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BORDERED KLEIN SURFACES WITH MAXIMAL SYMMETRY
BY

NEWCOMB GREENLEAF AND COY L. MAY

Abstract. A compact bordered Klein surface of (algebraic) genus g > 2 is said to
have maximal symmetry if its automorphism group is of order 12(g — 1), the largest
possible. In this paper we study the bordered surfaces with maximal symmetry and
their automorphism groups, the A/*-groups. We are concerned with the topological
type, rather than just the genus, of these surfaces and its relation to the structure of
the associated M*-group. We begin by classifying the bordered surfaces with
maximal symmetry of low topological genus. We next show that a bordered surface
with maximal symmetry is a full covering of another surface with primitive maximal
symmetry. A surface has primitive maximal symmetry if its automorphism group is
M*-simple, that is, if its automorphism group has no proper M*-quotient group. Our
results yield an approach to the problem of classifying the bordered Klein surfaces
with maxima] symmetry. Next we obtain several constructions of full covers of a
bordered surface. These constructions give numerous infinite families of surfaces
with maximal symmetry. We also prove that only two of the M*-simple groups are
solvable, and we exhibit infinitely many nonsolvable ones. Finally we show that
there is a correspondence between bordered Klein surfaces with maximal symmetry
and regular triangulations of surfaces.

0. Introduction. In the fundamental paper [6] Hurwitz showed that a compact
Riemann surface of genus g > 2 has at most 84(g — 1) automorphisms. Recent
research [7,8,16] has studied the values of g for which this bound is attained and the
structure of the automorphism group in these cases.

A compact bordered Klein surface [1] of genus g>2 has at most 12(g— 1)
automorphisms [10]. In this paper we study the surfaces for which this bound is
attained, the bordered surfaces which have "maximal symmetry." We also examine
the automorphism groups of these surfaces, the M*-groups [11]. We are concerned
with the topological type, rather than just the genus, of these surfaces and its relation
to the structure of the associated Af*-group.

§1 contains preliminary results and definitions, while §2 classifies the bordered
surfaces with maximal symmetry of low topological genus.

§3 is the central section of the paper. Surfaces with maximal symmetry are seen to
be "full" coverings of those with "primitive" maximal symmetry. The latter surfaces
are those whose automorphism groups are "A/*-simple." The classification problem
for surfaces with maximal symmetry then breaks into three parts, which are
considered in the next three sections.
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266 NEWCOMB GREENLEAF AND C. L. MAY

§4 discusses techniques for constructing full covers. The manageable constructions
are of abelian full covers and their iterates. These constructions yield numerous
infinite families of surfaces with maximal symmetry. §5 considers the M*-simple
groups. It is shown that there are only two that are solvable, and infinitely many
others are exhibited. However, a full classification is not obtained.

In §6 the relation between the topology of a surface with maximal symmetry and
the structure of the associated automorphism group is considered. The "index" of
the group is seen to correspond to the order of the rotations which are induced on
the various components of the boundary. The tool used here is regular maps, and it
is shown that bordered surfaces with maximal symmetry correspond biuniquely to
regular triangulations.

We should remark that while the surfaces we consider come from analysis or
algebraic geometry, this only insures that the automorphisms are reasonably smooth.
If G is a finite group of homeomorphisms of a compact bordered surface X, then A
carries a Klein surface structure that makes G a dianalytic group. While we take the
genus g in the sense of algebraic geometry, it is also simply the rank of the
fundamental group of the surface.

1. Preliminaries. Klein surfaces are more general than Riemann surfaces in that
they need not be orientable and they may have boundary. The basic theory of Klein
surfaces is given in [1] where it is shown that compact Klein surfaces correspond to
nonsingular algebraic curves over R just as compact Riemann surfaces do to curves
over C. A compact Klein surface X is characterized topologically by orientability,
the number k of components of the boundary 3 A, and the topological genus p. We
shall be concerned with compact surfaces with nonempty boundary and for such
surfaces the (algebraic) genus g is given by

.   ,. (2p + k — I,     X orientable,
O-1) 8= V    i  iv     ' \p + k - 1,       X nononentable.

Henceforth by a surface we shall always mean a compact surface. Also, by a
bordered surface we shall mean a surface with nonempty boundary.

This paper continues previous investigations [10,11,12,13] into the automorphism
groups of bordered Klein surfaces of genus g > 2. The fundamental result about the
size of these groups is the following:

Theorem A [10]. Let X be a bordered Klein surface of genus g > 2 and let G be its
automorphism group. Then G is finite and

(1.2) o(G)<\2(g-l).

A bordered surface of genus g > 2 for which the bound (1.2) is attained is said to
have maximal symmetry. In [11] there are examples of surfaces with maximal
symmetry for infinitely many values of the genus g. However, there are an infinite
number of values of g for which there is no surface with maximal symmetry [13].
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BORDERED KLEIN SURFACES 267

Now let cp: X -* Y be a nonconstant morphism of Klein surfaces. For x E X, let
ex be the ramification index and/x be the local degree of <jp at x, so that

;       Í2,     ilxEX°and<p(x)Ec)Y,
[l,     otherwise,

where as usual Xo = A — 9 A denotes the interior of X. Then there is an integer r
such that cp is an /--sheeted covering, so that for all y in Y

(1.3) 2     exfx = r-\ / Add XJX
<p(x)=y

Further we have the Hurwitz formula relating the genera g and y of A and  Y
respectively:

2g-2 = r(2y-2)+   2   {ex-l)nx,

where nx = 2 if <p(x) G F" and nx = 1 if <p(x) £ 37. Thus if cp is unramified, then

(1.4) g-l=,(y-l),
while if cp is normal (see §3), then

(1.5) (2g - 2)/r = 2y - 2 + 2(1 - l/e,)n,
where the sum is taken over the finite number of ramified fibers. See [10 and 1].

For any Klein surface A, let A(X) denote the automorphism group of X. The
formula (1.5) was used in [10] to determine the action of the automorphism group of
a bordered surface with maximal symmetry.

Theorem B [10]. Let X have maximal symmetry and let G — A(X). Then the
quotient space X/G is the disc D and the quotient map it: X — D is ramified over four
points, all on dD, with ramification indices 2, 2, 2, 3.

Corollary 1. Let ax,.. .,aAbe the points in 3D over which w is ramified. There are
two points, say ax and a2, above which the ramification index is two, such that each
component of3Amaps onto the interval I of dD from ax to a2 which does not contain a3
and a4. In particular, G acts transitively on the set of components of 3 A.

Proof. This is an immediate consequence of the fact that 7r(3A) cannot pass
through a4.

Corollary 2. Let k be the number of components of dX, let B be a component of
3 X, and let

K= [oE G\a(B) = B}.

Then K is a dihedral group of order I2(g — l)/k.

Proof. The action of K on B is easily inferred from the geometry of tt: B -> F
Now let dbe the number of points of ir~x(ax) contained in each component of dX.

If g is the genus and k the number of boundary components of X, then (1.3)
becomes

12(g- 1) = 2dk.
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Letp be the topological genus of X. Then from this equation and (1.1), we obtain the
following:

Proposition 1. The number of boundary components k divides I2(p — 1) when X is
orientable and 6( p — 2) when X is nonorientable.

Except when A is a torus or a Klein bottle with holes, this gives a bound on the
possible values for k. We shall see in the next section that while there does not exist
a Klein bottle with holes with maximal symmetry, there are tori with k holes with
maximal symmetry for all k of the form «2 or 3«2.

A finite group G is called an M*-group [11] if it is generated by three distinct
elements /, u, v of order two which satisfy the relations

(tuf = (tv)3=l.
It is immediate that 12 divides the order of an Af*-group G. The order of uv is called
an index of G. A group may have more than one index, corresponding to different
sets of generators. The significance of the index will be explored in §6. The basic
result about M*-groups is the following:

Theorem C [11]. A finite group G is an M*-group if and only if it is isomorphic to
A(X) for some bordered Klein surface X with maximal symmetry.

The next result says that it is possible to fill in the holes of a bordered Klein
surface and obtain a Klein surface without boundary.

Theorem D. Let X be a bordered Klein surface. Then it is possible to embed X in a
Klein surface X* without boundary of the same topological genus, so that every
automorphism of X extends to an automorphism of X*. The complement of X in X* is a
disjoint union of open disks, one for each component ofdX.

Proof. The theorem is a local question and was proved by Oikawa [14, p. 115]
when X is orientable and attention is restricted to orientation-preserving automor-
phisms. Following Oikawa's proof, we reduce to the case of automorphisms of
A — {z | a «s| z |< b), where 0 < a < b. To obtain the more general result, we need
only show that if <p is an anti-analytic automorphism of A which takes the interior
and exterior boundaries to themselves, then cp has a continuation to an anti-analytic
automorphism of (z 11 z |«£ b). But cp must have two fixed points on {z | | z | = a}.
Let z0 be one of these and let p be the reflection of A with axis passing through z0.
Then <pp is analytic with a fixed point. Hence tpp is the identity and cp = p. Then
clearly cp may be continued to an automorphism of (z 11 z |< b).

2. Low topological genus. In this section we classify all surfaces A with maximal
symmetry for which X* (Theorem D) is a sphere, projective plane, torus, or Klein
bottle. This will furnish several examples which illuminate the later theory.

Theorem 1. Let X be a sphere with k holes with maximal symmetry. Then
k = 3,4,6, or 12.
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Proof. It follows from Proposition 1 that k divides 12, and since A is of genus
g 3* 2, k > 3. Examples of spheres with maximal symmetry with k — 3,4,6,12 are
given in [10 and 11]. The corresponding Af*-groups, easily determined from the
relation of the examples to the platonic solids, are C2X S3, S4, C2 X S4, and
C2 X A5. Also see [5].

Theorem 2. Let X be a projective plane with k holes with maximal symmetry. Then
k = 3 or 6.

Proof. Let A0 be the orienting double of X [1, pp. 40-42]. Then X0 is a sphere
with 2k holes, which is easily seen to have maximal symmetry. Now by Theorem 1,
k — 2,3, or 6. If Ac = 2, then X is of genus two and A(X) » C2 X S3, the only
M*-group of order 12. But then A(X0) = S4, and since S4 contains no subgroup
isomorphic to C2 X Siy the case k = 2 does not occur. Examples for k — 3,6 are
given in [10 and 11]. The corresponding M*-groups are S4 and Ay

We begin our treatment of tori with holes with an example. Let A be the lattice
subgroup of C generated by (1, u], where co = e"'/3. Let M = C/A and let p:
C -» M be the quotient map. Multiplication by u and complex conjugation induce
automorphisms of M that generate a group GsQXS,. The point p(0) is a fixed
point of G. By removing a disc centered atp(0), we obtain a surface X of genus 2 on
which G acts, and which thus has maximal symmetry. It is easily seen that this
example is unique except for the size of the hole. That is, if A is a torus with one hole
with maximal symmetry, then X* as C/A.

Theorem 3. There is a torus with k holes with maximal symmetry for precisely the
following values of k:

k — n2   or   3«2,       « E N.

Proof. Let A be a torus with k holes with maximal symmetry, and let G = A(X).
Let B be a component of 3 X and let

H = [a E G\a(B) = B).

Clearly o(H) = o(G)/k = 12 and H acts on Z, where Z is obtained from X by
attaching a disc to all boundary components except B. By the above remarks
ffsQXÍj and Z* = X* s C/A, where A is generated by {1, co}. Let O be the set
of centers of the discs adjoined to X to make X*, and let ñ = p'x(0), where p:
C -» C/A = AT*. It is easy to see that ñ is a lattice which contains A as a subgroup
of index k.

From the action of H on X*, it follows that £2 is invariant under multiplication by
co and under complex conjugation. Therefore fi is similar to A and is generated by
{a, coa} for some a. Comparing the areas of fundamental domains, we see that
| a \2 ■ k — 1. Since ACß, there exist integers m, n such that 1 = ma + «coa, and
then an easy calculation shows that k — m2 + mn + n2. Since a E SI, a = uJ ■ â for
some/. Let 0 = arg(a), and we can assume 0 < 6 < ir/3. Then 20 =j(ir/3).
Therefore either 6 = 0 or 6 = tt/6. Since arg(«i + «co) = -6, either « = 0 and
A: = m2, or m = « and k = 3n2.
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Finally we note that both of these cases can be realized. To obtain k = «2, simply
set Í2 = (1/«)A. To obtain k = 3«2, let a = (1 + co)/3« as shown below.

uj/n

1/n
This completes the proof. See also [14].

Theorem 4. There is no Klein bottle with holes with maximal symmetry.

Proof. Let A be a Klein bottle with k holes. Its orienting double W is a torus with
2k holes. Clearly W* is the orienting double of A*, a Klein bottle. Therefore W* is
of the form C/A, where A is generated by {1, y) and Re(y) = 0 [l,pp. 61-65].
Therefore W does not have maximal symmetry and so neither does X.

Corollary. Let X be a surface with one hole with maximal symmetry. Then X is
orientable and of topological genus one, that is, X is a torus with one hole.

Proof. Since 3X is a circle, G = A(X) is a dihedral group. A simple direct
argument shows that the only dihedral AP-group is D6 = C2 X 53. Hence g = 2, and
by (1.1) X is either a torus with one hole or a Klein bottle with one hole. The
theorem rules out the latter case.

We have exhibited two surfaces of genus two with maximal symmetry: a sphere
with three holes and a torus with one. Both have C2 X S3 as automorphism group.
We now note that this group has two indices. Let a generate C2 and let x, y be
elements of order two in S3. If we set

t=(l,x), u = (a,x), v=(l,y),

then o(uv) = 6. If we set

t—(á,x), u = (a,l),       v=(l,y),
then o(uv) = 2. Hence 2 and 6 are indices of C2 X Sy see Theorem 17 and its
corollary.

3. Maximal symmetry and coverings. Let cp: A -> A' be a nonconstant morphism of
Klein surfaces. We call cp a smooth covering if it is unramified and without folding
(so that A is a covering space in the usual topological sense) and a normal covering if
the covering transformations act transitively on fibers. If cp is smooth and normal
and every automorphism of A' lifts to an automorphism of A, then cp is called a full
covering. In this case, let G' = A(X') and let N be the group of covering transforma-
tions of A. Then if we let G be the group of automorphisms of A generated by N and
lifts of elements of G', we have the exact sequence

(3.1) l-*N-*G-G'-*l.
Of course in general G is only a subgroup of A(X).
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Theorem 5. Let cp: X -» X' be a full covering of the bordered Klein surface X'. If X'
has maximal symmetry, then so does X. In this case, G = A(X).

Proof. This follows from (3.1), (1.4), and (1.2).
Theorem 5 will be used in §4 to produce infinite families of surfaces with maximal

symmetry.

Theorem 6. Let X have maximal symmetry and let N be a normal subgroup of
G = A(X) of index r > 6. Set X' = X/N, G' = G/N, let cp: A - X' be the quotient
map, and let g' be the genus of X'. Then

0)g'»2;
(2) A' has maximal symmetry;
(3)G'^A(X');
(4) cp is a full covering.

Proof. To prove (1) we show that g' = 0 and g' = 1 are impossible. From
Theorem B and the induced action of G/N on X/N we obtain the following diagram
of quotient maps

v
X      -      X'

(3.2)
D

where v can be ramified over at most four points of %D, with ramification indices
taken from {2,2,2,3}. Further, v is an /--sheeted covering, so that (1.5) for v becomes

2g'- 2 = r[-2 + 2(1 - l/e,)].
It is routine to check that this has no solutions for g' = 0 or 1, r > 6, and e¡ chosen
from (2,2,2,3}.

Since G' =» A(X'), we have o(G') < 12(g' — 1). Let g denote the genus of X. Then
applying (1.5) to cp yields g — 1 > o(N) ■ (g' — 1), with equality if and only if cp is
unramified. Thus

It follows that A' has maximal symmetry, that G' = A(X'), and that cp is unramified.
To complete the proof we need to show that there is no folding in the covering <p,

i.e., that no interior point of A is mapped to 3 X'. We use the notation of the
corollary to Theorem B. Let cp(*) G 3 A'. Then v<p(x) lies in the interval /, and this
means that x E 3 A. Thus cp is a full covering.

An M* -group may have quotient groups of order 6 or less, of course, the
possibilities being C2, C2 X C2, and S3. But these are not Af*-groups, and in these
cases the quotient space A' is the disc D.

Let cp: X -» X' be a smooth and normal covering of degree r, and let C, be the / th
component of 3 X. The local boundary degree dt is the number of times C, wraps
around its image in 3 A'. If all of the dt are equal, then the common value d is called
the (global) boundary degree of cp. In this case, we have

(3.3) dk = rk',
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where k, k' denote the number of components of dX, dX'. In general, of course, a
normal covering does not have a global boundary degree. However, if cp is a full
covering and the surface X' has maximal symmetry, note that the boundary degree is
well-defined, since then A (A) acts transitively on the components of 3 X and we
have (3.1), (3.2).

Theorems 5 and 6 suggest the following definitions. An M* -group G is called
M*-simple if it has no proper AP-quotient group, or equivalently, if it has no
nontrivial normal subgroup of index greater than six. If A has maximal symmetry
and ^l(A') is M*-simple, then we say that A has primitive maximal symmetry. Now
Theorem 6 yields

Theorem 1. If X has maximal symmetry, then it is a full covering of a surface X'
with primitive maximal symmetry.

In §4 we shall give an example which shows that, given X, the surface X' of
Theorem 7 need not be unique.

We can now formulate a program for finding all bordered surfaces with maximal
symmetry, which splits naturally into three problems:

1. Find all Af*-simple groups.
2. Given an M*-simple group G, find all surfaces A with maximal symmetry (at

least up to topological type) for which G = A( A).
3. Given a surface A with primitive maximal symmetry, find all full coverings of

A.
We do not have complete answers for any of these, but we shall return to Problem 1
in §5, to Problem 2 in §6, and to Problem 3 in §4.

A simple AF*-group is, of course, Af*-simple. If G is a simple Af*-group, then G
acts only on nonorientable surfaces with maximal symmetry, since otherwise the
orientation-preserving maps would be a subgroup of index two in G [10, p. 206]. We
shall see in §5 that there are infinitely many simple A/*-groups.

4. Full covers. In this section we use the familiar theory of covering spaces and the
fundamental group [9] to construct full covers of a bordered Klein surface. Here we
make no assumption about the size of the automorphism group of the surface.
However, the immediate applications we have in mind are to surfaces with maximal
symmetry.

Let A be a bordered Klein surface of genus g and let ir( X) denote the fundamen-
tal group of X. The elements of G = A(X) act on tr(X), with the action determined
only up to inner automorphisms of tr(X). Then the full covers of X correspond to
the normal subgroups of finite index in it( X) which are G-invariant [9].

All normal G-subgroups of finite index in tt(X) can be obtained by the following
general construction. Start with a normal subgroup N0 of tt(X) of finite index and
set

n= (le(N0).
flee

While this construction does not yield any information on the topological type of the
corresponding full cover Y of A, it does give the following results.
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Proposition 2. Let A be a finite group which can be generated by g elements, where
g denotes the genus of the bordered surface X. Then there is a full cover Y of X such
that A is a quotient group of the group of covering transformations.

Corollary. Every finite group is a quotient of a normal subgroup of an M*-group.

However, we regard a full cover F of A as determined only when the topological
type of Y is found, and we now turn to more manageable constructions. These are
obtained by passing to the first homology group H = Hx( X, Z), which is a free
abelian group of rank g. Then the G-subgroups of finite index in H correspond to
abelian full covers of X. Full covers for which the covering group is solvable are
produced by iteration.

Let A be a G-subgroup of H of finite index r, and let Y be the corresponding full
cover of A. The topological type of the surface Y can be determined as follows. First,
from (1.4), the genus of Y is r(g — 1) + 1. Now let y, G H correspond to a path
around the ith component of 3 X. The least integer d¡ such that yf> E N is the local
boundary degree. If all of the d¡ have a common value d (as is the case in each of our
constructions), then d is the boundary degree of the covering, and Y has rk/d
boundary components, where k denotes the number of boundary components of X.
Finally, Y is nonorientable if and only if there is an element in N corresponding to a
path class around which orientation is reversed. Now the topological genus of Y may
be calculated from (1.1).

The quotient group C = H/N acts as the group of covering transformations, of
course, and A = Y/C. If in fact A does have maximal symmetry, then so does the
full cover Y, and A(Y) is an extension of A( X) by the covering group C:

1 - C ^ A(Y) ^ A(X) - 1.

The nonorientable case is somewhat more delicate, and we shall treat the two
cases separately.

Let A be orientable of topological genus p, and let 3 A have k components. Then
H has generators a,, /?,,...,ap, ßp,yx,...,yk satisfying the single relation y, • • • yk =
1. Here y¡ corresponds to a path around the /th component of 3 A, following a given
orientation of A. Note that if k = 1, then yx = 1.

For our first construction we take N = H", the subgroup of «th powers of H. This
gives the following.

Theorem 8. Let X be orientable of genus g. Then for each positive integer « there is
a full cover Y of X with

(1) covering group C = C*;
(2) boundary degree

[«,     ifk>l,

Example. Applying this construction to the two surfaces with maximal symmetry
of genus two yields two infinite families of surfaces with maximal symmetry. If A is
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a sphere with three holes, then the genus, number of boundary components, and
topological genus are

g„ = «2+l,        k„ = 3n,       pn = {n(n- 3) + 1.

If A is a torus with one hole, then

g„ = «2+l,       kn = n2,       p„=l.

Note that the two families coincide only when « = 3. The torus with nine holes is a
full cover of two surfaces with primitive maximal symmetry.

Note also that when this method is iterated additional examples are obtained. For
instance, starting with the sphere with three holes and taking « = 2, we obtain a
sphere with six holes. Applying the construction to this surface, again with « = 2,
yields a surface of genus 27 + 1, which is not of the form «2 + 1. Thus the new
surface is outside the first infinite family. This surface is a full cover of the sphere
with three holes with a covering group which is solvable but not abelian.

This method improves on that of [11, pp. 8,9] in that it works for all positive
integers (not just odd ones) and allows easy determination of topological type. A
similar technique was used by Macbeath in [7].

Now let B be the subgroup of H generated by y,,...,yk. Then B is a G-subgroup
of H. Indeed for 0 E G, we have 0(y¡) = y±x. B is a direct factor of H and is of rank
k — I, since we have the relation y,y2 • • ■ yk = I.

For our second construction we take N = H" ■ Bm, where m divides «. From the
way that B lies in H we obtain the following.

Theorem 9. Let X be orientable of genus g = 2p + k — 1. Then there is a full cover
Y of X with

(1) covering group C = C2p X Ck~x,
(2) boundary degree

m,    ifk>l,
1 1,      ifk = 1,

for any positive integers m, n such that m divides n.

Special cases of particular interest are m = n, which gives the first construction,
and m = 1, which comes from an unramified cover of A*.

For the third construction let m divide (k, n) and set

B(m) = {yf • • • ykk | 2e, = 0(mod m)}.

It is easily checked that B(m) is G-invariant. Then if we take N = H" ■ B(m) we
have the following:

Theorem 10. Let X be orientable of genus g = 2p + k — 1. Then there is a full
cover Y of X with

(1) covering group C = C2p X Cm,
(2) boundary degree d = m

for any positive integers m, n such that m divides (k, «).
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Example. If we apply this construction to a sphere with k holes (k = 3,4,6, or
12), we obtain a full cover with boundary degree equal to the degree, and hence Y
also has k holes. The following table lists all cases, with Y having genus g' == 2p' +
k — 1. By results of Sherk [17, pp. 462, 464] and §6, this table contains all orientable
surfaces with maximal symmetry and k = 3,4, or 6.

g

11 12

2

4

2
3
4
6
12

9
13
25
21
31
41
61
121

2
4
10

5
10
15
25
55

Now let A be nonorientable. In this case H is generated by ax,...,a , yx,...,yk
with the relation a? ■ ■«¿Yi yk = 1. Orientation reverses around the path corre-
sponding to a, and is preserved around the path corresponding to y,. Let O be the
subgroup of H of all elements corresponding to orientation preserving paths. Then

0= {a h «/'Y*' •y¿<|2/ = 0(mod2)},

O is a G-subgroup, and O corresponds to the orienting double cover of A. The cover
corresponding to a subgroup N of H is orientable if and only if N E O.

The simplest construction again takes N = H". In this case it yields

Theorem 11. Let X be nonorientable of genus g. Then for each positive integer «
there is a full cover Y of X with

(1) covering group C s Cng,
(2) boundary degree

d =
n/(2,n),

ifk> 1,
ifk= 1.

Further, Y is orientable if and only if n is even.

Extvmple. Let A be a projective plane with three holes, the nonorientable surface
with maximal symmetry of genus three. Then for each positive integer « there is a
full cover F of A of genus 2«3 + 1 with 3«2 boundary components. If « is odd, then
Y is nonorientable of topological genus 2«3 — 3«2 + 2. If « is even, then Y is
orientable of topological genus \(2n3 — 3«2 + 2). Again notice how this example
improves a result of [11, p. 10].
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Let B be generated by y,,... ,yk. Then B is of rank k and H/B = C¿  ' X C2. Let
m divide « and set N = H"Bm. Then we have the following:

Theorem 12. Let X be nonorientable of genus g = p + k — 1. Then there is a full
cover Y of X with

(1) covering group C » C^"1 X Ck~x X C(2m,n),
(2) boundary degree

m, ifk > 1,
' \(2m,n)/(2,n),    ifk=l,

for any positive integers m, « such that m divides n. Further Y is orientable if and only
if n is even.

The group

B(2)= {yf'...y¿'|2e,=0(mod2)}
is a G-invariant subgroup of H. Let 8 = (ax ■ ■ ■ a )"', so that 82 = y, ■ ■ • yk. It is
easily checked that

, ,      ÍC¿-X X C4(8), iffcisodd,
H/B(2) s \   °° 4V

[C^x XC2(8)XC2(yx),     ifÂriseven.

Now let n be even and take N = H" ■ B(2). This gives the following:

Theorem 13. Let X be nonorientable of genus g = p + k — 1. Then for each even
positive integer n there is a full cover Y of X with

(1) covering group

Cs{CnP~,XC(A,n)> ifk is Odd,
[ C?~x X C2XC2,    ifk is even.

(2) boundary degree

i(4,«)/2,     ifk is odd,
{2, ifk is even.

Further Y is orientable.

All of the above results can be applied to A/*-groups to show that if G is an
M*-group, then certain extensions of G by abelian groups are Af*-groups. We
mention only one case, corresponding to Theorems 8 and 11.

Corollary. // G is an M*-group of order I2(g — 1) and n is a positive integer,
then G has an M*-extension Gn of the form

1-C«-G„-G-1.

These constructions provide us with a wealth of examples of surfaces with
maximal symmetry, each presented as an abelian full cover of a surface with
maximal symmetry of lower genus. We emphasize, however, that we have not been
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able to classify the abelian full covers of a surface with maximal symmetry. The
main result of §6 is another fruitful source of examples. We shall see that there is a
nonorientable surface of genus 11 that is a double cover of the projective plane with
6 holes but that cannot be obtained by the constructions of this section.

5. M*-simple groups. Let T be the extended modular group. T has generators
F, U, Fand defining relations [3, pp. 85, 86]

(5.1) F2= U2= V2 = (TU)2 = (TV)3 = 1.
It follows that a finite group of order at least twelve is an Af*-group if and only if it
is a homomorphic image of T.

Consider the canonical homomorphism <pp from T to PGL(2, p), wherep is an odd
prime. It is easily checked that tpp is onto when -1 is a quadratic nonresidue mod p,
and that the image is PSL(2, p) when -1 is a quadratic residue. Since PGL(2,3) = S4
is Ai*-simple, and for p > 3, PSL(2, p) is simple and the only nontrivial normal
subgroup of PGL(2, p), we have

Theorem 14. The following are M*-simple groups:

PGL(2, p),    p = 3(mod4),
PSL(2,p),     p=l(mod4).

In §6 we shall determine surfaces with maximal symmetry for which these are the
automorphism groups. For this purpose we will need to know an index of each
group. In T we may choose

o1 Ï).  •=(. 1)
and it is easily computed thatp is an index of the image of (pp.

We know of a few Af*-simple groups in addition to those in the infinite family
given by Theorem 14. First there is, of course, the group C2 X S3 of order twelve.
Three more Af*-simple groups appear in the work of Coxeter [2]. He defines G"-p'q
as the group with generators A, B, C and defining relations

A" = B" = C = {AB)2 = (BC)2 = (CA)2 = (ABC)2 = 1.

Setting
T=BC,        U=CA,        V=BCA,

so that
A = TV,       B= VU,       C= UVT,

we obtain the presentation

T2 = U2 = V2 = (TU)2 = (TV)" = (UV)P = (TUV)q = 1.

Hence any finite group G3,p,q is an M*-group, and any Af*-group is a quotient of
some group G3,p,q (which need not be finite). From the table of finite groups G"iP'q
given in [3, pp. 139, 140], we have the following additional M*-simple groups:

G3'79»F5L(2,8),        G3712 s y?GL(2,13),        G3-99 s FSX(2,19).
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We have not been able to classify Af*-simple groups, or even simple Af*-groups.
We do not even know if there exist infinitely many such groups beyond those listed
in Theorem 14, although we conjecture that there are. Note that the two smallest
A/*-simple groups, C2 X S3 and 54 s PGL(2,3), are solvable. We now show that
they are the only solvable AF*-simple groups. To do so we shall need the structure of
the commutator subgroup of the extended modular group F.

Lemma 1. The commutator subgroup F' of F is a free product of two cyclic groups of
order three, and [F : T'] = 4.

Proof. Let F have generators T,U,V with defining relations (5.1), and set
H = (TV, TU ■ TV ■ TU). It is not hard to check that H is normal in F and that
[T : H] = 4. The quotient F/H is abelian, so that F' E H. But TV = VTVT and
TU ■ TV ■ TU = (TU)-X ■ TV ■ TU are both elements of F'. Hence F' = H. It is
clear that H is the free product of two cyclic groups of order three, since the defining
relations for H are (TV)3 = (TU ■ TV ■ TU)3 = 1.

Corollary. [F' : F"] = 9.

Proof. The commutator quotient group T'/T" is the direct product of two cyclic
groups of order three [15, p. 249].

Corollary. // G is an M*-group, then [G : G'] divides 4 and [G' : G"] divides 9.

Lemma 2. Let G be a solvable M*-group with [G : G"] — 6, where G" is an
elementary abelian group. Then G = S4.

Proof. Since 4 divides o(G), 2 divides o(G"). Thus G" is an elementary abelian
2-group, and o(G) is of the form 2" • 3. The quotient G/G" = S3, and it is not hard
to see that G has no elements of order larger than 6. Hence G is a quotient group of
a group G3'p,q, where p < q «S 6. From the table in [3], we have that G is isomorphic
to one of the following groups: C2 X S3, S4, C2 X S4. By checking the derived series
of these three groups, we see that G = S4.

Theorem 15. The only solvable M*-simple groups are C2 X S3 and S4.

Proof. The three smallest (solvable) M*-groups, C2 X S3, S4, and S3 X S3, are the
only M*-groups of orders 12, 24, 36, and S3 X S3 is not Ai*-simple. Then let G be a
solvable M*-group with o(G) > 48. We show that G has an A/*-quotient group.

Since G is solvable, [G:G"]s*6 by the second corollary to Lemma 1. Since
o(G)> 48, G" ¥= 1, by the same corollary. If [G:G"]>6, then G/G" is an
A/*-group. Suppose [G : G"] = 6. If G" were a minimal normal subgroup of G, then
G" would be an elementary abelian group [15, p. 117], contradicting Lemma 2. Hence
G" contains a minimal normal subgroup M of G with [G: M] > [G: G"] = 6, so
that G/M is an M*-group.

6. Regular maps and maximal symmetry. Let S be a surface without boundary, and
let M be a map on S, i.e. a polyhedral decomposition of S with v vertices, e edges,
and / faces. An automorphism of M is a permutation of its elements which preserves
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incidence. The map M is called regular if its automorphism group A(M) contains
(1) an element p which cyclically permutes the edges of some face,
(2) an element a which cyclically permutes the edges meeting at a vertex of this

face,
(3) an element t which maps some edge to itself and interchanges its vertices while

leaving the two bordering faces fixed.
It follows easily from (1) and (2) that A(M) acts transitively on the vertices, edges,

and faces of M. We say M is of type {r, q] if r edges surround a face and q edges
meet at a vertex. Clearly

(6.1) qv = 2e = rf.
The group A(M) maps each face to itself in 2r ways, so that the order of A(M) is
2rf. Thus A(M) is generated by p, a, t and hence also by t, a — rp, and ß = aa,
which satisfy the relations

(6.2) t2 = a2 = ß2 = (ra)r = (aß)9 = (rß)2 = 1.

Therefore when r = 3, A(M) is an M*-group (also when q = 3, but then we may
consider the dual map, of type [q, r}).

If the surface S has Euler characteristic x < 2, then the regular map M may be
derived from another map N of type {r, q) on the universal covering space S of 5. N
is normally called the regular tesselation {r, q). The full automorphism group
T = A(N) is generated by three elements t, a and ß with presentation (6.2). Further
there is a normal subgroup K in T such that F/K = A(M), N/K= M, and of
course S/K = S (see [3, p. 103] and [20, pp. 765-768]).

We should remark that our definition of regularity is somewhat stronger than the
usual one. Most authors, in particular Coxeter and Moser [3], have required only
that A(M) contain the rotations p and a. Maps that also have the symmetry t are
then called "reflexible". However it is perhaps more natural to require that a regular
map possess all of its possible symmetries than just half, and in recent work [20, 21]
Wilson gives a definition equivalent to ours. In any case, maps that fail to satisfy (3)
are not of interest here. But note that if S is nonorientable, then (1) and (2) actually
imply (3).

We now consider the relationship between regular maps and bordered Klein
surfaces with maximal symmetry. Let M be a regular map of type {r, q] on a surface
S. The quotient of S under A(M) is a triangle F. Let it: S -> F be the quotient map,
and let t denote the corner of F whose inverse image is the set of vertices of M. Cut
off a small (open) corner at t and give the resulting polygonal disc D a Klein surface
structure. Then let A= tt~x(D) C S. It follows from [l,p. 28] that A has a Klein
surface structure and that the restriction of the action of A( M) to A is dianalytic.

Geometrically the topological type of the bordered surface A is obtained by
removing v open discs, each centered about a different vertex of the map M.
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Now let g denote the genus of X. We need the size of the group A(M) in terms of
g-

Lemma 3. o(A(M)) = (g - \)4r/(r - 2), if r s* 3.

Proof. By construction, A has v boundary components. If x denotes the Euler
characteristic of S, then an easy calculation shows that g — 1 = v — x- But x = v —
e + f. Thus

g- 1 = e - f = f(r - 2)/2,
IÍ    IN      TIusing (6.1). Hence

o(y<(M)) =2r/= (g- l)4r/(r-2),    ifrS*3.

Theorem 16. Let M be a regular map of type {3, q), that is, a regular triangulation.
Then the bordered Klein surface X constructed from M has maximal symmetry, and
A(X) = A(M).

Note that if a surface A constructed from a regular map of type {r, q) has
maximal symmetry, then necessarily r divides 6. If r — 2, then g = 1. If r = 6, then
A(M) is a subgroup of index two in A(X).

Theorem 16 provides us with another source of examples of surfaces with maximal
symmetry. Set r = 3, and note that from the proof of Lemma 3, x = (6 — q)v/6. If
q «s 6, then x > 0, and in fact the well-known regular maps of type {3, q] on the
sphere, the projective plane, and the torus [3, p. 138] can be used to produce the
bordered surfaces of §2. If q > 1, then x < 0 and the universal covering space S of S
is the hyperbolic plane H. In this case the map A is a (2,3,q) triangulation of H and
the group F = A(N) is an extended triangle group [18,p. 21]. Thus the M*-group
that acts on the Klein surface A is a quotient of an extended (2,3,q) triangle group.

In all cases it is interesting to note that by varying the size of the removed discs,
we actually obtain a one-parameter family of bordered surfaces with maximal
symmetry from each regular map of type {3, q).

Occasionally we obtain surfaces that cannot be explained by the constructions of
§4. For example, there is a regular map of type {3,10} on a nonorientable surface of
topological genus six [3, p. 139]. The surface of genus 11 constructed from this map
has 6 boundary components and is a double cover of the real projective plane with 6
holes.

Also note that if M is a regular map of type {4, q), then the bordered surface A
constructed from M has automorphism group of order 8(g — 1). It follows from
[10,p. 207] that if o(A(X)) < I2(g - 1), then o(A(X)) < 8(g - 1). Thus regular
maps of type {4, q) produce bordered surfaces with automorphism groups of the
second largest possible order.

We now start with a bordered Klein surface A that has maximal symmetry and
construct an associated regular triangulation. We use Theorem B and its corollaries.
Let g and k denote the genus and number of boundary components of X, and let
G = A(X). Then the quotient space X/G is the disc D, the quotient map it: X -» D
is ramified above four points ax, a2, a3, a4 in dD with indices kx = k2 = k3 = 2,
k4 = 3, and tr(dX) is the interval from a, to a2 in 3D. Let B be a component of 3A,
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and let A" = {o E G\o(B) = B). Then Kis a dihedral group, and a generator of the
cyclic subgroup of index two acts as a rotation of B.

Now fill in the holes of A to obtain a surface X* without boundary so that G acts
as a group of automorphisms of X*. Let D' be the quotient of X* under G, and let
it*: X* -» D' be the quotient map. D' is obtained from Z) by adjoining the quotient
of a disc under the dihedral group K:

It is easily seen that tr* is ramified above a3, a4, and a third point b in 3D' with
indices 2,3, and 6(g — l)/k (the order of the cyclic subgroup of K).

Let M be the inverse image under it* of the interval from a3 to b in 3F>' which
does not contain a4. Since the ramification index above a3 is 2, A/ is a map on A*
with w*~x(b) the set of vertices.

Theorem 17. Let X be a bordered Klein surface with maximal symmetry. Then the
associated map M is a regular triangulation of X* with A(M) = A(X).

Proof. Clearly each element of G = A(X) induces an automorphism of M and M
is regular. If the map M is of type {r, q), then q = 6(g — l)/k and we need to show
r — 3. But this follows from k4 = 3, since lifting the triangulation (a3, a4, b) of D'
to A* cuts each polygon of M into 6 triangles:f      JO o

This completes the proof.
Theorem 17 could also be established by using the geometry of the hyperbolic

plane H and noneuclidean crystallographic (NEC) groups. Suppose that A* has
Euler characteristic x < 0 (the cases of low topological genus were treated in §2).
Then we can represent the Klein surface X* in the form A* = H/K, where AT is a
surface group, and further there is an NEC group F such that K < F and F/K s= G
(see [11, pp. 2-4; and 4, pp. 23-27]). Now the quotient space H/F is dianalytically
isomorphic to (H/K)/(F/K) = X*/G. The proof of the theorem shows that A*/G
is a disc, with the quotient map ramified above three boundary points, the ramifica-
tion indices being 2,3, and q. By applying a useful result of Wilkie [19, p. 96] to the
quotient map H -> H/F, we see that F is an extended (2,3, c?) triangle group.
Finally the (2,3, q) triangulation N of H will project to a regular triangulation
M = N/K of the surface A* = H/K.
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We record the following consequence of the proof of Theorem 17.

Corollary, q = 6(g — l)/k is an index of G — A(X).

Proof. This follows from (6.2).
We now see that if an Af*-group G acts on A, then the index q of G is determined

by k. Further, each component of 3 X is fixed by a dihedral subgroup of G of order
2q. Thus the index q of G gives the order of the rotation of each boundary
component.

Theorems 16 and 17 establish a bijection between bordered Klein surfaces with
maximal symmetry and regular triangulations.

There is also a bijection between regular maps of type {4, q) and bordered Klein
surfaces of genus g s* 2 with 8(g — 1) automorphisms. This may be established with
our techniques and the results in [10, pp. 206, 207].

Finally, we have seen that an A/*-group G can have more than one index. But the
index q determines k. Thus if G acts on two topologically different surfaces with the
same index, then one must be orientable and the other nonorientable. It would be
very interesting to see such an example.

We would like to thank the referee for several helpful suggestions, including the
simplified proof of the corollary to Theorem 4.
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