) : e
iaϕ(z2) :∼ a

: eiaϕ(z2) :

z1 − z2
+ . . . . (C.14)

With these OPEs at hand one finds the following three point function

〈φ1,1(z1)φ1,−1(z2)Oǫ(z3)〉 =
1√
3

1

(z1 − z2)−2/3(z2 − z3)(z1 − z3)
. (C.15)

Combining the left and right-moving sectors one finds the three-point function

〈Φ(z1, z̄1)Φ̄(z2, z̄2)[ΦΦ̄](z3, z̄3)〉 =
1

3

1

|z1 − z2|−4/3|z2 − z3|2|z1 − z3|2
. (C.16)

Thus we find that the OPE coefficient denoted by cΦΦ̄[ΦΦ̄] is given by

cΦΦ̄[ΦΦ̄] =
1

3
. (C.17)

This matches nicely with the numerical value at the kink in the right panel of figure 6.

A comment on two supercharges. Finally, let us mention a tangential observation

about bootstrap of (1, 1) SCFTs in d = 2, complementing the results of [28] with N = 1

supersymetry in d = 3. Analogously to that study, also with (1, 1) supersymmetry in

d = 2, the superconformal blocks are equal to the conformal blocks, so that there are

no additional constraints from crossing symmetry besides the numerical bounds obtained

in [8, 9]. However, it may happen that the leading scalar appearing in the σ × σ OPE is

the superdescendant of σ itself. In this case, we have the extra constraint ∆[σσ] = ∆σ + 1.

The result is that the two lines intersect at ∆σ ≈ 1/5 and ∆ǫ ≈ 6/5 for d = 2. These

dimensions correspond to the Virasoro minimal model with central charge c = 7/10, i.e.

the tricritical Ising model. This is in fact the first N = 1 minimal model [66], in harmony

with the analogous results of [28] in d = 3.
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