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Abstrac t .  This paper concerns the asymptotic validity of the bootstrap 
method in a non-regular model. Specifically, it is shown that the paramet- 
ric bootstrap of the change-point parameter in the change-point hazard rate 
model works. 
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1. Introduction 

There exists a large literature establishing the validity of the bootstrap meth- 
od. In general, it works well when attention is paid to estimators whose limiting 
distribution is normal. This includes smooth functions of means (Hall (1988)) 
but also von Mises functionals and quantiles, etc. (Bickel and Freedman (1981)). 
However, there are many examples showing that bootstrap method is not always 
consistent (e.g. Athreya (1987), Hall et al. (1991)). Specifically, the method fails 
when bootstrapping the mean of a stable law, or the rank of some vector parameter 
for which ties occur. In such cases, the limiting distribution of the estimators is 
non normal. Thus, when such a situation arises one needs to be careful not to 
apply the bootstrap naively. In this paper, motivated by the estimation problem 
in the change-point hazard rate model (e.g. Miller (1960), Mathews and Farewell 
(1982), Nguyen et al. (1984), Matthews et al. (1985), Yao (1986, 1987), Pham 
and Nguyen (1990), Antoniadis and Gr~groire (1991)), we will look at the validity 
of the bootstrap method in this special situation. The model is non-regular and 
yet a certain form of the maximum likelihood estimator exists and is strongly 
consistent (Pham and Nguyen (1990)). However, the limiting distribution of the 
change-point estimator is non normal and quite complicated. Thus, a bootstrap 
approach, if it works, would be useful to get an estimate of this distribution. Note 
that the same distribution arises also in a more general problem of estimating the 
location of a discontinuity in density (Chernoff and Rubin (1956)). 
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We will show that the parametric bootstrap of the change-point hazard rate 
model is indeed consistent. This seems to be due to the parametric nature of 
the problem, since the nonparametric version does not work. The proof for the 
consistency exploits this aspect, using an argument parallel to the one establishing 
the limiting distribution of the change-point estimator (Pham and Nguyen (1990)), 
bypassing the common method based on Mallows metric. 

The model and the bootstrap method for obtaining the distribution of the 
estimator are described in Section 2. Section 3 presents the main results, the 
proofs of which are relegated to Section 4 to facilitate the reading. 

2. The model and the bootstrap 

In its simplest form, the change-point hazard rate model is described by the 
following parametric family of densities on the positive real line 

fo(t) = ae-arl(O < t < T) + be-ar-b( t -~) l ( t  > r) 

where 0 = (a,b,r)  E (0, o0) 3, and 1(.) denotes the set indicator function. A 
particular feature of this family is fo (t) has a discontinuity at the change-point 
parameter T. Thus, this model does not fall into the standard setup in asymptotic 
maximum likelihood theory. However, a modified form of the maximum likelihood 
estimator has been successfully obtained and its asymptotic properties have been 
investigated (Yao (1986), Pham and Nguyen (1990)). 

Let X1, . . .  ,X~ be random sample from fOo, where 0o = (a0, b0, TO) denotes 
the true value of the parameter. The log likelihood function of the model is 

n f~  
E log fo (Xi) = n log fo(t)dF~(t) 
i=1 

where F~(.) is the empirical cumulative distribution function (CDF) based on 
X 1 , . . . ,  Xn. The above log likelihood can be maximized with respect to a and b 
for fixed r, yielding the values 

(2.1) [/0 l a~(7) ---- Fn(7)/  (t - 7)dFn(t) + 7 , 

bn(T) = [ 1 -  F~(T)]/ [ f ~ ( t -  7)dF~(t)] . 

Putting these values into the above log likelihood leads to the maximization (with 
respect to w) of nn(w) = F~(w)logan(w) + [1 - F~(T)]logbn(w). However, the 
above function is well defined only on [mini=l ..... n Xi, maxi=l ..... n Xi) and even by 
restricting to this interval it is unbounded (Nguyen et al. (1984)). This happens 
as ~- approaches the upper bound of the interval. Note that the function is well- 
behaved in the neighbourhood of zero, with the convention that 0 log 0 = 0. 
Thus, a natural way to define the maximum likelihood estimator is to restrict 
the maximization of Ln to the interval [0, Xn-l ,n] where XI,n, .  •., X~,~ denotes 
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the order statistics of the Xi's (see Yao (1986)). However, using other interval 
such as [0, X~,~ - el, where e is a fixed positive number, would do equally well 
(see Pham and Nguyen (1990)). Further, if one has reliable prior information on 
To, one might want restrict the maximization of Ln to a fixed interval known to 
contain TO. Therefore, for reason of generality, we shall consider the maximization 
of L~ in some sub-interval [T~, Tn" ] of [0, Xn,n) where T~ = T~(XI , . . .  ,Xn) and 
Tin ~ = T ~ ( X ~ , . . . , X ~ )  are functions of the data. By definition, the maximum 
likelihood estimator ~ of T, realizes the maximum of Ln(') on ITS, T~ ~] and the 
one for 0 is 0n = (an(¢~), bn(~) ,  ¢n)- Note that  there is a technical difficulty since 
the function L~ is not continuous at the data points and thus, may not admit 
a maximum on [T~, T~]. In this case, however, since this function is continuous 
in each open interval (Xi-l ,n,  Xi,n), its supremum equals its left or right limit at 
some data point, which is then taken as the ~ .  Under mild conditions on T~, 
T~ ~, it has been shown in Pham and Nguyen (1990) that Tn is strongly consistent, 
which implies the strong consistency of 0n (an earlier weak consistency result has 
been obtained by Yao (1986)). Moreover, n(~n - TO) converges in distribution to 
a random variable RI, where I is the index realizing the maximum of 

and 

Si = i log(ao/bo) + e -a°~'° (bo - ao)Ri, - oc  < i < oo, 

o 

E ( e a ° ' r ° / a o ) Z j ,  

i~ i ~ 3 =~ 
i 

j = l  

if i < 0, 

if i > 0, 

Zj, - o c  < j < oc being independent exponential variates with unit mean. 
We will use the parametric bootstrap to approximate the distribution of 

n(fn - TO). Write n(~n - To) in the form U~(X1, . . . ,  Xn, TO) and let X ~ , . . . ,  X~ 
be random variables which, conditionally on X1 , . . . ,  X~, are independently dis- 
tributed according to f t .  Then the bootstrap distribution for n(~n - To) is simply 
the distribution of Un(X~ , . . . ,  X~, ¢~). 

3. Consistency of the bootstrap 

We show here the almost sure consistency of the bootstrap, i.e. for almost all 
sample sequences X1, X2 , . . . ,  the conditional distribution of Un(X~ , . . . ,  X~, ~ )  
converges weakly to the distribution of RI. 

By reasoning conditionally on a realization of the sample X1 , . . . ,  Xn, one is 
led to consider a sequence On = (an, bn, Tn) E (0, eC) 3 converging to 00 = (ao, bo, To) 
and for each n, a random sample X~, . . .  ,X~, of size n, from fo~. Let F~(t) be 
the empirical CDF based on Xi~,. . . ,  X~ and L~ (T), a~ (T), b~ (T) be defined in the 
same way as Ln(7), an(T), bn(T), with Fn(T) replaced by F~*(T) and let ¢~ realize 

! * I f  * the maximum of L* over [T~(XI, . . .  , X*), T~ ( X I , . . .  , X~)]. We will prove that 
the distribution of n(4~ - Tn) = U~(X~ , . . . ,  X'n, Tn), when the X[ ' s  are sampled 
from fo~, converges weakly to that of RI. This would imply that the conditional 
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distribution of U n ( X ~ , . . . ,  X*,  ~,~), given X 1 , . . . ,  Xn, when the X [ ' s  are sampled 
conditionally from f ~ ,  converges weakly almost surely to tha t  of RI. 

We use a similar approach as in the proof for the limiting distr ibution of 
n(~n - r0) (Pham and Nguyen (1990)). We show tha t  the result there remains 
valid for the random variable n(¢~ - r,~) with fOo replaced by fort. In the sequel, 
Po,~ denotes the probability associated with fo~ and X* * 1,~, • • . ,  Xn,,~ denote the 
order statistics of the X[ 's .  Our method consists of the following steps. 

LEMMA 3.1. As n ~ oo, IIF* - [lOo 1[ ~ 0 and [[H* - Hoo [] --+ 0 in Poo- 
probability where Foo(X) = f o  feo(t) dr, H*(x )  = f ~ [ 1 - F ~ ( t ) ] d t ,  Hoo(X) = f ~ [ 1 -  
Foo (t)]dt, and [[. [I denotes the sup norm. 

PROPOSITION 3.1. Suppose that as n --+ oo, P o . { T ; ( X 1 , . . . , X , ~ )  < ro < 
" * X *  X *  Tr~ (X1, • • • , n)} "-+ 1 andn-llog[X*,n-,n~V"g ¥-*,.~1, • - • , n)] --~ 0 in Pe -probability. 

Then ^* T£ - r~ ~ 0 in Pe~-probability, as n --+ ~ .  

Note. The second condition on T"  means tha t  1/[X~,~ -T~n ' (X~ , . . . ,  Xn) ] = 
o(e '~) in Po -probability as n -+ oo, since X,~,,~/log(n) --+ 1/bo in Pc, -probability 
(see the end of the proof of Proposit ion 3.1). This is a very mild condition and 
is satisfied in particular if T"  = 52,*_1, ~ (see the arguments in Pham and Nguyen 
(1990)). 

LEMMA 3.2. Let a(r),  b(T) be defined as a~(r) and bn(T) with Fn(x)  replaced 
by Feo (x) -- f o  feo (t)dt. Then a(T) --+ ao, b(r) --+ bo, as r --+ 7o. Further 

(i) d L ~ / d r = [ b ( r ) - - a ( T ) ] [ 1 - - F e o ( r ) J + e n ( T ) ,  T T k X ~ , . . . , X ~ ,  

(ii) L ~ ( X ~ + )  - L ~ ( X * - )  = { log[a(X*+) /b(X*+)]  + e ~ ( X * ) } / n ,  

i 
r + h  

(iii) L~(T + h) = L ; ( T )  + {[b(t) - a(t)][1 - Foo(t)] + en( t )}dt  
J T  

l 
r ÷ h  

+ {log[a(t)/b(t)] + e~( t ) }dF: ( t )  
4 T  

where e~(r) denotes a term tending to 0 in Pc-probabi l i ty  as n -+ oo, uniformly 
in r in any compact interval in (0, ~ ) .  

PROPOSITION 3.2. P0n { n ( ~  - T~) > c} tends to 0, as c ~ oo, uniformly in 
n, for  all n su]fieiently large. 

LEMMA 3.3. Denote by M* the highest index i E {1, n} such that X e  
is less than %,  then as n -+ oo, the pairs of random variables 

n ( X ; ~ . + ~ , ~  - T~) ,  n [ L ; ( X ; ~ . + i , n )  - L ; ( T ~ ) ] ,  i = 1 --  k , . . . ,  k ,  

for  fixed k, converge jointly in law to the pairs Ri, &,  i = 1 - k , . . . ,  k. 

LEMMA 3.4. As k ~ oo, limsupn__+o o Pen{K* • ~*(k)} converges to O, where 
g-~(k) is the point X ~ . + < ~  realizing the m a x i m u m  of L*~(X~.+<,~+), i = 1 - 
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k , . . . ,  k. The same result holds if L*(.+) is replaced by L ; ( . - )  or max{L*(.+),  
L*(- - )} .  

Details of proofs for the above results are presented in the next section. 
The results of Lemma 3.1 show that a~(.) and b~(.) converge in P0 -probability 

as n --~ oc to a(.) and b(.), as defined in Lemma 3.2, uniformly in any compact 
interval in (0, oo), since by (2.1) and integration by parts, one also has 

(3.1) a~(7) = F~(~-)/[H~,(0) - H~(T)], b~(~-) = [1 - F~(~-)]/H~(7) 

where H~* is as in Lemma 3.1. These convergence results and those of Lemma 3.1 
play an important role in proving Proposition 3.1. They also help proving Lemma 
3.2, part (iii) of which, together with the property of F~ is crucial for Proposition 
3.2. This proposition together with Lemma 3.3 and (i) of Lemma 3.2 yield Lemma 
3.4. The main result (consistency of the bootstrap) is a consequence of Lemmas 3.3 
and 3.4, using an argument similar to the proof of Theorem 2 in Pham and Nguyen 
(1990). Explicitly, by Lemma 3.4, for any e > 0, there exists a positive integer 

p~ ^* K such that for all k _> K, 0~{~-~; ¢ ~2(k)} < c for all n sufficiently large. On 
the other hand, by Lemma 3.3, n[~*(k) - ~ ]  converges in distribution as n --+ oc 
to Ri(k), where I (k)  is the index realizing the maximum of Si, 1 - k < i <<_ k. 
This means that for any real number t, Po~{n[~(k)  - f~] _< t} --~ P{RI(k) _< t} 
as n ~ oc (note that the CDF of Ri(k) is continuous). Thus, IPo~{n('~ - ¢-~) <<_ 
t} - P{RI(k) < t}l < 2c for all n large enough. But R~(k) ~ R~ almost surely as 
k --+ oc, implying that IP{RI(k) < t} - P{R~  < t}l < e for all k large enough. 
Hence, taking k as required, for any real number t, IPo~{n(¢-~ - ~ )  <_ t } - P { R f  <_ 
t}l < 3c for all n large enough, which is the desired result. 

Note. If one uses the nonparametric bootstrap, then X [  would be one of 
the X I , . . . , X ~ .  Now, it can be shown that Lemma 3.4 is still valid, meaning 
that 7~* will be one of the X 1 , . . . ,  X~ with probability tending to one as n --~ oc. 
Thus, the conditional distribution of n(Tn* -~-~), given X1, . . .  ,X~, would have 
all its mass concentrated on the points n(X i  - 7,~) with probability tending to 
one as n --~ ce. Note that ~-~ itself is also one of the points Xi with probability 
tending to one. But the points n(XM+i,n -- ~-0), M denoting the largest index 
m for which X,~,n > TO, converge in distribution to the points of increase of an 
honogeneous Poisson process, as n ~ oo. Since these points are discrete, the 
conditional distribution of n(~-~ - ~-~), given X 1 , . . . ,  Xn, has support converging 
to a discrete random set, and hence cannot converge in law to the distribution of 
RI,  which has support the whole real line. Thus, the nonparametric bootstrap is 
inconsistent. 

4. Proofs of results 

PROOF OF LEMMA 3.1. The proof for the pointwise convergence, in Po,~- 
probability as n --+ oo, of F* to Foo and of H* to Hoo is standard, noting that 

H*(x)  = fx°°(t - x)dF*(t)  by integration by parts. The convergence in the sup 
norm follows from the monotonicity of F* a n d / t *  and the convergence of H*(0) 
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to Hoo(O) (one already has Fn*(0) = Foo(O) = 0 = H~(oc) = HOo(OC) and F~(c~) = 
TOo (co) = 1). For completeness, we provide here a brief proof for this assertion 
concerning H i (the one concerning F~ is similar). Let m be a large integer and 
define ti by Hoo (ti) = Hoo (0) + [Hoo (oo) - Hoo (0)]i/m, i = 0 , . . . ,  m (thus to = 0, 
t,~ = oo). Then for t E [0, oc), ti-1 ~ t < ti for some i E {1 , . . . ,  m} and hence, 
H* and Hoo being non increasing functions, Hi( t  ) - Hoo(t) < Hi( t i_ l  ) - Hoo(ti) 
and Hoo(t) - Hi ( t  ) <_ Hoo(ti-1) - Hi(ti).  Thus 

IIg  = Hooll max max[Hi( t i_l  ) - Hoo(ti),Hoo(ti_l) - H~(ti)]. 
i = l ~ . . . , m  

But the above right-hand side converges in P0 -probability as n ---* oc (m fixed) to 
maxi=l . . . . .  rn[goo(ti_l) - Hoo(ti)] = [H0o(0) - Hoo(Oc)]/m. Since m can be chosen 
arbitrarily, for any ~ > 0, Po (llgi-Hooll < ~ 0 a s  ~ oo, yielding the result. 

[] 

PROOF O F  PROPOSITION 3.1. By Lemma 3.1, it is clear that L~(T) converges 
in P0 -probability to 

L(7) = Foo (7) log a(T) + [1 - FOo (7)] log b(w), 

uniformly in any compact interval in (0, oc). Since L is uniquely maximized at 
TO (see Lemma 3 in Pham and Nguyen (1990)), one may expect that the point 
¢* realizing the maximum of L* over [T~(X~,... ,  X*), T~n'(X~,..., Xi)  ] converges 
to TO in P0n-probability. For this to happen, using the same arguments as in 
the proof of Lemma 1 in Pham and Nguyen (1990), one only needs the following 
further conditions, putting T~* = T~(X~, . . . ,  X*), T~'* = T~(X~ , . . . ,  X*), 

(i) the convergence is uniform in the random interval [T~'*, T~"*], in the sense 
that SUPr, <~<T,, IL*(T) -- L(7)I ~ 0 in P0 -probability, 

(ii) Po2{T~n ~ < TO < Tin ~* } -~ 1, 
(iii) L is continuous and L(To) > max{limsup~-_~ L(T) , l imsupr~ 0 L(T)} (in 

addition to having TO as the unique maximum). 
Condition (ii) is part of the assumptions while (iii) is already proved in Lemma 

1 in Pham and Nguyen (1990). Thus, one needs only to prove (i). Now, L*(~-) = 
F~(T) loga*(7) + [ 1 -  F*(T)]logb*(T) with a*(T) and b*(T) given by (2.2) and 
since F* converges uniformly on [0, co) to Foo in P0 -probability (Lemma 3.1), 
-F* log(F*) + (1 - F*)log(1 - F*) also converge uniformly to FOo log(F0o) + (1 - 
F0o) log(1 -Foo)  (by convention 0log0 = 0). Thus, one needs only to prove the 
uniform convergence, on [T~*,T~ ~*] in P0n-probability, of F* log[H*(0) -  H*] to 
Foo log[H0o (0) - Hoo] and of (1 - F~) log(H i)  to (1 - Foo) log(H0o). However, the 
convergence is already uniform on any half interval [a, oc) for the first random vari- 
able and on any half interval (0,/3] for the second. Since Foo (z)log[H0o (0)-Hoo (T)] 
and [1 - Foo (7)] log[H0o (z)] converge to 0 as T --~ 0 and 7 ~ oc, respectively, one 
needs only to show that for all 6 > 0, 

(i') limsupP0~ ~ sup F*(~-)tlog[H*(0)- H*(7)][ > ~ 
n--~oo [ Tin* <r<t' J 

--+0 

as t I --+ O, 
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(i") l i m s u p P 0 ~ /  sup [1-F~(7-)]Ilog[H*(T)]I>5}--~O 
n-~oo [ t"<_r<T~'* 

as ~tt ___+ 00.  

To proceed further, we first prove the following results: for any e > 0, there 
exist positive numbers  A, B such that  

sup F~(T)/Fo. (T) < A, 
"r>O 

B < inf [1 - F~(T)]/[1 -- F0,~(T)] _< sup[1 - F~(~-)]/[1 - FO,(T)] < A, 
0<~-<X~*,~ ~->0 

with P0 -probabil i ty exceeding 1 - e, for all n. Indeed, observe that  the ran- 
dom variables in the above inequalities have the same distr ibution when F~ is 
replaced by the empirical CDF of a sample U1 , . . . ,  Un from the uniform distribu- 
tion over [0, 1], Fo~(T) is replaced by T and X*,n by m a x ( U 1 , . . . ,  U~). Since the 
order statistics UI,~,...,U~,n of the Ui's have the same distr ibut ion as 
Z /(K"~n+l n + l  1/t/__,k=l Zk), . . . ,  Z~/(~k= 1 Zk) where Z 1 , . . . ,  Zn+l are independent  exponen- 
tial variates with unit mean, the three considered random variables have the same 
distr ibution as An, An and Bn, respectively, where 

i Z 1 @ . . .  -~ Z n +  1 i Z 1 @ . . .  @ Zn_v1 
A n =  max - B n =  min - 

i=1 ..... n n Z l  zr . . .  -~ Z i  ' i=1 ..... n ~t Z 1 4 -  , . .  -V Z i + l  

Now choose I, N high enough such that  with probabil i ty exceeding 1 - e/2, 
• i ( x ~ n + l  ~/(}-~-k=lZk) < 2, ~z_~k=lZk)/n < 2 for a l l i  > I, n > N.  Then c h o o s e A  > 4 

and high enough such that  with probabil i ty exceeding 1 - e/2, " i  /(Ek=l < v% 
i (Y~k=~ Z~)/n < v ~  for all i = 1 , . . . , I ,  n = 1 , . . . , N ,  one gets An < A with 

probabil i ty  exceeding 1 - e for all n. By a similar argument,  one can find B > 0 
for which Bn > B with probabil i ty  exceeding 1 - e. 

We now show (i'). From [1 - F~(~-)]T < H*(0) - H~(~-) _< % we get 

F,~(T)[ log[H~(0) - H*(T)][ _< F~(~-){I log ~-i + I log[1 - F£(T)]I}. 

But  with P0 -probabil i ty exceeding 1 - e, F* (T) < A Fo,~ (T), hence by choosing 
~- small enough, the above left-hand side can be bounded  by an arbitrarily small 
number  (with P0 -p ro b ab i l i t y  exceeding 1 -  e), yielding (i'). 

We now show (i ' ) .  For any e > 0, let A, B be such that  with P0 -probabil i ty 
exceeding i - e ,  [1-FrO(t)] < A[1-Fo~ (t)] for all t > 0 and [1-F*( t ) ]  >_ B[1-Fo~ (t)] 
for all t E [0, X*,n ). Then 

/? B [1 - ro~(t)]dt <_ H*(7) <_ A [1 - Fo.(t)]dt. 

Using the fact tha t  1 - Fo~ (t) = exp ( - t bn )  for t > T~, the above inequality yields 

B[Fo,~(X~,n) - Fon('r)]/bn <_ H*(T) <_ All - Fo.(T)]/bn <_ A/bn, 
for T >_ ~-n. 
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Since 1 - F~(X*_Ln  ) = 1/n, we also have n i l  - Fo.(X*_t,~) ] <_ 1/B with Po~- 
probabil i ty exceeding 1 -¢ ,  for all n. Let c(n) be defined by 1 - F 0 .  [c(n)] = 2/(nB), 
then for 7 <_ c(n), [1 - F o . ( X * n ) ]  <_ [1 -FO~(T)] /2 ,  hence with P0. -probabi l i ty  
exceeding 1 - 2¢: 

B[1-Fo,~(T)] / (2b~)<H~(T)<A/b~,  for all 7 E [T~,c(n)]. 

Again, with P0 -probabil i ty exceeding 1 - e, 1 - F~(r) <_ A[1 - Fob(r)]. Thus, 
taking t" > rn and large enough, for all r C [t",c(n)], [1 -F r~ ( r ) ]  ] l ogH*( r ) l  is 
bounded by an arbitrari ly small number  with Po~-probability exceeding 1 - 3e, for 
all n. 

On the other hand, for r < T'_n'* < X~,~, 1In <_ 1 - F~(r) _< 1 yielding 
( ~,~-T'n'*)/n < ( X ~ , ~ - T ) / n  < H~(7) < X ~ , ~ - 7  < Xn, ~ and hence if 
moreover r >_ c(n), 

[1 - F~* (7 ) ] ]  log[H*(7)]l 

< (1 - E*[c(n)])max[I log(X* ~ - T~'*)[ + logn,  I logX~,~l]. 

But  1 - F*[c(n)] <_ A{1 - Fo,~[c(n)]} = 2A/(nB)  with P0 -probabil i ty exceed- 
ing 1 - e. Also, for X,~,n > "ca, 1 - Fon(X*~) = exp( -X*nbn)  and hence 
1~(hA) < exp(-Xn,nbn) <_ 1 - FO,~(X.*_I,n) <_ 1/(nB), with P0 -probabil i ty ex- 
ceeding 1 -  e, for all n, yielding that  X*_l,~/(logn ) ~ 1/bo in P0 -probability. 
Thus, by the assumption of Proposi t ion 3.1 and the fact tha t  n -1 logn  --+ 0, 
[1 -F~*(7)]  I logH*(~-)l can be bounded,  for all 7 e [c(n),T'n'* ], by an arbitrari ly 
small number  with P0 -probabil i ty exceeding 1 - c, for all n large enough. This 
completes the proof of (i") and hence of Proposi t ion 3.1. [] 

PROOF OF LEMMA 3.2. The convergence, as 7 -~ To, of a(7) and b@) to a0 
and b0 is clear from their explicit expression, as obtained in Lemma 2 of P h a m  and 
Nguyen (1990). Now, direct computa t ion  shows that  dL~/d7 = [1 - F~* (7)] [b~ (T) - 
a~(T)] for T # X* * * 1 , " . , X ~ "  Then, from Lemma 3.1 and (3.1), Fn* , a*(.) and 
b*(.) converges to FOo, a(.) and b(.) in P0n-probability, uniformly on any compact  
interval of (0, oe), yielding (i). Also, since F~(X*+) = F * ( X [ - )  + 1/n, 

F~ ( X [ + )  log a~ ( X [ + )  - F~ ( X * - )  log a~(X* - )  

1 loga;(X;+)  + 
rt an(X i - )  
1 

= - l o g a * ( X * + )  + F~(X;-) log[1 + n - I F ~ ( X ; - ) - I ] .  
n 

Similarly, 

[1 - F~(X*+) ]  log b~(X~+) - [1 - F~ ( X [ - ) ]  log b * ( X [ - )  

1 
- -  l o g  b ~ ( X [ + )  + [1 - F * ( X * - ) ]  l o g { 1  - n - ]  [1 - F~(X[-)]-I}. 

n 
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It follows that 
* * * * * * * * 5~(X,  +) - C,~(Xi - )  = log[a,~(Xi +)/b,~(X i +)] /n  

* * - i  * * - 1  + Fg(x~-) log[ l+  n vg(x~-)  ] 

+ [ 1 -  < ( x ; - ) ] l o g { 1  - ~-* [ , -  * ~g(&-)]* -*} 
* * * * 

~ ~og[~(x~ +)/v~(x~ +)1/~. 

By a similar computation, L ; ( X [ - )  - L~(X[  +) ~ - l o g [ a ; ( X [ - ) / b ; ( X [ - ) ] / ~ .  
This yields (ii). The result (iii) then follows from integration, taking into account 
of (i) and (ii). ~ 

P a o o ~  oF PaoPos~w~oN a.2. pu~  D ;(h )  = F~(r~ + h) - Fg(r~). B y  ( i i i )  
of Lemma a.2 and the convergence, as r + to, of a(r), b(r) and 1 - Foo (r) to do, 
bo and exp(-ao%),  for any e > 0, p > 0, one has with P0~-probability exceeding 
1 - e ,  

~ ; ( ~  + h) - ~ ; ( ~ )  - h[(~0 - ~ o ) ~ x p ( - ~ 0 ~ o )  - ~ o g ( ~ o / V o ) > ; ( h ) l  

~ p[lhl + l>;(h)ll 

for all h su~ciently small and all n large enough. On the other hand, by the 
same argument as in the proof of Lemma A2 in Pham and Nguyen (1990), noting 
that E[D~(h)~ = Fo~(% + h) - Fo~(r~) = D~(h) and var{D~(h)} = lD~(h)l(1 - 
I ~ ( h ) l ) / ~ ,  for ~1 ~ > 0, 

uniformly in n, where d~(h) = fo~(r~+) or - J } , , ( r ~ - )  according to h positive or 
not. Clearly dn(h) ~ d(h) defined in the same way as dn(h) with 0~ replaced 
by 0o. Thus, one may choose c = c(e, p) large enough such that for all h ~ 
[-~/~,-~/~] v [~/~, */~], 

] L ; ( ~  + h) - L ; ( ~ )  - h[(b0 - do) e x p ( - a o ~ o )  + log(ao/bo)d(h)]] ~ 2plhl, 

with Fo~-probability greater than 1 - e, for all n sufficiently large. The last term 
in the above left-hand side is negative since 1 - bo/ao < log(ao/bo) < ao/bo - 1 
(do ¢ bo). Thus, taking p small enough, with P0~-probability exceeding 1 - e, 
L ; ( %  + h) < L~(~.) for all h ~ [ - 1 / c , - c / n ]  U [c/n, 1/c], all n large enough, 
implying Po~{c/n < Ir~ - r ~ [  < 1/c} < e for all n sumciently large. But by 
Proposition 3.1, Po~{lr~ - % 1  > l /c}  < e for all ~ large enough, giving the result. 

PROOF OF LEMMA 3.3. As in the proof of Lemma A3 in Pham and Nguyen 
(1990), using the fact that Fo~(%) -~ Foo(%), 

n[Fo~(X~.+i+~,n ) - Fo~(X~.+i,~)], i = 1 - k , . . . , - 1 ,  

n[Fo~(rn) - Fo~(X~.,~)], n[Fo~(X~.+I,n ) - Fo~(r~)], 

~ , [ v 0 ~ ( X ~ . + ~ , ~ )  - f 0 ~ ( X ~ . + ~ _ , , ~ ) ] ,  ~ = ~,...,~, 
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converge  jo in t ly  in d i s t r ibu t ion  to  Z l - k , . . . ,  Zk.  On the  o the r  hand ,  for i _< - 1 ,  

 [ron - F o .  - - 0 

in Pe, -p robab i l i t y  (mean  value theorem) .  Similar ly  for o the r  variables.  T h e  resul t  
follows. [] 

PROOF OF LEMMA 3.4. By the same argument as in the first part of the 
proof of Lemma A4 in Pham and Nguyen (1990), using the results of Proposition 
3.2 and Lemma 3.3, 

l i m s u p P 0 n ( ~  ~ [ X ~ . + l _ k , n , X ~ . + k , ~ ] )  -~  0, as k -+ oo. 
n - ~ >  O 0  

On the other hand, by (i) of Lemma 3.2, there exists a constant ? > 0 such 
t h a t  IdL*/d~- I >_ ~/ for  all 7 in [ X ~ . + l _ k , n ,  X ~ . + k , n  ] and  d is t inc t  f rom X ~ . + ~ , n  , 
i = 1 - k , . . . ,  k, wi th  P0~-probabi l i ty  t end ing  to  one as n --+ oc (k fixed). Thus ,  

for any  fixed k, the  p robab i l i ty  Pen t h a t  ~ is in [X~r .+l_k,~ ,  X ~ . + k , n ]  and  differs 
f rom ~ (k) can  be m a d e  a rb i t r a r i ly  small  for n large enough.  T h e  resul t  follows. 

[] 
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