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1 Introduction

Conformal field theories (CFTs) lie at the heart of theoretical physics, describing crit-

ical phenomena in statistical and condensed matter systems, quantum gravity via the

AdS/CFT correspondence, and possible solutions to the hierarchy problem (and other puz-

zles) in physics beyond the standard model. Quite generally, they serve as the endpoints

of renormalization group flows in quantum field theory. The conformal bootstrap [1, 2]

aims to use general consistency conditions to map out and solve CFTs, even when they are

strongly-coupled and do not have a useful Lagrangian description.

In recent years great progress has been made in the conformal bootstrap in d > 2,

including rigorous bounds on operator dimensions and operator product expansion (OPE)

coefficients [3–32], analytical constraints [33–45], and methods for approximate direct solu-

tions to the bootstrap [46–49], including a precise determination of the low-lying spectrum

in the 3d Ising model under the conjecture that the conformal central charge is mini-

mized [50]. These results have come almost exclusively from analyzing 4-point correlation

functions of identical operators. It is tantalizing that even more powerful constraints may

come from mixed correlators.

In [51] some of the present authors demonstrated that semidefinite programming tech-

niques can very generally be applied to systems of mixed correlators. In 3d CFTs with a Z2

symmetry, one relevant Z2-odd operator σ, and one relevant Z2-even operator ǫ, the mixed
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Figure 1. Allowed regions for operator dimensions in 3d CFTs with an O(N) global symmetry and

exactly one relevant scalar φi in the vector representation and one relevant scalar s in the singlet

representation of O(N), for N = 1, 2, 3, 4, 20. The case N = 1, corresponding to the 3d Ising model,

is from [51]. The allowed regions for N = 2, 3, 4, 20 were computed with Λ = 35, where Λ (defined

in appendix A) is related to the number of derivatives of the crossing equation used. Each region is

roughly triangular, with an upper-left vertex that corresponds to the kinks in previous bounds [15].

Further allowed regions may exist outside the range of this plot; we leave their exploration to future

work.

correlator bootstrap leads to a small and isolated allowed region in operator dimension

space consistent with the known dimensions in the 3d Ising CFT. With the assistance of

improved algorithms for high-precision semidefinite programming [52], this approach has

culminated in the world’s most precise determinations of the leading operator dimensions

(∆σ,∆ǫ) =
(

0.518151(6), 1.41264(6)
)

in the 3d Ising CFT.

The immediate question is whether the same approach can be used to rigorously isolate

and precisely determine spectra in the zoo of other known (and perhaps unknown) CFTs,

particularly those with physical importance. In this work we focus on 3d CFTs with O(N)

global symmetry, previously studied using numerical bootstrap techniques in [15, 22]. We

will show that the CFTs known as the O(N) vector models can be similarly isolated using

a system of mixed correlators containing the leading O(N) vector φi and singlet s, assumed

to be the only relevant operators in their symmetry representations.

We focus on the physically most interesting cases N = 2, 3, 4 (e.g., see [53]) where

the large-N expansion fails. We do additional checks at N = 20. A summary of the

constraints on the leading scaling dimensions found in this work are shown in figure 1. We

also make precise determinations of the current central charge 〈JJ〉 ∝ CJ for N = 2, 3.

This coefficient is particularly interesting because it describes conductivity properties of

materials in the vicinity of their critical point [54].

The 3d O(2) model (or XY model) has a beautiful experimental realization in super-

fluid 4He [55] which has yielded results for ∆s that are in ∼ 8σ tension with the leading
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Monte Carlo and high temperature expansion computations [56]. Our results are not yet

precise enough to resolve this discrepancy, but we are optimistic that the approach we

outline in this work will be able to do so in the near future. More generally, the results of

this work give us hope that the same techniques can be used to to solve other interesting

strongly-coupled CFTs, such as the 3d Gross-Neveu models, 3d Chern-Simons and gauge

theories coupled to matter, 4d QCD in the conformal window, N = 4 supersymmetric

Yang-Mills theory, and more.

The structure of this paper is as follows. In section 2, we summarize the crossing

symmetry conditions arising from systems of correlators in 3d CFTs with O(N) symmetry,

and discuss how to study them with semidefinite programming. In section 3, we describe

our results and in section 4 we discuss several directions for future work. Details of our im-

plementation are given in appendix A. An exploration of the role of the leading symmetric

tensor is given in appendix B.

2 Crossing symmetry with multiple correlators

Let us begin by summarizing the general form of the crossing relation for a collection of

scalar fields φi = (φ1, φ2, φ3, . . .). We take the φi to have dimensions ∆i and for the moment

we do not assume any symmetry relating them. Taking the OPE of the first two and last

two operators, the 4-point function looks like:

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =
1

x
∆i+∆j

12 x∆k+∆l
34

(

x24
x14

)∆ij
(

x14
x13

)∆kl
∑

O

λijOλklOg
∆ij ,∆kl

∆,ℓ (u, v) ,

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

, (2.1)

where xij ≡ |xi − xj |, ∆ij ≡ ∆i − ∆j , and u, v are the standard conformal invariants.

The subscripts ∆, ℓ refer to the dimension and spin of the operator O. We refer to [51] for

details about how to compute the conformal blocks g
∆ij ,∆kl

∆,ℓ (u, v) in any dimension and for

arbitrary values of ∆ij . We also have the symmetry property λijO = (−1)ℓλjiO.

Crossing symmetry of the correlation function requires that OPEs taken in different

orders must produce the same result. As an example, exchanging (1, i) ↔ (3, k) gives the

conditions:

v
∆k+∆j

2

∑

O

λijOλklOg
∆ij ,∆kl

∆,ℓ (u, v) = u
∆i+∆j

2

∑

O

λkjOλilOg
∆kj ,∆il

∆,ℓ (v, u) . (2.2)

It is convenient to symmetrize/anti-symmetrize in u, v, which leads to the two equations:

0 =
∑

O

[

λijOλklOF
ij,kl
∓,∆,ℓ(u, v)± λkjOλilOF

kj,il
∓,∆,ℓ(u, v)

]

, (2.3)

where

F ij,kl
∓,∆,ℓ(u, v) ≡ v

∆k+∆j
2 g

∆ij ,∆kl

∆,ℓ (u, v)∓ u
∆k+∆j

2 g
∆ij ,∆kl

∆,ℓ (v, u) . (2.4)

The functions F ij,kl
∓,∆,ℓ are symmetric under exchanging i ↔ k and j ↔ l.
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2.1 O(N) models

We now restrict our discussion to the case where φi transforms in the vector representation

of a global O(N) symmetry. When the fields entering the four-point function are charged

under global symmetries, the conformal block expansion can be organized in symmetry

structures corresponding to irreducible representations appearing in the OPE φi×φj . This

gives the equations1

0 = (δijδkl ± δjkδil)
∑

OS ,ℓ+

λ2
φφOS

F φφ,φφ
∓,∆,ℓ

+

(

(

δikδjl + δilδjk −
2

N
δijδkl

)

±

(

δikδjl + δijδkl −
2

N
δjkδil

)

)

∑

OT ,ℓ+

λ2
φφOT

F φφ,φφ
∓,∆,ℓ

+
(

(δikδjl − δilδjk)± (δikδjl − δijδkl)
)

∑

OA,ℓ−

λ2
φφOA

F φφ,φφ
∓,∆,ℓ , (2.5)

which lead to three independent sum rules after reading off the coefficients of each index

structure. Here, OS ,OT ,OA denote operators in the singlet, traceless symmetric tensor,

and antisymmetric tensor representations of O(N), ℓ+ refers to operators with even spin,

and ℓ− refers to odd spin. The sum over spins is determined by the symmetry properties

of the representations under exchange of two indices.

In what follows, we will use s, s′, s′′, . . . to refer to the singlet scalars in increasing

order of dimension. For example, s is the lowest-dimension singlet scalar in the theory.

Similarly, t, t′, t′′, . . . and φ, φ′, φ′′, . . . refer to scalars in the traceless symmetric tensor and

vector representations, in increasing order of dimension.

We would like to supplement the above equations with crossing symmetry constraints

from other four-point functions. The simplest choice is to consider all nonvanishing four-

point functions of φi with the lowest dimension singlet scalar operator s. Another in-

teresting choice would be the lowest dimension scalar in the traceless symmetric tensor

representation tij . However the OPEs tij × tkl and tij × φk contain many additional O(N)

representations, increasing the complexity of the crossing equations. We leave the analysis

of external tij operators to the future.

Thus we consider the four-point functions 〈φiφjss〉 and 〈ssss〉, which give rise to four

additional sum rules after grouping the terms with the same index structure. In total this

leads to a system of seven equations:

0 =
∑

OT ,ℓ+

λ2
φφOT

F φφ,φφ
−,∆,ℓ +

∑

OA,ℓ−

λ2
φφOA

F φφ,φφ
−,∆,ℓ ,

0 =
∑

OS ,ℓ+

λ2
φφOS

F φφ,φφ
−,∆,ℓ +

(

1−
2

N

)

∑

OT ,ℓ+

λ2
φφOT

F φφ,φφ
−,∆,ℓ −

∑

OA,ℓ−

λ2
φφOA

F φφ,φφ
−,∆,ℓ ,

0 =
∑

OS ,ℓ+

λ2
φφOS

F φφ,φφ
+,∆,ℓ −

(

1 +
2

N

)

∑

OT ,ℓ+

λ2
φφOT

F φφ,φφ
+,∆,ℓ +

∑

OA,ℓ−

λ2
φφOA

F φφ,φφ
+,∆,ℓ ,

1Note that we are following the conformal block conventions of [51], which contain a factor of (−1)ℓ

relative to the conventions used in the previous global symmetry studies [10, 15]. This leads to a different

sign in front of the contributions of the OA operators.
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0 =
∑

OS ,ℓ+

λ2
ssOS

F ss,ss
−,∆,ℓ ,

0 =
∑

OV ,ℓ±

λ2
φsOV

F φs,φs
−,∆,ℓ ,

0 =
∑

OS ,ℓ+

λφφOS
λssOS

F φφ,ss
∓,∆,ℓ ±

∑

OV ,ℓ±

(−1)ℓλ2
φsOV

F sφ,φs
∓,∆,ℓ . (2.6)

Note that the final line represents two equations, corresponding to the choice of ±. We

can rewrite these equations in vector notation as

0 =
∑

OS ,ℓ+

(

λφφOS
λssOS

)

~VS,∆,ℓ

(

λφφOS

λssOS

)

+
∑

OT ,ℓ+

λ2
φφOT

~VT,∆,ℓ

+
∑

OA,ℓ−

λ2
φφOA

~VA,∆,ℓ +
∑

OV ,ℓ±

λ2
φsOV

~VV,∆,ℓ , (2.7)

where ~VT , ~VA, ~VV are a 7-dimensional vectors and ~VS is a 7-vector of 2× 2 matrices:

~VT,∆,ℓ =



























F φφ,φφ
−,∆,ℓ

(

1− 2
N

)

F φφ,φφ
−,∆,ℓ

−
(

1 + 2
N

)

F φφ,φφ
+,∆,ℓ

0

0

0

0



























, ~VA,∆,ℓ =



























F φφ,φφ
−,∆,ℓ

−F φφ,φφ
−,∆,ℓ

F φφ,φφ
+,∆,ℓ

0

0

0

0



























, ~VV,∆,ℓ =



























0

0

0

0

F φs,φs
−,∆,ℓ

(−1)ℓF sφ,φs
−,∆,ℓ

−(−1)ℓF sφ,φs
+,∆,ℓ



























,

~VS,∆,ℓ =



































































(

0 0

0 0

)

(

F φφ,φφ
−,∆,ℓ (u, v) 0

0 0

)

(

F φφ,φφ
+,∆,ℓ (u, v) 0

0 0

)

(

0 0

0 F ss,ss
−,∆,ℓ(u, v)

)

(

0 0

0 0

)

(

0 1
2
F φφ,ss
−,∆,ℓ(u, v)

1
2
F φφ,ss
−,∆,ℓ(u, v) 0

)

(

0 1
2
F φφ,ss
+,∆,ℓ(u, v)

1
2
F φφ,ss
+,∆,ℓ(u, v) 0

)



































































. (2.8)
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2.1.1 A note on symmetries

We are primarily interested in theories with O(N) symmetry. However, our bounds will

also apply to theories with the weaker condition of SO(N) symmetry. This point deserves

discussion.

The group O(N) includes reflections, so its representation theory is slightly different

from that of SO(N). In particular ǫi1...iN is not an invariant tensor of O(N) because it

changes sign under reflections. For odd N = 2k + 1, O(2k + 1) symmetry is equivalent to

SO(2k + 1) symmetry plus an additional Z2 symmetry. For even N = 2k, the orthogonal

group is a semidirect product O(2k) ∼= Z2 ⋉ SO(2k), so it is not equivalent to an extra Z2.

Let us consider whether the crossing equations must be modified in the case of only

SO(N) symmetry. In theories with SO(2) symmetry, the antisymmetric tensor represen-

tation is isomorphic to the singlet representation. (This is not true for O(2) because the

isomorphism involves ǫij .) However in the crossing equation (2.7), antisymmetric tensors

appear with odd spin, while singlets appear with even spin. Thus, the coincidence between

A and S does not lead to additional relations in (2.7).

For theories with SO(3) symmetry, the antisymmetric tensor representation is equiv-

alent to the vector representation. Thus, antisymmetric odd spin operators appearing in

φ × φ may also appear in φ × s. This does not affect (2.7) because there is no a priori

relationship between λφφO and λφsO. However, it is now possible to have a nonvanish-

ing four-point function 〈φiφjφks〉 proportional to ǫijk. Including crossing symmetry of

this four-point function cannot change the resulting dimension bounds without additional

assumptions. The reason is as follows. Any bound computed from (2.7) without using

crossing of 〈φφφs〉 is still valid. Hence, the bounds cannot weaken. However, because any

O(3)-invariant theory is also SO(3)-invariant, any bound computed while demanding cross-

ing of 〈φφφs〉 must also apply to O(3)-invariant theories. So the bounds cannot strengthen.

Crossing for 〈φφφs〉 only becomes important if we input that λφφOλφsO is nonzero for a

particular operator.2 This would guarantee our theory does not have O(3) symmetry.

For SO(4), the new ingredient is that the antisymmetric tensor representation can be

decomposed into self-dual and anti-self-dual two-forms. As explained in [10], this leads to

an additional independent sum rule
∑

A+,ℓ−

λ2
φφOA+

F φφ;φφ
∆,ℓ −

∑

A−,ℓ−

λ2
φφOA−

F φφ;φφ
∆,ℓ = 0 , (2.9)

where A± represent self-dual and anti-self-dual operators. By the same reasoning as in

the case of SO(3), this crossing equation cannot affect the bounds from (2.7) without

additional assumptions. We can also see this directly from (2.9) together with (2.7): in the

semidefinite program used to derive operator dimension bounds, we may always take the

functional acting on (2.9) to be zero. An exception occurs if we know an operator is present

with λφφOA+
6= 0 but λφφOA−

= 0 (or vice versa). Then we can include that operator with

other operators whose OPE coefficients are known (usually just the unit operator) and the

resulting semidefinite program will be different.

2In practice, this means we would group this operator with the unit operator and other operators whose

OPE coefficients are known in the semidefinite program.
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For SO(N) with N ≥ 5, no coincidences occur in the representation ring that would

be relevant for the system of correlators considered here. In conclusion, (2.7) and the

semidefinite program discussed below remain valid in the case of SO(N) symmetry. Bounds

on theories with SO(N) symmetry can differ only if we input additional information into

the crossing equations that distinguishes them from O(N)-invariant theories (for example,

known nonzero OPE coefficients).

2.2 Bounds from semidefinite programming

As explained in [51], solutions to vector equations of the form (2.7) can be constrained using

semidefinite programming (SDP). We refer to [51] for details. Here we simply present the

problem we must solve. To rule out a hypothetical CFT spectrum, we must find a vector

of linear functionals ~α = (α1, α2, . . . , α7) such that

(

1 1
)

~α · ~VS,0,0

(

1

1

)

≥ 0 , for the identity operator , (2.10)

~α · ~VT,∆,ℓ ≥ 0 , for all traceless symetric tensors with ℓ even , (2.11)

~α · ~VA,∆,ℓ ≥ 0 , for all antisymmetric tensors with ℓ odd , (2.12)

~α · ~VV,∆,ℓ ≥ 0 , for all O(N) vectors with any ℓ , (2.13)

~α · ~VS,∆,ℓ � 0 , for all singlets with ℓ even . (2.14)

Here, the notation “� 0” means “is positive semidefinite”. If such a functional exists for

a hypothetical CFT spectrum, then that spectrum is inconsistent with crossing symmetry.

In addition to any explicit assumptions placed on the allowed values of ∆, we impose that

all operators must satisfy the unitarity bound

∆ ≥

{

ℓ+D − 2 ℓ > 0
D−2
2

ℓ = 0
, (2.15)

where D = 3 is the spacetime dimension.

Additional information about the spectrum can weaken the above constraints, making

the search for the functional ~α easier, and further restricting the allowed theories. A few

specific assumptions will be important in what follows:

• The 3d O(N) vector models, which are our main focus, are believed to have exactly

one relevant singlet scalar s, O(N) vector scalar φi, and traceless symmetric scalar

tij .
3 We will often assume gaps to the second-lowest dimension operators s′, φ′

i, t
′
ij in

each of these sectors. These assumptions affect (2.11), (2.13), and (2.14).

• Another important input is the equality of the OPE coefficients λφφs = λφsφ. This

is a trivial consequence of conformal invariance. It is important that φ and s be

isolated in the operator spectrum for us to be able to exploit this constraint. For

instance, imagine there were two singlet scalars s1,2 with the same dimension. Then

3Additional relevant scalars could be present in other representations.
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(λfake
φφs )

2 = λ2
φφs1

+ λ2
φφs2

would appear in (2.7). This combination does not satisfy

λfake
φφs = λφsiφ.

• We will sometimes assume additional gaps to derive lower bounds on OPE coefficients.

For instance, to obtain a lower bound on the coefficient of the conserved O(N) current

in the φi×φj OPE, we will need to assume a gap between the first and second spin-1

antisymmetric tensor operators.

As an example, (2.16) shows a semidefinite program that incorporates symmetry of

λφφs and the assumption that φi, s are the only relevant scalars in their respective sectors:

(

1 1
)

~α · ~VS,0,0

(

1

1

)

≥ 0 , (unit operator)

~α · ~VT,∆,ℓ ≥ 0 , ∆ ≥
D − 2

2
, ℓ = 0 ,

and ∆ ≥ ℓ+D − 2 , ℓ > 0 even ;

~α · ~VA,∆,ℓ ≥ 0 , ∆ ≥ ℓ+D − 2 , ℓ odd ;

~α · ~VV,∆,ℓ ≥ 0 , ∆ ≥ D ℓ = 0 ,

and ∆ ≥ ℓ+D − 2 , ℓ > 0 ;

~α · ~VS,∆,ℓ � 0 , ∆ ≥ D , ℓ = 0 ,

and ∆ ≥ ℓ+D − 2 ℓ > 0 even ;

~α ·

(

~VS,∆s,0 + ~VV,∆φ,0 ⊗

(

1 0

0 0

)

)

� 0 .

(2.16)

The final constraint in (2.16) imposes the appearance of φi, s in the OPEs and incorporates

the equality λφφs = λφsφ.
4 It replaces two otherwise independent constraints on VS and

VV . As previously mentioned, if we assume no gap between φi, s and the next operators in

each sector, enforcing symmetry of the OPE coefficients will have no effect: indeed each of

the terms in this constraint would be independently positive-semidefinite, since the other

inequalities imply ~α · ~VS,∆s+δ,0 � 0 and ~α · ~VV,∆φ+δ,0 ≥ 0 for δ arbitrary small.

Finally, one might want to enforce the existence of a unique relevant scalar operator,

with dimension ∆t, transforming in the traceless symmetric representation. In this case

the symmetric tensor constraint is replaced by

~α · ~VT,∆,ℓ ≥ 0 , ∆ = ∆t or ∆ > D , ℓ = 0 ,

and ∆ ≥ ℓ+D − 2 , ℓ > 0 even . (2.17)

3 Results

3.1 O(2)

To begin, let us recall the bounds on ∆φ,∆s computed in [15] using the correlation function

〈φiφjφkφl〉 (see figure 2). Like the Ising model bounds computed in [12, 50], this single-

4In writing this constraint, we have assumed the scalar conformal blocks are normalized so that

g∆,ℓ(u, v) ∼ Cu∆/2 to leading order in u, where C is a ∆-independent constant.
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Figure 2. Allowed region for (∆φ,∆s) in 3d CFTs with O(2) symmetry. The light blue region

makes no additional assumptions and was computed in [15] using the correlator 〈φφφφ〉 at Λ = 19.

The medium blue region was computed from the system of correlators 〈φφφφ〉, 〈φφss〉, 〈ssss〉

at Λ = 19, and assumes ∆φ and ∆s are the only relevant dimensions in the vector and singlet

scalar channels at which contributions appear. The dark blue region is computed similarly, but

additionally assumes the OPE coefficient relation λφφs = λφsφ. This latter assumption leads to a

small closed region in the vicinity of the red cross, which represents the Monte Carlo estimate for

the position of the O(2) model from [56].

correlator bound has an excluded upper region, an allowed lower region, and a kink in the

curve separating the two. The position of this kink corresponds closely to where we expect

the O(2) model to lie, and one of our goals is to prove using the bootstrap that the O(2)

model does indeed live at the kink.5 If we assume that s is the only relevant O(2) singlet,

then a small portion of the allowed region below the kink gets carved away, analogous to

the Ising case in [51].

Adding the constraints of crossing symmetry and unitarity for the full system of corre-

lators 〈φφφφ〉, 〈φφss〉, 〈ssss〉 does not change these bounds without additional assumptions.

However, having access to the correlator 〈φφss〉 lets us input information special to the

O(2) model that does have an effect. We expect that φ is the only relevant O(2) vec-

tor in the theory. One way to understand this fact is via the equation of motion at the

Wilson-Fisher fixed point in 4 − ǫ dimensions,

�φi ∝ λφ2φi . (3.1)

5The sharpness of the kink depends on the number of derivatives Λ used when computing the bound

(appendix A). Figure 2 was computed at a lower derivative order than we use for most of this work, so the

kink is relatively smooth.
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Figure 3. Allowed regions for (∆φ,∆s) in 3d CFTs with O(2) symmetry and exactly one relevant

O(2) vector φ and singlet s, computed from the system of correlators 〈φφφφ〉, 〈φφss〉, and 〈ssss〉

using SDPB with Λ = 19, 27, and 35 (see appendix A). The smallest region (darkest blue) corresponds

to Λ = 35. The green rectangle represents the Monte Carlo estimate [56]. The red lines represent the

1σ (solid) and 3σ (dashed) confidence intervals for ∆s from experiment [55]. The allowed/disallowed

regions in this work were computed by scanning over a lattice of points in operator dimension space.

For visual simplicity, we fit the boundaries with curves and show the resulting curves. Consequently,

the actual position of the boundary between allowed and disallowed is subject to some error (small

compared to size of the regions themselves). We tabulate this error in appendix A.

This equation implies that the operator φ2φi is a descendent, so there is a gap in the

spectrum of O(2)-vector primaries between φi and the next operator in this sector, which

is a linear combination of φiφ
4 and φi(∂φ)

2. The equation of motion makes sense in

perturbation theory ǫ ≪ 1. However, it is reasonable to expect gaps in the spectrum to be

robust as ǫ gets larger. In particular, we expect this gap to persist as ǫ → 1. Thus, a gap

in the O(2)-vector sector reflects the equations of motion of the O(2) model.

We do not know if there is sharp experimental evidence for the claim that the O(2)

model contains exactly one relevant O(2)-vector scalar. The cleanest experimental realiza-

tion of the O(2) model is the superfluid transition in 4He [55]. This theory has microscopic

O(2) symmetry, so one cannot easily determine the number of relevant O(2)-vector scalars

by counting order parameters. The number could be determined by counting order param-

eters in systems where the O(2) symmetry is emergent.

As explained above, it is natural to impose a gap in both the O(2) vector and singlet

sectors in our formalism, giving rise to the medium blue region in figure 2. Another im-

portant constraint is symmetry of the OPE coefficient λφφs = λφsφ. Adding this constraint

gives the dark blue region in figure 2; a close-up view of the O(2) model point is shown

in figure 3, which we show for increasing numbers of derivatives Λ = 19, 27, 35 (see ap-

– 10 –
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Figure 4. Allowed region (orange) for (∆φ,∆s,∆t) in a 3d CFT with O(2) symmetry and exactly

one relevant O(2)-vector φ, O(2) singlet s, and O(2) traceless symmetric-tensor t. This region was

computed using SDPB with Λ = 19. The green rectangle represents the error bars from Monte

Carlo [56] and the pseudo-ǫ expansion approach [57]. Note that our estimate for ∆t in (3.2) was

computed with Λ = 35, so it is more precise than the region pictured here.

pendix A). We now have a closed island around the expected position of the O(2) model,

very close to the original kink in figure 2. The bounds strengthen as Λ increases. How-

ever, the allowed regions apparently do not shrink as quickly as in the case of the 3d Ising

CFT [52]. Thus, our determination of (∆φ,∆s) is unfortunately not competitive with the

best available Monte Carlo [56] and experimental [55] results (though it is consistent with

both).6 We conjecture that including additional crossing relations (such as those involving

the symmetric tensor tij) will give even stronger bounds; we plan to explore this possibility

in future work.

In addition to gaps in the O(2)-vector and singlet sectors, we also expect that the

O(2) model has a single relevant traceless symmetric tensor tij . Let us finally impose

this condition by demanding that t′ij has dimension above D = 3 and scanning over ∆t

along with ∆φ,∆s. The result is a three-dimensional island for the relevant scalar operator

dimensions, which we show in figure 4. Our errors for the symmetric-tensor dimension

∆t are much more competitive with previous determinations. By scanning over different

6Note that 4He experiments cannot easily determine ∆φ because the O(2) symmetry is realized micro-

scopically. Some results constraining ∆φ have been reported from NMR experiments (e.g., as summarized

in [53]) but they are not very precise.
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Figure 5. Allowed regions for (∆φ,∆s) in 3d CFTs with O(3) symmetry and exactly one relevant

O(3)-vector φ and O(3) singlet s, computed using SDPB with Λ = 19, 27, and 35 (see appendix A).

The smallest region (darkest blue) corresponds to Λ = 35. The green rectangle represents the

Monte Carlo estimate [58].

values of (∆φ,∆s) in the allowed region and computing the allowed range of ∆t at Λ = 35,

we estimate

1.2325 < ∆t < 1.239 (O(2) model) , (3.2)

which is consistent with previous results from the pseudo-ǫ expansion approach [57] giving

∆t = 1.237(4).

3.2 O(N), N > 2

The bounds for N > 2 are similar to the case of N = 2. In figure 5, we show the allowed

region of (∆φ,∆s) for theories with O(3) symmetry, assuming φ and s are the only relevant

scalars in their respective O(N) representations, and using symmetry of the OPE coefficient

λφφs. We expect that an additional scan over ∆t would yield a 3d island similar to figure 4.

By performing this scan at a few values of (∆φ,∆s), we estimate

1.204 < ∆t < 1.215 (O(3) model) , (3.3)

which is consistent with previous results from the pseudo-ǫ expansion approach [57] giving

∆t = 1.211(3).

In figure 6, we show the allowed region of (∆φ,∆s) for the O(4) model, with the same

assumptions as discussed above for O(3). A clear trend is that the allowed region is growing

with N . For example, at Λ = 19, the O(4) allowed region isn’t even an island — it connects

to a larger region not shown in the plot. Increasing the number of derivatives to Λ = 35

shrinks the region, but it is not as small as in the case of O(2) or O(3).
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Figure 6. Allowed regions for (∆φ,∆s) in 3d CFTs with O(4) symmetry and exactly one relevant

O(4)-vector φ and O(4) singlet s, computed using SDPB with Λ = 19, 27, and 35 (see appendix A).

The smallest region (darkest blue) corresponds to Λ = 35. The green rectangle represents the

Monte Carlo estimate [59].

The trend of lower-precision determinations at larger N reverses at some point. For

example, in figure 1, the allowed region for N = 20 is smaller again than the O(4) region.

The relative size of the O(4) region and the O(20) region is Λ-dependent, and we have

not studied the pattern for general N in detail. However, as an important check we note

that the O(20) island in figure 1 is nicely compatible with the 1/N expansion (see [15]),

giving the point (∆φ,∆s) ≃ (.5064, 1.938) which sits in the upper-left corner of the allowed

region.

Finally, we remark that all of the constraints on operator dimensions found above can

be reinterpreted in terms of constraints on critical exponents. Following standard critical

exponent notation (see [53]), the relations are given by

η = 2∆φ − 1 , ν =
1

3−∆s
, γ =

3− 2∆φ

3−∆s
, α =

3− 2∆s

3−∆s
,

β =
∆φ

3−∆s
, δ =

3−∆φ

∆φ

, ζ =
3− 4∆φ

3−∆s
, φ2 =

3−∆t

3−∆s
. (3.4)

3.3 Current central charges

Let Jµ
ij(x) be the conserved currents that generate O(N) transformations. Jµ

ij(x) is an O(N)

antisymmetric tensor with spin 1 and dimension 2. Its 2-point function is determined by

conformal and O(N) symmetry to be

〈Jµ
ij(x1)J

ν
kl(x2)〉 = (δikδjl − δilδjk)

CJ

(4π)2
1

x412

[

ηµν − 2
(x1 − x2)

µ(x1 − x2)
ν

x212

]

. (3.5)
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We call the normalization coefficient CJ from eq. (3.5) the current central charge.7 The con-

served current Jµ
ij appears in the sum over antisymmetric-tensor operators OA in eq. (2.7).

A Ward identity relates the OPE coefficient λJφφ to CJ . In our conventions

λ2
φφJ =

8

CJ/C free
J

, (3.6)

where C free
J = 2 is the free theory value of CJ [60, 61]. In the O(N) vector models CJ is

known to have the large N and ǫ expansions [62]

CJ

C free
J

∣

∣

∣

∣

d=3

= 1−
32

9π2

1

N
+O

(

1

N2

)

,
CJ

C free
J

∣

∣

∣

∣

d=4−ǫ

= 1−
3(N + 2)

4(N + 8)2
ǫ2 +O(ǫ3) . (3.7)

Note that both of these expansions predict that CJ will be smaller than the free value.

It is well known that the conformal bootstrap allows one to place upper bounds on OPE

coefficients, or equivalently a lower bound on CJ . Previously such bounds were explored

in d = 4 in [6, 10] and in d = 3, 5 in [22]. To find such a bound, we search for a functional

α with the following properties (cf. eq. (2.16)):

~α · ~VA,2,1 = 1 , (normalization)

~α · ~VT,∆,ℓ ≥ 0 , ∆ ≥
D − 2

2
, ℓ = 0 ,

and ∆ ≥ ℓ+D − 2 , ℓ > 0 even ;

~α · ~VA,∆,ℓ ≥ 0 , ∆ ≥ ℓ+D − 2 , ℓ odd ;

~α · ~VV,∆,ℓ ≥ 0 , ∆ ≥ D ℓ = 0 ,

and ∆ ≥ ℓ+D − 2 , ℓ > 0 ;

~α · ~VS,∆,ℓ � 0 , ∆ ≥ D , ℓ = 0 ,

and ∆ ≥ ℓ+D − 2 ℓ > 0 even ;

~α ·

(

~VS,∆s,0 + ~VV,∆φ,0 ⊗

(

1 0

0 0

)

)

� 0 .

(3.8)

Notice that compared to (2.16), we have dropped the assumption of the functional ~α being

positive on the identity operator contribution and we chose a convenient normalization for

~α. It follows then from the crossing equation (2.7) that

8

CJ/C free
J

≤ −
(

1 1
)

~α · ~VS,0,0

(

c1

1

)

. (3.9)

Therefore, finding a functional ~α sets a lower bound on CJ . To improve the bound, we

should minimize the r.h.s. of (3.9). We thus seek to minimize

−
(

1 1
)

~α · ~VS,0,0

(

1

1

)

, (3.10)

7This name is by analogy with the case of 2d CFTs, where CJ appears as a central element in an affine

Kac-Moody algebra. In higher dimensional CFTs, CJ is not an element of a nontrivial algebra in general,

though it can be in special cases [37].
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Figure 7. The left panel shows the allowed values of CJ as a function of ∆φ and ∆s in O(2)

symmetric theories. The right panel is the projection of the allowed region onto the (∆φ, CJ) plane.

Both plots are computed using SDPB with Λ = 27.

subject to the constraints (3.8). This type of problem can be efficiently solved using SDPB.

In this way, we set a lower bound on CJ for all allowed values of ∆φ, ∆s.

We can also set an upper bound on CJ , provided we additionally assume a gap in the

spin-1 antisymmetric tensor sector. At this point it is not clear what gap we should assume,

but to stay in the spirit of our previous assumptions, we will assume that the dimension

of the second spin-1 antisymmetric tensor satisfies ∆J ′ ≥ 3, so that the current Jµ
ij is the

only relevant operator in this sector. We now search for a functional ~α (different from the

one above) that satisfies

~α · ~VA,∆,1 ≥ 0 , ∆ ≥ 3 , (3.11)

~α · ~VA,∆,ℓ ≥ 0 , ∆ ≥ ℓ+D − 2 , ℓ > 1 odd , (3.12)

and is normalized so that

~α · ~VA,2,1 = −1 . (3.13)

The constraints on ~α coming from the singlet and traceless symmetric-tensor sectors stay

the same as in (3.8). An upper bound on CJ then follows from (2.7):

8

CJ/C free
J

≥
(

1 1
)

~α · ~VS,0,0

(

1

1

)

. (3.14)

Our upper and lower bounds on CJ , expressed as a function of ∆φ and ∆s, are shown

in figures 7 and 8 for O(2) and O(3) symmetry, respectively. The allowed region for a given

N consists of a 3d island in (∆φ,∆s, CJ) space. This determines the current central charge

to within the height of the island. For the two physically most interesting cases, N = 2

and N = 3, we find:

N = 2 :
CJ

C free
J

= 0.9050(16) , N = 3 :
CJ

C free
J

= 0.9065(27) . (3.15)
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Figure 8. The left panel shows the allowed values of CJ as a function of ∆φ and ∆s in O(3)

symmetric theories. The right panel is the projection of the allowed region onto the (∆φ, CJ) plane.

Both plots are computed using SDPB with Λ = 27.

As an additional check, we also computed CJ for N = 20:

N = 20 :
CJ

C free
J

= 0.9674(8) . (3.16)

This result agrees within 0.5% accuracy with the leading 1/N expansion result, CJ/C
free
J ≈

0.964 [62].

Recently, the current central charge attracted some interest in studies of transport

properties of O(N) symmetric systems near a quantum critical point, where CJ can be

related to the conductivity at zero temperature. In particular, using the OPE it was found

in [54] that the asymptotic behavior of conductivity at low temperature is given by

σ(ω/T )

σQ
= σ∞ +BCi∆s

(

T

ω

)∆s

− i24CTγHxx

(

T

ω

)3

+ . . . , (3.17)

where σQ = e2/~ is the conductance quantum. Here, σ∞ is the (unitless) conductivity at

high frequency and zero temperature which is related to CJ as

σ∞ = CJ/32 . (3.18)

Furthermore, CT is the central charge of the theory, C is the 〈JJs〉 OPE coefficient, and

γ is one of the 〈JJT 〉 OPE coefficients, where T is the energy-momentum tensor. B and

Hxx are the finite temperature one-point function coefficients:

〈s〉T = BT∆s , 〈Txx〉T = HxxT
3. (3.19)

Of all the CFT data that goes into (3.17), we have determined σ∞ and ∆s for the O(N)

vector models in this work, while CT was estimated using bootstrap methods before in [15].
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The OPE coefficients C and γ can not be determined in our setup, but could in principle

be obtained by including the conserved current Jµ
ij as an external operator in the crossing

equations. The one-point functions B and Hxx are in principle determined by the spectrum

and OPE coefficients of the theory [63]. However, to compute them we would need to

know the high-dimension operator spectrum. This is still out of the reach of the conformal

bootstrap approach.

Of particular interest for physical applications is the N = 2 case, which describes

superfluid-insulator transitions in systems with two spatial dimensions [64, 65]. Some

examples of such systems are thin films of superconducting materials, Josephson junction

arrays, and cold atoms trapped in an optical lattice. In these systems the parameter σ∞ is

the high-frequency limit of the conductivity. This quantity has not yet been measured in

experiments, but was recently computed in Quantum Monte Carlo simulations [54, 66, 67],

and [68] to be 2πσMC
∞ = 0.3605(3), 0.359(4), and 0.355(5), respectively.8 Our rigorous

result 2πσBootstrap
∞ = 0.3554(6) is in excellent agreement with these determinations and is

significantly more precise after systematic uncertainties are taken into account.

4 Conclusions

In this work, we used the conformal bootstrap with multiple correlators to set more strin-

gent bounds on the operator spectrum of 3d CFTs with O(N) symmetry. The multiple

correlator approach works in this setting similarly to the case of Z2-symmetric CFTs —

including mixed correlators opens access to parts of the spectrum that are inaccessible with

a single correlator. In this work we considered mixed correlators of an O(N) singlet and an

O(N) vector, gaining access to the sector of O(N) vectors. We can then additionally input

assumptions about the operator spectrum in that sector. As a result, we exclude large

portions of the allowed space of CFTs. This reaffirms conclusions from previous works on

the 3d Ising model: it is important and fruitful to consider multiple crossing equations. We

believe that including mixed correlators will be rewarding in many other bootstrap studies

that are currently ongoing.

Specifically, for O(N) symmetric CFTs, we found that the scaling dimensions of the

lowest O(N) vector scalar φ and O(N) singlet scalar s are constrained to lie in a closed

region in the (∆φ,∆s) plane. Our assumptions, besides conformal and O(N) symmetry,

were crossing symmetry, unitarity, and — crucially — the absence of other relevant scalars

in the O(N) singlet and vector sectors. This is completely analogous to the Z2-symmetric

case where similar assumptions isolate a small allowed region around the Ising model in

the (∆σ,∆ǫ) plane. Our allowed regions represent rigorous upper and lower bounds on

dimensions in the O(N) models. In principle, this approach could be used to compute

the scaling dimensions of the O(N) models to a very high precision, assuming that the

allowed region will shrink to a point with increased computational power. However, our

results suggest that the region either does not shrink to a point, or the convergence is slow

8These uncertainties reflect statistical errors but may not include systematic effects, conservatively es-

timated in [66] to be 5–10%. We thank Subir Sachdev, Erik Sørensen, and William Witczak-Krempa for

correspondence on this point.
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in the present setup. Therefore, our uncertainties are currently larger than the error bars

obtained using other methods.9 In particular, we have not yet resolved the discrepancy

between Monte Carlo simulations and experiment for the value of ∆s in the O(2) model.

Including more correlators could result in significantly improved bounds on operator

dimensions. In the case of O(N) symmetric CFTs, it would be natural to include the lowest

dimension O(N) symmetric tensor as an external operator in the crossing equations. In the

O(N) models, this operator actually has a lower dimension than s. This is an important

difference from the Ising model, where φ and s are the two lowest dimensional scalars in

any sector of the theory. Our present bounds on the lowest symmetric tensor treated it

as an internal operator in the crossing equations. Including it as an external operator

would open access to many other O(N) representations. Perhaps the O(N) models are not

uniquely determined by the condition of only one relevant O(N) singlet and vector scalar,

and we must also specify something about these other representations. Studying the O(N)

models in other dimensions (such as in 5d [22, 28, 30, 69, 70]) may also help to shed light

on these issues. We plan to further explore these questions in the future.

In addition to scaling dimensions, it is also important to determine OPE coefficients.

Here we presented an example in the computation of the current central charge CJ . In

the case of O(2) symmetry, this yields the current most precise prediction for the high-

frequency conductivity in O(2)-symmetric systems at criticality. It will be interesting to

extend these mixed-correlator computations to other OPE coefficients in the O(N) models

such as the stress-tensor central charge CT and 3-point coefficients appearing in 〈JJs〉 and

〈JJT 〉 which control frequency-dependent corrections to conductivity. Pursuing the latter

will require implementing the bootstrap for current 4-point functions, a technical challenge

for which efforts are ongoing in the bootstrap community.

More generally, the results of this work make it seem likely that scaling dimensions

in many other strongly-interacting CFTs can be rigorously determined using the multiple

correlator bootstrap. It will be interesting to study mixed correlators in 3d CFTs with

fermions and gauge fields — it is plausible that similar islands can be found for the 3d

Gross-Neveu models and 3d Chern-Simons and gauge theories coupled to matter. In 4d,

we hope that by pursuing the mixed correlator bootstrap we will eventually be able to

isolate and rigorously determine the conformal window of QCD. It also be interesting to

apply this approach to theories with conformal manifolds to see the emergence of lines

and surfaces of allowed dimensions; a concrete application would be to extend the analysis

of [14, 23] to mixed correlators and pursue a rigorous study of the dimension of the Konishi

operator in N = 4 supersymmetric Yang-Mills theory at finite N . The time is ripe to set

sail away from our archipelago and explore the vast ocean of CFTs!
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A Implementation details

As described in [51], the problem of finding α satisfying (2.10) can be transformed into

a semidefinite program. Firstly, we must approximate derivatives of ~VS , ~VT , ~VA, and ~VV

as positive functions times polynomials in ∆. We do this by computing rational approxi-

mations for conformal blocks using the recursion relation described in [51]. Keeping only

the polynomial numerator in these rational approximations, (2.10) becomes a “polynomial

matrix program” (PMP), which can be solved with SDPB [52].

Three choices must be made to compute the PMP. Firstly, κ (defined in appendix A

of [52]) determines how many poles to include in the rational approximation for conformal

blocks. Secondly, Λ determines which derivatives of conformal blocks to include in the

functionals α. Specifically, we take

αi(F ) =
∑

m+n≤Λ

aimn∂
m
z ∂n

z F (z, z)
∣

∣

z=z= 1

2

. (A.1)

Some of these derivatives vanish by symmetry properties of F . The total number of nonzero

components of ~α is

dim(~α) = 2
⌊Λ+2

2
⌋
(

⌊Λ+2
2

⌋+ 1
)

2
+ 5

⌊Λ+1
2

⌋
(

⌊Λ+1
2

⌋+ 1
)

2
. (A.2)

Finally, we must choose which spins to include in the PMP. The number of spins depends

on Λ as follows

SΛ=19 = {0, . . . , 26} ∪ {49, 50} ,

SΛ=27 = {0, . . . , 26} ∪ {29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50} ,

SΛ=35 = {0, . . . , 44} ∪ {47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68} ,

SΛ=39 = {0, . . . , 54} ∪ {57, 58, 61, 62, 65, 66, 69, 70, 73, 74, 77, 78} . (A.3)

We use Mathematica to compute and store tables of derivatives of conformal blocks.

Another Mathematica program reads these tables, computes the polynomial matrices cor-

responding to the ~V ’s, and uses the package SDPB.m to write the associated PMP to an

xml file. This xml file is then used as input to SDPB. Our settings for SDPB are given in

table 1.
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Λ 19 27 35 39

κ 14 20 30 36

spins SΛ=19 SΛ=27 SΛ=35 SΛ=39

precision 448 576 768 896

findPrimalFeasible True True True True

findDualFeasible True True True True

detectPrimalFeasibleJump True True True True

detectDualFeasibleJump True True True True

dualityGapThreshold 10−30 10−30 10−30 10−70

primalErrorThreshold 10−30 10−30 10−40 10−70

dualErrorThreshold 10−30 10−30 10−40 10−70

initialMatrixScalePrimal 1040 1050 1050 1060

initialMatrixScaleDual 1040 1050 1050 1060

feasibleCenteringParameter 0.1 0.1 0.1 0.1

infeasibleCenteringParameter 0.3 0.3 0.3 0.3

stepLengthReduction 0.7 0.7 0.7 0.7

choleskyStabilizeThreshold 10−40 10−40 10−100 10−120

maxComplementarity 10100 10130 10160 10180

Table 1. SDPB parameters for the computations of scaling dimension bounds in this work. For CJ

bounds we need to set all of the Boolean parameters in the table to False. In addition to that, we

used dualityGapThreshold = 10−10, while all the rest of the parameters were kept at the same

values as for the dimension bounds.

Finally let us conclude with some comments on the precision of the plots presented in

the main text. Conformal blocks of correlation functions involving operators of nonequal

dimensions depend nontrivially on the difference of the dimensions. Hence, when computing

the boundary of various allowed regions, it is convenient to perform a scan over a lattice of

points. The vectors generating the lattice points are shown in table 2. The smooth regions

shown in figures 1, 3, 5, and 6 are the results of a least-squares fit, subject to the constraint

that allowed lattice points should lie inside the curves while excluded ones lie outside. In

table 2 we also show the maximal perpendicular distance of these points to the curves.

The bounds on CJ shown in figures 7 and 8 were computed for the lattices of points

that were found to be allowed in figures 3 and 5. For each point on the lattice, the bound

on CJ was determined to a precision of 10−10. The smooth regions were obtained by

interpolation and the maximum distance of the computed points to the boundry of the

shaded region is again reported in table 2.

B Symmetric tensor scan

In this appendix we collect some detailed scans of the allowed region of (∆φ,∆s,∆t) space

for O(N) models with N = 2, 3, 4. The results for the O(2) model are also presented as a

3d plot in figure 4. Here we show plots in the (∆φ,∆s) plane at fixed values of ∆t. The

scans for O(2), O(3) and O(4) are shown in figures 9, 10, and 11, respectively. Blue points
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Allowed Excluded v1 v2

Λ = 19 0.00025 0.00060 (10−4, 10−4) (0, 10−3)

O(2) Λ = 27 0.000084 0.00025 (10−4, 10−4) (0, 4 · 10−4)

Λ = 35 0.00021 0.00062 (5 · 10−5, 5 · 10−5) (0, 4 · 10−4)

Λ = 19 0.00043 0.0020 (10−4, 10−4) (0, 2 · 10−3)

O(3) Λ = 27 0.00044 0.0019 (10−4, 10−4) (0, 2 · 10−3)

Λ = 35 0.00041 0.0013 (10−4, 10−4) (0, 10−3)

Λ = 19 0.00040 0.00041 (10−4, 10−4) (0, 2 · 10−3)

O(4) Λ = 27 0.00048 0.00048 (10−4, 10−4) (0, 2 · 10−3)

Λ = 35 0.00029 0.00062 (10−4, 10−4) (0, 2 · 10−3)

O(20) Λ = 35 0.00014 0.00023 (10−4, 10−4) (0, 2 · 10−3)

O(2): CJ Λ = 27 0.00005 − (10−4, 10−4) (0, ·10−3)

O(3): CJ Λ = 27 0.0001 − (10−4, 10−4) (0, 2 · 10−3)

Table 2. Maximal distance between the computed allowed and excluded points and the curves

shown in figures 1, 3, 5, 6, 7 and 8. The vectors v1 and v2 describe the direction and spacing of the

computed grids in the (∆φ,∆s) plane. For the CJ bounds we use the same lattices in the (∆φ,∆s)

plane. The reported maximal distance in the table is the vertical distance of the computed points

to the regions shown in the right panels of figures 7 and 8.

Figure 9. Allowed points in the (∆φ,∆s) plane for different values of ∆t in O(2) symmetric CFTs

at Λ = 19 (dark blue). The light blue shows the allowed region at Λ = 35 without any assumptions

on the symmetric tensor spectrum. The green rectangle is the Monte Carlo estimate [56].

represent the allowed region at Λ = 19. The light blue shaded area is the allowed region

at Λ = 35, but without any assumptions in symmetric tensor sector; those are the same

allowed regions shown in figures 3, 5, and 6. The final allowed regions with the assumptions

on ∆t are thus given by the intersections of the dark blue and light blue regions.
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Figure 10. Allowed points in the (∆φ,∆s) plane for different values of ∆t in O(3) symmetric CFTs

at Λ = 19 (dark blue). The light blue shows the allowed region at Λ = 35 without any assumptions

on the symmetric tensor spectrum. The green rectangle is the Monte Carlo estimate [58].

Qualitatively the picture is the same for each value of N and we expect that the

projections of the 3d plot into the (∆φ,∆s) plane will look similar for even higher values

of N . In particular, the lowest allowed values of ∆t are obtained at the lower left corner of

the allowed region in the (∆φ,∆s) plane, while the greatest values are obtained at upper

right corner of the allowed region. This allows us to find general bounds on ∆t without

doing a whole scan over the (∆φ,∆s) plane; it is enough to find bounds on ∆t at the corner

points.

– 22 –



J
H
E
P
1
1
(
2
0
1
5
)
1
0
6

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.178

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.18

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.182

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.184

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.186

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.188

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.19

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.192

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.194

0.517 0.518 0.519 0.520 0.521

DΦ

1.64

1.66

1.68

1.70

Ds

Dt=1.196

Figure 11. Allowed points in the (∆φ,∆s) plane for different values of ∆t in O(4) symmetric CFTs

at Λ = 19 (dark blue). The light blue shows the allowed region at Λ = 35 without any assumptions

on the symmetric tensor spectrum. The green rectangle is the Monte Carlo estimate [59].
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