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We present a classification of border-collision bifurcations in one-dimensional discontinuous maps
depending on the parameters of the piecewise linear approximation in the neighborhood of the
point of discontinuity. For each range of parameter values we derive the condition of existence
and stability of various periodic orbits and of chaos. This knowledge will help in understanding
the bifurcation phenomena in a large number of practical systems which can be modeled by
discontinuous maps in discrete domain.

Keywords : Border-collision bifurcations; discontinuous maps; power electronics.

1. Introduction

In recent years, the theory of border-collision bi-
furcations has been developed for piecewise smooth
maps [di Bernardo et al., 1999; Banerjee et al.,
2000a; Banerjee et al., 2000b] of the form

f(x, y, ρ) =























f1(x, y, ρ) for (x, y) ∈ R1

f2(x, y, ρ) for (x, y) ∈ R2

...

fn(x, y, ρ) for (x, y) ∈ Rn

(1)

where ρ is a parameter and R1, R2, etc. are different
regions of the phase space, with borderlines dividing
these regions.

These works assume that the map is contin-
uous, but with a discontinuity in the Jacobian
across the borderlines. Though investigation along
this line was initiated as a mathematical possibil-
ity [Nusse & Yorke, 1992, 1995], the recent spurt
of activity was prompted by the discovery that a

large class of practical systems in electrical engi-
neering can be modeled as piecewise smooth maps,
and border-collision bifurcations are quite common
in them [Yuan et al., 1998; Banerjee et al., 1997] (a
review is available in [Banerjee & Verghese, 2001]).
Though in general the Jacobian elements were as-
sumed to be finite, investigations on the dynam-
ics of the impact oscillator [Budd, 1995; Budd &
Dux, 1994; Nusse et al., 1994; Chin et al., 1995]
considered maps with square-root singularity at the
border.

Another line of development has shown that
there are important classes of switching systems
— like thyristor circuits [Dobson, 1995; Rajaraman
et al., 1996; Jalali et al., 1996] and the Colpitts os-
cillator [Maggio et al., 2000] — that yield discontin-
uous maps under discrete-time modeling, and non-
standard bifurcation phenomena can occur in such
systems. However the theory for understanding such
bifurcation phenomena is not available yet. In this
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paper we present the first attempt to classify
the border-collision bifurcations that occur in one-
dimensional maps with discontinuity at the border.
We also illustrate the application of the theory in
a practical example of a power electronic switching
circuit with a delay in feedback loop.

2. The One-Dimensional

Discontinuous Map

Consider a 1-D map f(x; µ) that maps the real line
R

1 to itself and depends smoothly on the parameter
µ. A point x = xb(µ) on the real line divides it into
two regions RA and RB . The map f(x; µ) is piece-
wise continuous in the sense that it is continuous in
(x; µ) on each of the regions RA and RB , but is dis-
continuous at xb. In particular, the one-sided limits
of the partial derivatives of f(x; µ) must exist at
the border xb. Without loss of generality, we con-
sider maps whose partial derivatives at the border
and the length of the discontinuity at the border
are independent of the parameter µ.

Since we are interested only in the bifurcations
that occur when a fixed point crosses the point of
discontinuity xb, we can study these through the
piecewise linear approximation in the neighborhood
of the border:

xn+1 =

{

axn + µ for xn < 0

bxn + µ + l for xn > 0
(2)

where the state space is divided into two halves L
(left) and R (right), and l is the length of the dis-
continuity. A transformation of coordinates moved
the break-point to the origin. The fixed point in L is
located at x∗

L
= µ/(1−a) and that in R is located at

x∗

R
= (µ+ l)/(1− b). The left half of the map inter-

sects the 45◦ line for µ < 0 and the right half inter-
sects this line at µ > −l. This means that the fixed

point x∗

L
collides with the border at µ = 0 and the

fixed point x∗

R
collides with the border at µ = −l.

Therefore we can expect two border-collision events
as the parameter µ is varied.

3. The Classification

3.1. Case 1: 0 < a < 1 and 0 < b < 1

We first consider the case of positive l, as illustrated
in Fig. 1. In this case there is a stable fixed point for
µ < −l and for µ > 0, and there are two stable fixed
points x∗

L
and x∗

R
at the two sides of the discontinu-

ity for −l < µ < 0. Multiple fixed points can occur
in continuous maps also, but there is an important
difference. In a continuous map, there must be an
unstable fixed point between the stable fixed points
while there is no such requirement in a discontin-
uous map. For the continuous map, the unstable
fixed point acts as the boundary between the two
basins of attraction, while in the discontinuous map
the point of discontinuity separates the two basins.
The distinctive feature of a discontinuous map (see
Fig. 1) is that single fixed points may appear or dis-
appear, while in continuous maps they can appear
or disappear only in pairs.

The bifurcation behavior is entirely different if
the discontinuity l is negative. There is a stable fixed
point each for µ < 0 and for µ > −l, and there is no

fixed point for −l > µ > 0. For −l > µ > 0, orbits
in the left half move towards the right and those is
the right half move towards the left, enabling stable
high-periodic orbits to exist.

Since the map is linear in each half, high-period
orbits cannot exist with all points in L or all points
in R. The period-2 fixed point must be of LR type,
with the point in L given by (bµ + µ + l)/(1 − ab)
and the point in R given by (aµ + µ + al)/(1− ab).

x* 
L

x*
R

x* 
L

x*
R

µ< −l < µ < 0 µ > 0−l

Fig. 1. Graphs of the map for 0 < a < 1 and 0 < b < 1, and l > 0.
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This orbit will exist so long as

bµ + µ + l

1 − ab
< 0 and

aµ + µ + al

1 − ab
> 0 . (3)

There can be two types of period-3 orbits — LRR
type and LLR type. For the LRR type, the three
points in the orbit are (b2µ+bµ+bl+µ+l)/(1−ab2),
(abµ+abl+aµ+al+µ)/(1−ab2), and (abµ+abl+
bµ+µ+ l)/(1−ab2). This orbit will exist so long as

b2µ + bµ + bl + µ + l

1 − ab2
< 0 ,

abµ + abl + bµ + µ + l

1 − ab2
> 0

(4)

Similarly, the three points in an LLR orbit are
(abµ+bµ+µ+ l)/(1−a2b), (abµ+aµ+al+m)/(1−
a2b), and (a2µ + a2l + aµ+ µ)/(1− a2b). This orbit
will exist in the parameter range given by

abµ + aµ + al + m

1 − a2b
< 0,

a2µ + a2l + aµ + µ

1 − a2b
> 0

(5)

The range of existence of the higher iterates can also
be obtained in a similar manner, but the expressions
become cumbersome and we exclude them here.

From the above, a few conclusions can be
drawn. First, since a and b are both less than
unity, if any high-periodic orbit exists it is stable,
and there can be no chaotic orbit since the map
is not stretching. Second, there will be one range
of the parameter where period-2 orbit will exist,
two ranges of the parameter where period-3 orbit
will exist, and similarly the period-n orbit will ex-
ist in (n − 1) ranges of the parameter. Third, the

−1

1

x

µ
−0.5 0 1 1.5

0

Fig. 2. Bifurcation diagram for the case 0 < a < 1, 0 < b <

1, and l < 0.

ranges of occurrence of orbits of consecutive peri-
odicity (e.g. period-2 and period-3) are not contin-
uous for 0 < a < 1 and 0 < b < 1, and hence the
order of occurrence of high-periodic orbits in the
range −l > µ > 0 will be nonmonotonic. The above
phenomena are observed in the bifurcation diagram
(Fig. 2).

3.2. Case 2: 0 < a < 1 and b > 1

If the discontinuity is positive, for µ < −l a sta-
ble fixed point exists in L, with basin of attraction
(−∞, x∗

R
). Initial conditions to the right of fixed

point x∗

R
go to infinity. For −l < µ < 0, the fixed

point x∗

L
remains stable but the basin boundary

moves to the point of discontinuity. And at the criti-
cal value of µ = 0, the fixed point disappears and all
trajectories go to infinity. For practical systems such
a situation may prove disastrous since the stability
margin (or the slope) of the map at the fixed point
gives no indication of the impending catastrophe.

A reverse bifurcation behavior is observed for
a > 1 and 0 < b < 1 where no fixed point ex-
ists and all trajectories go to −∞ for µ < −l. For
−l < µ < 0, x∗

R
exists and is stable with a basin

of attraction (0, ∞). For µ > 0, x∗

L
also exists but

is unstable and so the basin boundary shifts to x∗

L
.

All other initial conditions go to −∞.
If the discontinuity is negative, for µ < 0 two

fixed points exist — x∗

L
stable and x∗

R
unstable —

resulting in a period-1 orbit with basin of attraction
(−∞, x∗

R
). As µ exceeds zero, the fixed point x∗

L
dis-

appears while x∗

R
remains unstable. But since orbits

in x < 0 move to the right and orbits in x > 0 move
to the left, high-periodic orbits can exist so long as
µ < −l/b. As µ is varied in 0 < µ < −l, the pe-
riodicity varies nonmonotonically. But since b > 1,
eventually the orbit becomes globally stretching and
hence chaotic at some parameter value. The basin
of this chaotic attractor remains (−∞, x∗

R
). All ini-

tial conditions outside this basin go monotonically
to +∞. This chaotic attractor becomes unstable for
µ > −l/b when all trajectories go monotonically to
+∞. For µ > −l, the fixed point x∗

R
disappears and

there can be no stable orbit. The resulting bifurca-
tion diagram is shown in Fig. 3.

An opposite situation is observed for a > 1 and
0 < b < 1 where a chaotic attractor becomes stable
for µ > −(l(a − 1)/a) prior to which all trajec-
tories go monotonically to −∞. The basin of this
chaotic attractor is (x∗

L
, ∞). As µ is increased, high-

periodic orbits become stable, and finally for µ > −l
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∞

µ

x

1

−0.5 0 1.5
−1

0

Fig. 3. Bifurcation diagram for the case 0 < a < 1 and
b > 1, and l < 0.

two fixed points exist — x∗

L
unstable and x∗

R
stable

— and we get a period-1 orbit with a basin bound-
ary (x∗

L
, ∞).

3.3. Case 3: 0 < a < 1 and

−1 < b < 0

If the discontinuity is positive, the bifurcation be-
havior is similar to that in case 1. There exists stable
fixed point x∗

L
for µ < −l and x∗

R
for µ > 0. Both x∗

L

and x∗

R
are stable for −l < µ < 0. x∗

R
has a basin of

attraction (0, −(µ + l)/b) and all initial conditions
outside this domain converge to x∗

L
.

An opposite bifurcation behavior is observed
for −1 < a < 0 and 0 < b < 1 except that for
−l < µ < 0, x∗

L
has a basin of attraction (−µ/a, 0)

while all other trajectories converge to x∗

R
.

When the discontinuity is negative, the behav-
ior is the same for µ < 0 and µ > −l, but for
0 < µ < l there is no fixed point. In this range
all orbits are bounded but chaos cannot occur be-
cause the magnitudes of a and b are less than unity.
Since any iterate in R maps to L, all high-periodic
orbits must have only one point in R, i.e. the period-
3 orbit can only be of LLR type and the period-
4 orbit can only be of LLLR type, etc. Therefore
each high-periodic orbit exists over a single param-
eter range, and under the condition 0 < a < 1
and −1 < b < 0 consecutively higher periodici-
ties have overlapping parameter ranges. This im-
plies that there is a period-adding cascade if µ is
decreased from −l to zero, which is shown in the
bifurcation diagram of Fig. 4. The period-2 orbit
will exist in the parameter range (3), which extends
beyond −l, and hence for µ > −l, the period-2

−0.5 0 1 1.5
µ

0

1

x

−1

Fig. 4. Bifurcation diagram for the case 0 < a < 1 and
−1 < b < 0, and l < 0.

orbit coexists with period-1 orbit, which has basin
boundary (0, −(l + µ)/b).

An opposite bifurcation diagram is obtained for
−1 < a < 0 and 0 < b < 1.

3.4. Case 4: 0 < a < 1 and b < −1

For positive l, x∗

L
is stable giving a stable period-1

orbit for µ < 0. For µ > 0, no stable fixed point
exists. But since points in L map to R and points
in R map to L, orbits remain bounded. There can
be high-periodic orbits or chaos depending on the
magnitudes of a and b (see Fig. 5).

For negative l the behavior is the same as in
Case 3, except that the period-1 orbit is not sta-
ble for µ > −l. For 0 < µ < −l, the same period
subtracting cascade is observed. However, since the
magnitude of b is greater than one, the map be-
comes stretching and hence chaotic orbits can exist.

µ−1.5 −1 0 0.5

−1

0

1

x

Fig. 5. Bifurcation diagram for the case 0 < a < 1 and
b < −1, and l > 0.
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−0.5 0 1 1.5
µ

0

1

x

−1

Fig. 6. Bifurcation diagram for the case 0 < a < 1, 0 < b <

1, and l < 0.

An opposite bifurcation behavior is observed for
a < −1 and 0 < b < 1 for both values of l.

3.5. Case 5: a > 1 and b > 1

If the discontinuity is positive, no attractor exists
in the entire parameter space. But when the dis-
continuity is negative, chaos exists for the param-
eter range (1 − a)l/a < µ < −l/b as can be seen
in the bifurcation diagram (Fig. 6). This chaotic
attractor has a span of [µ + l, µ], with the basin
(x∗

L
, x∗

R
). Initial conditions less than x∗

L
go mono-

tonically towards −∞ while those greater than x∗

R

go monotonically towards +∞. Within the basin
boundary, points in L map to R and points in R
map to L, and thus the orbits remain bounded. The
map however is globally stretching and hence only
chaotic orbit can exist. For parameter values outside
this range, the chaotic attractor becomes unstable
due to boundary crisis. A necessary condition for
the existence of chaos is b < a/(a − 1); otherwise
no attractor exists in the entire parameter space.

3.6. Case 6: a > 1 and −1 < b < 0

For positive l, the bifurcation behavior is similar
to that for a > 1 and 0 < b < 1 as discussed un-
der Case 2. For µ < −l no attractor exists and all
trajectories go to −∞. For −l < µ < 0, x∗

R
exists

and is stable. However in this case it has a basin of
attraction (0, −(l + µ)/b) and all initial conditions
outside this range go to −∞. For µ > 0, x∗

L
also

exists but is unstable and so the basin of attraction
of x∗

R
changes to (x∗

L
, (x∗

L
− (l + µ))/b).

An opposite bifurcation behavior is observed for
−1 < a < 0 and b > 1. The behavior is exactly the
same as in Case 2 for 0 < a < 1 and b > 1.

For negative l, a stable attractor exists for
µ > l(1 − a)/(a − b + ab) (see Fig. 7). This attrac-
tor has a basin boundary (x∗

L
, ∞) beyond which

all trajectories go monotonically to −∞. For µ less
than this value, no attractor exists due to bound-
ary crisis and all trajectories go to −∞. Within the
above parameter range, high-periodic orbits may
exist or the system may be chaotic depending on
the values of a and b. The period-2 orbit exists in
the parameter range (3), and if |ab| < 1 this orbit
is stable. For µ > −l, a period-1 orbit is born with
a basin boundary (0, −(l + µ)/b). Figures 7(a) and
7(b) show the bifurcation diagrams for |ab| < 1 and
|ab| > 1, respectively.

A reverse case exists for −1 < a < 0 and b > 1
with the difference that the chaotic attractor be-
comes unstable for µ > l(1−a+ab)/(a−b−ab) when
all trajectories go monotonically to ∞. The basin
boundary of the chaotic attractor is (−∞, x∗

R
). All

trajectories outside this basin go to +∞.

−0.5 0 1.5
µ

0

1

x

−1

1

(a)

−0.5 0 1.5
µ

0

1

x

−1

1

(b)

Fig. 7. Bifurcation diagrams for the case a > 1 and −1 <

b < 0 and for l < 0. (a) Bifurcation diagram for ab < 1.
(b) Bifurcation diagram for ab > 1.
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3.7. Case 7: a > 1 and b < −1

If the discontinuity is positive, no attractor ex-
ists in the parameter range µ < 0 and all trajec-
tories go to −∞. However for positive values of
µ > l(b + 1)(1− a)/((b + 1)(a− 1) + 1), there exists
a trapping region. Since both a and b have magni-
tudes greater than unity, no periodic orbit can be
stable and chaos occurs. The attractor has a basin
of attraction (x∗

L
, µ + l).

An opposite case exists for a < −1 and b > 1
when no attractor exists for µ > −l and all trajec-
tories go to +∞. Chaos exists for µ < l/((1−b)(a+
1) + 1) with a basin (µ, x∗

R
).

When the discontinuity is negative, attractors
can exist only when µ > l(1 − a)/(a − b + ab) as in
Case 6. Since no periodic orbit can be stable, the at-
tractor is chaotic (see Fig. 8). This chaotic attractor
has a basin (x∗

L
,∞) beyond which all trajectories go

monotonically to −∞.
A reverse case exists for a < −1 and b > 1

where a stable chaotic orbit exists for µ > l(1 −
a+ab)/(a− b−ab) with a basin (−∞, x∗

R
), beyond

which all trajectories go to ∞.

−0.5 0 1.5
µ

0

1

x

−1

1

Fig. 8. Bifurcation diagram for the case a > 1 and b < −1
and l < 0.

3.8. Case 8: −1 < a < 0 and

−1 < b < 0

For positive values of l, the bifurcation behavior is
the same as in Case 3, i.e. there exists stable fixed
point x∗

L
for µ < −l and x∗

R
for µ > 0. Both x∗

L

and x∗

R
are stable for −l < µ < 0 such that x∗

R
has

a basin of attraction (0, −(µ + l)/b) and all initial
conditions outside this domain converge to x∗

L
.

For negative values of the discontinuity, points
in L go to R in one iterate and those in R go to
L in one iterate. Therefore no high-periodic orbit

−0.5 0 1.5
µ

0

x

1

−3

3

Fig. 9. Bifurcation diagram for the case −1 < a < 0 and
−1 < b < 0 and l < 0.

other than period-2 can exist. The period-2 orbit is
throughout stable since |ab| < 1. For µ < 0 and for
µ > −l, there is a coexisting period-1 orbit as x∗

L

and x∗

R
respectively become stable in these param-

eter ranges (Fig. 9).

3.9. Case 9: −1 < a < 0 and b < −1

If l > 0, the fixed point x∗

L
exists and is stable

for µ < 0 and thus all trajectories converge to it.
For µ > 0, x∗

R
exists but is unstable. Since points

in L map to R in one iterate and those in R get
mapped to L after a finite number of iterates, high-
periodic orbits can exist. These orbits can have only
one point in L, i.e. a period-3 fixed point must be
of LRR type which exists in the parameter range
(4). The period-n orbit will be stable if |abn−1| < 1.
Therefore, if the period-n orbit becomes unstable,
no orbit of periodicity higher than n can be stable,
and orbit becomes chaotic (see Fig. 10).

− −

x

µ−1.5 −1 0 0.5

−1

0

1

Fig. 10. Bifurcation diagram for the case −1 < a < 0 and
b < −1 and l > 0.
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An opposite bifurcation behavior occurs for
a < −1 and −1 < b < 0.

If l < 0, the bifurcation behavior is similar to
Case 8 except that x∗

R
is unstable for µ > −l. Also

the period-2 orbit is stable in the entire parameter
space only if ab < 1. In case, ab > 1, no attractor
exists for µ > 0. An opposite bifurcation behavior
occurs for a < −1 and −1 < b < 0.

3.10. Case 10 : a < −1 and b < −1

Since both a and b have magnitude greater than
unity, if an attractor exists it must be chaotic. In
case the discontinuity is positive, for µ < −l, x∗

L
ex-

ists while for µ > 0, x∗

R
exists and thus the chaotic

attractors are centered around them. For −l < µ <
0 both the unstable points exist and thus the attrac-
tor is evenly distributed. This explains the shape
of the chaotic attractors in the bifurcation diagram
(Fig. 11). These chaotic attractors have a basin
(((b + 1)µ + l)/(1 − ab), ((a + 1)µ + al)/(1 − ab)),
and any point outside this range oscillates between
L and R and goes to ∞. The condition for the
chaotic attractor to be stable is that

µ >
(b + 1)µ + l

1 − ab
and µ <

(a + 1)µ + al

1 − ab
− l (6)

otherwise trajectories very close to the origin map
outside the basin boundary and render the attractor
unstable.

For negative discontinuity, no attractor exists
in the entire parameter space and all trajectories
oscillate between L and R until it reaches ∞.

x

µ

−1

0

1

−1.1 0.10−1

Fig. 11. Bifurcation diagram for the case a < −1 and
b < −1 and l > 0.

3.11. Critical values of a and b

In the above analysis we have excluded the critical
parameter values, i.e. where the parameters a or b
take the values zero or unity. In such cases the linear
approximation does not yield much insight because
away from the break-point x = 0, the slope of the
map assumes noncritical values. However, we still
need to understand the dynamics of maps with such
critical values of the slopes, because there are prac-
tical situations which yield piecewise linear maps
with such slopes.

The case a = 0 acts as a boundary between the
cases 0 < a < 1 and −1 < a < 0 and represents a
smooth transition between them. The same is the
case when b assumes zero value and a is nonzero.
Likewise, the behavior of maps with a = 1 borders
the behavior of maps with 0 < a < 1 and a > 1.
For 0 < a < 1 and positive l, a stable fixed point
exists for µ < 0. As a approaches unity, the loca-
tion of the fixed point moves to −∞, and if a > 1
the fixed point x∗

L
does not exist. However for the

particular parameter value of µ = 0, the graph of
the map coincides with the 45◦ line, resulting in the
nongeneric situation of an infinite number of fixed
points.

Similarly for a or b equal to −1, the period-
2 orbit has a slope of unity and so may result in
the degenerate case of an infinity of fixed points.
These nongeneric situations are however removed
by any small perturbation in the map and are not
expected to occur in the original system if the ac-
curate discrete-time representation consists of non-
linear segments.

x
0

−3

3

−0.5 −2−1 a

Fig. 12. Bifurcation diagram of the normal form with b = 1,
l = −1, and µ = 1 held constant and a varied from −0.5 to
−2.
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To illustrate the system behavior for such
critical parameter values, we show the bifurcation
diagram of the normal form with b set at the crit-
ical value of 1 and a varied smoothly through the
critical value of −1 (Fig. 12). Note that the non-
generic situation does not arise here as µ 6= 0, and
the bifurcation phenomena can be explained with
reference to the appropriate cases discussed earlier
in this section.

4. Case Study: Boost Converter

with Delay in Control Loop

As a concrete example of a system that yields a dis-
continuous map, we consider a well-known power
electronic circuit — the current-mode controlled
boost converter (Fig. 13). When the switch is on,
the current through the inductor builds up linearly
till it reaches the specified reference value Iref . The
switch opens when i = Iref . When the switch is off,
the inductor current falls and the voltage across the
inductor reverses in polarity — which now adds to

the input voltage to be applied on the load. Once
the switch has opened, the next clock pulse causes
it to close. Any clock pulse arriving during the on

period is ignored. This is the ideal current-mode
control logic.

However, the components with which the con-
trol logic is realized often have delays and with
the industry trend of higher and higher clock fre-
quency, this delay can be significant in comparison
with the clock period. Under such conditions, if the
clock pulse arrives within a certain delay-period af-
ter the switch opening, the state of the switch can-
not change and it remains closed till the end of
the next clock period. We now proceed to obtain
a discrete-time model of this system as observed at
every clock instant.

The capacitor helps in smoothening the out-
put voltage, and if the clock period is sufficiently
small compared to the RC time constant, the out-
put voltage can be assumed to be essentially con-
stant. Under that condition the system becomes
one-dimensional and the inductor current waveform

Vin Vout

L

i

C R

Switch

D-Flip-Flop
S

Q

R
+

−

Iref

D

clock

Fig. 13. Schematic circuit diagram of the current mode controlled boost converter.

0
(a) (b) (c)

I
T

Tδ

ref

m
m1

2

Fig. 14. Possible evolutions between clocks. (a) The switch remains on, (b) Includes on-period and off-period, (c) Solid line:
if clock comes before δT delay of switch off, and dashed line: if clock comes after δT delay of switch off.
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becomes piecewise linear — allowing simplicity in
modeling.

Let the slopes of the inductor current during
on-period and off-period be m1 and m2 respectively,
and T be the clock period. Let the inductor current
at a clock instant be in and that at the next clock
be in+1.

There are two borderlines in the state space (see
Fig. 14):

Ib1 = Iref − m1T (7)

Ib2 = Iref − m2δT (8)

and the map is obtained as

in+1 =



















in + m1T for in ≤ Ib1

Iref

(

1 +
m2

m1

)

− m2T −
m2

m1

in for Ib1 ≤ in < Ib2

in − m2T for in > Ib2

(9)

It is clear that the map is continuous across the
border Ib1 but is discontinuous across border Ib2.

The numerically obtained bifurcation diagram
is shown in Fig. 15. The parameter values are Vin =
30 V, L = 0.1 H, T = 400 µs and Iref = 0.5 A.
This gives m1 = 300 A/s, which is kept constant
while m2 is varied. For m2 < 300 A/s, we have
−1 < a < 0 and b = 1, and negative l. Thus we
expect a behavior that borders between those of
−1 < a < 0 and b > 1 (reverse of Case 6) and
−1 < a < 0 and b < 1 (reverse of Case 3). In both
cases the theory predicts that a stable period-2 or-
bit should coexist with the period-1 orbit before the
border collision — and that is what we see in the
bifurcation diagram of the system.

As m2 is increased through 300 A/s, the slope
a becomes greater than unity. So now this is a situ-
ation bordering the reverse of Case 7 (a < −1 and

300250 500

i

m2

0.2

0.6

Fig. 15. Bifurcation diagram of the boost converter with
delay in control loop.

b > 1), with negative l. Since all multiples of a and
b have magnitude greater than unity, no periodic
attractor can be stable and the attractor becomes
chaotic. The bifurcation behavior is quite similar to
that observed in Fig. 12.

The specific features caused by the discontinu-
ity may be discerned by comparing with Fig. 16,
which shows the corresponding bifurcation behav-
ior of the system without delay in the feedback loop.

300250 500

i

m2

0.2

0.6

Fig. 16. Bifurcation diagram of the boost converter without
any delay in the feedback loop.

5. Conclusion

In this paper we have presented the bifurcation be-
havior of the piecewise linear discontinuous map (2)
as an approximation of a general one-dimensional
discontinuous map in the vicinity of the point of dis-
continuity. We have thus developed a classification
of the various discontinuous bifurcations depending
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Table 1. Occurrence of attractors in the map (2) as the parameter µ is varied. The details of the range of existence
and stability of the attractors are given in the text.

Asymptotic behavior for positive l

Range of a and b For µ < −l For −l < µ < 0 For µ > 0

0 < a < 1, 0 < b < 1 Period-1 Coexisting period-1 orbits Period-1
0 < a < 1, b > 1 Period-1 Period-1 No attractor
0 < a < 1, −1 < b < 0 Period-1 Coexisting period-1 orbits Period-1
0 < a < 1, b < −1 Period-1 Period-1 High periodic orbits/ chaos
a > 1, 0 < b < 1 No attractor Period-1 Period-1
a > 1, b > 1 No attractor No attractor No attractor
a > 1, −1 < b < 0 No attractor Period-1 Period-1
a > 1, b < −1 No attractor No attractor Chaos
−1 < a < 0, 0 < b < 1 Period-1 Coexisting period-1 orbits Period-1
−1 < a < 0, b > 1 Period-1 Period-1 No attractor
−1 < a < 0, −1 < b < 0 Period-1 Coexisting period-1 orbits Period-1
−1 < a < 0, b < −1 Period-1 Period-1 High periodic orbits/chaos
a < −1, 0 < b < 1 High periodic orbits/chaos Period-1 Period-1
a < −1, b > 1 Chaos No attractor No attractor
a < −1, −1 < b < 0 High periodic orbits/chaos Period-1 Period-1
a < −1, b < −1 Chaos Chaos Chaos

Asymptotic behavior for negative l

Range of a and b For µ < 0 For 0 < µ < −l For µ > −l

0 < a < 1, 0 < b < 1 Period-1 High periodic orbits Period-1
0 < a < 1, b > 1 Period-1 High periodic orbits/chaos No attractor
0 < a < 1, −1 < b < 0 Period-1 High periodic orbits Coexisting periods-1 and 2
0 < a < 1, b < −1 Period-1 High periodic orbits/chaos Period-2/chaos
a > 1, 0 < b < 1 No attractor High periodic orbits/chaos Period-1
a > 1, b > 1 No attractor Chaos No attractor
a > 1, −1 < b < 0 No attractor High periodic orbits/chaos Periods-1 and 2/period-1
a > 1, b < −1 No attractor Chaos Chaos
−1 < a < 0, 0 < b < 1 Coexisting periods-1 and 2 High periodic orbits Period-1
−1 < a < 0, b > 1 Periods-1 and 2/period-1 High periodic orbits/chaos No attractor
−1 < a < 0, −1 < b < 0 Coexisting periods-1 and 2 Period-2 Coexisting periods-1 and 2
−1 < a < 0, b < −1 Periods-1 and 2/period-1 Period-2/ no attractor Period-2/ no attractor
a < −1, 0 < b < 1 Period-2/chaos High periodic orbits/chaos Period-1
a < −1, b > 1 Chaos Chaos No attractor
a < −1, −1 < b < 0 Period-2/ no attractor Period-2/ no attractor Periods-1 and 2/period-1
a < −1, b < −1 No attractor No attractor No attractor

on the parameters of the map (2). The results are
tabulated in Table 1.
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