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We implement the conformal bootstrap program for three dimensional conformal field theories with
N ¼ 2 supersymmetry and find universal constraints on the spectrum of operator dimensions in these
theories. By studying the bounds on the dimension of the first scalar appearing in the operator product
expansion of a chiral and an antichiral primary, we find a kink at the expected location of the critical three
dimensional N ¼ 2 Wess-Zumino model, which can be thought of as a supersymmetric analog of the
critical Ising model. Focusing on this kink, we determine, to high accuracy, the low-lying spectrum of
operator dimensions of the theory, as well as the stress-tensor two-point function. We find that the latter is
in an excellent agreement with an exact computation.
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Introduction.—Conformal field theories with N ¼ 2
supersymmetry in 3D are interesting theoretical models
with rich dynamics. For example, they enjoy a plethora of
dualities akin to mirror symmetry in two dimensions and
Seiberg duality in four dimensions [1–4]. Via the AdS=CFT
correspondence, they provide a window into the non-
perturbative structure of M theory; see, for example, [5].
These theories have also found applications in some areas
of condensed matter physics, such as topological phases of
matter [6] and optical lattices [7].
Of particular interest to us will be the Wess-Zumino

(WZ) model with N ¼ 2 supersymmetry. This is a theory
of a complex scalar ϕ, and a complex Dirac fermion ψ , with
the Lagrangian

LWZ ¼ ∂μϕ̄∂μϕþ iψ̄γμ∂μψ þ jλj2jϕj4
þ ðλϕψαϵ

αβψβ þ c:c:Þ: ð1Þ
In superspace language, this is the theory of a single chiral
superfieldϒ ¼ ϕþ θψ þ � � �with superpotentialW ¼ ϒ3.
Supersymmetry is not spontaneously broken since the
Witten index of this theory does not vanish. The coupling
λ is relevant and the theory is believed to flow to a 3D
N ¼ 2 superconformal field theory (SCFT) in the infrared
(IR), which we will denote by cWZ, for critical WZ model
(see [8] for a review). Note that the fermion cannot
get a mass term because of the U(1) R symmetry.
Supersymmetry then guarantees the scalar stays massless

as well. From Eq. (1), it is clear that this is a super-
symmetric version of the critical Ising model, whose
Lagrangian differs only by the absence of fermionic terms.
This SCFT has been argued to arise as the IR fixed point of
a certain lattice model [9], and also to describe a quantum
critical point on the surface of a topological insulator [10].
In this Letter, we will use the techniques of the conformal

bootstrap to find constraints on the space of N ¼ 2 SCFTs
in 3D. These methods have already been applied to theories
with various amounts of supersymmetry in four dimensions
[11–16], as well as for N ¼ 1 [17] and N ¼ 8 [18,19]
theories in three dimensions. The analysis here is a natural
continuation of our work in [20] which gives a broad-eyed
view of SCFTs with four supercharges for general space-
time dimension 2 ≤ d < 4. In particular, in [20] we show
that certain bounds on dimensions of operators show kinks,
and we argue that one such kink should describe the cWZ
model. Here we perform a detailed study of this kink for the
dimension of phenomenological interest, d ¼ 3, following
a similar analysis for the nonsupersymmetric Ising model
[21,22]. The outcome is a precise evaluation of the
spectrum of low-lying operators in the cWZ theory.
Bootstrap preliminaries.—We are interested in analyzing

the consequences of crossing symmetry for a four-point
function of the form hΦΦ̄ΦΦ̄i, where the operator Φ is a
superconformal chiral primary operator, and Φ̄ is its
conjugate. In other words, Φ is the lowest component of
a short superconformal multiplet and its dimension is equal
to its R charge, ΔΦ ¼ qΦ. For the concrete example of the
N ¼ 2 WZ model in Eq. (1), Φ will be identified with the
scalar field ϕ at the IR fixed point.
The constraints from crossing symmetry are analyzed

in detail in [20]. Here we only outline the most salient
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features. Decomposing the four-point function by perform-
ing an operator product expansion (OPE) in the three
inequivalent channels of fusing Φ with Φ and Φ̄ leads to
two crossing equations. From theΦ × Φ̄OPE one finds that
the four-point function decomposes into a sum of super-
conformal blocks, Gs

Δ, corresponding to an exchanged
superconformal primary of dimension Δ and spin s, and
its superconformal descendants. The blocks take the form

Gs
Δðu; vÞ ¼ Gs

Δðu; vÞ −
Δþ s

2ðΔþ sþ 1ÞG
sþ1
Δþ1ðu; vÞ

−
s2ðΔ − s − 1Þ

2ð4s2 − 1ÞðΔ − sÞG
s−1
Δþ1ðu; vÞ

þ Δ2ðΔþ sÞðΔ − s − 1Þ
4ð4Δ2 − 1ÞðΔþ sþ 1ÞðΔ − sÞG

s
Δþ2ðu; vÞ;

ð2Þ
where Gs

Δðu; vÞ is the usual nonsupersymmetric conformal
block as a function of the two conformal invariant cross
ratios, u ¼ ðx212x234=x213x224Þ and v ¼ ðx213x224=x213x224Þ [23].
The representation in terms of ordinary blocks corresponds
to the four allowed conformal primary operators obtained
by acting with the supercharges.
Because of the fact that Φ is chiral and using R-charge

conservation, in the Φ × Φ OPE, we get a single operator
per superconformal multiplet, and hence the four-point
function decomposes as a sum of ordinary conformal
blocks, Gs

Δðu; vÞ. The chirality condition also imposes
that, in this channel, the OPE is of the schematic form
(omitting conformal descendants)

Φ × Φ≃ Φ2 þQ2Ψ̄þ � � � ; ð3Þ
where Q is one of the Poincaré supercharges, Ψ̄ is an
antichiral field with dimension 2ð1 − ΔΦÞ, and Φ2 is chiral
with dimension 2ΔΦ. For the range of values of ΔΦ
considered in this Letter, supersymmetry imposes a gap
between the dimensions of these operators and the higher
dimension or spin contributions denoted by “� � �” in Eq. (3).
Therefore, when checking crossing symmetry, we should
allow for operators at these precise dimensions. Since we
do not know their OPE coefficients, we can only specify
that the operators may be present, not that they must be.
See [20] for more details.
The two crossing equations can be written as an infinite

number of linear equations with positive coefficients.
The bootstrap analysis consists of checking under which
conditions these equations may have a solution, essentially
by solving a large linear program. This is done using a
variation of Dantzig’s simplex method implemented in
Python [22]. Although the full set of constraints is con-
tinuously infinite, we can truncate the problem to a finite,
discrete subset obtained by considering finite Taylor expan-
sions in the cross ratios u; v around some fixed point. We
parametrize the truncation by the integer nmax, with the

actual number of constraints (terms in the Taylor expansion)
growing essentially quadratically in this parameter (and
indicated in parenthesis next to the value of nmax in our
figures). The reader is referred to [20,22] for more details.
In the following, we consider the problem of determining

an upper bound on the dimension of the leading scalar
superconformal primary in the Φ × Φ̄ OPE, which we
denote by ½ΦΦ̄�. Notice that supersymmetry does not
prevent this operator from having a large anomalous
dimension. To derive such a bound we impose an increas-
ing gap on the dimension of such operators in the OPE until
crossing symmetry can no longer be satisfied. We only
consider a finite number of constraints, but since each
constraint is a necessary condition for crossing symmetry,
this yields a rigorous (but potentially suboptimal) upper
bound on Δ½ΦΦ̄�. An important point is that if we tune the
gap so that we sit precisely at the boundary of the allowed
region (i.e., maximize the gap), it is possible to find a
unique solution to the truncated constraint equations [21].
This yields a subset of the spectrum of operators and OPE
coefficients. As we increase the number of constraints these
data change as more operators and OPE coefficients are
captured in a convergent manner [21]. Below we argue that
our bounds are saturated by cWZ, and are able to determine
its low-lying spectrum with great accuracy.
Results.—In Fig. 1 we show the results from the boot-

strap analysis which lead to an upper bound onΔ½ΦΦ̄�. There
are three distinct features, which we refer to as kinks, in the
curve bounding the allowed region. The second and third
kinks are discussed in more detail in [20]. Here we focus on
the first kink, since it bears strong resemblance to a similar
kink associated with the 3D critical Ising model [22], and
present the numerical results pertaining to the small box
in Fig. 1.
A close-up of this region is shown in Fig. 2: the set of

curves exhibiting an upward peak are the upper bounds on
Δ½ΦΦ̄� for increasing values of nmax (corresponding to
imposing successively more bootstrap constraints). Quite

FIG. 1 (color online). Bound on the dimensions of the leading
unprotected operator in the Φ × Φ̄ OPE at nmax ¼ 9. There can be
no unitary SCFTs in the white region.ΔΦ ¼ 2=3 is indicated with
a red dashed line. The small shaded rectangle at ΔΦ ¼ 2=3
indicates the field of view in Fig. 2.
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strikingly, we see that there is a sharp kink for ΔΦ ≃ 2=3.
This is precisely the (protected) dimension of the chiral
field Φ in cWZ, since the superpotential W ¼ ϒ3 fixes
ΔΦ ¼ 2=3. Hence, it is natural to conjecture that our bound
is actually saturated by cWZ at this point. As we increase
the number of constraints imposed, the bounds converge
rapidly towards this point. This is in line with previous
bootstrap results that indicate that kinks in bounds corre-
spond to actual CFTs.
In Fig. 2 we also display the central charge [24], extracted

from the OPE coefficients in the unique solution along the
conformal dimension bound curve. Here we observe a sharp
minimum which occurs very close to ΔΦ ¼ 2=3. Such
minima in the central charge have been observed before
in the context of the nonsupersymmetric bootstrap, where
they were conjectured to signal the existence of the ordinary
Ising model. Encountering the same phenomenon here
provides further evidence for our conjecture that the values
at the kink correspond to the cWZ theory. However, it is
important to note that the plot in Fig. 2 does not correspond
to central charge bounds as found in, e.g., [22], but rather
indicates the value of the central charge for the unique
solution that maximizes Δ½ΦΦ̄�.
When examined at high resolution (Fig. 3) we see that

the horizontal positions of the two kinks do not exactly
coincide, and they do not occur precisely atΔΦ ¼ 2=3. This
is not inconsistent as we have only imposed a finite number
of constraints (in parenthesis in the plot legends next to the
value of nmax). It is clear from Fig. 2 that the location of
the kinks is changing as a function of nmax and seems to be
converging towards 2=3. As this Letter is an initial foray
into the cWZ theory, we take a conservative approach and
estimate the conformal dimensions from our most rigorous
bounds at ΔΦ ¼ 2=3 and then heuristically estimate the
error from the rate of convergence.
Our results for the low-lying spectrum are compiled in

Table I, where we also present the relation between

conformal dimensions and critical exponents. To support
our error estimates, we provide, in Figs. 3, 4, and 6, plots
depicting the convergence rate of these different quantities.
Note that in the case of Δ½ΦΦ̄� our analysis yields a rigorous
upper bound, since we know ΔΦ ¼ 2=3 exactly; hence,
the error bars necessarily lie below our bound curve. We
believe the analogous result is true for the central charge
CT . In Table I, we have also included the dimension of the
non-superconformal primary operator ½Q4Φ̄Φ�, obtained by
acting with the four Q supercharges on ½Φ̄Φ�. This operator
is usually called ε0 in the nonsupersymmetric Ising model.
Supersymmetry implies the relation Δ½Q4Φ̄Φ� ¼ Δ½Φ̄Φ� þ 2.
Finally, ½Φ̄Φ�0 denotes the second-lowest nontrivial scalar
superconformal primary and J0 the second-lowest spin-1
superconformal primary appearing in the OPE of Φ and Φ̄,
the lowest being the R current. Since Φ, ½Φ̄Φ�, ½Φ̄Φ�0, and J0
are superconformal primaries, Table I implicitly yields the
dimensions of their descendant conformal primaries.
Checks.—Unfortunately, there are not many results in the

literature for the unprotected spectrum of cWZ. The only
available result is a one-loop ϵ-expansion calculation [9,25],
which leads to the following low-lying spectrum [26]:

ΔΦ ¼ 3 − ϵ

3
; Δ½ΦΦ̄� ¼ 2þOðϵ2Þ: ð4Þ

FIG. 2 (color online). Bound on the dimension of the leading
unprotected operator in the Φ × Φ̄OPE close toΔΦ ¼ 2=3 (upper
curves), and the corresponding central charge CT of the solution
on the boundary (lower curves). The numbers in parenthesis next
to the values of nmax indicate the number of constraints imposed
to generate the associated curve.

FIG. 3 (color online). A closer view of Fig. 2. The shaded
rectangles indicate our estimated error for Δ½ΦΦ̄� and CT .

FIG. 4 (color online). Bound on the dimension of the sublead-
ing superconformal scalar primary, ½ΦΦ̄�0, in the Φ × Φ̄ OPE. The
dimension is extracted from the solution that maximizes Δ½ΦΦ̄�.
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The expression for ΔΦ is one-loop exact due to supersym-
metry and after setting ϵ ¼ 1, one finds the expected result
ΔΦ ¼ 2=3. The fact thatΔ½ΦΦ̄� ¼ 2 in both d ¼ 2 and d ¼ 4

(see [20]), together with the expression in Eq. (4), suggests
that Δ½ΦΦ̄� never strays too far from 2, and indeed this is
within 5% of our numerical estimate.
A strong evidence supporting the identification of

the kink as the cWZ model comes from the value of
the stress-tensor two-point function CT . Dividing by the
value for the free chiral multiplet Cfree

T ¼ 6, the bootstrap
prediction is CcWZ

T =Cfree
T ≃ 0.7265ð3Þ. The same quantity

can be computed exactly using supersymmetric loca-
lization [27–29], with the result CcWZ

T =Cfree
T ≃ 0.7268

showing excellent agreement with bootstrap. The
ratio CcWZ

T =Cfree
T is much smaller than the analogous

quantity in the nonsupersymmetric critical Ising model
[22], ĈT=Ĉ

free
T ≃ 0.95.

An important characteristic of cWZ is the decoupling
of the chiral operator Φ2 from the spectrum. This is a
consequence of the cubic superpotential, which implies
thatΦ2 vanishes in the chiral ring. Hence, if our conjecture
is correct, the spectrum at the kink must not contain this
operator. To this end, in Fig. 5, we examine the OPE in
the Φ × Φ channel close to the cWZ kink. Notice that
the OPE coefficient of Φ2 goes to zero precisely at the
kink. This feature may be thought of as the ultimate reason

for the existence of the kink, by forcing a spectrum
rearrangement at this point. The decoupling of Φ2 may
also provide an explanation for the peculiar seesaw
behavior of the bound in Fig. 1. The next operator in
Eq. (3) is Q2Ψ̄ whose dimension decreases with ΔΦ (it is
given by ΔQ2Ψ̄ ¼ 3 − 2ΔΦ). It may be that this “drags”
ΔΦ̄Φ down, explaining why, to the right of the kink, the
bound decreases as we increase ΔΦ. The decoupling of Φ2

implies also that the first operator in the Φ × Φ OPE is
Q2Ψ̄, which for ΔΦ ¼ 2=3 has dimension 5=3 ¼ 1þ ΔΦ.
This suggests the identification Ψ≡ Φ, so that the OPE
takes the form

Φ × Φ ¼ Q2Φ̄þ � � � : ð5Þ

This is consistent with cWZ, which has a single scalar
chiral primary operator, and provides further evidence for
our conjecture.
In Fig. 6, we examine the spectrum of spin-1 operators

in the Φ × Φ̄ OPE. Besides the existence of a conserved
current (with Δ ¼ 2), we observe rapid operator rear-
rangements as the kink is approached. It is interesting to
compare this with what happens in the nonsupersym-
metric Ising model [22,30]. There, one of the prominent
features is the decoupling of a spin-2 operator with
dimension ≃3.5 when approaching the kink from the
right. Here we see the supersymmetric analog of this
transition, with a spin-1 superconformal primary with
dimension Δ≃ 2.9 decoupling from the right. In super-
symmetric theories many spin-2 fields, including the
stress tensor, are components of spin-1 superconformal
multiplets so perhaps it is not so surprising that we
observe a decoupling in the spin-1 sector. It would be
interesting to check if this decoupling has a d ¼ 2 analog
coming from a Virasoro null state (as is the case in the
nonsupersymmetric model).

FIG. 5 (color online). Charged scalar spectrum in the vicinity of ΔΦ ¼ 2=3. Left: The first three spin zero operators in the spectrum
(colored by order of appearance). The dashed lines correspond to 2ΔΦ, d − 2ΔΦ, and 2ðd − 1Þ − 2ΔΦ with d ¼ 3 (see [20]). Right: The
OPE coefficients for each operator appearing on the left-hand plot (with matching colors). Observe the vanishing of the Φ2 OPE
coefficient at ΔΦ ≃ 2=3. The “noisy” operators in the spectrum plots can be seen to have vanishingly small OPE coefficients and thus
correspond to small numerical artifacts in the solution.

TABLE I. Low-lying spectrum of the critical WZ model.

ΔΦ ¼ 1=2þ η=2 2
3
(exact)

Δ½Φ̄Φ� ¼ 3 − 1=ν 1.9098(20)
Δ½Q4Φ̄Φ� ¼ 3þ ω 3.9098(20)
Δ½Φ̄Φ�0 5.3(1)
ΔJ0 5.25(25)
CT 4.3591(20)
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Conclusions.—In this Letter, we have initiated the study
of the cWZ theory using conformal bootstrap methods. Our
results hinge on the conjecture that this theory sits at the
kink in our numerical bounds. Bearing this in mind, we
have provided the most accurate calculation to date of the
critical exponents and OPE coefficients in the cWZ model.
It will certainly be desirable to corroborate our analysis by
using other methods, like the ϵ-expansion or Monte Carlo
estimates. It will also be interesting to apply the alternative
conformal bootstrap algorithm of [31] to 3D N ¼ 2
theories.
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