
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Bootstrapping Security Associations for Routing in Mobile Ad-
Hoc Networks

by R.B.Bobba, L.Eschenauer, V.D.Gligor, W.Arbaugh

TR 2002-44

Created on 5/31/2002 10:04 AM

Abstract— To date, most solutions proposed for secure routing in
mobile, ad-hoc networks (MANETs) assume that secure
associations between pairs of nodes can be established on-line;
e.g., by a trusted third party, by distributed trust establishment.
However, establishing such security associations, with or without
trusted third parties, requires reliance on routing layer security.
In this paper, we eliminate this apparent cyclic dependency
between security services and secure routing in MANETs and
show how to bootstrap security for the routing layer. We use the
notion of statistically unique and cryptographically verifiable
(SUCV) identifiers to implement a secure binding between IP
addresses and keys that is independent of any trusted security
service. We illustrate our solution with the Dynamic Source
Routing (DSR) protocol and argue that the solution is applicable
to other protocols such as SEAD and Ariadne. We evaluate the
cost of the DSR solution with simulations over ns-2 and present
some preliminary results.

Index Terms—mobile ad-hoc networks, routing, security, DSR

I. INTRODUCTION

In contrast to the Internet where end users do not
perform routing functions, mobile ad-hoc networks
(MANETs) require end-user nodes to perform packet
routing. In these networks, a pre-deployed, dedicated
network fabric does not exist that routes packets and
protects route integrity. Furthermore, MANET nodes are
highly mobile and, consequently, the network topology
changes frequently. Hence, every node must be able to
maintain network connectivity, not just perform packet
routing.

Early protocols that performed routing in MANETs
[2,7,13,14,15] assumed that all nodes were trusted; i.e.,
none of the nodes deliberately disrupted the routing
protocol. More recently, several protocols were
proposed to secure the routing layer from nodes that act
maliciously and:

• convince a node that it is on a route to the
given destination when it is not.

• lower the cost of a route thereby re-directing
traffic to desired nodes;

• fabricate route-maintenance messages for
selected routes or links.

These protocols integrate security features within
traditional routing protocols, such as DSR [7],
AODV[16], DSDV[15], and aim to protect against
message modification, fabrication or address spoofing
through cryptographic means [3,5,13]. However, all
these protocols assume that secure associations between
the nodes of the network exist or can be established on-
line.1 Typically, these associations consist of either
symmetric keys shared between any two nodes
distributed with the help of a trusted key distribution
center (KDC), or public-key certificates associated with
individual nodes and signed by a trusted certification
authority (CA). More recently, a distributed service for
establishing trust relations among network nodes from
PGP certificates has been proposed that does not rely on
a trusted authority infrastructure [6]. Security
associations and trust relations among nodes form the
basis for building the security features of the routing
layer; e.g., message authentication, replay detection.

The assumption of pre-established secure associations
may be practical in environments where such
associations can be established off-line [17]. However,
this assumption is less suitable for secure routing in
large MANETs where secure associations have to be
setup on-demand and on-line. In this case, a cyclic
dependency arises between security services (e.g.,
certificate distribution, shared key generation,
distributed trust establishment) and routing services
since security services require routing layer security
themselves (viz., Section II). To break this dependency,
security associations must be bootstrapped into the
routing layer without reliance on any security services.

In this paper, we show how to bootstrap secure
associations for the routing protocols of MANETs on-
line, without assuming any trusted authorities or
distributed trust-establishment services. We rely on the
use of statistically unique and cryptographically

1 Other protocols rely on intrusion-detection mechanisms to discover and
isolate malicious nodes [8], and tacitly assume that the intrusion-detection
sensors running in network nodes are somehow protected from the nodes in
which they are installed. In the end, these protocols still need to assume the
presence of security associations to remove some of the less realistic trust
assumptions made.

Rakesh Babu Bobba, Laurent Eschenauer, Virgil Gligor, and William Arbaugh
University of Maryland

College Park, Maryland 20742
{bobba, laurent, gligor}@eng.umd.edu, waa@cs.umd.edu

Bootstrapping Security Associations for Routing in
Mobile Ad-Hoc Networks

 2

verifiable (SUCV) identifiers [10] and public-secret key
pairs generated by the nodes themselves, in much the
same way SUCVs are used in MobileIPv6 (MIPv6) to
solve the address “ownership” problem [10,12] and to
counter the “bidding down” attack [11] in return
routability. We present the bootstrapping solution in the
context of the Dynamic Source Routing (DSR) protocol
and argue that the solution is applicable to other secure
routing protocols, such as SEAD [3] and Ariadne [5].
We evaluate the performance of our solution using a ns-
2 simulation, and present the preliminary results.

II. BOOTSTRAPPING SECURE ASSOCIATIONS

A. A Cyclic Dependency Problem

Routing and security are separate services in any
network. The routing service depends on security
services to authenticate the source of a message (i.e., its
IP address) and the message content. For example,
routing needs to determine that the source address of a
route-request, route-reply, or control message was not
spoofed, and that the message was not modified by
malicious nodes while in transit between a source and a
destination. The dependency between secure routing and
security services is identified by arrow (1) in Figure 1.
Message authentication is typically implemented using
either shared symmetric keys or public-private key pairs
and requires that the shared or public keys are associated
(bound) in a secure way with the nodes’ (IP) addresses,
on-line.

To obtain secure bindings between a node’s IP address
and key, a node must either reach a trusted-authority
node or must establish trust relationships with other
nodes without relying on trusted authorities [6]. Even if
we assume that the IP address of all nodes are known a
priori, there is still the need to establish a route from
any node to a trusted-authority node or to a peer node

that does not include malicious nodes. If malicious
nodes are present on any of these routes, they may
launch denial-of-service attacks and, worse yet,
impersonate trusted servers or peer nodes. Secure
routing seeks to counter these attacks, typically by
detecting the effects of malicious node actions on a
route, and by finding alternate routes. Hence, both
trusted authorities and distributed trust establishment
without trusted authorities depend on secure routing
services. This dependency is identified by arrow (2) of
Figure 1.

In summary, a cyclic dependency arises between
security and secure-routing services, which we seek to
remove for any secure implementation of routing
services.

B. Breaking the Cyclic Dependency

To break the dependency cycle illustrated in Figure 1,
we have to remove dependency (1). Removing
dependency (2) would be impractical because it would
require that the nodes implementing security services be
reachable by all other nodes in the network by a fixed
set of routes; to implement any routing function for
these nodes would defeat the purpose. We remove
dependency (1) by using a secure binding mechanism
for establishing secure node-to-node associations that is
independent of both secure routing and other security
services (viz., Figure 2). This mechanism forms the
building block for bootstrapping security associations
for secure routing protocols.

The idea of a secure binding between an IP address
and a key that is independent of any other security

Security Services

 Key distribution, Certificates,
 Message Authentication
 (source, content)

 (1) (2)

Secure Routing

malicious-node-free routes

Figure 1. Dependency cycle between secure
routing and security services.

 Higher-Layer
 Security services
(e.g., Key distribution, Certificates,

Message Authentication,
secure connections,

MIPv6 address updates)

 Secure routing
 Routing Message Authentication,
 Replay Detection

 Secure Binding
 IP address - Public Key

Figure 2. Breaking the cyclic dependency between secure
 routing and security services.

 (1’)

 (2) (2’)

 3

services is due to O’Shea and Roe [12] and Montenegro
and Castelluccia [10]. They used it in the context of
securing the control messages of MIPv6. We briefly
review the idea of secure <IP address, public key>
binding for the sake of completeness and ignore its
MIPv6 application specifics.

To generate an IP address that is securely bound to a
public key, a node generates a 64-bit pseudo-random
value by applying a one-way, collision-resistant hash
function to the public key of its (uncertified) public-
private key pair. Then, the IP address is generated as the
concatenation of a network specific identifier (64 bits in
MIP6) and the hash of the public key (64 bits). The
binding between this IP address and the public key is
secure because it is computationally unfeasible for an
attacker (1) to create another <public, private> key pair
whose hash generates the same IP address (because of
the second pre-image resistance of one-way, collision-
resistant hash functions), and (2) to discover the secret
key, or create a different one, for a given public key (by
definition). Due to the size of the resulting address
space, this IP address is also statistically unique.

A source node uses the secure binding to authenticate
its IP address and the contents of its packets to an
arbitrary destination node as follows. The node signs a
packet with its private key and sends the signed packet
to the destination address together with its public key
(and IP address). The destination node verifies that the
IP address is securely bound to the public key by
computing the hash function of the received public key
and comparing the result with the lower 64-bit field of
the IP address. (Thus, the IP address “certifies” the
validity of the public key thereby preventing an attacker
from spoofing the source address.) Then, the destination
node authenticates the content of the packet by verifying
the signature with the public key.

This authentication scheme is implemented without
using any security services. As illustrated in Figure 2,
dependency (1) is removed and replaced with
dependency (1’), which does not lead to a cyclic
dependency. Also, dependency (2’) is added to indicate
that higher-level security mechanisms, such as those of
MIPv6, need to enhance the basic secure binding
mechanism (e.g., to allow IP address changes) for
different applications. Note that routing-layer
authentication is also used to implement simple replay-
detection mechanisms for routes (viz., Section III
below). Finally, we note that bootstrapping of
additional, different security associations for the routing
layer becomes unnecessary.

III. SECURING DSR

A. Basic scheme

In this paper, we do not aim to provide a complete
description of DSR security and, instead focus only on
providing end-to-end security for the basic DSR [7]
features without optimizations as the optimizations in
DSR make the protocol vulnerable to attacks [13]. Our
approach is similar to the one of Papadimitratos and
Haas [13], except that we bootstrap the secure
association in the protocol itself, by using secure <IP
address, public key> bindings. We illustrate the basic
protocol using an example topology shown in Figure 3.

DSR is composed of two basic services, namely route
discovery and route maintenance. In route discovery any
source node S wishing to send a packet to any
destination node D, to which it has no cached route,
discovers a route to D. In route maintenance, source S
detects if the route it is using to D is still valid in the
face of topology changes, and, if the route is no longer
valid, it discovers a new one.

 Route Discovery. When a source node S wants to
discover a route to destination D, it initiates route
discovery. It constructs a Route Request message
including the source (S) and destination (D) identifiers,
a unique request sequence number, and an (initially
empty) list to accumulate the addresses of intermediate
nodes forwarding the request to D. Source S digitally
signs the source and destination identifiers and the
sequence number. It appends the signature and its public
key (1024 bits) to the packet and broadcasts it. Each
intermediate node receiving the packet appends its
address to the node list and rebroadcasts the packet. If
an intermediate node finds that its address is already on
the node list, it discards the packet.

When the Route Request reaches its destination, node

S

1

4

2

7

3

5

M D

6

Figure 3. Example topology. S is trying to
communicate with D. M is a malicious node.

 4

D authenticates the Route Request packet. First, D
verifies the validity of the public key by hashing the
public key and comparing the result to the lower half of
the source S’s IP address in the packet. Then, if the
comparison indicates a match, D verifies the signature
on the packet. If the signature is valid, then D checks to
see if the sequence number in Route Request is greater
than the last sequence number it has seen from S, if true
D constructs a Route Reply packet. It extracts the
accumulated path in the Route Request, includes a copy
of it in the Route Reply packet, and digitally signs the
destination and source addresses, the sequence number,
and the accumulated path. It then appends its public key
and the signature to the packet, and source routes the
packet on the reverse of this accumulated path.

When source node S receives the Route Reply packet,
it first authenticates the (source and content of the)
packet and verifies the reply’s validity. To authenticate
the packet, S verifies the public key of destination node
D by hashing it and comparing it against the lower half
of the address of D. If the comparison yields a match,
then S verifies the D’s signature on the packet. If the
signature verification passes, D proceeds to verify the
validity of the reply. First, S checks if it has a pending
Route Request to node D with the sequence number
returned by the Route Reply packet. If it has one, then S
extracts the node list out of the packet and compares it
against the reverse of source route in the packet header.
If this comparison yields a match, the reply is valid and
S caches this route. If any of the above checks fail, S

discards the reply packet. Figure 4 shows the flow of
messages for route discovery.

Route Maintenance. When sending a packet on an
established route, source S includes the complete
sequence of nodes through which the packet should
travel. Each node along the path forwards the packet to
the next node indicated in the path. If any node fails to
forward it due to link failure or any other reason
(detected by the link layer, in our case 802.11 MAC
protocol), it signs the packet, appends its public-key, it
source routes a Route Error to the original source of the
packet (S) on the reverse of the source route contained
in the data packet, thereby identifying the broken link
from itself to the next node.

When source S receives a Route Error packet, it first
authenticates it by checking the whether the hash of the
public key matches the lower half of the IP node that
signaled the error, and whether the signature is valid.
Then S checks the validity of the Route Error packet. S
checks whether the address of the node that signaled the
error is at the head of broken link in the route. If any of
the checks fail, S discards the error packet. Then, S
removes the broken link from its route cache. For
subsequent packets or the retransmission of this packet,
source S may use any other route to that destination
available in its cache or may initiate new route
discovery.

State maintenance. Note that intermediate nodes do
not maintain state in our approach. That is, nodes store
neither the <sequence number, source S> pair as in DSR

S→ ∗ (Rq,S,D,#,(empty list)) {S,D,#}SK-S (PK-S)

1→ ∗ (Rq,S,D,#,(1)) {S,D,#}SK-S (PK-S)

2→ ∗ (Rq,S,D,#,(1,2)) {S,D,#}SK-S (PK-S)

3→ ∗ (Rq,S,D,#,(1,2,3)) {S,D,#}SK-S (PK-S)

D→ 3 (Rp,SR(3,2,1),S,D,#,(1,2,3)) { SR(3,2,1),S,D,#,(1,2,3)}SK-D (PK-D)

3→ 2 (Rp,SR(3,2,1),S,D,#,(1,2,3)) {SR(3,2,1),S,D,#,(1,2,3)}SK-D (PK-D)

2→1 (Rp,SR(3,2,1),S,D,#,(1,2,3)) { SR(3,2,1),S,D,#,(1,2,3)}SK-D (PK-D)

1→ S (Rp,SR(3,2,1),S,D,#,(1,2,3)) { SR(3,2,1),S,D,#,(1,2,3)}SK-D (PK-D)

Figure 4. Message flow for the discovery of route {1,2,3} between source S and destination D of Figure 1.
Legend: ∗ indicates broadcast address. Rq and Rp are request and reply tags. SR(x,y,z) indicates source route x
to y to z. SK-X and PK-X indicate secret key and public key of X respectively. {abc}SK-X indicates signature of
X on abc. # indicates sequence number.

 5

nor <random identifier, source S, destination D> triple
as in SRP. Storing sequence number has the
disadvantage that a malicious node can fabricate Route
Requests with high sequence numbers and cause denial
of service for future legitimate requests that now appear
to be duplicate packets from that particular source.
Although SRP prevents this false-replay attack by using
a new random identifier for a source-destination pair
instead of the sequence number, it cannot detect real-
replay attacks since a malicious node can modify the
random identifier and replay the packet as new one.
Instead of maintaining state in intermediate route nodes,
we maintain state only in end nodes; i.e., to detect replay
of Route Request and Route Reply packets.

B. Symmetric-key version of our protocol

Given the limited computational and power constraints
of some mobile devices, the use of public-key
cryptography may impact the performance of the
protocol both in computation and byte overhead to
transport the public key. To limit this impact, we make
minor modifications to the protocol aimed at minimizing
the use of public-key cryptography.

We use public-key cryptography only when initiating a
route discovery to a particular destination and only for
the first time. During this interaction with the
destination node, we exchange a symmetric key and use
this symmetric key to maintain a route to this destination
(i.e. for subsequent route discoveries caused by topology
changes). Note that the destination node generates the

symmetric key, encrypts it and binds the encryption
cryptographically to its reply packet. The validity check
performed by source S also ensures that the symmetric
key is fresh; i.e., it is not an old key generated by D for
this route. Figure 5 shows the flow of messages during
route discovery using the modified protocol. Similarly,
for route errors, if the node generating the route errors
shares a symmetric-key with the source of the data
packet it will use it to integrity protect the packet else it
will use the its secret key. Therefore, we do not
compromise the security of the secret-key associated
with our SUCV identifier and also we can change the
symmetric-key shared with a node, as often as needed.

C. Application to Other Protocols

Our solution for bootstrapping security associations
between nodes for DSR can be used in conjunction with
other secure routing protocols like SEAD [3] and
Ariadne [5]. For example, SEAD assumes a shared key
between all the nodes in the network to authenticate the
source address of the updates sent by neighbors. Using
the secure <IP address, public key> binding allows
performing the same task without a pre-established
shared key. Moreover, the last element of the one-way
hash chain can be broadcast, and signed with the secret
key associated with the public key of the secure <IP
address, public key> binding. Similarly, Ariadne
assumes that there exists a shared key between
communicating nodes and that every node knows an
element of the TESLA one-way key chain of every other

S→ ∗ (Rq,S,D,#,(empty list)) {S,D,#}SK-S (PK-S)

1→ ∗ (Rq,S,D,#,(1)) {S,D,#}SK-S (PK-S)

2→ ∗ (Rq,S,D,#,(1,2)) {S,D,#}SK-S (PK-S)

3→ ∗ (Rq,S,D,#,(1,2,3)) {S,D,#}SK-S (PK-S)

D→ 3 (Rp, SR(3,2,1),S,D,#,(1,2,3)) (KSD)PK-S { SR(3,2,1),S,D,# ,(1,2,3),KSD}SK-D (PK-D)

3→ 2 (Rp, SR(3,2,1),S,D,#,(1,2,3)) (KSD)PK-S { SR(3,2,1),S,D,# ,(1,2,3),KSD}SK-D (PK-D)

2→1 (Rp, SR(3,2,1),S,D,#,(1,2,3)) (KSD)PK-S { SR(3,2,1),S,D,# ,(1,2,3),KSD}SK-D (PK-D)

1→ S (Rp, SR(3,2,1),S,D,#,(1,2,3)) (KSD)PK-S { SR(3,2,1),S,D,# ,(1,2,3),KSD}SK-DS (PK-D)

Figure 5. Message flow in the discovery of route {1,2,3} between source S and destination D with key exchange.
Legend: ∗ indicates broadcast address. SR(x,y,z) indicates source route x to y, y to z. SK-X and PK-X indicate
secret key and public key of X respectively. {abc}SK-X indicates signature of X on abc. (abc)PK-X indicates
encryption with public key of X. # indicates sequence number. Rq and Rp are request and reply tags.
KSD indicates secret key between S and D.

 6

node. Using secure <IP address, public key> binding,
communicating nodes can exchange a symmetric-key,
and all nodes can broadcast the element of their TESLA
one-way key chain signed with their secret key
associated with the public key of the secure <IP address,
public key> binding, without requiring any a priori
secure association.

IV. SECURITY ANALYSIS

A. Security of <IP address, public key> binding

 The security of the <IP address, public key>
binding relies on the security of the public-key
cryptosystem and on the second pre-image resistance
property of the hash function. Both these assumptions
are practical. For example, RSA public key
cryptosystems would satisfy our security requirements
(viz., Section II). Further, for a hash function that has an
output of 64 bits and is second pre-image resistant (as
both MD5 and SHA-1 are conjectured to be), an
adversary must use 262 attempts, on the average, to find a
second public key that yields a given IP address (if we
assume that one of the 64 bits is reserved, as in MIPv6).
This work factor is clearly prohibitive for any practical
adversary and any fast, second pre-image resistant hash
function even if we ignore the fact that the adversary’s
attempts must be public keys and not arbitrary guesses
of hash function inputs. Furthermore, although birthday
attacks against the hash function may produce collisions
between hash function inputs drawn from a uniform
distribution after only 232 attempts, such attacks are
impractical in this setting. The number of nodes
necessary to enable a collision between two arbitrary
nodes would have to be of the order of 109 nodes, which
is clearly impractical.

B. Security Analysis of the protocol

 We consider several possible attacks mounted by
non-colluding adversaries2 on our protocol using the
example topology of Figure 1. For simplicity we do not
show the signatures and keys in the messages.

Attack 1: Assume that node 1 receives a route request
from source node S. Node 1 may try to send a reply to S
giving a false route. However, since node S expects a
reply from destination node D, S will discard replies
from any other node. Node 1 may try to pretend to be
node D but the reply will not pass S’s authentication
check. Of course, node 1 can always drop the route

2 Like most other secure routing protocols[5,12], ours is not designed to

handle attacks by multiple nodes acting in collusion, as would be necessary
for the wormhole attack

request but that will be a problem when there is a single
route from S to D and node 1 is on it.

 Attack 2: Malicious nodes may try either to shorten or
to lengthen a route by modifying the node list on a Route
Request. For example, node 1 might not append its
address to the list of a Route Request. Let us assume that
nodes 2 and 3 follow the protocol correctly so that D
receives the packet (Rq,S,D,#,(2,3)). D will construct a
route reply and source route it over the reverse of the
node list and when the route reply reaches node 2, it
cannot send it to S as S is not its neighbor; so the reply
will not reach S. Also, a malicious node might be able to
lengthen a route by appending false IP addresses to a
Route Request but it wouldn’t gain anything other than
the route being avoided, which it can achieve anyway by
not forwarding the Route Request in the first place.

Attack 3: Intermediate nodes, such as node 2, might
modify a Route Reply (e.g., it might add to or delete
from the nodes of the node list), but S would not accept
the modified Route Reply as a signature or the message
authentication code of D would not pass S’s
authentication check.

Attack 4: An attacker might want to mount a replay
attack. Replayed requests will be detected at D and
replayed replies will be detected at S by using standard
mechanisms based on sequence numbers.

Attack 5: An attacker can flood a node with route
requests and exhaust its resources as the node has to
authenticate packet signatures, and signature
authentication is a computationally intensive operation.
Alternatively, he can generate fake route errors to make
a node verify the signatures. Most of these attacks are
thwarted by the IP address check. To counter the rest of
them, the protocol can be implemented in such a way
that signature verification is the last check done. If any
of the validity checks performed before signature
authentication fail, the verifier can drop the packet.

V. COST ANALYSIS
We performed a set of preliminary experiments using
the popular ns-2 simulator with the CMU Monarch
extensions for mobility to evaluate the overhead of our
security mechanism. We used a random way point
model for our mobility scenarios in the setting described
in Table 1. We compare our protocol (SDSR) to DSR
and an implementation of DSR without optimizations
(DSR-NO-OPT).

 7

A. Packet Overhead

SDSR does not support the DSR optimizations [7] since
it performs end-to-end signature authentication of
control messages and verification of whether a node is
authorized to send a control message. Therefore, an
intermediate node cannot reply from its cache or send a
route maintenance message concerning a link that it is
not an end-point of, since it cannot be verified whether
that node had the right to send that message; i.e., the
node could be malicious. In terms of packet overhead,
there is no difference between SDSR and DSR-NO-
OPT, since SDSR does not require any additional
message exchanges. Figure 6 illustrates the packet
overhead of DSR versus DSR-NO-OPT/SDSR.

B. Byte overhead

SDSR exchanges the same number of messages as DSR-
NO-OPT. However, these messages also contain
signatures and public-keys. Every control message is
signed (16 bytes) and contains the public-key of the
signer (128 bytes) since it is not known whether the
recipient already has a copy of the public key.
Alternatively, if the symmetric key version of SDSR is
used and HMAC-MD5 is the message authentication
code, then only an extra 16 byte field is used.
Figure 7 shows the byte overhead of DSR, DSR-NO-

OPT, SDSR using only public keys, and SDSR using
symmetric keys. This figure illustrates the significant
overhead decrease in overhead when using the
symmetric key version of SDSR instead of the public-
key-only version.

C. Average delay

A lower bound. If the cost of security (hash, signatures
generation and verification) were zero, our protocol
would perform exactly as DSR-NO-OPT. This gives us a
lower bound on the average delay of our protocol. By
delay we mean the time between a packet is sent from
the application layer at one node and received at the
application layer of the destination node. This delay
takes into account the route discovery and the
transmission time. (We are still in the process
incorporating the computation delay of the hash function
and signature computation/verification into our ns
simulations.) Figure 8 illustrates the average delay
versus mobility. Note that, for high mobility, the non-
optimized DSR performs slightly better than DSR. This

0

5000

10000

15000

20000

25000

0 100 200 300 400
Pause time (s)

Pk
ts

DSR NO-OPT/SDSR
DSR Optimized

Figure 6. Packet overhead for DSR, DSR-NO-OPT/SDSR.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400

Pause time (s)

K
B

DSR-NO-OPT
DSR-Optimized
SDSR – Symm.-key
SDSR - Public-key

Figure 7. Byte overhead

Nodes 50
Scene 1000 m x 1000 m
Maximum velocity 20 m/s
Wireless range 250 m
Number of sources 10
Traffic 4 pkts/s
Table 1. Scenario for the ns-2 experiments

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 100 200 300 400
pause time (s)

del
ay
(s)

DSR-NO-OPT/SDSR
DSR-Optimized

Figure 8. Average delay with respect to mobility

 8

is caused by the high number of stale routes provided by
the reply from cache in the optimized DSR [4].
However, for low mobility, DSR-NO-OPT has an
average delay double that of DSR.

Computation-cost estimates. Prior work focused on the
time and power consumption involved in signing and
verifying a message using various algorithms [1,9]. For
example, Modadugu et al. [9] show that on a 14Mhz
Palm V the time to perform RSA operations is:

• 15 minutes, for 1024 bits RSA key generation;
• 27.8 seconds, for 1024 bits RSA signature

generation, and
• 0.758 seconds, for 1024 bits RSA signature

verification (e=3).
However, the PalmPilot was not designed with security
in mind, and hardware crypto accelerators of the size of
a dime, like the iButton [18], can now perform RSA
operations in less than a second. (The cost of such a unit
is about $15. Also, public-key generation can be done
off-line.) Nevertheless, the computational cost can be
decreased substantially by using symmetric keys since a
message authentication code function such as the
HMAC is very cheap to compute even on the Palm V.

VI. CONCLUSIONS
In this paper we proposed a scheme to bootstrap

security within DSR thereby eliminating the need to
assume pre-established secure associations among the
nodes of the network. We achieved this through the use
of a secure <IP address, public-key> binding. Our
scheme is secure against multiple uncoordinated
attackers. In future work we plan to evaluate our
bootstrapping approach with other secure routing
protocols in the presence of malicious nodes.

REFERENCES
[1] D. S. Wong, H. Ho Fuentes and A. H. Chan, “The Performance

Measurement of Cryptographic Primitives on Palm Devices”,
Proceedings of the 17th Annual Computer Security Applications
Conference (ACSAC 2001).

[2] Z. Haas, “A new routing protocol for the reconfigurable wireless
networks”, Proceedings of the IEEE International Conference on
Universal Personal Communications, 1997.

[3] Y-C. Hu, D. B. Johnson, and A. Perrig, “SEAD: Secure Efficient
Distance Vector Routing for Mobile Wireless Ad Hoc Networks”,
Proceedings of the 4th IEEE Workshop on Mobile Computing Systems
& Applications (WMCSA 2002), IEEE, Calicoon, NY, June 2002 (to
appear).

[4] Y-C. Hu and D. B. Johnson, “Caching Strategies in On-Demand
Routing Protocols for Wireless Ad Hoc Networks”, Proceedings of the
Sixth Annual ACM/IEEE International Conference on Mobile
Computing and Networking, ACM, Boston, MA, August 2000.

[5] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A Secure On-
Demand Routing Protocol for Ad Hoc Networks”, Technical Report
TR01-383, Department of Computer Science, Rice University,
December 2001.

[6] J.-P. Hubaux, L. Buttyan and S. Capkun, “The Quest for Security in
Mobile Ad Hoc Networks”, Proceeding of the ACM Symposium on
Mobile Ad Hoc Networking and Computing (MobiHOC 2001), Long
Beach, CA, USA, 2001.

[7] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The Dynamic Source
Routing Protocol for Multi-Hop Wireless Ad Hoc Networks” in Ad Hoc
Networking, edited by Charles E. Perkins, Chapter 5, pp. 139-172,
Addison-Wesley, 2001.

[8] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks”, Proceedings of the Sixth
annual ACM/IEEE International Conference on Mobile Computing and
Networking, pp. 255--265, 2000.

[9] N. Modadugu, D. Boneh, and M. Kim, “Generating RSA keys on a
handheld using an untrusted server”, in RSA 2000, 2000.

[10] G. Montenegro and C. Castelluccia, “Statistically Unique and
Cryptographically Verifiable (SUCV) Identifiers and Addresses”,
Proceedings of the 2002 Network and Distributed System Security
conference (NDSS02), San Diego, February 2002.

[11] G. Montenegro and P. Nikander, “Protecting Against Bidding Down
Attacks”. Internet Draft, draft-montenegro-mipv6sec-bit-method-00.txt,
April 2002. Work in Progress.

[12] G. O’Shea and M. Roe, “Child-proof Authentication for MIPv6
(CAM)”, ACM Computer Communication Review, April 2001

[13] P. Papadimitratos and Z. Haas, “Secure Routing for Mobile Ad-Hoc
Networks”, Proceedings of the Communication Networks and
Distributed Systems Modeling and Simulation Conference
(CNDS2002), San Diego, CA, January 2002.

[14] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks”, in IEEE Infocom, 1997, pp.
1405-1413.

[15] C. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers”, Proceedings
of the ACM SIGCOMM, October 1994.

[16] C. E. Perkins and E. M. Royer, “Ad hoc On-Demand Distance Vector
Routing”, Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications, New Orleans, LA, February
1999, pp. 90-100.

[17] F. Stajano and R. Anderson, “The Resurrecting Duckling: Security
Issues for Ad-hoc Wireless Networks”, Security Protocols, 7th
International Workshop Proceedings, Lecture Notes in Computer
Science, 1999.

[18] iButtonHomePage, http://www.ibutton.com.

