
Received December 9, 2020, accepted December 22, 2020, date of publication December 25, 2020, date of current version January 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047413

BorderChain: Blockchain-Based Access Control
Framework for the Internet of Things Endpoint

YUSTUS EKO OKTIAN AND SANG-GON LEE
College of Software Convergence, Dongseo University, Busan 47011, South Korea

Corresponding author: Sang-Gon Lee (nok60@dongseo.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea, Ministry of

Education, under Grant 2018R1D1A1B07047601, and in part by Institute for Information and Communications Technology Promotion,

Korea government (MSIT) (development of prevention technology against AI dysfunction induced by deception attack), under

Grant 2018-0-00245.

ABSTRACT The Internet of Things (IoT) providers serve better IoT services each year while producing

more IoT gateways and devices to expand their services. However, the security of the IoT ecosystem

remains an afterthought for most IoT providers. This action results in many cybersecurity breaches in the

field, most likely due to the lack of access control mechanisms. In this paper, we propose BorderChain,

an access control framework based on blockchain for IoT endpoints. The security protocol guarantees two

properties. First, our proposal assures IoT users and services that they communicate with approved IoT

gateways as endpoints, holding verified IoT devices that they need. Second, BorderChain also generates

access tokens that the IoT service and users can use to query IoT resources legitimately inside the IoT

domains. As a result, the protocol can convince IoT domain owners that the system will only authorize IoT

requests that they approve. We realize our protocol in the form of a smart contract to allow many IoT entities

such as IoT domain owners, IoT devices, IoT gateways, IoT vendors, IoT services, IoT users, and Internet

Service Provider (ISP) to collaborate in a unified environment. We then implement entities in BorderChain

as Node JS applications connecting to the Ethereum blockchain as our peer-to-peer platform. Based on

our performance evaluation using several Raspberry Pi hardware and our private server, we show that

BorderChain can process entities’ authentication and authorization requests efficiently using all hardware

resources. Finally, we release BorderChain for public use.

INDEX TERMS Blockchain, smart contract, access control, IoT, endpoint.

I. INTRODUCTION

The Internet of Things (IoT) is growing, in both quality and

quantity, and has helped us to live a better life each day. For

example, IoT can guide us to reach new places that we have

never visited before, remind us to pick up our umbrellas when

the day is going to rain, and drive us safely with sophisticated

car safety mechanisms. The possible use cases are fastly

spreading as researchers are developing IoT applications in

many sectors. This growth has introduced a lot of new devices

to connect to the Internet. Gartner estimates that 14.2 billion

things were working actively in 2019, and the number will

keep increasing and reach 25 billion by 2021 [1]. Moreover,

Gartner predicts that the number of IoT endpoints will reach

5.8 billion in 2020 [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Theofanis P. Raptis .

While IoT technology is ostensibly ameliorating our living

standards, it is also becoming a platform for attackers to

attack our life. Specifically, the presence of bulk IoT devices

in the network is a sweet spot for attackers to blend in and do

malicious activities. For starters, a hacker can steal sensitive

data from NASA using a cheap and portable Raspberry Pi

device [3]. Furthermore, attackers can also compromise mass

IoT devices to launch DDoS attacks. One of the most massive

DDoS attacks ever recorded in history originated from the

IoT devices [4]. We could have prevented these calamities

if all related organizations employ a proper access control

mechanism in their network.

Unfortunately, implementing robust access control for IoT

devices is challenging. An IoT devicemay not have the neces-

sary computing resource to do heavy cryptography to secure

itself; some devices cannot perform any cryptography at all.

Moreover, the diverse nature of the IoT devices possesses

3592 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0002-3574-7820
https://orcid.org/0000-0002-2906-584X


Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

challenges when developing custom authentication protocol.

The resulted scheme may work on a specific protocol but

break in other protocols. Therefore, it has limited compati-

bility. Finally, the IoT architecture moves from a centralized

model to a decentralized one (c.f. [5] for more detailed reflec-

tions on both models). Since solving access control issues

involves the trust model’s definition, it becomes more diffi-

cult to define the trust model in a decentralized environment,

where no central party governs the system.

Blockchain, a promising technology behind the Bit-

coin [6], brings the decentralization hype to many

non-cryptocurrency sectors; one of them is IoT [7].

Researchers view the blockchain as the ‘‘missing link’’ to

facilitate a decentralized platform for IoT, where many enti-

ties share data and resources. Furthermore, with the smart

contract’s invention [8], it allows adopters to enforce trust

in a decentralized and verifiable way. It can also automate

many time-consuming IoT workflows; thus, increasing the

overall IoT environment efficiency. With all of these benefits,

we argue that blockchain is a suitable platform candidate to

build an access control system for IoT.

This paper proposes BorderChain, an access control frame-

work for the IoT endpoint using blockchain. Before opening

his endpoint to others, the IoT domain owner authenticates

all gateways and devices in his endpoints. The correspond-

ing Internet Service Provider (ISP) and IoT vendors exam-

ine those gateways and devices, then provide attestations

of their authenticity. They then instruct the smart contract

to put the gateway and device information in the trusted

list. Once authenticated, other entities can begin requesting

IoT resource access to the gateway. Through his gateway,

the domain owner grants accesses only to the legitimate IoT

services, which act as the IoT domain clients. He then acti-

vates the access token for the services in the smart contract.

The services use this token to gain access to the IoT end-

point. While accessing the resource, both the services and the

gateways also construct secure channels as additional security

procedures.

We implement BorderChain as distributed applications

equipped with a smart contract to allow IoT domain owners,

IoT devices, IoT gateways, IoT vendors, IoT services, IoT

users, and ISP to collaborate in a unified environment. Enti-

ties in BorderChain are built in Node JS applications connect-

ing to the Ethereum blockchain as our peer-to-peer platform.

Based on our performance evaluation using several Raspberry

Pi hardware and our private server, BorderChain can process

entities’ authentication and authorization requests efficiently

using all hardware resources.

Contribution: In summary, we made the following

contributions.

• We propose a blockchain-based authentication proto-

col to provide verifiable identity and location guaran-

tee of IoT devices and gateways. Using our approach,

the IoT vendor verifies devices’ authenticity while

the ISP acts as a location attestation service for IoT

gateways.

• We present the idea of blockchain-facilitated authoriza-

tion protocol to allow IoT domain owners to authorize

selectively IoT users or services that they permit to

access their domains. We also provide an extension of

our protocol to build a secure channel between IoT

gateways and services.

• We analyze the security and trust properties of our pro-

posal. We then implement our protocol and assess its

feasibility through performance evaluations.

• To encourage reproducible research, we open our source

code in a public repository.1

We describe the rest of the paper as follows. We present

related work in Section II. Section III discusses problem

statements and challenges of distributed access control in

IoT. Then, we explain our design decisions to solve those

issues in Section IV. We elaborates details of our proposed

access control in Section V and evaluate its security, trust,

and performance in Section VI. Section VII discusses our

proposal’s limitations. Finally, we conclude in Section VIII.

II. RELATED WORK

This section presents studies closely related to our proposal

and elaborates on their similarities and differences.

A. IoT DOMAIN

The authors in [9] discuss access control’s importance in

distributing trusts among entities in the IoT environment.

They propose using a hybrid architecture called Auth, locally

centralized yet globally distributed architecture. With this

approach, an IoT gateway governs IoT devices in the domain

centrally, while the system manages accesses to different

domains distributedly.

A similar design pattern also appears in LSB [10].

The authors take the same hybrid architecture idea to

the blockchain realm. Specifically, they suggest using two

blockchain networks. A local blockchain network exists on

each of the IoT domains, with the IoT gateway serves as

a central authority that mines the blockchain solely. Mean-

while, an overlay blockchain network oversees the gover-

nance among multiple domains in a decentralized manner.

Similar to previously mentioned proposals, we also

employ a gateway-based architecture in this paper. In par-

ticular, the gateways manage the domain centrally while

the blockchain maintains inter-domain communications

governance.

B. IoT AUTHENTICATION

Certcoin [11] propose a decentralized authentication system

that provides excellent key management features such as

online and offline secret key, public keys binding to domains,

public key lookups, key recovery, and key revocation. More-

over, this study also presents several strategies to cut down

blockchain’s storage requirements using accumulators and

Distributed Hash Table. Together with SCPKI [12], these two

1https://github.com/mrkazawa/border-chain

VOLUME 9, 2021 3593



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

papers can serve as extensions to our protocol. We can use

them for our key and certificate management, which we do

not discuss in this paper.

Another study uses blockchain to provide an out-of-band

authentication [13]. Before getting access to IoT resources,

IoT devices need the help of a nearby already-authenticated

device to provide proof for their authentications. For example,

the IoT server instructs a light bulb to perform a secret

sequence that the target device has to decode and present back

to the server through blockchain. In other words, the system

resembles a two-factor authentication mechanism. Therefore,

this study can serve as an alternative method for authentica-

tion between IoT devices and vendors in our protocol.

Bubbles of Trust (BoT) [14] propose an IoT authentication

mechanism using virtual domains, called a bubble. A Master

exists in their architecture to create bubbles in the blockchain

and distribute tickets to the Follower. The Follower has to

sign those tickets and deliver them to the blockchain for

authentication to join a bubble. At the n-th transaction, when

the Follower wants to transmit messages to other entities in

the same bubble, he sends a transaction to the blockchain by

attaching his previous tickets as proof for authentication.

There are several differences between the BoT and our

proposal. First, BoT is a rigid system. It does not allow

a particular group member to communicate with others

who do not belong to the same group. Contrary to this

paradigm, our authentication focuses on inter-domain rela-

tionships, which encourages IoT services and users (i.e., enti-

ties outside the domains) to trust IoT gateways and devices

(i.e., entities inside domains). Second, we argue that BoT

is costly. For example, when the Follower joins the bub-

ble, the smart contract must verify the Master’s signature

on the tickets on-chain, which should be very expensive to

perform. In our proposal, we outsource a similar signature

verification mechanism off-chain to be more efficient and

cheaper.

Trust List [15] proposes to use SDN and blockchain to

provide authentication for IoT devices and services in an IoT

domain. By default, IoT devices and services are untrust-

worthy. Therefore, the SDN controller drops all traffics that

coming from them in the IoT domain. For authentication

purposes, the SDN controller redirects their traffics to trusted

validators. Once they are authenticated, the smart contract

builds the Device Profile and Service Profile, serving as proof

of authentication. These profiles also act as whitelists for the

SDN controller to let traffics from these profiles go through

the IoT domain.

Similar to this study, our proposal also uses trusted veri-

fiers. However, we do not limit our implementation to only

the SDN-enabled network. Hence, ours is network-agnostic.

Moreover, in our proposal, IoT services are taking a more

active role, similar to IoT users. Meanwhile, the IoT devices,

which behave like servers, become passive and only respond

according to their messages. Therefore, we putmore concerns

on the authenticity of IoT devices and gateways rather than

IoT devices and services, as the authors propose.

C. IoT AUTHORIZATION

FairAccess [16] proposes the use of blockchain to store access

token for IoT authorization. The resource owner sends an

access token to the requester by creating a transaction and

lock script in the blockchain. The requester then generates an

unlocking script for the access token and then sends a reply

transaction back to the blockchain. At thismoment, the autho-

rization is complete. Other parties can conduct verification

by checking that the script from the requester can unlock the

token. Because this study is one of the first blockchain-based

IoT authorization schemes, the authors employ the scripting

model of the Bitcoin with limited functions. However, our

proposal makes use of a more modern approach by leveraging

the smart contract.

Like the previous research, IoTChain [17] also stores

proofs of access control in the blockchain. However, this

study’s distinguishable feature is the introduction of the Key

Server, which serves as a proxy for the client and server

to communicate securely. By default, IoT services encrypt

all the IoT resources using a secret key. IoT users then

have to get the key from the Key Server to decrypt the

resource. However, the key server will check the proof in the

blockchain before he distributes the keys to the users. Unlike

this approach, clients and servers can build a secure channel

without any proxy or centralized third party in our proposal.

LSB [10] presents a local access control mechanism in

their gateway-based architecture. Specifically, the authors

store access policies in the policy header of their custom

blockchain architecture. The gateway intercepts every request

coming to his domain and then allows or rejects requests

based on the saved policy. The minor difference with our pro-

posal is the type of blockchain platform that each of us uses.

Our proposal can be used in any publicly available blockchain

that supports smart contracts. Thus, we do not require custom

blockchain architecture, as the authors propose.

III. PREREQUISITES

This section discusses problem statements and challenges

that serve as our motivations in developing yet another access

control for IoT.

A. PROBLEM STATEMENT

We can rephrase an access control problem to a trust issue.

In a general sense, as humans, we tend to be more open to

someonewe trust than strangers. The same logic applies to the

IoT, where we grant trustful entities more access to our IoT

devices than, let say, hackers. Thereby, giving access control

is closely related to distributing trust among entities.

A recent trend that is inevitable for IoT is the movement

from centralized management to the distributed one. This

move brings benefits to the IoT as it can reduce the overall

latency of IoT workflows and enables real-time IoT pro-

cessing. However, the decentralization of IoT is a disturbing

maneuver for access control. In a centralized architecture,

we gather IoT data from multiple devices in the field and

store the data in a siloed and centralized database in the

3594 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

Cloud. When we want to share this data with other parties,

we open the Application Programming Interface (API) and

apply access control centrally from the Cloud. By contrast,

anyone can share resources and data arbitrarily in a decen-

tralized environment. Thus, we have to disseminate the access

control procedures across multiple actors, making the system

complex.

Moreover, in distributed IoT, the roles of clients and servers

are now upside down. With CoAP [18] or MQTT [19] pro-

tocol, IoT services and users now have to initiate the IoT

data request to the IoT devices through gateways or brokers.

Thus, the IoT device plays a passive role by responding to

the gateway or the broker’s queries. This condition highlights

IoT gateways’ importance and augments the need to apply a

robust access control mechanism to each IoT endpoints in the

network.

Use Cases: Let us assume that company A has built a

weather monitoring application in a particular city. Mean-

while, company B has developed an IoT-enabled public trans-

port application for the same city. A recent business meeting

requires B to integrate weather data into its platform to serve

citizens with better transit options. Instead of building its

own siloed weather application, B tries to negotiate with A to

share their IoT weather infrastructure. Let us assume that A

approvesB’s request and allowsB to access weather data from

various A’s devices through multiple A’s endpoints scattered

all across the city. Now, B needs to initiate the process to

A’s endpoints. However, B is not sure how to authenticate A.

Thus, from this scenario, we define three problems:
P1 How to distribute and enforce trust among many

participants in the IoT network?

P2 How do we know that we are communicating with

a verified IoT endpoint?

P3 How do we assure that the endpoint truly holds the

IoT devices they claim?
Assuming that B can identify A’s endpoints and devices

correctly, a follow-up question now becomes how A can effi-

ciently give B access. Recall that A has multiple IoT devices

and endpoints that all may speak different protocols. It is

convenient if B has a single token representing his access

across multiple endpoints and devices without a protocol

boundary. Furthermore, with the nature of IoT devices being

constrained devices and IoT endpoints reside mostly in the

field with low-security protection, attackers can most likely

compromise them easily. Hence, the system should provide a

revocation procedure that A can use in the aftermath of cyber-

security hacks. Thus, we define two additional problems:

P4 How do we provide universal access control across

multiple IoT endpoints and devices?

P5 How do we provide a robust revocation mechanism

to repeal our authentication and authorization?

B. CHALLENGES

We argue that blockchain is a suitable decentralized platform

for IoT and plan to build our access control on top of it.

However, after we investigate the literature regarding access

control, IoT, and blockchain, we find several challenges that

may hinder our objective. We describe them as follows.
C1 IoT devices have various resources to do

cryptography.
A study by Ometov et al. [20] explores diverse IoT and

wearable devices’ feasibility to perform cryptographic algo-

rithms. The result shows that modern IoT devices can do the

cryptographic procedure with varied performance depending

on their resources. Furthermore, some IoT devices, such

as sensor networks, are designed to preserve battery. Thus,

heavy cryptography, while it is viable [21], needs to be

performed scarcely. Consequently, IoT manufacturers can

take several alternatives to provide authentication for IoT

devices [22], ranging from the most secure but requiring

more processing to the least secure with least processing. Our

access control should be compatible with many authentica-

tion options, such as:
• PKI signature, a challenge-response with IoT device’s

public key to prove IoT device’s signature generated

from its private key.

• A pre-embedded root of trust, IoT vendor stores a

pre-shared secret in a secure place (possibly in Trusted

Platform Module) embedded in the IoT device; then,

the device performs symmetric signing with it.

• Device fingerprinting, IoT device generates a hash of

selected files from its file system then compares it to the

pre-computed hashes in the server.

• MAC authentication, the vendor previously built a

whitelist record containing a list of eligible IoT device

MAC addresses, and then she only approves requests

that contain listed MAC addresses.

C2 IoT devices apply diverse IoT protocols.

IoT devices may use various protocols stacks in their archi-

tecture [23], which complicates the compatibility between

one IoT application to another. For example, whether to use

TCP or UDP in the Transport Layer, using IPv4 or IPv6 in

the Network Layer, or to use RFID, Wi-Fi, Bluetooth, 6Low-

PAN, 3G, or 4G to communicate with other devices in the

network. Our proposal should be able to operate with many

IoT protocols.
C3 The number of IoT devices and endpoints are

surging.
With the growing number of IoT devices and endpoints,

the widely-adopted X.509 digital signature scheme [24] is

not suitable for the distributed IoT environment, at least not

in the current form. First, the system has a single point of

failure problem. Since anyonemust fully trust the Centralized

Authority (CA), the CA may break the whole system once

it starts to misbehave [25]. Second, the scheme does not

scale well because CA now has additional jobs to sign a

vast number of IoT devices or endpoints. Lastly, CA cannot

provide a seamless revocation procedure when signatures are

compromised [26]. Thus, we should design our proposal with

the robustness, scalability, and flexibility that the IoT network

needs.
C4 Blockchain node needs ample resources.

VOLUME 9, 2021 3595



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

Becoming a blockchain node requires many process-

ing power in CPU, memory, storage, and networking. The

typical permissionless blockchain such as Bitcoin [6] or

Ethereum [8] requires the node to solve a cryptographic puz-

zle to achieve consensus. We commonly define it as Proof-

of-Work (PoW). This process is CPU-intensive, such that the

majority of IoT devices cannot perform well enough. For

example, a Raspberry Pi 2 takes 3082 seconds to solve a PoW

puzzle and wastes 5,3 KJ of energy [27]. This metric should

worsen on more constrained IoT devices.

Moreover, being a blockchain node also requires the node

to sacrifice storage space to maintain a distributed ledger

copy. The data size varies depending on two things, how

long the blockchain has run and how many users are using

it. For instance, we need at least 200 GB of free hard drive

storage and 2 GB of RAM to run a full Bitcoin node [28].

Lastly, in terms of networking, we also need constant network

communication with other peers to get up-to-date ledger

information. Therefore, we should find aworkaround to allow

IoT devices to access the blockchain widely.

IV. DESIGN DECISION

We came up with several core design decisions for our access

control that we believe can serve as direct and workaround

solutions to the previously mentioned problems and chal-

lenges. We summarize them in Table 1 and elaborate them

as follows.

TABLE 1. A summary of our solutions toward the problems and
challenges in Section III.

A. GATEWAY-BASED ARCHITECTURE

Throughout the rest of this paper, we employ a gateway-based

architecture scattered across our IoT network. We depict our

conceptual IoT architecture in Figure 1. In this architecture,

IoT devices cannot communicate to the Internet directly.

Instead, they rely on a centralized, trusted IoT gateway to

relay their messages to the rest of the network. Likewise,

anyone requires to access the IoT devices must go through

the gateway as well. IoT devices and the gateway form an IoT

FIGURE 1. The IoT architecture for our proposed access control scheme.
IoT gateway and the underlying IoT devices form an IoT domain, governed
by the IoT domain owner. The IoT vendor and ISP exist in the system as
trusted verifiers to approve the authenticity of the gateways and devices.
Meanwhile, the IoT service and user serve as the IoT domain clients that
query resources from the IoT domain.

domain or endpoint.2 The gateway also serves many roles as

follows:

• The gateway becomes a protocol bridge. It trans-

lates multiple IoT-related protocols (e.g., Bluetooth Low

Energy (BLE), Zigbee, 6LowPAN) from the devices into

TCP/IP protocol to communicate with entities outside of

the domain. Thus, the gateway helps in overcoming C2.

• The gateway provides local access control rules. The

gateway enforces local access control for all IoT devices

in its endpoint. This scheme is feasible because the sys-

tem routes every request through the gateway.Moreover,

the gateway maintains a global rule for every requester

across multiple domains with the blockchain network.

Therefore, it realizes P4.

• The gateway piggybacks security constraints of the

IoT devices. Due to the constrained nature of IoT

devices, IoT manufacturers mostly implement weak or

even no security at the IoT devices for the sake of

communicating to the nearby gateway. The gateway

transforms this unsecure communication into a secure

channel using TLS or DTLS when communicating with

the outside domain. Thus, to solve C1, we argue that

the gateway can facilitate the transfers of various types

of authentication payloads from IoT devices to the IoT

vendor.

• The gateway as a blockchain node. Since the gateway

is most likely to have higher processing power and stor-

age than IoT devices, the gateway is more appropriate

to become the blockchain node. Any IoT device that

wants to communicate to the blockchain can contact the

gateway as a proxy. Hence, this decision solves C4.

B. TRUSTED APPROVER

We use trusted approvers to authenticate and authorize IoT

endpoints, devices, and resources. By doing so, we intro-

duce centralization into our system. However, we argue that

2 This paper uses the terms domain and endpoint interchangeably

3596 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

centralization is inevitable in some parts of the IoT ecosys-

tem. For example, we rely on IoT manufacturers to fabricate

our IoT devices. Then, we lean on IoT gateways to relay mes-

sages from our endpoint to the Internet and vice versa. Lastly,

we depend heavily on the Internet Service Provider (ISP)

to route our IoT traffics worldwide. Our idea is to let the

ISP, vendor, and gateway handle security verifications with

blockchain serves as the backbone communication to perform

the validations in a distributed, fair, and transparent manner.
• ISP as the gateway approver. To make the public

believe that a given IoT endpoint belongs to a particular

owner, we use ISP as a trusted verifier. Specifically,

the owner has to present proof of his network registration

to the ISP authentication server. Upon validation, the ISP

maps the owner’s gateway blockchain address to the

owner’s IP. The ISP then saves this mapping to the

smart contract. Because everyone trusts the ISP, theywill

trust this information once recorded; thus, this solution

solves P2.

• Vendor as the device approver. The manufacturing

process inherits the trust relationship between IoT ven-

dors and their devices. The gateway piggybacks the

device authentication payload to the vendor authenti-

cation server. The message to the vendor also contains

the gateway blockchain address. Thereby, one can relate

the relationship between the gateway and the device.

Upon validation, the vendor stores this relationship in

the smart contract. Since everyone trusts the IoT vendor,

this design resolves P3.

• Gateway as the access verifier. IoT domain owner is

the one who opens the IoT endpoint and the underlying

devices to the rest of the network. As a result, he has the

full right to give access to anyone that he trusts. To grant

access, he leverages his IoT gateway as an authorization

server. The gateway intercepts all requests coming to

the domain and only allows the authorized ones to go

through. Thereby, this scheme contributes to P4.

C. DISTRIBUTED ACCESS CONTROL STATE

We take advantage of decentralization in blockchain to store

our access control’s state distributedly on all IoT entities.

Specifically, after approvers conduct verifications on the

gateway, device, or access, they store the corresponding state

in the smart contract. Because the blockchain replicates the

state to all nodes, lookup on this state becomes local processes

on each associated node. This local process is faster than

in the centralized architecture. As a result, it can scale the

system further and solve C3. It also speeds up the revocation

processes and resolves P5.

D. SMART CONTRACT AS THE ROOT OF TRUST

We have many entities in our proposal that comprise IoT

domain owner, IoT device, IoT gateway, IoT vendor, IoT

service, IoT user, and ISP. Each of them may have a conflict

of interest, and the smart contract is a suitable candidate to

unite them since it is open, transparent, and deterministic.

All of the blockchain nodes can understand what data is being

stored and how the contract will perform a particular method.

Thus, they get a single unified truth. This mechanism then

satisfies P1.

V. PROPOSED PROTOCOL

Our access control protocol comprises several steps. First of

all, we perform gateway authentication, in which IoT domain

owners validate their IoT domains to the ISP. Once validated,

the owners perform authentication for each IoT device under

each domain to its respective IoT vendor. Others can then

begin to request access authorizations to the IoT gateways.

The owners grant access to their IoT domains by giving

access tokens to legitimate requesters. Finally, requesters can

build secure channels with the gateways before querying for

IoT resources using the granted access tokens.

A. NOTATIONS AND TOOLS

In the remainder of this paper, we use the following notations:
1) αL refers to L’s blockchain address that serves as L’s

identity in the blockchain (on-chain) and outside the

blockchain (off-chain).

2) PKEPKx (J ) is the public-key encryption of J using x

public key.

3) PKDSKy (K ) is the public-key decryption of K using y

private key.

4) Ez(J ) is the symmetric encryption of J using z

pre-shared key.

5) Dz(K ) is the symmetric decryption of K using z

pre-shared key.

6) PKSIGNSKy (J ) generates a public-key digital signature

for J using y private key.

7) PKVERIFYαL (K , J ) verifies whether the blockchain

address αL signs data J and generates the public-key

digital signature K .

8) SIGNz(J ) generates a symmetric digital signature for J

using z pre-shared key.

9) VERIFYz(K , J ) verifies whether the sender signs the

data J using z pre-shared key and generates the sym-

metric digital signature K .

10) H (J ) generates a hash of J .

11) X ‖ Y represents the concatenation of X with Y .
Our access control scheme also includes multiple entities,

which have different roles and interests from one another. We

introduce them as follow:

1) D is the IoT device, it is a sensor or an actuator

originated from a particular IoT vendor. Its role is to

generate IoT data for consumers and execute assigned

commands.

2) V is the IoT vendor. He is the manufacturer and the

seller of the IoT devices.

3) ISP is the Internet Service Provider (ISP), facilitating

the transmission of IoT data packets across many IoT

endpoints.

4) GW is the IoT gateway. This entity relays all commu-

nications between entities outside the IoT endpoint to

VOLUME 9, 2021 3597



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

the IoT devices within the domain and vice versa. It can

be a protocol-specific peripheral (e.g., CoAP gateway

or MQTT broker) or a general multi-purposes gateway,

where it serves many protocols at once.

5) O is the IoT domain owner. He is the owner and the

administrator of an IoT endpoint. He owns the gateway

and IoT devices, which also is responsible for register-

ing them to the corresponding ISPs and IoT vendors.

He also opens his domain to the public.

6) S is the IoT service, which serves as the consumer of

IoT data. He garners the IoT data from IoT devices

through IoT gateways. He can also instruct commands

to the IoT devices.

7) U is the IoT users. He has a similar role as the IoT

services in collecting data from devices and instructing

commands to devices. Moreover, he is also the con-

sumer of the IoT data analytics that the IoT service

provides.

8) SC is the smart contract. This entity resides in the

blockchain and becomes the root of trust among all par-

ticipants. It enforces trust between parties by presenting

trusted Turing-complete methods for all participants.

B. GATEWAY OR ENDPOINT AUTHENTICATION

Premise: As the one who owns and controls the IoT domain,

O first registers himself to ISP to connect his domain to the

Internet. He then sets up GW for his domain.

1) O creates a pair of PKO and SKO. By doing so, O also

produces αO.

2) O generates a pair of υO and ρO, which are O’s user-

name and password. In this paper, we assume that

ISP authenticates its subscribers by their username and

password. However, adopters can change it to other

authentication alternatives (e.g., public keys, biomet-

rics, or pin) when necessary.

3) O contacts ISP and then submits υO, ρO, and αO to

the system. In this process, he also subscribes to the

Internet service that ISP provides (we omit the details

here as the subscription procedures may vary across

many ISPs).

4) ISP creates a pair of PKISP and SKISP, which also pro-

duces αISP. She then validates the owner’s registration.

If the registration is successful, she returns PKISP, αISP,

and γO (i.e, O’s IP address) to O.

5) O then creates PKGW , SKGW , and αGW . After that,

he equips GW with γO so that the public can access

his gateway through the given IP.

6) ISP deploys an authentication server equipped with the

parameters of αISP.

7) We assume that a trusted third party (e.g., the gov-

ernment) exists to deploy the smart contract to the

blockchain network. Once SC is deployed, O and ISP

subscribe to SC’s events.

8) SC is discoverable through αSC , and we assume that all

parties know this address as common knowledge.

Goal: By default, the public does not trust GW and the

associated γO. The following protocol facilitates a transpar-

ent endpoint authentication by factoring the process in the

blockchain. ISP will provide an attestation of γO possession

to GW when the authentication is successful. We summarize

the whole process in Figure 2.

1) O forms:

• η, a random string for entropy and replay attack

protection

• t , a current timestamp

• X1 = υO ‖ ρO ‖ γO ‖ η ‖ t

• Y1 = H (X1)

X1 is the whole gateway authentication payload with

Y1 as its corresponding hash. Y1 holds an essential role

because it also acts as an identifier for the authentica-

tion request. As a result, O must store Y1 in his local

storage since he will need this hash for the revocation

use case later, which we explain at the end of this

section.

2) O sends a transaction (tx) to SC by calling SC’s

method to record a log of the authentication request in

the blockchain. Specifically, O includes the following

information in the transaction:

• hash, the hash of the gateway authentication

payload, Y1
• source, the address that sends this transaction, αO
• target , the address of the authentication target,

αGW

• approver , the address of the authentication

approver, αISP

In other words, O puts a log in the blockchain, indi-

cating an instruction for ISP to validate his GW by

presenting the authentication payload Y1. This log acts

as a factor in the blockchain, making the authentica-

tion process transparent and fair for everyone. This

step ends with the SC returns a tx hash as proof of

submission.

3) Upon receiving the previous transaction calls, SC

stores all information to a list of authentication logs in

its key-value storage. The hash serves as the key, with

the source, target , and approver serves as the values.

There are also two parameters in each entry of the list,

approved and revoked , that SC sets to False by default.

The former indicates that the authentication request

has not been approved yet, and the latter tells that the

request is not revoked.

4) After receiving the tx event from Step 2, which indi-

cates Y1 metadata have been inserted successfully in

the blockchain, O then forms:

• C1 = PKSIGNSKO (Y1)

• X2 = PKEPKISP (X1 ‖ C1)

C1 is the signature of the authentication payload while

X2 is an encrypted authentication request for ISP.

5) O sends the authentication request X2 off-chain to ISP’s

authentication server.

3598 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

FIGURE 2. The sequence diagram for our proposed gateway authentication.

6) When ISP receives the event from Step 2, where

approver equals αISP, she stores the corresponding

hash, source, and target information to his local

database. Note that the delivery of events is subject

to the miner and network latency. Therefore, O may

receive this event first before ISP and vice versa.

7) After receiving X2, ISP begins the verification process,

which we outline at Algorithm 1.

For starters, she decrypts the encrypted authenticaton

request X2 (line 1). The decryption reveals the gateway

authentication payload X1 as well as the signature C1.

She then calculates the hash of authentication payload

Y1 (line 2).

After that, she verifies whether Y1 exists in her local

database (line 3). If the authentication hash does

not exist, it may imply two things. First, the owner

sends a valid X1, but the ISP has not received

the tx event containing Y1 yet. Thus, she cannot

find it in her database. Second, the owner sends an

invalid X1.

Algorithm 1 The Verification of the Gateway Authentication

Request in ISP

Input: X2, SKISP
Output: True or False

1: X1 ‖ C1← PKDSKISP(X2)

2: Y1← H (X1)

3: if ! exist(Y1) then return False

4: source← getSource(Y1)

5: if ! PKVERIFYsource(C1,Y1) then return False

6: υO ‖ ρO ‖ γO← X1
7: υ

′
O ‖ ρ

′
O ‖ γ

′
O← getUserInfo(source)

8: if υ
′
O ! = υO or ρ

′
O ! = ρO or γ

′
O ! = γO then return

False

9: return True

If the ISP finds the hash, she then gets the source of

this authentication log from her database and verifies

whether this source signs the received authentication

payload (line 4-5). This procedure validates the entity

VOLUME 9, 2021 3599



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

that sends X1 off-chain is the same entity that transmits

the authentication log Y1 on-chain. Thus, this step is

crucial to ensure that the ISP deals with the same

domain owner.

The rest of the procedure is straightforward. The ISP

queries details of the user’s information from the

database using getUserInfo(·) method and then checks

if they match the one in the authentication payload

(line 6-8).

The algorithm will return False if there is an issue or

invalid checking during these verifications and return

True when everything is valid.

8) Assuming that the verification is successful, ISP sends

the authentication report back to SC by sending a trans-

action with this information:

• hash, the hash of the approved gateway authenti-

cation payload, Y1
• routerIP, the approved IP from the authentication

payload, γO
She then receives tx hash as proof of submission.

9) In the blockchain, SC maintains a list of trusted GW

that everyone should trust. Upon receiving the transac-

tion in the previous step, SC sets the approved status

of Y1 to True. This action indicates that ISP already

verified Y1 payload. Then, SC saves αGW along with

γO in the trusted list.

10) ISP sends a message to O to let him know the result of

his authentication request. O and ISP may also receive

the event from Step 8, which tells that the gateway

address and the IP have been successfully approved in

the blockchain.

At this moment, ISP has approved that γO belongs to O

legitimately. Furthermore, from the authentication request,

we can also learn thatO has equipped his gateway (i.e., αGW )

with γO. Therefore, γGW is equal to γO. At any given time,

anyone can query γGW from the blockchain. They can also

check if SC listsαGW in the trusted list before deciding to trust

O’s endpoint and making any further access. More impor-

tantly, one can also relate the authentication relationship

between O, GW , and ISP from the recorded authentication

log. Thus, any potential malicious entities or relationships can

be audited easily.

Note that the username and password, υO and ρO in X1
serves as the main authentication in ISP. Meanwhile, the αO

serves as the two-factor authentication. Moreover, O must

provide γO in X1 to cope with a possibility thatO has multiple

registered IPs in ISP. Therefore, he needs to pinpoint which

IP he wants to use in association with the targeted gateway.

Alternative (Signature-Based Attestation): When we

design this protocol, we also consider another alternative to

achieve the same goal. First, O authenticates himself to the

ISP off-chain. If the authentication is successful, ISP will

sign αGW and γO for O. Let us assume that this signature

is C0. Afterward, O sends a transaction to SC to store αO,

αGW , αISP, γO, and C0 in the blockchain. Other entities can

look up this information and verify the associated signature.

They trust this information if the signer is indeed coming

from the ISP. However, we refrain from using this alternative

version due to several reasons.
• Storing signature C0 requires 64 bytes while storing

the hash Y1 only needs 32 bytes. Therefore, using our

proposal, we can save 32 bytes in the blockchain storage.

With a massive number of IoT endpoints is available in

the network, this small difference can become signifi-

cant on a large scale.

• The alternative hides the prior authentication requests

from the public. One can only understand that a par-

ticular gateway has proof of signature from the ISP.

By contrast, we anchor the whole authentication request

and response in the blockchain. We argue that this deci-

sion leads to a more transparent and fair process. For

instance, one can audit records of the authentication

requests to point out malicious requests or responses and

determine potential attackers.

C. DEVICE AUTHENTICATION

Premise: During the manufacturing of D, V inserts

pre-defined secrets, which onlyV andD know, for authentica-

tion purposes. Afterward, O buys D from V and configures it

to connect to his authenticated GW .

1) V produces PKV , SKV , and αV .

2) V then createsPKD, SKD, andαD for the IoT device that

she manufactures. Note that V may also generate other

device parameters that can be used to provide device

authentication alternatives. For example, a pre-shared

secret key z, device fingerprint f , or MAC addressmac.

3) V signs αD (i.e., PKSIGNSKV (H (αD))) and produces

a signature CD. This signature is proof that the corre-

sponding device is coming from this vendor.

4) V embeds previously created secrets to the secure

storage of D’s hardware. The following values are

embedded for all of the authentication types: αD,

αV , PKV , and CD. Additionally, V embeds PKD and

SKD for PKI signature, z for Pre-embedded root-of-

trust, f for Device fingerprinting, and mac for MAC

authentication.

5) O purchases D from V .

6) O connects D to GW , which is identifiable by αGW .

7) In this paper, we put more concerns at inter-domain

communications. Therefore, we assume that D trusts

GW by default. We also assume that communication

between D and GW is secure. However, the link from

GW to V is insecure.

8) O has conducted the endpoint authentication in

Section V-B for αGW before processing the following

device authentication.

9) V deploys an authentication server in the network that

is discoverable through αV .

10) GW and V subscribe to the SC’s events.

Goal:By default, the public do not trustD insideGW . Like

the gateway authentication, the following protocol facilitates

a transparent device authentication by factoring the processes

3600 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

in the blockchain. When the authentication is successful,

V provides attestation of the legitimacy of D inside GW .

We summarize the whole process in Figure 3.

1) D forms secret authentication payload for V .

• X3 = η ‖ t

• Y2 = H (X3)

For PKI signature, D sets τ = 1. τ is a unique parame-

ter to indicate the type of device authentication scheme

to use. D then forms:

• C2 = PKSIGNSKD (Y2)

• X4 = τ ‖ X3 ‖ C2

For Pre-embedded root-of-trust, D sets τ = 2, then

forms:

• C2 = SIGNz(Y2)

• X4 = τ ‖ X3 ‖ C2

For Device fingerprinting, D sets τ = 3, then forms:

• X4 = τ ‖ X3 ‖ H (f )

For MAC authentication, D sets τ = 4, then forms:

• X4 = τ ‖ X3 ‖ mac

X4 is the authentication payload for V . Meanwhile,

Y2 is the corresponding hash.

2) D then prepares the authentication request:

• X5 = αV ‖ PKV ‖ αD ‖ CD ‖ X4 ‖ Y2

X5 contains the whole authentication request to GW ,

which he will then relay to V .

3) D sends X5 to GW off-chain.

4) Upon receiving X5, GW verifies CD whether the

signer is coming from αV . Specifically, PKVERIFYαV

(CD,H (αD)) must return True. This operation is to

ensure that the device indeed belongs to the respec-

tive V . Furthermore, we assume that GW maintains a

list of trusted V information locally, such that given a

payload containing αV , GW understands to which V ’s

server he has to relay this payload.

5) Assuming that the previous verification is successful,

GW sends a transaction to SC by calling a method

to record a log of the D’s authentication request

in SC . GW includes the following information in the

transaction:
• hash, the hash of the device authentication

payload, Y2
• source, the address that sends this transaction,

αGW

• target , the address of the authentication target, αD
• approver , the address of the authentication

approver, αV
In other words, GW puts a log in the blockchain, indi-

cating an instruction forV to authenticateD by present-

ing the authentication payload Y2. This step ends with

GW receives a tx hash as proof of submission. Note

that GW must store Y2 in his local storage for device

revocation usage later.

6) Like the gateway authentication scenario, SC saves the

received information in authentication logs. SC also

sets approved and revoked value for Y2 to False.

7) After receiving the tx event from Step 5, which

indicates Y2 log has been inserted successfully in

the blockchain, GW then prepares the authentication

request for the vendor. Specifically, GW forms:

• X6 = CD ‖ X4
• Y3 = H (X6)

• C3 = PKSIGNSKGW (Y3)

• X7 = PKEPKV (X6 ‖ C3)

GW strips the unrelated information from the original

X5 and makes a new request X6 for V with C3 as the

signature of this authentication request. Notice that X7
is encrypted, so it is safe to transfer it to an unsecured

channel.

8) GW contacts V to deliver X7 off-chain.

9) When V receives the event from Step 5, where

approver is equals to αV , V stores the correspond-

ing hash, source, and target information to his

local database. Like the gateway authentication case,

the delivery of events is subject to the miner and net-

work latency. Therefore, GW may receive this event

first before V and vice versa.

10) Upon obtainingX7,V verifies the device authentication

request following the steps in Algorithm 2.

First of all, V decrypts the authenticaton payload X7
using SKV , and traverses deep into the payload to gen-

erate the authentication payload hash Y2 from H (X3)

(line 1-4). She thenmakes sure that Y2 exists in her local

database (line 5). Similar to gateway authentication,

when Y2 is not found, it implies two things. First,

the payload hash is valid, but V has not received the

event from Step 5 yet. Second, X6 is invalid.

V only authenticates devices that she previously manu-

factured. Therefore, she verifies CD using target infor-

mation from the blockchain (line 7). Then, she checks

if the source is indeed the sender of this payload by

verifying C3 (line 9). This verification ensures that the

instance that delivers the payload Y2 on-chain and X6
off-chain is the same entity.

Finally, the vendor can begin verifying the device

authentication payload depending on the authentica-

tion type τ that the device uses. For PKI signature,

the vendor checks whether C2 is coming from the

target (line 10-12). For Pre-embedded root-of-trust,

the vendor validates ifC2 is signed using the correct key

z (line 13-16). For Device fingerprinting, the vendor

verifies that the hash of the fingerprintH (f ) is the same

as the hash value in the database H (f ′) (line 17-20).

For MAC authentication, the vendor makes sure that

the given mac is the same as the value in the database

mac′ (line 21-24).

The algorithm will return False if there is an issue or

invalid checking during these verifications and return

True when everything is valid.

11) Assuming that the previous verification is successful,V

sends the authentication report back to SC by sending a

VOLUME 9, 2021 3601



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

FIGURE 3. The sequence diagram for our proposed device authentication.

3602 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

Algorithm 2 The Verification of the Device Authentication

Request in V

Input: X7, SKV , αV
Output: True or False

1: X6 ‖ C3← PKDSKV (X7)

2: CD ‖ X4← X6
3: τ ‖ X3← X4
4: Y2← H (X3)

5: if ! exist(Y2) then return False

6: source ‖ target ← getPayloadInfo(Y2)

7: if ! PKVERIFYαV (CD,H (target)) then return False

8: Y3← H (X6)

9: if ! PKVERIFYsource(C3,Y3) then return False

10: if τ == 1 then

11: C2← X4
12: if ! PKVERIFYtarget (C2,Y2) then return False

13: else if τ == 2 then

14: z← getDeviceInfo(target)

15: C2← X4
16: if ! VERIFYz(C2,Y2) then return False

17: else if τ == 3 then

18: f ′← getDeviceInfo(target)

19: H (f )← X4
20: if H (f ) ! = H (f ′) then return False

21: else if τ == 4 then

22: mac′← getDeviceInfo(target)

23: mac← X4
24: if mac ! = mac′ then return False

25: else

26: return False {invalid device authentication type}

27: end if

28: return True

transaction using SC’s method that include the follow-

ing information:
• hash, the hash of the approved device authentica-

tion payload, Y2
This step ends with V obtaining the tx hash as proof of

reporting.

12) In the blockchain, aside from the list of trusted gate-

ways, SC also maintains a list of trusted devices as a

nested list of the former list. Upon receiving Y2 from

the previous step, SC set the approved value of Y2’s

log to True. He also queries the value of target (i.e., αD)

and saves it to the trusted device list under the source

(i.e., αGW ) as its parent gateway.

13) After V receives the tx event from Step 11, she returns

the device authentication result to GW .

14) GW also receives an event from Step 11 indicating that

V already validated his device. Upon receiving both

the event and the response from V , GW notifies this

information to D.

At this moment, V has approved that αD is an authen-

tic device originates from V . Furthermore, the mapping

between αGW and αD in SC indicates that the device is

indeed connected to the mentioned gateway because the GW

is the one who processes D’s authentication. Thus, anyone

can safely assume that αGW is the correct endpoint for D.

Moreover, since the blockchain is open, any node can relate

the authentication relationship betweenGW ,D, and V . Thus,

they can detect potential malicious entities easily.

Note that, in the production case, the contents of X3 can

be modified by adding more variables to match the required

scenarios. For example, one can add the device’s current soft-

ware version so that the vendor can check whether the device

is updated to the latest software version or not. The vendor

can have a verification policy only to approve the up-to-date

devices. Therefore, an out-of-date device will not be recog-

nized by the vendor during the authentication. This procedure

is useful to encourage the domain owners to update their

devices regularly.

D. ENDPOINT AUTHORIZATION

Premise: O lets anyone discover his endpoint publicly. How-

ever, he wants only authorized parties to access the gateway.

He owns the endpoint, so he has the power and rights to

determine which party is legitimate to enter his gateway.
1) O has already conducted verification for his endpoint,

described in Section V-B. Thus, GW is trusted.

2) GW has already performed authentication for all of the

devices inside her endpoint, explained in Section V-C.

Thereby, D is also trusted.

3) In general, S and U are eligible to request IoT accesses

to the endpoint. However, we only use S as our example

for the remainder of this paper.

4) S produces PKS , SKS , amd αS .

5) We assume that S can get information about an IoT

endpoint off-chain. From this procedure, S retrieves

knowledge about αGW , γGW , and PKGW .

6) GW through γGW maintains an open channel for any-

one to discover lists of IoT accesses that GW has.

7) GW already had a definite policy of giving access to S

and what access should be given to S.

8) GW deploys an authorization server in the network,

discoverable through αGW and γGW .

9) Upon deployment,GW and S subscribe to SC’s events.
Goal: By default, the public cannot legitimately access

any D from the IoT endpoint because GW will reject all

unauthorized accesses. The subsequent protocol describes a

transparent access negotiation between GW and S. It out-

lines endpoint authorization for S by factoring the process

in the blockchain. GW will store access tokens for S in SC

upon successful authorizations. We summarize the process

in Figure 4.
1) Using γGW , S can query for a list of accesses that is

available in GW .

2) Upon receiving this request, GW forms:

• A = {a1, a2, a3, . . . , an}, a list of open IoT

accesses through GW

• Y4 = H (A)

• C4 = PKSIGNSKGW (Y4)

VOLUME 9, 2021 3603



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

FIGURE 4. The sequence diagram for our proposed endpoint authorization.

The value of {a1, a2, a3, . . . , an} varies depending on

the type of protocol that GW employs in the domain.

Thus, a can have the value of CoAP accesses using

GET, POST, PUT, and DELETE commands, or it can

also be MQTT publish and subscribe accesses.

3) GW then returns A and C4 to S off-chain.

4) S forms Y4 ← H (A) then verifies C4 to check

if PKVERIFYαGW (C4,Y4) equals True. These actions

ensure that there is no data tampering on the returned

message from GW .

5) If everything is valid, S creates:
• A′ = {a′1, a

′
2, a
′
3, . . . , a

′
n}, where A

′ ⊂ A, a list of

IoT access that S wants to access

• X8 = A′ ‖ η ‖ t

• Y5 = H (X8)

6) S sends a transaction to SC to record a log of the autho-

rization request in SC . Four parameters are included in

the transaction:
• hash, the hash of the endpoint authorization

payload, Y5

3604 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

• source, the address that requests the authorization,

αS

• target , the address of the authorization target, αS
• approver , the address of the authorization granter,

αGW
In other words, this log indicates an authorization

request for S, which S sends to GW using the pay-

load Y5. This step ends with S receives the tx hash as

proof of submission.

7) Similar to the authentication cases, SC maintains a

list of authorization log. Upon receiving the previous

transaction, SC stores its parameters in the list. For

each element in the list, SC sets approved and revoked

value to False by default. Note that Y5 also serves as

an access token for the corresponding authorization

request. When S queries the IoT resource from GW ,

he must specify this access token. Furthermore, S and

GW must also mention Y5 during revocation use cases.

8) After receiving smart contract event from Step 6, which

indicates Y5 log have been inserted successfully in the

blockchain, S then forms an endpoint authorization

request for GW :

• C5 = PKSIGNSKS (Y5)

• X9 = PKEPKGW (X8 ‖ C5)

C5 is the authorization payload signature, while X9 is

the encrypted authorization request.

9) S transmits X9 to GW off-chain.

10) When GW receives the event from Step 6, where

its approver equals αGW , GW stores the correspond-

ing hash, source, and target information to the local

database. Like the authentication cases, the delivery

of events is subject to the miner and network latency.

Therefore,GW may receive this event first before S and

vice versa.

Algorithm 3 The Verification of the Endpoint Authorization

Payload in GW .

Input: X9, SKGW
Output: True or False

1: X8 ‖ C5← PKDSKGW (X9)

2: Y5← H (X8)

3: if ! exist(Y5) then return False

4: source← getSource(Y5)

5: if ! PKVERIFYsource(C5,Y5) then return False

6: A← getAccessInfo(source)

7: A′← X8
8: if A′ 6⊂ A then return False

9: return True

11) Upon receiving X9, GW conducts a formal verification

by following steps shown in the Algorithm 3.

First of all, GW decrypts the authorization request X9
(line 1). This decryption reveals the S’s authorization

payload X8 as well as the associated signature C5. She

then calculates the hash of authentication payload Y5
(line 2).

Afterward, GW checks whether Y5 exists in the local

database (line 3). If the authorization hash does not

exist, it may imply two things. First, S sends a valid

X8 but GW has not received the smart contract event

containing Y5 yet. Second, S delivers an invalid X8.

GW takes the source information from the database and

verifies whether this source indeed signs the received

authorization payload Y5 (line 4-5). This checking

ensures that the entity that sends the payload Y5
on-chain and X8 off-chain is the same.

The rest is pretty straightforward, GW queries detail

of authorization information from the database using

getAccessInfo(·) method (line 6). Then, GW checks if

the requested access A′ is a subset of the access that S

owns in the endpoint A (line 8). We use a subset com-

parison instead of the equal one because it is possible

that S only wants to leverage a small part of accesses

from his overall privilege. Thus, to make the system

secured, we adapt by only giving the least access that S

requires.

The algorithm will return False if there is an issue or

invalid checking during these verifications and return

True when everything is valid.

12) Assuming that the verification is successful, GW saves

the requested access A′ in her local database. She then

sends a report back to SC by sending a transaction with

the following parameter.

• hash, the hash of the approved endpoint authoriza-

tion payload, Y5
• texp, the expiry time of this access

This step ends with GW obtains the tx hash as proof of

reporting.

13) Upon receiving the previous transaction, SC sets the

approved state of Y5 to True. Note that this action

activates the second role of Y5 as an access token.

14) After getting the event from Step 12, GW returns the

endpoint authorization result to S. S can also get the

same event from Step 12, so he can be assured thatGW

already authorized his request. He can then start using

Y5 as an access token.

E. ACCESSING ENDPOINT

Premise: After requesting authorization to access O’s end-

point and obtain an access token Y5, S now begins to access

IoT resources in the endpoint through GW .
1) GW and all of D inside the endpoint are trusted.

2) GW has given an authorized access list A′ to S, which

is associated to an access token Y5.

3) GW maintains an open channel for accessing IoT

resources in her endpoint. However, she only allows

requests with valid access tokens to go through.
Goal: GW will intercept and validate all requests to her

endpoint by default. Specifically, she strips the access token

from each request and matches the information to the one in

her local database and the blockchain. The following protocol

presents an example of accessing IoT resources throughGW .

VOLUME 9, 2021 3605



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

FIGURE 5. The sequence diagram for accessing IoT endpoint resource.

We also describe a potential extension of our protocol to cre-

ate a secure channel betweenGW , as the authorization server,

and S, as the requester. We detail the process in Figure 5.

1) S initiates the process by forming a request:

• kS , a random secret from S for GW

• X10 = Y5 ‖ PKS ‖ η ‖ t ‖ kS
• Y6 = H (X10)

• C6 = PKSIGNSKS (Y6)

• X11 = PKEPKGW (X10 ‖ C6)

2) S transfers X11 to GW off-chain.

3) Upon receiving X11, GW verifies it by following the

Algorithm 4 procedures. She decrypts the message

using her private key SKGW (line 1). She then queries

the nonce η and checks whether it exists in the cache

(line 2-3). If the same nonce is found, this request may

be a replay attack. Therefore, she rejects it.

After that, GW conducts access control verification.

Specifically, she checks if Y5 exists in the database

(line 4). Then, GW validates if she already approved

Algorithm 4 The Secret Key Exchange Verification in GW

Input: X11, SKGW
Output: True or False

1: X10 ‖ C6← PKDSKGW (X11)

2: η← X10
3: if exist(η) then return False

4: if ! exist(Y5) then return False

5: if ! approved(Y5) then return False

6: if revoked(Y5) then return False

7: if expired(Y5) then return False

8: Y6← H (X10)

9: source← getSource(Y5)

10: if ! PKVERIFYsource(C6,Y6) then return False

11: return True

this Y5 before (line 5). She checks that the token is not

revoked (line 6). Finally, she makes sure that Y5 is not

expired (line 7).

The final verification is to check whether the access

request X11 is coming from the authentic owner of

the access token Y5 (line 8-10). GW first hashes the

payload to generate Y6, and gets the source information

in the database using getSource(·) method. Finally, she

validates S’s signature C6.

4) When previous validations are success, GW forms a

reply message:

• kGW , a random secret from GW for S

• η
′, the η from X10

• X12 = η
′ ‖ t ‖ kGW

• Y7 = H (X12)

• C7 = PKSIGNSKGW (Y7)

• X13 = PKEPKS (X12 ‖ C7)

At this moment, GW builds an ephemeral secret key K

using kS and kGW . Specifically, K ← kS ‖ kGW . The

gateway then stores this secret key temporarily in the

database using η
′ as its keys. As a result, the gateway

can serve many different secret keys from multiple

users simultaneously.

5) GW transmits the reply X13 back to S off-chain.

Algorithm 5 The Secret Key Exchange Verification in S

Input: X10, X13, αGW , SKS
Output: True or False

1: X12 ‖ C7← PKDSKS (X13)

2: η
′← X12

3: η← X10
4: if η

′ ! = η then return False

5: Y7← H (X12)

6: if ! PKVERIFYαGW (C7,Y7) then return False

7: return True

6) S verifies the secret key exchange fromGW using steps

in Algorithm 5.

3606 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

S decrypts the received message X13 (line 1), and

queries the gateway’s nonce η
′ (line 2). The service

then searches its previous nonce η from X10 (line 3) and

makes sure that it matches the replied nonce (line 4).

Afterward, S validates the signature C7 to ensure that

the gateway is indeed the sender (line 5-6).

When all verification is successful, the method will

return True. Otherwise, it gives back False.

7) At this moment, S can construct a secret key K ← kS ‖

kGW . He then forms:

• M , an IoT resource request message (e.g., CoAP

or MQTT message)

• X14 = EK (Y5 ‖ M )

• X15 = η ‖ X14

8) S then sends X15 to GW off-chain.

Algorithm 6 The Verification of IoT Resource Access atGW

Input: X15
Output: True or False

1: X14 ‖ η← X15
2: K ← getSecretKey(η)

3: Y5 ‖ M ← DK (X14)

4: if ! exist(Y5) then return False

5: if ! approved(Y5) then return False

6: if revoked(Y5) then return False

7: if expired(Y5) then return False

8: return True

9) Upon receiving X15, GW verifies it by following Algo-

rithm 6. GW retrieves the secret key K from the

database (line 1-2). GW then decrypts the message

with the retrieved key (line 3). She then must verify

the validity of the access token Y5 (line 4-7). First,

she checks that this Y5 exists in the database. She then

makes sure that it is already approved, it is not revoked,

and it is not expired. The algorithm returns Truewhen it

does not find any anomalies in the request. Otherwise,

it returns False.

10) Assuming that no error occurs, GW can encrypt the

reply message for S by forming M ′ using K , X16 ←

EK (M
′).M ′ denotes an IoT resource responsemessage.

11) GW then delivers this reply X16 to S off-chain.

At this moment, both S and GW have established the

secure channel. They can keep exchanging the subsequentM

andM ′ back and forth using the same keyK . However, at each

interaction, S still has to include Y5 on his request messages

to GW as proof of authorization.

Access Token Compatibility: This paper does not detail

how the gateway obtains resources from the devices after

the secure channel establishment. This action is intentional

as we want our protocol to be compatible with many IoT

gateways. Interested adopters can extend this protocol further

by referring to the details of authorization strategies from

other studies. For example, one can use [29] for CoAP or [30]

for MQTT.

Delegating Existing Access Token: Moreover, we can

leverage the blockchain as distributed storage to realize

a one-time grant access control across multiple gateways.

Hence, enabling locally enforced yet globally available

access token. Let us assume that O has a new gateway GW ′.

He wants to give S the same access as the one in Y5 in this

new gateway. Both old and new gateway is a blockchain

node; therefore, they can synchronize the access token’s state

from the smart contract. Instead of S and GW ′ negotiating

a new authorization request, S can present his old Y5, which

gives access to A′, empowered with S’s signature to this new

GW ′. GW ′ will then first verify the token’s validity and then

grant access directly by storing the policy for Y5 in her local

database. Thus, we can avoid creating additional transactions

in the blockchain.

F. REVOCATION

We have provided two security verifications: endpoint

authentications (i.e., the gateway and device authentication)

and endpoint authorization. These procedures need to be

revocable as the nature of the IoT environment is dynamic

and easy-to-compromise. In the blockchain, SC maintains

a variable called revoked for gateway, device, and access

object to indicate whether they have been repealed or not.

By default, this variable has a value of False (not revoked).

Access Revocation: O as the owner of IoT endpoints

and resources (i.e., GW and the underlying D) has the full

right to revoke access to his endpoint. Similarly, S as the

access authorization requester can also remove its previously

granted access. To do so, they follow the subsequent course

of action.
1) O (through GW ) or S sends a transaction to the

blockchain by calling the revokeAccess(·) method in

SC . This function takes Y5 as an argument, which is

the hash of the prior endpoint authorization request that

also serves as an access token.

2) For O’s case, the transaction reveals αGW as the trans-

action’s sender. SC then checks previous authorization

records in the list of authorization requests to determine

that the approver of Y5 is indeed αGW . This verification

is required to make sure that only the original granter

is the one who can revoke the access.

For S’s case, SC ensures that the previous authorization

logs Y5 mention αS as its sender . This action ensures

that the original proposer can also revoke access.

If all validations are correct, SC sets the revoked state of

Y5 to True, and the access token now becomes inactive.

Device Revocation: D is mostly a constrained device thatO

puts in a place with a lenient security environment. Therefore,

attackers may compromise D successfully with a high proba-

bility. Our protocol facilitates a device revocation procedure

for O to help stop the impact of attacks when D is under the

attacker’s control. Note that GW is not compromised in this

scenario.

1) O, through GW , sends a transaction to the blockchain

by calling a revokeDevice(·) function in SC .

VOLUME 9, 2021 3607



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

This function takes Y2 as an argument, the hash of the

previous D’s authentication request.

2) SC then browses through preceding authentication

records to find out whether the sender of Y2 is αGW .

This check is to make sure that only the original

requester (i.e., αGW ) is the one who can revoke D.

Hence, GW cannot revoke D that is not under his

control. When everything is successful, SC sets the

revoked state of Y2 as True, and other parties will

consider D as untrusted.
It is possible that, after GW revoked D, S tries to perform

a legitimate access to D using his A′. As no relationship

information maps D to A′ in the blockchain (maintaining

such info is very costly in terms of storage), SC cannot

automatically adjust A′ to exclude D. To modify A′ in SC ,

it involves both S and GW to renegotiate on the new access

terms and send transactions on the blockchain. It is costly

and inefficient when many revocations occur. Thus, we prefer

GW to enforce such revocation locally in his machine instead

of updating the blockchain. In other words, when S is trying

to access a revoked D, GW must return an error code telling

that S is accessing a revoked device.

Upon receiving such error, S can double check the status

of D by calling isTrustedDevice(·) function in SC while also

presenting the associated αD as an argument. The returned

False value should affirm S that GW has indeed revoked D.

Endpoint Revocation: GW is a crucial entity due to its

central role in relaying many inward and outward IoT traffics

in IoT endpoints. Thus, attackers will most likely set GW

as their first-priority target. To cope with a disastrous event

such as attackers are taking over GW , we present a total

revocation to close the endpoint entirely. In this scenario,GW

is already under the control of attackers. Thus, anyone should

not trust GW and all of D in that endpoint. However, O is not

compromised.

1) O sends a transaction to the blockchain by calling a

revokeGateway(·) function in SC . This method takes

Y1 as an argument, which is the hash of the past GW ’s

authentication payload.

2) SC gathers previous authentication records and vali-

dates that the sender of Y1 is αO. Hence, only the true

authentication requester can revoke a verified endpoint.

When the verification is valid, SC sets the revoked

parameter of Y1 as True, and removes GW from the

trusted list.

SC maintains a mapping between GW and D such that

when we remove GW from SC’s trusted list, all of the under-

lyingDwill also become untrusted automatically. In this case,

query of both isTrustedDevice(·) and isTrustedGateway(·)

methods will return False.

SC also has a mapping between GW and A′ through Y5.

When S calls isValidAccess(·) function by presenting Y5 as

an argument, SC checks the contents of revoked variable of

Y5 and also validates if the target of Y5 (i.e., αGW ) is revoked

or not. The method will automatically return False if SC finds

out that GW is repealed.

VI. EVALUATION

In the following section, we evaluate our proposed access

control in three categories. First, we reinvestigate the trust

models for each of the entities involved in our scheme. Sec-

ond, we conduct a security evaluation to assess possible threat

models for attackers. Lastly, we implement our protocol and

measure the performance through a benchmark to analyze its

feasibility.

A. TRUST EVALUATION

By default, entities in our access control act with a complete

distrust of one another. We analyze our system’s trustwor-

thiness and investigate whether each entity can cheat our

proposal.

Smart Contract as the Root of Trust: A trusted admin-

istrator (e.g., a government) must initiate our proposal by

deploying the smart contract to the blockchain. This party

can become malicious over time. However, we argue that

our system remains secure. Because the blockchain is trans-

parent, other nodes can validate the smart contract’s source

code to determine whether it is safe or harmful. Furthermore,

the blockchain is also hard-to-tamper; thus, everyone can

rest assured that the smart contract operations will remain

deterministic. Finally, once the administrator deployed the

smart contract, our access control can run independently

without further intervention. There is no backdoor in our

implementation for the admin to take over the system.

ISP and IoT Vendor as Trusted Approvers: Anyone is free

to create an identity in the blockchain. As a result, it is chal-

lenging for a particular entity to distinguish valid approvers

as others can claim themselves as ISPs or IoT vendors. To

alleviate this issue, the administrator can act as a trusted

mediator by signing the identity of the ISPs and vendors. In

this case, the admin behaves like CA and bootstrap the trust in

the approvers. Moreover, ISPs and vendors can also maintain

credibility scores using a reputation system. This score should

encourage them to behave honestly at all times.

Domain Owner and IoT Service as Requesters: The IoT

domain owner may bribe the ISP to provide fake approval

for his endpoint. However, because the authentication pay-

load logs are recorded in the blockchain and visible to other

nodes, it eases fraud detection. Moreover, the stakes are high

for the ISP if she gets caught. The community can reduce

the ISP’s reputation score, and eventually, she may lose the

credibility to become a trusted approver. Similarly, the owner

will most likely be unable to perform the same malicious plot

for device authentication. The IoT vendor may also lose its

trustworthiness if she becomes dishonest. Finally, the service

cannot perform a fake authorization approval plot for the

same reason.

IoT Gateway as the Access Granter: As the IoT resource

keeper, the domain owner can approve or deny any inward

or outward access to his domain through his IoT gateway.

Therefore, the gateway can discriminate against a particular

service if the owner does not trust the service. We allow

this absolute control scheme to protect the rights of the

3608 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

resource owner. Before transmitting the request, the service

can check the credibility of the gateway through the smart

contract. Specifically, the service can verify whether the ISP

has approved the gateway or not. He can also ensure the

IoT vendor has endorsed the IoT device that he wants to

access. Moreover, all gateways should also maintain reputa-

tion scores to punishmalicious behaviors, such as distributing

invalid resources that contain malware. Thus, from the repu-

tation scores, the service can determine whether to trust this

gateway or not.

Device and IoT Gateway Relationship: In this paper,

we focus on the security outside an IoT domain. As a result,

we assume that the device and gateway’s communication

channel remains secure and trusted. The device fully trusts

the gateway in relaying all payloads from and to the device

correctly.

Throughout our trust discussion, we acknowledge the ben-

efit of a reputation system in our proposal. Therefore, we con-

sider adding it to our future works.

B. SECURITY EVALUATION

We follow the security guideline and threat modeling that

Microsoft develops, called STRIDE [31]. It is an acronym of

Spoofing, Tampering, Repudiation, Information Disclosure,

Denial of Service, and Elevation of Privilege.

Spoofing: We use public keys (and associated blockchain

addresses) to identify all entities; they are usable on-chain and

off-chain. As a result, to spoof a target, attackers have to steal

the private key. Furthermore, we also use pre-shared secrets

to authenticate IoT gateways and devices. The ISP verifies

the gateway’s identity by examining the domain owner’s

username and password in the ISP system. On the other hand,

the IoT vendor validates their devices by using the embedded

asymmetric key, symmetric key, device fingerprint, or MAC

address. Because of these approval rules, attackers have to

compromise extra secrets to spoof the gateways and devices.

Finally, attackers can potentially generate arbitrary addresses

and claim themselves as IoT vendors or ISPs. As we men-

tioned in the previous subsection, the administrator can act as

a CA for vendors and ISPs to mitigate this issue.

Tampering:We leverage the key-value storage of the smart

contract to store essential information distributedly across

all nodes. Mainly, the log of authentication requests, the log

of authorization requests (the access tokens), the trusted

gateways list, and the trusted devices list. As long as the

blockchain remains secure, the system can guarantee that all

of this information stays tamper-free. Aside from storing data

in the smart contract, entities also save credentials and other

information in their local storage. We refrain from providing

tamper-proof guarantees in the local database as it is each of

the entity’s responsibility to keep their storage safe.

Repudiation:When we call methods in the smart contract

by sending transactions in the blockchain, we equip themwith

the digital signatures. The signature protects the transactions

against the repudiation attacks while also preventing mali-

cious modification through our system. Furthermore, we also

use digital signatures during the off-chain authentication,

authorization, and accessing resources. As a result, we make

it very challenging for attackers to repudiate and tamper with

our protocol’s exchanged messages.

Information Disclosure: Across the whole protocol,

we leverage the public-key encryption scheme to protect

the off-chain messages’ confidentiality. Only the authorized

entities can decrypt and understand the messages. Moreover,

before accessing the IoT resources through the gateways,

the IoT services build secure channels. Our secure channel

works similarly to the Diffie-Hellman key exchange proto-

col, which generates secret keys at each session. Therefore,

we keep all of the off-chain transmissions private.

All blockchain nodes can see what the smart contract saves

in the blockchain. Attackers, disguised as one of the valid

nodes, can access the authentication or authorization payload

hash. They can then try to brute force fake payloads to find the

hash that matches the recorded payload. If successful, attack-

ers may figure out the secret contents of the authentication or

authorization request. However, the addition of timestamps

and nonces in our requests should complicate the attackers’

attempt to successfully perform this action.

Denial of Service: Aside from protecting against the infor-

mation disclosure, the use of nonces in our authentication

and authorization payload is to defend against replay attacks,

which can become one of the possible Denial of Service

attack types. Furthermore, all of the off-chain authentication

and authorization requests must have corresponding logs

in the blockchain. Sending transactions in the blockchain

requires the sender to pay a small transaction fee. Thus,

spamming blockchain with faulty logs is costly for attackers.

Elevation of Privilege: All of the validations are based

on the pre-determined secret information in the approvers’

database. If a particular entity can present a valid secret,

only then the approver will grant the requests. Therefore,

to gain an elevation of privilege, attackers must compromise

the approvers’ servers and modify the storage maliciously.

The security of each entity’s machine is out of our paper’s

scope.

C. PERFORMANCE EVALUATION

We implement our protocol, then present our evaluations on

its performance and assess its usability. First of all, we inves-

tigate the gas-used property of each method in our smart

contract. Then, we measure the throughput of the crypto-

graphic tools that we use in our system. Finally, we bench-

mark the client-side and server-side implementations from

our proposal.

1) SMART CONTRACT COMPLEXITY

We use Ethereum as our peer-to-peer (P2P) blockchain plat-

form because it has a widely-used smart contract feature.

Based on the Ethereum guideline [8], users must pay a tx

fee when they want to call a smart contract method that will

change the smart contract’s storage state across all nodes. As a

rule of thumb, the more complex the called method is, or the

VOLUME 9, 2021 3609



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

TABLE 2. The evaluations of writable methods in our smart contract. The starred column is statistic taken from ETH Gas Station [32] on Oct 7, 2020.
The average gas price at that time is 69 Gwei. The transaction (Tx) fee is in US dollars, while the confirm time is in seconds.

TABLE 3. The list of hardware used in our performance evaluations. The Private Server’s CPU cores vary depending on the configuration in the Virtual
Machines (VMs).

more data the method stores, the more expensive the tx fee

becomes.

In Table 2, we measure the used gas from each smart

contract method, determining the tx fee and the confirm time.

Note that we only put the writable methods, whichmodify the

state of the smart contract. The most complex operation is the

contract’s deployment, which consumes about 24,26 times

more gas than other methods, resulting in a costly tx fee.

The deployment also takes 5.68 more times to confirm than

the rest of the methods. However, we expect this behavior

and argue that we can take it as an investment since it only

happens once for all. The storing authentication or authoriza-

tion payload scheme is also wasting more gas than the rest of

the methods. During this step, the smart contract must store

the payload metadata; therefore, more data is stored in this

method. Meanwhile, approving authentication or authoriza-

tion payload scenario drains relatively fewer gas. However,

the ISP, vendor, and gateway may need to frequently call

these methods for each of the payloads they receive. Thus,

they should be aware of their economic resources. Finally,

revoking scenarios are cheap operations, as they are mainly

only performing simple negation operations.

Note that the tx fee is only required in the public Ethereum

blockchain, and the gas price will vary depending on the

market. As an alternative, adopters can apply our protocol in

a private blockchain network. In this case, the gas cost has a

less meaningful purpose as the tx feemay not exist in a private

network. Nevertheless, the gas-used property is still useful to

assess the complexity of our smart contract code.

2) CRYPTOGRAPHIC COMPLEXITY

We use two crytpography libraries in this paper, the

crypto [33] and eth-crypto [34] modules; all is based

on Node-JS. The crypto module contributes to the fol-

lowing operations. The sk-sign and sk-verify are

the implementation of SIGN (·) and VERIFY (·) functions

using HMAC algorithm. Meanwhile, the sk-encrypt and

sk-decrypt realizes the E(·) and D(·) methods using

AES-256. For the rest of the cryptographic processes, we use

the eth-crypto module. The hash implements H (·) func-

tion to do the KECCAK-256 hash operation. The pk-sign

and pk-verify are the applications of PKSIGN (·) and

PKVERIFY (·) methods for ECDSA algorithm. Finally,

the pk-encrypt and pk-decrypt realizes the PKE(·)

and PKD(·) functions using ECC-based encryption.

To evaluate our chosen cryptographic tools’ feasibility,

we build four REST API servers using express module [35]

in multiple Raspberry Pis hardware and our private server.

We summarize the specification details of our hardware

in Table 3. The REST API servers expose nine endpoints,

one for each of the previously mentioned cryptographic oper-

ations. We then benchmark those servers by running the

autocannon module [36]. We set the number of client con-

nections to 10 and perform the benchmark for 30 seconds.

We repeat the process ten times for each of the crypto-

graphic operations. In total, we invoke the autocannon mod-

ule 360 times, 90 times for each server. Finally, we plot the

results in Figure 6.

We can see from the figure that the public-key operations

generate more overheads than symmetric-key processes. The

sk-sign can produce up to 2.38 more signatures than the

pk-sign. Meanwhile, we can verify up to 3.17 times more

signatures if using sk-verify rather than pk-verify.

For encryptions, the sk-encrypt is about 9.49 times more

efficient than the pk-encrypt. Similar trend happens in

decryptions with the sk-decrypt can process 9.11 times

more payloads than the pk-decrypt.

3) CLIENT-SIDE BENCHMARKING

In the following two subsections, we present the off-chain

performance evaluation of our proposed access control. This

part describes the client-side implementation benchmark

while the server-side counterpart is available in the next sub-

section. We outline the number of cryptographic operations

3610 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

FIGURE 6. The average throughput benchmark result (in requests per second) of Node-JS cryptographic tools used in our implementations. The
cryptographic operations includes hashing (hash), signing and verification for both public key and symmetric key (pk-sign, pk-verify, sk-sign,
and sk-verify), as well as encryption and decryption process for public key and symmetric key (pk-encrypt, pk-decrypt, sk-encrypt, and
sk-decrypt). We measure the performance in multiple hardware environments: Raspberry Pi Zero (R-Pi 0), Raspberry Pi 3 (R-Pi 3), Raspberry Pi 4
(R-Pi 4), and our private server with 2 CPU cores.

TABLE 4. The comparison regarding the number of cryptographic
operations that each entity performs during our access control scenarios.
AuthN = Authentication, AuthZ = Authorization, Ent = IoT entity, Ro =

Role, Clt = Client, Srv = Server, a = H(·), b = PKSIGN(·), c = PKVERIFY (·),
d = SIGN(·), e = VERIFY (·), f = PKE(·), g = PKD(·), h = E(·), and i = D(·).

used in our access control in Table 4. The table also details

the role of each entity, whether they are clients or servers.

Depending on the protocol flow, clients can interact with

servers, the smart contract, or both. As a result, the network

and miner latency may influence the results of our client-side

performance evaluation. To alleviate this issue, we modify

our code to ignore the network transmission parts and assume

that the client receives the server and smart contract responses

directly. Thus, we focus on the client’s internal processing,

including cryptographic operations and local database pro-

cesses, implemented using Memcached [37].

We run our client-side scenarios in multiple hardware for

several epochs. For Raspberry Pi Zero, 3, and 4, we run for

10,000, 50,000, and 100,000 iterations respectively. We also

run the same scenario in our private server, wrapped in Virtual

Machines (VMs). For VM with 1 and 2 CPU cores, we per-

form the scenario for 500,000 iterations. Meanwhile, we do

it using 1,000,000 epochs for VM with 4 and 8 cores. We dif-

ferentiate the number of iterations to match the capabilities of

the hardware. Therefore, we can gain enough samples while

keeping the benchmark running time short. Finally, we depict

the results in Figure 7.

Our code supports multi-threading using the cluster mod-

ule [38]. As a result, in general, we can achieve better perfor-

mance in multi-core hardware. We can see this trend in all of

the charts in the figure. For device authentication scenarios,

the public-key signature scheme (PKSIG) suffers the highest

overhead. This result matches our previous observation that

public-key cryptographic operations are less efficient than

symmetric ones. If we switch to the symmetric key signature

scheme (SKSIG), we can increase the performance up to

2.56 times. Interestingly, the Fingerprint and MAC address

authentication does not have significant gaps with the SKSIG

option.

Note that the presented numbers from the figure are to

assess the multi-threading and cryptographic tools feasibil-

ity. In the production case, the client may only perform the

authentication or authorization request once for a particular

device, gateway, or access. Thus, the client does not need

to perform hundreds or thousands of requests per second.

As a result, the given metric should be more than enough

to conduct daily cases, even for the most constrained device

VOLUME 9, 2021 3611



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

FIGURE 7. The average throughput benchmark results (in operations per second) of client-side implementations in our proposed access control
scenarios. We measure the performance in multiple hardware environments: Raspberry Pi Zero (R-Pi 0), Raspberry Pi 3 (R-Pi 3), Raspberry Pi 4 (R-Pi 4),
and our private server (implemented in VM with 1, 2, 4, and 8 Cores).

FIGURE 8. The average throughput (in requests per second) and latency (in milliseconds) measurements of server-side implementations in our proposed
access control scenarios. We conduct the benchmark in our private servers using VMs by varying the number of CPU cores resources (1, 2, 4, and 8 cores).

(R-Pi 0). However, this rule does not apply to the gateway

during the device authentication scenario because she piggy-

backs the device authentication payload from her domain to

the vendor. In this case, we must experiment with the gateway

using the most diverse hardware to find the upper-bound

limit. Adopters can then use our results as pointers to choose

the appropriate hardware for the gateway. In particular, they

should consider the number of devices in their domain and

how frequently they will send authentication requests.

4) SERVER-SIDE BENCHMARKING

We implement the authentication, authorization, and resource

servers as REST API endpoints using express module [35].

Meanwhile, the blockchain network is simulated using

ganache-cli [39]. Like the client-side case, depending on

the protocol flow, the server may contact the smart con-

tract. Thus, the network and miner latency also plays an

essential role in our server-side implementations. For our

server-side evaluation, we omit this factor as they tend to

produce stochastic results. Instead, we focus only on the

server’s internal processing to assess its feasibility to carry

out the client requests.

We perform the benchmark using the autocannon mod-

ule [36]. We set the number of connections to 10 and run each

benchmark for 30 seconds. After that, we run the autocannon

ten times for each of the access control scenarios. Once they

finish, we measure the average throughput and latency, and

depict the results in Figure 8.

3612 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

From the figure, we can see the charts’ trend that the

throughput increases as we use more CPU cores from the

server. Consequently, the latency also decreases as we add

more CPU cores. We argue that the given results should be

enough to cope with the sheer number of IoT gateways and

devices since they most likely perform authentication and

authorization requests once in a while. However, the possible

bottleneck may happen in the handshaking scenario. At this

step, the server must conduct a pair of public-key decryption

and encryption. Based on our previous cryptographic tools

evaluation, those operations are the most expensive ones.

Therefore, we expect this result. Fortunately, once the hand-

shake completes, the server can process much more through-

put during the accessing resource scenario. Handshaking

happens less frequently than accessing resources. Thus, this

bottleneck should be manageable.

VII. DISCUSSION

Wediscuss the possible weaknesses of our proposed approach

and the future research directions in the following section.

Off-Chain Scalability: We notice possible performance

bottlenecks in our clients and servers implementation due

to Node JS. Node JS is natively single-threaded. However,

we achieve multi-threading through the cluster module [38],

which we can say is a workaround solution by spawning

many Node JS processes simultaneously. The module does

not allow shared memory access among processes, which

usually exist in native multi-threading languages. Instead,

the module creates inter-process communication (IPC) that

we deduce to be one of the bottleneck reasons. Another

possible reason is that our chosen Node JS cryptographic

libraries perform slower than those in other programming

languages. For production cases, others may choose to apply

the protocol’s logic using high-performance languages (e.g.,

C, Java, or Go), which allow native multi-threading support

and access to faster cryptographic libraries.

On-Chain Security and Scalability: Since we depend on

the blockchain to decentralize our platform, we inherit the

selected blockchain’s security and scalability properties. The

blockchain system’s security issues and challenges may

include byzantine faults, 51% attacks, and selfish mining

attacks [40]. Meanwhile, the blockchain is also known for

its slow processing. For example, Bitcoin can only handle

about 7 txs per second, while Ethereum can manage up to

20 txs per second [41]. Those numbers are still far behind

VISA, which can process about 24,000 tx per seconds [41].

Researchers can build the private blockchain, which uses

the classic consensus from the distributed system, such as

Practical Byzantine Fault Tolerance (PBFT), to produce

high throughput in favor of a lower number of nodes [42].

However, this approach tends to make the blockchain cen-

tralized. Therefore, on-chain processing’s security and scala-

bility remain continuous research efforts.

Blockchain Nodes: Depending on the underlying P2P net-

work, the blockchain nodes may perform CPU demanding

tasks such as mining the correct nonces for the block hash.

The nodes may also need to have a lot of storage space

to cope with the blockchain network size. Due to the IoT

entities’ divergence nature, they may not be able to conduct

such tasks. Therefore, developers must adapt by leveraging

the light nodes, proxies, or even switching to the private

blockchain whenever necessary during production.

Leaked Content: Generally, the stored content in the

blockchain is visible to all blockchain nodes. All entities

acting as blockchain nodes in our protocol can see the

authentication and authorization requests log plus the trusted

gateways and devices list. By examining this trusted list,

the node can search for a hotspot domain, an IoT gateway

with lots of trusted IoT devices in her possession. The IP

address of that gateway is also observable from the list.

Wemake this information public because wewant the domain

to be accessible by others. However, the downside is that

the given information can ease the attackers’ efforts to find

a target and start hacking the targeted gateway. We argue

that this leak is not a severe vulnerability as attackers can

also obtain similar information using alternative tools such

as Shodan [43]. Moreover, because we use the hash log of

authorization requests as access tokens, attackers then know

the tokens. However, attackers cannot use them without the

corresponding private key. Recall that the token grantee must

sign the access token during the handshake before accessing

the resource. Nevertheless, adopters must understand these

privacy issues when deploying our protocol in production

cases.

Trusting Approvers: Our protocol assumes that entities

fully trust the ISP and IoT vendor as verifiers of the IoT

gateway and IoT device. However, in production cases,

adopters must enforce such approvers’ trust by using other

schemes such as PKI [24] or PGP equipped with a reputation

system [44].

IoT Devices’ Mobility: In the current state of the protocol,

the device can only connect to one gateway at a time. If the

device moves to another gateway, the device must perform

another device authentication to be recognized in the new

gateway. The smart contract will then override the old gate-

way with the new one in the trusted list. When many devices

frequently move from one endpoint to another (e.g., in the

Vehicular Ad-hoc Network (VANET)), it can create an issue

as it may increase authentication traffics. One solution for this

problem is to have the gateway covers a wide operation area

to limit the handover process.

VIII. CONCLUSION

We proposed BorderChain, an access control framework for

the IoT endpoint using blockchain. The protocol comprised

multiple scenarios ranging from gateway authentication,

device authentication, endpoint authorization, and accessing

endpoint. We have implemented our protocol in Node JS

applications using Ethereum as our P2P platform. We then

provided trust, security, and performance evaluation of the

protocol. The results showed that adopters could use our

framework in various Raspberry Pi devices and server-grade

VOLUME 9, 2021 3613



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the IoT Endpoint

computers. We also demonstrated that the authentication and

authorization servers could use the multi-threading feature to

boost the system throughput. Finally, we have discussed our

protocol’s possible limitations and future work, which mostly

related to the general blockchain issues.

ACKNOWLEDGMENT

The authors want to thank the anonymous reviewers for their

useful comments.

REFERENCES

[1] G. Omale. (Nov. 2018). Gartner Identifies Top 10 Strategic IoT Tech-

nologies and Trends. Accessed: Oct. 15, 2020. [Online]. Available:

https://gtnr.it/2IxPtfx.

[2] L. Goasduff. (Aug. 2019). Gartner Says 5.8 Billion Enterprise and Auto-

motive IoT Endpoints Will be in Use in 2020. Accessed: Oct. 15, 2020.

[Online]. Available: https://gtnr.it/31afWGj

[3] A. Mamiit. (Jun. 2019). NASA Hacked: 500 MB of Mission Data Stolen

Through a Raspberry Pi Computer. Accessed: Oct. 15, 2020. [Online].

Available: https://bit.ly/3j8ox2F

[4] K. Kochetkova. (Oct. 2016). How to Not Break the Internet.

Accessed: Oct. 15, 2020. [Online]. Available: https://bit.ly/3iXPcyT

[5] R. Roman, J. Zhou, and J. Lopez, ‘‘On the features and challenges of

security and privacy in distributed Internet of Things,’’ Comput. Netw.,

vol. 57, no. 10, pp. 2266–2279, Jul. 2013.

[6] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’

Satoshi Nakamoto Inst., Tech. Rep., 2008. [Online]. Available:

https://nakamotoinstitute.org/bitcoin/

[7] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts for

the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303, 2016.

[8] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction

ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr. 2014.

[9] H. Kim and E. A. Lee, ‘‘Authentication and authorization for the Internet

of Things,’’ IT Prof., vol. 19, no. 5, pp. 27–33, 2017.

[10] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, ‘‘LSB:

A lightweight scalable blockchain for IoT security and anonymity,’’ J. Par-

allel Distrib. Comput., vol. 134, pp. 180–197, Dec. 2019.

[11] C. Fromknecht, D. Velicanu, and S. Yakoubov, ‘‘Certcoin: A

namecoin based decentralized authentication system,’’ Dept. Comput.

Netw. Secur., Massachusetts Inst. Technol., Cambridge, MA, USA,

Tech. Rep. 6.857, 2014, vol. 6. [Online]. Available: https://courses.csail.

mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf

[12] M. Al-Bassam, ‘‘SCPKI: A smart contract-based PKI and identity sys-

tem,’’ in Proc. ACM Workshop Blockchain, Cryptocurrencies Contracts,

Apr. 2017, pp. 35–40.

[13] L. Wu, X. Du, W. Wang, and B. Lin, ‘‘An out-of-band authentication

scheme for Internet of Things using blockchain technology,’’ in Proc. Int.

Conf. Comput., Netw. Commun. (ICNC), Mar. 2018, pp. 769–773.

[14] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, ‘‘Bubbles of trust:

A decentralized blockchain-based authentication system for IoT,’’Comput.

Secur., vol. 78, pp. 126–142, Sep. 2018.

[15] K. Kataoka, S. Gangwar, and P. Podili, ‘‘Trust list: Internet-wide and

distributed IoT traffic management using blockchain and SDN,’’ in Proc.

IEEE 4th World Forum Internet Things (WF-IoT), Feb. 2018, pp. 296–301.

[16] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, ‘‘Towards a novel

privacy-preserving access control model based on blockchain technology

in IoT,’’ in Europe and MENA Cooperation Advances in Information

and Communication Technologies. Cham, Switzerland: Springer, 2017,

pp. 523–533.

[17] O. Alphand, M. Amoretti, T. Claeys, S. Dall’Asta, A. Duda, G. Ferrari,

F. Rousseau, B. Tourancheau, L. Veltri, and F. Zanichelli, ‘‘IoTChain:

A blockchain security architecture for the Internet of Things,’’ in Proc.

IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[18] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application

Protocol (COAP), document RFC 7252, 2014.

[19] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, ‘‘MQTT-S—A pub-

lish/subscribe protocol for wireless sensor networks,’’ in Proc. 3rd Int.

Conf. Commun. Syst. Softw. Middleware Workshops (COMSWARE), 2008,

pp. 791–798.

[20] A. Ometov, P. Masek, L. Malina, R. Florea, J. Hosek, S. Andreev,

J. Hajny, J. Niutanen, and Y. Koucheryavy, ‘‘Feasibility characterization

of cryptographic primitives for constrained (wearable) IoT devices,’’ in

Proc. IEEE Int. Conf. Pervas. Comput. Commun. Workshops (PerCom

Workshops), Mar. 2016, pp. 1–6.

[21] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz,

‘‘Energy analysis of public-key cryptography for wireless sensor net-

works,’’ in Proc. 3rd IEEE Int. Conf. Pervas. Comput. Commun., 2005,

pp. 324–328.

[22] N. Desai. (Jul. 2018). Identifying the Internet of Things—One Device at a

Time. Accessed: Oct. 15, 2020. [Online]. Available: https://bit.ly/3nULqd8

[23] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

‘‘Internet of Things: A survey on enabling technologies, protocols, and

applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,

2015.

[24] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, X. 509

Internet Public Key Infrastructure Online Certificate Status Protocol-

OCSP, document RFC 2560, 1999.

[25] I. Arghire. (May 2019). Sectigo Revokes Certificates Used to SignMalware

Following Recent Report. Accessed: Oct. 15, 2020. [Online]. Available:

https://bit.ly/3k2yPCt

[26] S. Helme. (Jul. 2017). Revocation is Broken. Accessed: Oct. 15, 2020.

[Online]. Available: https://bit.ly/3nUE0qn

[27] J. Kreku, V. Vallivaara, K. Halunen, and J. Suomalainen, ‘‘Evaluating the

efficiency of blockchains in IoT with simulations,’’ in Proc. 2nd Int. Conf.

Internet Things, Big Data Secur. (IoTBDS), 2017, pp. 216–223.

[28] Bitcoin Core. (2020). Running a Full Node Bitcoin—Minimum

Requirements. Accessed: Oct. 14, 2020. [Online]. Available:

https://bit.ly/2GZX3im

[29] P. P. Pereira, J. Eliasson, and J. Delsing, ‘‘An authentication and

access control framework for CoAP-based Internet of Things,’’ in

Proc. 40th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2014,

pp. 5293–5299.

[30] L. Cruz-Piris, D. Rivera, I. Marsa-Maestre, E. de la Hoz, and J. Velasco,

‘‘Access control mechanism for IoT environments based on modelling

communication procedures as resources,’’ Sensors, vol. 18, no. 3, p. 917,

Mar. 2018.

[31] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, ‘‘Threat modeling-

uncover security design flaws using the stride approach,’’ MSDN

Magazine-Louisville, vol. 2006, pp. 68–75, Nov. 2006.

[32] Concourse Open Community. (2020). ETH Gas Station.

Accessed: Sep. 22, 2020. [Online]. Available: https://bit.ly/3kx8rjY

[33] Node-JS. (2020). Crypto. Accessed: Sep. 22, 2020. [Online]. Available:

https://bit.ly/35VT9Bp

[34] Pubkey. (2020). ETH-Crypto: Cryptographic Javascript-Functions

for Ethereum and Tutorials on How to Use them Together With

Web3js and Solidity. Accessed: Sep. 22, 2020. [Online]. Available:

https://bit.ly/3ckkfDm

[35] T. Holowaychuk. (2020). Express: Fast, Unopinionated, Minimalist Web

Framework for Node. Accessed: Sep. 22, 2020. [Online]. Available:

https://bit.ly/3hSIZ6L

[36] M. Collina. (2020). Autocannon: A HTTP/1.1 Benchmarking Tool Written

in Node, Greatly Inspired by Wrk and Wrk2, With Support for HTTP

Pipelining and HTTPS. Accessed: Sep. 22, 2020. [Online]. Available:

https://bit.ly/3cn9X5f

[37] Dormando. (2020). Memcached: A Distributed Memory Object

Caching System. Accessed: Sep. 23, 2020. [Online]. Available:

https://bit.ly/3kHiVO0

[38] Node-JS. (2020). Cluster. Accessed: Sep. 23, 2020. [Online]. Available:

https://bit.ly/32Sz1y0

[39] Truffle Suite. (2020). Ganache: Your Personal Blockchain for

Ethereum Development. Accessed: Sep. 23, 2020. [Online]. Available:

https://bit.ly/2RNz5ZA

[40] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, ‘‘A survey on the security of

blockchain systems,’’ Future Gener. Comput. Syst., vol. 107, pp. 841–853,

Jun. 2020.

[41] R. Amoros. (2020). Transactions Speeds: How do Cryptocurrencies Stack

Up to Visa or Paypal? Accessed: Oct. 6, 2020. [Online]. Available:

https://bit.ly/30Ttzd5

[42] M. Vukolić, ‘‘The quest for scalable blockchain fabric: Proof-of-work vs.

BFT replication,’’ in Proc. Int. Workshop Open Problems Netw. Secur.

Cham, Switzerland: Springer, 2015, pp. 112–125.

3614 VOLUME 9, 2021



Y. E. Oktian, S.-G. Lee: BorderChain: Blockchain-Based Access Control Framework for the Internet of Things Endpoint

[43] Shodan. (2020). The Search Engine for the Internet of Things.

Accessed: Oct. 6, 2020. [Online]. Available: https://bit.ly/2GsSb5e

[44] R. Dennis and G. Owen, ‘‘Rep on the block: A next generation reputation

system based on the blockchain,’’ in Proc. 10th Int. Conf. Internet Technol.

Secured Trans. (ICITST), Dec. 2015, pp. 131–138.

YUSTUS EKO OKTIAN received the bach-

elor’s degree in electrical engineering from

Petra Christian University, Indonesia, in 2013,

and the master’s degree in computer engineer-

ing from Dongseo University, South Korea,

in 2016, where he is currently pursuing the Ph.D.

degree. His research interests are on the top-

ics of network security, distributed computing,

blockchain, the Internet-of-Things, and software-

defined networking.

SANG-GON LEE received the B.Eng., M.Eng.,

and Ph.D. degrees in electronics engineering

from Kyungpook National University, Republic of

Korea, in 1986, 1988, and 1993, respectively. He is

currently a Professor with the Division of Com-

puter Engineering, Dongseo University, Busan,

Republic of Korea. He was a Visiting Scholar with

QUT,Australia, from 2003 to 2004 and theUniver-

sity of Alabama at Huntsville, USA, from 2012 to

2013. His research areas include information secu-

rity, network security, wirelessmesh/sensor networks, and the future Internet.

VOLUME 9, 2021 3615


