
13-th IEEE International Conference on Peer-to-Peer Computing

Bootstrapping Skynet: Calibration and Autonomic
Self-Control of Structured Peer-to-Peer Networks

Timo Klerx∗, Kalman Graffi†

∗Department of Computer Science, University of Paderborn, Germany
†Technology of Social Networks Group, University of Düsseldorf, Germany

Email: timo.klerx@upb.de, graffi@cs.uni-duesseldorf.de

Abstract—Peer-to-peer systems scale to millions of nodes and
provide routing and storage functions with best effort quality. In
order to provide a guaranteed quality of the overlay functions,
even under strong dynamics in the network with regard to peer
capacities, online participation and usage patterns, we propose
to calibrate the peer-to-peer overlay and to autonomously learn
which qualities can be reached. For that, we simulate the peer-
to-peer overlay systematically under a wide range of parameter
configurations and use neural networks to learn the effects of
the configurations on the quality metrics. Thus, by choosing
a specific quality setting by the overlay operator, the network
can tune itself to the learned parameter configurations that
lead to the desired quality. Evaluation shows that the presented
self-calibration succeeds in learning the configuration-quality
interdependencies and that peer-to-peer systems can learn and
adapt their behavior according to desired quality goals.

I. INTRODUCTION

Peer-to-peer (p2p) systems have gained a lot of attention

in the last decade, supporting large-scale networks for various

applications [1]. Typically, p2p overlays, such as Chord or

Kademlia, are used to connect all nodes in the p2p system.

Most of these overlays are exhaustively configurable, ranging

from routing table sizes, timeouts or, if enhanced, also in

the strategies of how to choose contacts. While applying

overlays for a specific use case, these configurations are fixed

and typically not changed ever again. Thus, a small network

starting with an initially optimal configuration keeps using

this configuration even if the network size (e.g. scaling to

millions of users), the usage type (e.g. from file sharing to

a notification overlay) or the node capacities change. As a

result, the provided quality of the overlay remains only best

effort and the configuration is rarely ideal.

In this paper, we present an approach to keep the configu-

ration of an overlay network optimal: We use neural networks

[15] to learn the impact of the configuration on the resulting

overlay performance. Thus, if a desired overlay performance is

chosen, the network could tune itself to optimal configurations,

thus implementing a distributed control loop. The Monitor-

Plan-Analyze-Execute (MAPE) [2] cycle for autonomous sys-

tems describes the steps for such a distributed control loop. In

the monitor phase, statistics about the network are computed.

These statistics are analyzed in the analyze phase and handed

over to the plan phase where a plan is constructed on how

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901)

to transform the state of the system into the desired one.

In the execute phase, the plan or parts of it are executed

and the cycle restarts. In p2p systems the quality of the

overlay can be monitored in terms of quality metrics using

tree-based statistic aggregation protocols (e.g. [4]) or gossip-

based solutions (e.g. [3]). An adaptation of the behavior can

be reached through reconfiguration. For the execution phase,

i.e. the overlay reconfiguration, modified tree-structures (e.g.

[5]), broadcasting or local adaptation are applicable.

The main challenge that remains is in the analyze and

plan phase: How to pick the overlay configuration based on

the observed system quality in order to reach desired quality

goals? The focus of this paper is to address this challenge

and to provide an approach for the calibration of the p2p

overlay, i.e. the systematic analysis of the effects of a wide

set of configurations for the overlay. We review related work

in Sec. II followed by an overview of our approach (Sec. III):

We systematically simulate Chord [6] in Sec. IV under various

configurations. Based on the collected data, we use neural

networks to learn and predict the behavior of the overlay in

Sec. V. Evaluation in Sec. VI shows that the configurations are

well learned and can be reproduced. In Sec. VII, we conclude

that using our approach for overlay calibration, p2p overlays

are enabled to learn their own behavior and could potentially

choose optimal configurations.

II. RELATED WORK

Several aspects of the MAPE cycle have been discussed

in literature. The MAPE cycle has been introduced in [2] by

IBM. There, it is stated that the only remaining chance for

overcoming the burden of complexity will be self-managing

autonomic systems. For the monitoring of p2p systems, aggre-

gation protocols [7] have been proposed. These protocols take

local measurements of individual nodes and create statistics

for the whole p2p system. The main classes of aggregation

protocols are gossiping and tree-based approaches. Tree-based

monitoring approaches create additional overlays on top of

the structured p2p overlay to gather, aggregate and dissemi-

nate monitoring information through these. Examples for this

approach are SDIMS [8], SkyEye.KOM [4] or SOMO [9].

While trees are efficient and create statistics on the network

in O(logN) for a single measurements with N nodes in

the network, the tree-based approaches require structured p2p

overlays to operate. Furthermore, they are affected by churn.

978-1-4799-0521-8/13/$31.00 c©2013 IEEE

rst
Textfeld
Timo Klerx, Kalman Graffi: Bootstrapping Skynet: Calibration and Autonomic Self-Control of Structured Peer-to-Peer Networks. In: IEEE P2P'13: In Proc. of the IEEE International Conference on Peer-to-Peer Computing, 2013.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

13-th IEEE International Conference on Peer-to-Peer Computing

Gossip-based approaches can be used in any (connected)

graph, i.e. they do not state further requirements on the overlay

type. Through simple message exchanges with neighboring

nodes, they allow to exchange local estimations on the statis-

tics and converge to the global values with low variance. [10]

describes the fundamental basis of the anti-entropy calculation.

Gossip-based approaches are [3], [11] or [12].

While monitoring only resembles the capturing of the

current network status, the goal-oriented adaptation of the p2p

systems is in our focus. For p2p-based video streaming [13]

and p2p-based VoIP [14], quality control has been discussed.

While the adaptation of streaming settings on a single node

directly affects the observed streaming quality on that node,

in overlays a large number of nodes needs to adapt their

configuration so that the quality, e.g. of lookups, is changed.

P2P overlays from the early days, such as Chord or

Kademlia, are all self-organizing, but they do not adapt their

configuration to changed environmental parameters. In [5] we

use the tree-structure of SkyEye.KOM to gather statistics on

the p2p overlay, analyze them in the root of the tree and push

new configurations for the p2p overlay in order to control the

hop count in the network. While we presented in [5] that the

MAPE cycle can be closed, the analyze and plan phase used

manual rules. For a fully autonomous system, the analyze and

plan phase also need to be autonomic in the p2p network.

In this paper, we focus on the interpretation of monitored

overlay behavior through the learning of parameter-metric

interdependencies. We are able to identify configurations from

the learned behavior of the overlay in simulations with various

configurations when a desired quality goal is set.

III. OVERVIEW ON OUR CALIBRATION APPROACH

In order to introduce our learning and calibration approach,

we briefly introduce neural networks. We use these networks to

learn the effects of configurations on quality metrics. Artificial

neural networks are mostly used for supervised machine

learning, i.e. they need labeled data consisting of input and

output data. With this labeled data it is possible to train a

neural network such that it can abstract the data and predict

unknown outputs if only the inputs are given (cf. [16], [17]).

Our goal is to construct neural network regressors via

machine learning which can calculate a value for each overlay

configuration parameter given a preferred p2p system state,

described in terms of quality metrics, and the current state of

the overlay network. To do so, we create a large training set

through simulations. In these simulations we systematically

vary several configuration parameters in order to capture a

broad range of possible quality states for learning.

For our system model, we consider overlay parameters O

(changeable by single nodes, see Table I) and environmental

parameters E (unmodifiable by single nodes, see Table II)

which affect the performance of the overlay, described in

metrics M (see Table III). For the proof-of-concept, we use

Chord in the evaluations, which was modified to enable the

change of parameters at runtime. Any overlay providing this

ability, which can be easily integrated into overlays like Pastry

or Kademlia, and using a monitoring component, can be

calibrated with our approach.

The simulated data that we create for our learning basis

consists of a lot of data points of a function f : O × E →
M which maps overlay and environment parameters (O, E)

onto metrics (M). We then rearrange the data to a function

f̂ : E × M → O. Thus, the function f̂ computes values

for the overlay configuration parameters, in the case that the

current values of the environment parameters are handed in

and desired quality metrics are defined. Using a distributed

monitoring approach and the function f̂ allow to implement

the MAPE cycle for p2p overlays. To approximate f̂ we use

Feed-Forward Neural Networks, one neural network for each

overlay parameter. We found that using one neural network for

predicting each overlay parameter separately results in lower

error rates than using one neural network for predicting all

parameters at once.

IV. DATA GENERATION

In this section, we present how we create valid tuples of

the function f for the learning data set by using thorough

simulations. In Sec. V, we then discuss how the function f̂

is learned based on this data set. For the data generation we

use the p2p system simulator PeerfactSim.KOM [18], [19]. As

the main overlay we use Chord, which is modified to allow

the adaptation of configuration parameters at runtime. The

values of the metrics are measured via the simulator itself.

In real networks this can be done by a monitoring approach,

e.g. SkyEye.KOM [4]. At the end of each simulation run, we

get tuples of the form (m1, ...,mr, e1, ..., es, o1, ..., ot), with

mi ∈ M , ej ∈ E and ok ∈ O.

To compute a suitable approximation, one needs to vary

the values of each parameter and run a simulation with this

modified setting (called full factorial design). For computing

all possible combinations of parameter values for parameters

pi, the total number of combinations is
∏n

i=1 |pi|. Having 13

different parameters with a few of four variations each, we

get 413 = 67,108,864 different combinations. It is infeasible

to simulate this many configurations nowadays.

To decrease the number of different combinations we build

up all possible combinations only for the environment param-

eters. For every such combination of environment parameters

we vary every overlay parameter only once while setting all

other overlay parameters to predefined default values. We

call this the mixed factorial design. Thus, the number of

all combinations with environment parameters ej and overlay

parameters ok is
∏s

j=1 |ej | ·
∑t

k=1 |ok|. The default values for

this mixed factorial design are shown in the second column of

Table IV in bold print. With this adjustment, we end up with

2,100 ·31 = 65,100 combinations. This number is simulatable

and seems to be a good compromise.

Furthermore, we apply a basic setup and vary just one

overlay parameter more granular (called one factorial design).

The values for the variations of the overlay parameters are

shown in the third column of Table IV. All parameters are set

to default values (bold print) and just the overlay parameter we

2

13-th IEEE International Conference on Peer-to-Peer Computing

TABLE I
CONFIGURATION PARAMETERS

Code Overlay Parameter Unit default

o1 Message Timeout s 10
o2 Message Resend # 3
o3 Operation Timeout s 120
o4 Operation Max. Redos # 3
o5 Max Hop Count # 50
o6 Upd. Finger Table Intv. ms 30
o7 Upd. Neighbors Intv. ms 30
o8 Upd. Successor Intv. ms 30

TABLE II
ENVIRONMENTAL PARAMETERS

Code Env. Parameter Unit default

e1 Node Count # 1000
e2 Churn Factor # 0
e3 Mean Session Length s ∞
e4 Bandwidth MB/s OECD
e5 Random Lookup Rate 1/h 30

TABLE III
METRICS

Code Metrics Unit

Messages

m1 Avg. Network Message In #
m2 Avg. Network Message Out #
m3 Avg. Transport Message In #
m4 Avg. Transport Message Out #
m5 Avg. Forwarded Queries #
m6 Avg. Service Message Throughput #/s
m7 St. Dev. Service Message Throughput #/s
m8 Avg. Service Message Count #
m9 St. Dev. Service Message Count #
Traffic

m10 Avg. Network Bytes Sent kB
m11 Avg. Transport Bytes Sent kB
m12 Avg. Free Upload Bandwidth kB/s
Performance

m13 Avg. Hop Count #
m14 Avg. Lookup Hops #
m15 St. Dev. Lookup Hops #
m16 Avg. Lookup Duration s
m17 St. Dev. Lookup Duration s
m18 Avg. Operation Duration s

TABLE IV
PARAMETER VARIATIONS

Code Mixed Factorial One Factorial

o1 5, 10, 20 2,3,4,5,8,10,12,15,18,20
o2 0, 1, 3, 10 0,1,2,3,4,5,7,8,9
o3 60, 120, 300 60,90,120,150,180,

210,240,270,285,300
o4 0, 1, 3, 10 0,1,2,3,4,5,7,8,9,10
o5 5, 10, 25, 50, 100 3,5,7,10,17,35,50,75,100
o6 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60
o7 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60
o8 3, 10, 30, 60 3,5,7,10,15,20,30,40,50,60

e1 10, 33, 100, 330, 1000
1000, 3300, 10000

e2 0, 1

10
, 3

10
0

e3 30, 60; 180,∞ ∞
e4 OECD, random: 1-2 OECD

5-10, 10-30, 1-30
e5 0, 1, 3, 6, 30 30

want to predict is varied. The environment parameters are not

varied. We apply ten variations to each of the eight parameters

in O, so we end up with 10 · 8 = 80 combinations. Every

combination is simulated five times, each with a different

random seed and each tuple from each seed is used to train the

neural network. Thus, it can happen that the neural network

receives different metric values for the same parameter setting.

Having this data set with a large number of configurations

varied, we apply our neural network-based learning approach

to learn how to set configurations in order to reach desired

quality levels in p2p overlays.

V. DATA PREDICTION

In this section, we approximate f̂ : E×M→O. For every

overlay parameter oi ∈ O we construct a neural network which

takes the environment parameters E and the metrics M as

input and has one overlay parameter as output, so we get |O|
different neural networks. To train a neural network ni for oi
we ignore all overlay parameters in the tuples of generated

data except oi, so for the training of each neural network ni

we get (m1, . . . ,mr, e1, . . . , es, oi).
We also apply feature selection algorithms before con-

structing a neural network to reduce the number of input

attributes presented to the neural network. Feature selection

algorithms try to find attributes which are redundant or can be

omitted without a big loss of information. We use Correlation-

based Feature Selection [20] and the Principal Component

Analysis [21], which are part of WEKA [22]. To construct and

train the neural networks we use the encog framework [23],

especially the Feed-Forward Neural Network implementation

with resilient backpropagation.

The abstract structure of the neural networks is as follows:

The input layer consists of input neurons for every metric

and every environment parameter. The hidden layer(s) may

contain arbitrarily many neurons and the output layer consists

of only one neuron, the overlay parameter we want to predict.

Thus, we need one neural network of this structure for every

chord parameter. In our evaluation we use one or two hidden

layers with up to 100 neurons and make encog choose a

good configuration. Depending on whether we apply a feature

selection algorithm and which features are found important,

the number of metrics and environment parameters in the input

layer may vary. After training the neural network, the number

of input neurons cannot be changed and only the attributes

used while learning are presented to the neural network. Using

feature selection algorithms reduces the number of necessary

attributes while maintaining the prediction quality, thus leading

to less computational overhead. Neuronal networks can only

predict parameters for reachable metric constellations, which

should be defined by experts.

The learning process is structured as follows: 1) Split the

labeled data into 70% training data (T), 20% validation data

(V) and 10% prediction data (P). 2) Train the neural network

with T . 3) Compute the error on V . 4) If stopping criterion is

not met, go to 2. 5) Compute the error on P .

As stopping criterion we use any of the following condi-

tions: a) Perform at most 10,000 training steps. b) The error

rate on V did not change significantly or got worse in the last

30 training steps. c) The error rate is low enough (< 0.01).

The split of the data in Step 1 is necessary as neural net-

works tend to overfit. Stopping criterion b) prevents overfitting,

as this indicates that the neural network is starting to learn the

training data by heart and loses the ability to abstract the data

characteristics. At the end we also want to know the error rate

on data that did not influence the training phase, i.e. not on

V . Therefore we compute the error on P in Step 5.

The learning process is done for every overlay parame-

ter with Correlation-based Feature Selection (cfs), Principal

Component Analysis (pca) and without feature selection (no

fs). Furthermore, we repeat this process with raw, normalized

and standardized data. The results for normalized data perform

best, the results of the others are therefore left out.

First, we evaluate our approach on the whole data set with

65,100 combinations (cf. Sec. IV). Unfortunately, the mixed

factorial approach leads to results that are biased towards the

default values. Since we vary only one overlay parameter

3

13-th IEEE International Conference on Peer-to-Peer Computing

Parameter

Value

X

Parameter

Value

X‘

Metric

Vector

M

Metric

Vector

M‘
Simulation Simulation

Neural

Network

 compare
 compare

Fig. 1. Steps of Evaluation

while leaving the other overlay parameters set to default

values, these default values occur more often than the non-

default values. Recall that a tuple for training the neural

network ni to predict the overlay parameter oi looks like

(m1, . . . ,mr, e1, . . . , es, oi). In the majority of such tuples,

the value of oi is the default value for oi. The best approxi-

mation the neural network finds is to always predict the default

value. With this behavior, the overall error rate is very low but

the error rate for a non-default value is very high. This is not

intended, but a reasonable trade-off between the number of

combinations and the accuracy of the results.

VI. EVALUATION

In the following we present the results of the one factorial

setup. We use the Root-Mean-Squared error to measure the

quality of our approach in learning the interdependencies of

parameters and metrics, as well as the quality of f̂ . For

the latter, we measure the difference of the learned and the

predicted parameter setting for a desired quality metric tuple.

First, we investigate the error rates on the validation data

set and prediction data set. Fig. 2 shows the error rate on the

validation data set V for normalized data with and without

feature selection. We observe that the Principal Component

Analysis (pca) is performing worse for o1, o6 and o8 in

comparison to Correlation-based Feature Selection (cfs) and

no feature selection (no fs). In average its error rates are

higher. The approaches cfs and no fs perform equally for most

parameters, while no fs is slightly better except for o2. Fig. 3

shows the error rate on the prediction data set P for normalized

data with and without feature selection. We observe even larger

error rates with the pca compared to Fig. 2. Errors larger than

100% are reached as the neural network is used for regression.

Both, the cfs and no fs approaches show good results.

Next, we focus on the prediction of overlay parameter

values for a given p2p overlay metric. We display our steps

of evaluation in Fig. 1: First, we choose a parameter p and

a value X for this parameter. All other parameters are set to

predefined default values. With this parameter setting we start

a simulation and get a value for every metric, denoted by a

metric vector M . The metric vector M represents the desired

state for the p2p network. We then use our trained neural

network to predict a value X ′ for overlay parameter o based on

the M . The value X ′ describes the parameter configuration for

o, which should result in the network quality denoted by M . In

order to check the quality of X ′, we simulate the p2p overlay

with X ′ and all other parameter values as default again and get

another metric vector M ′ which is compared to M . The quality

of the learning approach is then judged on the difference of

X and X ′, as well as M and M ′. In the following one metric

value is shown for each overlay parameter, selected from those

metrics which change if we adapt the overlay parameter.

TABLE V
COMPARISON OF X , X′ , M AND M

′

Timestamp X X
′

M M
′ |1 − M

M′
| |1 − X

X′
|

For o1 and m16

w1 6s 6s 0.14 0.15 0.07 0.00
w2 11s 11s 0.18 0.20 0.10 0.00
w3 19s 18s 0.24 0.27 0.11 0.06

For o6 and m2

w1 4s 4s 175.00 173.66 0.01 0.00
w2 25s 26s 39.60 38.34 0.03 0.04
w3 55s 54s 24.50 25.51 0.04 0.02

For o7 and m2

w1 6s 4.6s 65.80 77.27 0.15 0.30
w2 25s 27.5s 36.60 35.98 0.02 0.09
w3 51s 55s 31.70 31.63 0.00 0.07

For o8 and m2

w1 4s 3.9s 60.21 60.90 0.01 0.03
w2 37s 36s 34.27 34.10 0.00 0.03
w3 55s 52s 33.21 33.00 0.01 0.06

We concentrate on parameters which had acceptable error

rates for the test and validation set without feature selection.

Thus, we select message timeout (o1), update fingertable

interval (o6), update neighbors interval (o7) and update suc-

cessor interval (o8). The corresponding error rates for the test

and validation set are always below 20%. Other parameters

had higher error rates, due to low interdependencies or an

environmental setting in which effects are rare. For every

parameter we measure the metric three times in a time gap

of ten minutes after each measurement to make sure that

the metric values do not change significantly after a change

of the parameter value. In the following we always present

nine measurements with three measurements belonging to one

parameter change. The measurements belonging to the same

parameter change are labeled wi. We average the three mea-

surements and compare the exact values for every investigated

parameter. The predicted metric value is marked as ”×” while

the optimal value is marked as ”+”. We compare the optimal

and predicted parameter values and also the corresponding

metric values, aiming at a low difference.

A. Results

Table V shows the prediction of three different parame-

ter values for the parameters message timeout (o1), update

fingertable interval (o6), update neighbors interval (o7) and

update successor interval (o8) and the corresponding values of

the metrics average lookup duration (m16) for o1 and average

network messages out (m2) for o6, o7 and o8. Figs. 4 to 7 show

the corresponding plots.

The error rate of the planned and reached metric quality,

|1− M

M
′ |, as well as the difference between X and X ′, |1− X

X′
|,

is in most cases below 15%, thus acceptable. For o1 the values

of the metric m16 change slightly over time due to network

fluctuations, resulting in an error rate around 10%. For o7 and

m2, in the first measurement series w1 the error rate is 15%.

For small values of o7 the influence on m2 might be large,

for increasing o7 the influence might vanish. This effect is

supported by the prediction quality in w2 and w3, as well as

the large error |1− X
X′

| for w1. While the result is quite good,

the neural network could do better.

4

13-th IEEE International Conference on Peer-to-Peer Computing

 0

 20

 40

 60

 80

 100

 120

o1 o2 o3 o4 o5 o6 o7 o8

E
rr

o
r

in
 P

e
rc

e
n
t

Parameter

cfs

pca

no fs

Fig. 2. Prediction Error on Validation Data

 0

 20

 40

 60

 80

 100

 120

o1 o2 o3 o4 o5 o6 o7 o8

E
rr

o
r

in
 P

e
rc

e
n
t

Parameter

cfs

pca

no fs

Fig. 3. Prediction Error on Prediction Data

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

w1 w1 w1 w2 w2 w2 w3 w3 w3

A
v
g
.
D
u
ra
ti
o
n
 (
m

1
6
)

Message Timeout (o1)

optimal

predicted

Fig. 4. Prediction of o1: Message Timeout

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

w1 w1 w1 w2 w2 w2 w3 w3 w3

A
v
g
.
N
e
t
M
e
s
s
a
g
e
s
 O
u
t
(m

2
)

Update Fingertable Interval (o6)

optimal

predicted

Fig. 5. Prediction of o6: Update Fingers Interval

 20

 30

 40

 50

 60

 70

 80

 90

w1 w1 w1 w2 w2 w2 w3 w3 w3

A
v
g
.
N
e
t
M
e
s
s
a
g
e
s
 O
u
t
(m

2
)

Update Neighbors Interval (o7)

optimal

predicted

Fig. 6. Prediction of o7: Update Neighors Interval

 30

 35

 40

 45

 50

 55

 60

 65

w1 w1 w1 w2 w2 w2 w3 w3 w3

A
v
g
.
N

e
t
M

e
s
s
a
g
e
s
 O

u
t
(m

2
)

Update Successor Interval (o8)

optimal

predicted

Fig. 7. Prediction of o8: Update Successor Interval

Thus, our approach demonstrates that for a given metric

tuple, a configuration parameter is found, which when applied,

results in the desired quality metric. The difference between

the desired metric value and the reached metric value is very

small. Using the presented learning approach, one can calibrate

the p2p overlays offline or online, identify quality ranges and

reach desired quality levels.

VII. CONCLUSIONS

Distributed control loops in p2p overlay networks allow

to operate overlays that are able to monitor their perfor-

mance statistics, analyze these statistics and adapt through

reconfiguration in order to reach and hold desired quality

metrics. In this paper we address the issue on how to set

the configuration parameters in a p2p overlay at runtime, if

a desired performance state is not yet reached. For that we

systematically simulate the configuration parameters of Chord

and create a data set, which is then used to learn the inter-

dependencies between parameters and quality metrics using

feed-forward neural networks with resilient backpropagation.

The neural networks learn which configuration parameters

result in which quality metrics. Evaluation shows in several

proof-of-concepts, that for a given reachable quality metric

a configuration parameter is found which can be applied in

the p2p overlay. Applying this configuration parameter leads

to the desired quality. On the long term, we envision a p2p

overlay that is able to learn how to reach any valid quality

level and, by analyzing the current needs of the users, to also

set the quality goals accordingly.

REFERENCES

[1] N. Liebau, K. Pussep, K. Graffi, S. Kaune, E. Jahn, A. Beyer, et al.,
“The Impact Of The P2P Paradigm,” in Proc. of AMCIS, 2007.

[2] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of In-
formation Technology,” http://www.research.ibm.com/autonomic/, 2001.

[3] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation of
Aggregate Information,” in Proc. of IEEE FOCS, 2003.

[4] K. Graffi, A. Kovacevic, S. Xiao, and R. Steinmetz, “SkyEye.KOM: An
Information Management Over-Overlay for Getting the Oracle View on
Structured P2P Systems,” in Proc. of IEEE ICPADS, 2008.

[5] K. Graffi, D. Stingl, J. Rueckert, et al., “Monitoring and Management
of Structured Peer-to-Peer Systems,” in Proc. of IEEE P2P, 2009.

[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions,” in Proc. of ACM SIGCOMM, 2001.

[7] R. van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A Robust and
Scalable Technology for Distributed System Monitoring, Management,
and Data Mining,” ACM Trans. on Comp. Sys., vol. 21, no. 2, 2003.

[8] P. Yalagandula and M. Dahlin, “Research Challenges for a Scalable
Distributed Information Management System,” The University of Texas
at Austin, Tech. Rep. CS-TR-04-48, 2004.

[9] Z. Zhang, S. Shi, and J. Zhu, “SOMO: Self-Organized Metadata Overlay
for Resource Management in P2P DHT,” in Proc. of IPTPS, 2003.

[10] M. Jelasity and A. Montresor, “Epidemic-Style Proactive Aggregation
in Large Overlay Networks,” in Proc. of IEEE ICDCS, 2004.

[11] M. Jelasity, A. Montresor, and Ö. Babaoglu, “Gossip-based Aggregation
in Large Dynamic Networks,” ACM Trans. on Comp. Sys., vol. 23, 2005.

[12] V. Rapp and K. Graffi, “Continuous Gossip-based Aggregation Through
Dynamic Information Aging,” in Proc. of IEEE ICCCN, 2013

[13] M. Ryu and U. Ramachandran, “DynaStream: Adaptive Overlay Man-
agement for Peer-to-Peer Video Streaming,” in Proc. of ICCCN, 2010.

[14] X. Liao, F. Guo, and H. Jin, “Service Quality Assurance Mechanisms
for P2P SIP VoIP,” in Proc. of IFIP NPC, 2011.

[15] S. Haykin, Neural networks and learning machines. vol. 3, New York:
Prentice Hall, 2009.

[16] G. Cybenko, “Approximation by Superposition of a Sigmoidal Func-
tion,” Mathematics of Control, Signals, and Systems, vol. 2, 1989.

[17] M. Riedmiller, et al., “A Direct Adaptive Method for Faster Backprop-
agation Learning: The RPROP Algorithm,” Proc. of IEEE ICNN, 1993.

[18] A. Kovacevic, S. Kaune, H. Heckel, A. Mink, K. Graffi, O. Heckmann,
and R. Steinmetz, “PeerfactSim.KOM - A Simulator for Large-Scale
Peer-to-Peer Networks,” TU Darmstadt, Tech. Rep. Tr-2006-06, 2006.

[19] K. Graffi, “PeerfactSim.KOM: A P2P System Simulator – Experiences
and Lessons Learned,” in Proc. of IEEE P2P, 2011.

[20] M. A. Hall and L. A. Smith, “Feature Selection for Machine Learning:
Comparing a Correlation-Based Filter Approach to the Wrapper,” in
Proc. of AAAI FLAIRS’99, 1999.

[21] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points
in Space,” Philosophical Magazine, vol. 2, no. 6, 1901.

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” SIGKDD

Explorations, vol. 11, no. 1, 2009.
[23] Heaton Research, “Encog Machine Learning Framework.” [Online].

Available: https://github.com/encog

5

